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Abstract

Numerical modeling is crucial for quantifying the evolution of cryospheric processes. At the
same time, uncertainties hamper process understanding and predictive accuracy. Here, we sug-
gest improving glacier surface mass balance simulations for the Kongsvegen glacier in Svalbard
through the application of Bayesian data assimilation techniques in a set of large ensemble
twin experiments. Noisy synthetic observations of albedo and snow depth, generated using
the multilayer CryoGrid community model with a full energy balance, are assimilated using
two ensemble-based data assimilation schemes: the particle batch smoother and the ensemble
smoother. A comprehensive evaluation exercise demonstrates that the joint assimilation of albedo
and snow depth improves the simulation skill by up to 86% relative to the prior in specific glacier
regions. The particle batch smoother excels in representing albedo dynamics, while the ensem-
ble smoother is marginally more effective for snow depth under low snowfall conditions in the
ablation area. By combining the strengths of both observations, the joint assimilation achieves
improved surface mass balance simulations across different glacier zones using either assimilation
scheme. This work underscores the potential of ensemble-based data assimilation methods for
refining glacier models by offering a robust framework to enhance predictive accuracy and reduce
uncertainties in cryospheric simulations. Further advances in glacier data assimilation research
with both synthetic and real observations will be critical to better understanding the fate and role
of Arctic glaciers in a changing climate

1. Introduction

Glaciers are regarded as key indicators of climate change. Over the past three decades, global
glacier ice loss has contributed nearly 1 mm annually to sea level rise (Zemp and others, 2019;
IPCC, 2022). At the same time, glaciers serve as a critical component of mountain water tow-
ers, helping to provide a more consistent and reliable water supply to downstream regions
(Immerzeel and others, 2019; Zhang and others, 2023). Arctic glaciers are experiencing an accel-
erated mass loss (Dstby and others, 2017; van Pelt and others, 2019; Rounce and others, 2023;
Schmidt and others, 2023) because warming is amplified in the Arctic at two to four times
the global average through various positive feedback mechanisms (e.g. Lind and others, 2018;
Rantanen and others, 2022). Freshwater runoff from melting Arctic glaciers can have consid-
erable impacts on ocean circulation and ocean-atmosphere interaction globally (Devilliers and
others, 2024; Pontes and Menviel, 2024; Schiller-Weiss and others, 2024; Malles and others,
2025), as well as on regional marine biogeochemistry and productivity (Hopwood and others,
2020; Ezat and others, 2024). Thus, accurate knowledge of glacier surface mass balance is vital
for understanding, detecting, and predicting the impacts of climate change.

Numerical modeling is the main method to reconstruct past or project future glacier
surface mass balance at sites with scarce in situ observations. Glacier surface mass
balance models forced by meteorological data include temperature-index models (e.g.
Hock, 2003; Marzeion and others, 2012) and energy balance models (e.g. Hock and
Holmgren, 2005; Westermann and others, 2023). Temperature-index models approxi-
mate the melt rate based on air temperature (Huss and Hock, 2015), while physically-
based energy balance models explicitly calculate the energy fluxes on the glacier sur-
face and therefore provide a more detailed representation of the processes controlling
the surface mass balance. The accuracy of glacier models is limited by uncertainties
related to meteorological forcing (Marzeion and others, 2020), incomplete model physics
(Schmidt and others, 2023), and parameter uncertainty (Rounce and others, 2020; Schuster
and others, 2023). Constraining each uncertainty source remains a significant challenge.
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Data assimilation methods can incorporate observations into
modeling to improve accuracy and constrain simulation uncer-
tainty (Evensen and others, 2022, Chapter 2). In situ and remotely
sensed observations can be individually or jointly assimilated into
glacier models, leading to a reduction of the aforementioned uncer-
tainties (Gillet-Chaulet, 2020; Choi and others, 2023). The assim-
ilation of ground-based glaciological measurements into surface
mass balance models is gradually becoming a recognized approach
for updating glacier model parameters or initial states (Landmann
and others, 2021; Sjursen and others, 2023). Despite this recog-
nition, there are still relatively few studies that have implemented
data assimilation in surface mass balance modeling. Moreover, in
situ measurements are available for only a minority of glaciers
worldwide, which presents a significant challenge to transfer infor-
mation to the unmeasured majority of glaciers. In addition to the
direct assimilation of surface mass balance measurements, other
quantities that can directly influence surface mass balance changes,
such as remotely sensed albedo or snow depth, can also be ingested
within a data assimilation framework. Satellite-derived observa-
tions of albedo and snow depth offer greater spatial and temporal
coverage, enabling broader applicability despite their susceptibil-
ity to factors such as cloud cover, sensor resolution, and atmo-
spheric interference, which can impact data quality and availability
(Vionnet and others, 2012; @stby and others, 2014; Deschamps-
Berger and others, 2023).

Albedo, defined as the reflectivity of the Earth’s surface to short-
wave insolation, is a controlling variable in the surface energy
balance of glaciers. It significantly impacts the radiation budget,
thereby influencing the rate of melt and overall surface mass bal-
ance of glaciers (e.g. Budyko, 1969; Ye and others, 2024). In a pio-
neering study, a variational assimilation scheme was used to incor-
porate Moderate Resolution Imaging Spectroradiometer (MODIS)
derived albedo into a snowpack model to reconstruct the spatial
surface mass balance distribution for an Alpine glacier (Dumont
and others, 2012). More recently, Sentinel-2 albedo estimates were
assimilated into a glacio-hydrological model to improve the sim-
ulation of streamflow in two glacierized basins in the Canadian
Rockies (Bertoncini and others, 2024).

Snowfall is another major driver of the surface mass balance, as
it is the primary source of glacier mass gain (Hock, 2003; Pramanik
and others, 2019). Satellite-based snow depth retrievals, such as
from the ICESat-2 laser altimeter, are a potentially globally avail-
able constraint on uncertainties in snowfall forcing which is being
explored for seasonal snow data assimilation (Mazzolini and oth-
ers, 2024). However, to the best of our knowledge, no experiment
has explored the joint assimilation of remotely sensed albedo and
snow depth into an energy balance model for surface mass balance
simulation. Moreover, the current state of the art in using Bayesian
data assimilation to infer surface mass balance has focused on static
parameters in temperature index models using relatively costly
Markov chain Monte Carlo methods (Rounce and others, 2020;
Sjursen and others, 2023). This stands in contrast to other recent
cryospheric work on glacier flow (Brinkerhoff, 2022), ice sheet
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(Navari and others, 2000-2014), seasonal snow (Alonso-Gonzélez
and others, 2022), and permafrost (Groenke and others, 2023),
which employ a greater diversity of modern Bayesian data assimi-
lation (also known as inversion) schemes that allow for the use of
more complex models.

In this study, we performed twin experiments (Arnold and Dey,
1986; Masutani and others, 2010), also known as synthetic exper-
iments or Observing System Simulation Experiments, to explore
the benefits of assimilating albedo and snow depth on surface mass
balance simulations. This allowed us to test the data assimilation
workflow in a series of targeted experiments while avoiding chal-
lenges of real observations and model discrepancies (Masutani
and others, 2010). In particular, as satellite-based measurements of
albedo and snow depth and their associated error characteristics
are not always available or consistent due to variable weather con-
ditions and observational limitations. Here, synthetic observations
are instead generated using synthetic truth (also known as nature)
runs of the energy balance model CryoGrid (Schmidt and others,
2023; Westermann and others, 2023). It should be noted from the
title of our study that it revolves entirely around conducting twin
experiments using synthetic truth runs and noisy synthetic obser-
vations thereof. For brevity, we will henceforth often simply refer to
these as truth and observations. These synthetic observations serve
as idealized representations of satellite measurements, with their
spatiotemporal resolution designed to mirror that of actual satel-
lite data, forming the foundation for observing system simulation.
While these synthetic observations currently facilitate controlled
testing of our methodology, the ultimate objective is to assimilate
actual satellite observations in future applications. To assimilate the
synthetic observations, we employed and compared two Bayesian
data assimilation schemes, namely the Particle Batch Smoother
(PBS; Margulis and others, 2015) and the Ensemble Smoother
(ES; van Leeuwen and Evensen, 1996). The synthetic observations
were derived from synthetic truth runs for four distinct scenarios,
each representing different climatic conditions. These four scenar-
ios were selected to better capture the varying information content
of the assimilated observations. They are represented by four dif-
ferent climatic conditions generated by four different parameter
settings (Table 1). The simulations were driven by reanalysis data
from the Copernicus Arctic Regional Reanalysis (CARRA) dataset
over 12 hydrological years from September 2010 to September
2022. Kongsvegen glacier, one of the best studied glaciers in High
Arctic Svalbard, was selected as the study area due to the avail-
ability of data and its extensive size, encompassing diverse glacier
zones that offer a comprehensive basis for representing a broad
range of Arctic glaciers. By conducting a large number of twin
experiments, we compared the effectiveness of the particle-based
PBS scheme to the ensemble Kalman-based ES in improving sim-
ulated glacier surface mass balance across different glacier zones
and climatic scenarios. The sensitivity of the surface mass balance
estimates to ensemble size was also tested in terms of both accuracy
and precision via bootstrap resampling experiments using the PBS
at essentially no extra cost since (unlike the ES) no costly model

Table 1. Truth parameter value settings used to generate the synthetic truth for each scenario . The selection of these ‘extreme’ parameter values was based on
the values corresponding to three standard deviations away from the prior mean after applying a logit transformation to the respective parameter ensembles

Truth parameter

Albedo evolution rate 7, Snowfall factor 3,

Rapid albedo evolution rate and high snowfall factor
Slow albedo evolution rate and low snowfall factor

Rapid albedo evolution rate and low snowfall factor
Slow albedo evolution rate and high snowfall factor

0.03 17
0.0003 0.7
0.03 0.7
0.0003 1.7
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reruns were required in this PBS sensitivity analysis. Synthetic
observations of albedo and snow depth with synthetic truth surface
mass balance enabled us to perform a robust evaluation of a novel
glacier data assimilation framework in CryoGrid through a large
ensemble of twin experiments that allowed us to control for both
observation and model error.

2. Data and methods
2.1. Study site

The Svalbard archipelago is one of the most climatically sensitive
regions in the world (Noél and others, 2020; Geyman and others,
2022). For example, it is the region in Europe that has experi-
enced the greatest warming in the past three decades (Nordli and
others, 2014; Isaksen and others, 2016). Kongsvegen is a marine-
terminating glacier, located on the northwestern coast of Svalbard
close to the research station of Ny-Alesund (Fig. 1). The glacier
has an area of around 100 km? and a length of 26 km, with slopes
ranging from 0.5 to 2.5° (Karner and others, 2013). The ice flows
towards the northwest from its ice-divide at about 800 m a.s.l. down
to sea level at the head of Kongsfjorden (Hagen and others, 1999;
Karner and others, 2013). The three grid cells used in this study
are shown in Fig. 1 and we used these grids to represent different
glacier zones, namely the ablation area, equilibrium line altitude
(ELA), and accumulation area.

2.2. Forcing data

This study uses the Copernicus Arctic Regional Reanalysis
(CARRA) dataset (Copernicus Climate Change Service (C3S)
Climate Data Store (CDS), 2024) as meteorological forcing data.
The CARRA forcing fields considered are the 2 m air tempera-
ture, 2 m specific humidity, 10 m windspeed, incoming longwave
and shortwave radiation, precipitation, and atmospheric pressure.
CARRA is derived from the HARMONIE-AROME numerical
weather prediction system (Bengtsson and others, 2017). This
regional reanalysis covers two domains in the European sector
of the Arctic, CARRA-West and CARRA-East, employing ERA5
reanalysis as boundary conditions (Yang and others, 2021). The

« ABL|
+ ELA
- ACC
”
Figure 1. Atmospherically corrected shortwave infrared false color
image over the area surrounding Kongsvegen glacier near Ny-
A7 \ Alesund in the Svalbard archipelago captured by the Sentinel-2B
4 satellite at 13:07 UTC on the 25th of August 2020. The image shows
- g4 the locations of Ny-Alesund (yellow star) and the Kongsvegen glacier

outline from RGI 7.0 (white) as well as the locations of 2.5 by 2.5km
grid cells that were extracted from CARRA to represent the abla-
tion zone (ABL, red), Equilibrium Line Altitude (ELA, purple), and
the accumulation zone (ACC, blue) of Kongsvegen. The inset shows
the location of Ny-Alesund (yellow star) in the Arctic (here roughly
defined as latitudes above 60°N) on a polar stereographic map using
open Gray Earth data from Natural Earth.

CARRA output has a horizontal resolution of 2.5km and a 3-hour
temporal resolution covering the period from 1991 to present.
Following Schmidt and others (2023), this study employs meteo-
rological data from the CARRA-East domain over 12 hydrological
years from the 16th of September 2010 to the 15th of September
2022.

2.3. Surface mass balance model

2.3.1. Model description

The CryoGrid community model is an open-source model devel-
oped for climate-driven multiphysics simulations of the terrestrial
cryosphere (Westermann and others, 2023), which uses a full
surface energy-balance scheme that can be coupled to different
multilayer subsurface modules of varying complexity. We used
the glacier surface mass balance configuration of CryoGrid with
a snow and firn module that was first employed by Schmidt and
others (2023). The model calculates the full energy balance at the
surface Eg:

Es: (l_a)sin+Lin_Lout_Qh_Qe7 (1)

where S, is the incoming shortwave radiation, « is the surface
albedo, L;, and L, is the incoming and outgoing longwave radia-
tion, Qy, is the sensible heat flux and Q, is the latent heat flux. The
surface albedo of snow is calculated in three spectral bands follow-
ing Vionnet and others (2012). In the UV and visible range (0.3-0.8
pm), the albedo is calculated as:

a = max(0.6, o; — T,A), 2)

where q; is the albedo contribution from snow microstructure, rep-
resented by the optical diameter, 7, is the albedo decay rate, and
A is the snow age in days. The albedo in the near-infrared bands
([0.8-1.5] and [1.5-2.8] um) only depend on snow microstructure.
The albedo of ice is given a constant value of 0.4.

The outgoing longwave radiation is calculated as

Lo = eoT* — (1 - G)Lim (3)

where e is the surface emissivity, o is the Stefan Boltzmann constant
and T is the 2m air temperature in Kelvin.
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Finally, the turbulent fluxes are calculated using the Monin-
Obukhov similarity theory (Monin and Obukhov, 1954), and
depend on the surface pressure and wind speed. The sensi-
ble heat flux is further calculated using the temperature gra-
dient between the 2m temperature and the surface, while the
latent heat flux is calculated from the gradient in specific
humidity.

If the energy balance is positive E; > 0, the excess energy can
either be used to warm up or melt the glacier surface. If the surface
consists of pure ice, the melt will immediately run off. If a layer of
snow is present, the water will percolate down the snowpack and,
depending on the snow conditions, either be retained, refrozen, or
run off.

While glacier ablation is calculated through the energy balance,
the accumulation is taken directly from the CARRA reanalysis. The
precipitation is divided into rainfall and snowfall using a tempera-
ture threshold. CryoGrid has the option of a relative bias correction
for snowfall and rainfall using multiplicative factors 5, and f,,
respectively.

2.3.2. Uncertain parameters

In this study, we added ensemble-based data assimilation methods
to the glacier surface mass balance simulations, thereby creating
a comprehensive probabilistic modeling package. Through data
assimilation, we aim to improve simulated glacier surface mass bal-
ance. The most important physical parameters which are currently
tunable within the CryoGrid model are given in Table 2.

In numerical weather forecasting and climate modeling, precip-
itation, particularly snowfall, is associated with significant uncer-
tainties that can contribute to considerable errors in Arctic surface
mass balance models (e.g. Forbes and others, 2011; Schmidt and
others, 2017; Van Pelt and others, 2019; Lenaerts and others, 2020).
Albedo is a controlling variable of the surface energy balance,
and therefore accurately simulating albedo is important for mod-
eling the surface mass balance (e.g Schmidt and others, 2017;
Gunnarsson and others, 2023). We therefore determine that the
parameters in Table 2 which control these variables (3, and 7,) are
the most uncertain and will have the largest impact on the surface
mass balance simulations. Our ensemble assimilation approach
thus involved constraining these uncertain parameters, to enhance
the accuracy of the simulated snowfall, the snow albedo evolution,
and the associated surface mass balance.

2.3.3. Model initialization

We initialized the model using a 5-year spin-up from 2006 to 2010,
using a snow albedo evolution rate of 7, = 0.005 day™! and no bias
correction of the snowfall, i.e. 3, = 1. This allows the near-surface
ice temperatures to respond to the model forcing and the buildup
of a small firn layer of 3 m w.e. in the accumulation zone and
improves the physical consistency of the subsequent experiments,
particularly in the accumulation area. The primary objective of the
spin-up phase is to achieve model relaxation, allowing the glacier
system to reach a quasi-equilibrium state that aligns with realistic
initial conditions consistent with climatological data and available
observations. This ensures that subsequent simulations start from a
physically consistent baseline, minimizing artifacts from arbitrary
initializations and better reflecting natural variability in snow and
ice dynamics. Regarding the zonal differences, in the accumulation
area, where perennial snow cover predominates, the spin-up is cru-
cial for building a stable snowpack and ensuring that processes like
firn densification and albedo evolution are initialized correctly, as
these areas are less likely to complete melt-out.

Wenxue Cao et al.

2.4. Synthetic observations

In this study, synthetic albedo and snow depth observations were
assimilated to constrain simulations of glacier surface mass bal-
ance using the CryoGrid model. We generated albedo and snow
depth time series for each of the three grid cells, selected to repre-
sent the ablation area, ELA, and accumulation area of Kongsvegen.
By prescribing true parameters and running the model for these
three grid cells, we obtained a synthetic truth from which synthetic
observations have been generated. Figure 2 shows the workflow
in our experimental design. We primarily divided the workflow
into three steps. First, the generation of synthetic truth data was
achieved by prescribing ‘true’ parameters representing different
conditions. To mimic realistic observational data that is inherently
noisy, we added Gaussian noise to both the albedo and snow depth
truth to represent observation error. For the albedo, this noise
has a mean of 0 and an observation error standard deviation of
0, = 0.1. This standard deviation is chosen based on the upper
limit values of the reported root mean square error, which is an
average of 0.7, obtained by comparing MODIS albedo retrievals
to in situ measurements (Stroeve and others, 2005). The noise
added to snow depth has a mean of 0 m and a standard deviation
of o, = 0.5 m, which is based on the findings of Deschamps-
Berger and others (2023) for ICESat2 snow depth retrievals on
low slopes that the median residual is up to 0.65m. The synthetic
albedo observations were sampled based on the effective tempo-
ral resolution of MODIS onboard the Terra and Aqua satellites.
We simulated the impact of polar night on the availability of opti-
cal albedo retrievals in our research area by removing the values
of synthetic albedo during this time (November to February). In
addition, the occluding impact of cloud cover is considered in this
study. According to findings by Marshall and others (1993), sta-
tistically only 22% to 24% of days between April and September
in Svalbard are classified as clear-sky conditions, making MODIS
albedo products usable only for those days. Also, @stby and oth-
ers (2014) found that only 26% of MODIS products are acquired
under clear sky conditions on Austfonna, Svalbard. Thus, we use
30 daily albedo observations that were randomly distributed in
time excluding polar night, representing approximately 20% of the
total days of each year between mid of April to mid of October.
In our analysis of snow depth data, we considered the temporal
resolution provided by the ICESat-2 satellite in the Arctic region.
Typically, ICESat-2 operates on a 91-day revisit cycle at the equa-
tor. However, due to its high-inclination orbit, the ground tracks
of the satellite converge towards the poles, significantly enhanc-
ing the frequency of overpasses in polar regions. Consequently, in
the Arctic, the temporal resolution increases, with revisit intervals
reduced to approximately 1-2 weeks (Markus and others, 2017).
This enhancement in revisit frequency was utilized to simulate the
temporal resolution in our synthetic snow depth data, providing
a more accurate representation of snow accumulation and change
over time in this region.Table 2.

2.5. Data assimilation

In this section, we describe the data assimilation methods used
and their implementation in CryoGrid to infer glacier surface mass
balance. For a more comprehensive treatment of Bayesian data
assimilation methods, we refer to the extensive work of Evensen
and others (2022, Chapters 2 and 6) and Sanz-Alonso and others
(2023) and the overview in Alonso-Gonzalez and others (2022) for
details pertinent to cryospheric applications. Data assimilation is
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Table 2. Tuneable parameters within glacier and snow modules of the CryoGrid
model

Parameter  Description Default value  Reference

T, Albedo decay 0.0033 day™ Vionnet and others
rate (2012)

Qe Ice albedo 0.4 e.g. Schmidt and others

(2023)

zg"" Roughness 1 mm e.g. Schmidt and others
length of snow (2023)

zice Roughness 1 mm e.g. Schmidt and others
length of ice (2023)

[% Field capacity of  0.05 e.g. Westermann and
snow/firn others (2023)

B, Snow factor 1

B, Rain factor 1

loosely defined as the fusion of data and models that can be mathe-
matically formalized using the probabilistic framework of Bayesian
inference.

There are multiple sources of model uncertainty related to the
choice of model parameters, forcing, initial conditions, and model
structure. Here, we are primarily concerned with the two first
sources of uncertainty which we lump into an uncertain input
parameter vector 6 with N, = 2 elements, namely 3 and .
By using the synthetic truth generated by the same underlying
model, CryoGrid in this case, we avoid model structural uncer-
tainty by confining ourselves to so-called identical twin experi-
ments (Arnold and Dey, 1986). Within these identical twin exper-
iments, we are thus by construction justified in restricting our-
selves to solving the strong constraint data assimilation problem
that assumes a perfect data generating model (CryoGrid) that
can map perfectly onto reality if the true input vector 8* were
known (Evensen and others, 2022, Chapter 2). Note that the strong
assumption has been widely and successfully adopted in atmo-
spheric (Hersbach and others, 2020), land (Keetz and others, 2025),
and cryospheric (Alonso-Gonzalez and others, 2022) data assimi-
lation even if the underlying perfect model assumption is always
violated to some extent. Moreover, research in snow hydrology

points to forcing, particularly precipitation, as being the domi-
nant source of uncertainty (Giinther and others, 2019; Tang and
others, 2023). Translating this into glacier surface mass balance
modeling helps further justifies our use of the strong constraint
assumption by encoding the forcing uncertainty into the parame-
ter vector 0 in line with common practice in snow data assimilation
(Alonso-Gonzélez and others, 2022).

In this strong constraint setting, we can model the observation
vector y containing N noisy observations for a given temporal data
assimilation window using the following data generating process:

y=9(0") +e, )

where G(-) denotes the data generating model, 6" is the aforemen-
tioned true parameter vector, and € is a noise term representing
observation error. Given some observations, the task at hand is to
invert G(-) to recover 8. This task is challenging since G(-) is often
a nonlinear and relatively computationally costly model instanti-
ated in a long piece of typically non-differentiable code, namely
CryoGrid in our case (Westermann and others, 2023). To com-
plicate matters further, it is also a fundamentally ill-posed inverse
problem since the solution is not unique due to the presence of
irreducible noise in the form of observation error € (Sanz-Alonso
and others, 2023). As such, we abandon the ill-conceived notion
of a single optimal solution 8 and instead adopt a probabilistic
perspective where we seek a distribution over solutions 6 that are
compatible with the noisy data y that we are given. Adopting a
probabilistic perspective naturally leads to casting this ill-posed
inverse problem in terms of Bayesian inference (Sanz-Alonso and
others, 2023), and the computational challenge motivates the adop-
tion of efficient ensemble-based data assimilation algorithms to
make inference tractable (Evensen and others, 2022, Chapter 8).
Formally the entire exercise of data assimilation can now be boiled
down to using Bayes’ rule as follows

_ p(y|0)p(0)

to infer the posterior probability distribution p(@|y) over parame-
ters 0 given data y. The likelihood quantifies how well the model

; )
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predictions with parameters @ fit the noisy observations y, the prior
regularizes the problem using background information about 6,
and the evidence p(y) is a normalizing constant (MacKay, 2003).

Once prior and likelihood are defined, Bayesian inference is the-
oretically straightforward and is just a matter of applying (5) to
a grid of parameter vectors . Practical geophysical applications
of Bayesian inference for data assimilation tend to require more
efficient methods than computationally expensive grid approxima-
tions. The current state-of-the-art data assimilation approaches can
generally be split into ensemble-based (Monte Carlo) and varia-
tional methods (Evensen and others, 2022, Chapter 2). The latter
requires a differentiable model which is often, as is the case with
this CryoGrid version (Westermann and others, 2023), not avail-
able. As such, we use ensemble-based data assimilation methods
that are widely used in cryospheric applications (e.g. Navari and
others, 2000-2014; Alonso-Gonzalez and others, 2022; Groenke
and others, 2023), but have not been widely applied to glacier sur-
face mass balance modeling. In particular, we adopt both the PBS
and the ES to compare their performance for a large ensemble
of twin experiments. In addition to being used in the literature
(Alonso-Gonzalez and others, 2022), these methods are relatively
straightforward to implement and can serve as kernels for more
sophisticated schemes, such as the hybrid particle-adjusted itera-
tive ensemble smoother (Pirk and others, 2022), which remain too
costly for large ensemble twin experiments.

2.5.1. Prior and likelihood
In this study, we focus on two uncertain parameters within the
glacier configuration of CryoGrid, namely the albedo evolution
rate 7, and the snowfall factor ;. The former factor 7, is an
inverse timescale that controls the rate at which the visible albedo
in the Crocus albedo parametrization decays (Vionnet and oth-
ers, 2012), with larger (smaller) values indicating a faster (slower)
decay rate. Here, we are not trying to be within the bounds given
by Vionnet and others (2012), but rather to find a value that bet-
ter represents the albedo evolution due to snow age for Svalbard.
The latter multiplier [, explicitly accounts for biases in the snow-
fall (solid precipitation) forcing from the CARRA reanalysis while
also implicitly accounting for unresolved processes in this instanti-
ation of CryoGrid in the form of wind-driven snow redistribution.
Both parameters are treated as fixed (time-invariant) within a given
mass balance year which is used as the data assimilation window.
As such, the Bayesian inference step in (5) can be carried out inde-
pendently for each such mass balance year window using the same
prior p(0) but different observations y and thus varying likelihood
p(y|0) resulting in a posterior p(0]y) that varies from (balance)
year to year. In this study, the parameter vector 6 has N,, = 2 ele-
ments so we consider a 2D parameter space. On the one hand, this
is quite a low-dimensional parameter space. On the other hand,
CryoGrid which we use as the data generating model is relatively
expensive to evaluate. Moreover, these Np = 2 parameters were
selected based on several modeling studies of surface mass balance
where related parameters were deemed among the most uncer-
tain yet sensitive parameters (e.g. Schmidt and others, 2017; 2023;
Lenaerts and others, 2019; van Pelt and others, 2019; Raoult and
others, 2023).

To encode uncertainty in these parameters we need to specify
a prior distribution p(0) that reflects our prior knowledge con-
cerning possible values for these parameters. Herein, building on
several related studies (Aalstad and others, 2018; Guidicelli and
others, 2024; Mazzolini and others, 2024; Keetz and others, 2025),
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we use the generalized logit-normal prior distribution that is a dou-
ble bounded transformed version of a normal distribution allowing
for upper and lower bounds (a,b), a central location parameter 1,
and a scale parameter o, reflecting the spread in possible values.
Following Keetz and others (2025), this prior is defined as follows
for a scalar parameter 6

Ul (0 — o)’

where |J| = (b—a) /(0 — a)(b — ) is a Jacobian term and ¢ is the
generalized logit transform of #

0—a b—0
o=vi.ab) =l (=) -w (=), O
with corresponding inverse transform
b—a
_ -l — _
9—1/) (¢7a7b)_a+1+exp<7¢)' (8)

The generalized logit normal distribution in (6) has an associated
normal distribution, namely the distribution of the logit trans-
formed parameter ¢ with mean p, and standard deviation o,,. We
use the o, parameter to define the scale (spread) of the logit-normal
prior for a bounded parameter . For the location parameter of the
logit normal we use the median of the logit normal distribution
11y that can be transformed to the mean of the associated normal
distribution through 11y = (f1g, @, b) and vice versa.

The generalized logit prior in (6) is specified independently
for each of the parameters 7, and /3, using the hyperparame-
ters in Table 3 resulting in a weakly informative prior (Banner
and others, 2020). Assuming independence, the joint prior p(0)
is simply given by the product of the marginal priors p(8) =
p(1,)p(B,). It is possible to relax this prior independence assump-
tion by adding non-zero correlations to a multivariate logit-normal
distribution (Mazzolini and others, 2024). More generally, adding
dependence structure to the joint prior using background knowl-
edge can improve inference (Pirk and others, 2022). At the same
time, adding this kind of structure requires that such background
knowledge is available, and here, we had no prior reasons to sus-
pect a general dependence between the albedo aging factor and the
snowfall multiplier. Crucially, prior independence does not imply
posterior independence since via the likelihood the data allow us
to infer the posterior dependence structure between parameters.
To sample from the generalized logit normal distribution (6), we
apply the generalized logit transform (7) to the prior median 1 to
obtain the mean of the associated normal 11, then add N, samples
of randomly generated Gaussian noise with standard deviation o
to py and apply the inverse transform (8) to obtain prior samples
0; ~ p(0) for the parameter 0 € 6 (i.e., either 7, or f3;) in ques-
tion. After having done this for both parameters, we are left with
an ensemble of N, particles from the joint prior 8; ~ p(6).

As is commonly done in data assimilation (Carrassi and others,
2018), we use a simple additive zero-mean Gaussian observation
error model of the form € ~ N(0, R) where Risan N, x N, obser-
vation error covariance matrix. This can be justified as a useful
default first-order error model using both the central limit theo-
rem and maximum entropy arguments (Jaynes, 2003). Using this
error model, allows us to formulate the likelihood p(y|0). By def-
inition, this is the probability density of the (fixed) observations
y given that the parameter set 8 is true. By inspection of (4) con-
ditional on @ = @ the observation error becomes € = y — G(0)
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Table 3. The hyperparameters for the independent logit-normal priors used for each of the N, = 2 uncertain parameters in the parameter vector 6 considered in
this study. The hyperparameters are the lower bound a, the upper bound b, the location parameter which is the median 1, and the scale (spread) which is the

dimensionless standard deviation o of the associated normal distribution

Parameter name Symbol Units Lower bound a Upper bound b Location yg Scale o
Albedo evolution rate T, day ™ 0.0001 0.05 0.005 1
Snowfall factor B, - 0.5 2 1 1

and by inserting this into the Gaussian observation error model we
obtain a Gaussian likelihood p(y|@) = N(y|G(6), R) of the form
P16 =gexp (3 y—F' R -71). O
where ¢, = det(27R)""/? is a constant and y = G(6) denotes
the predicted observations from the data generating model given
a particular parameter set 6. Following the likelihood principle in
Bayesian inference (Jaynes, 2003), the likelihood should be viewed
as a function of the uncertain parameters 6 (here through y =
G(0)) rather than a distribution over the fixed (albeit noisy) obser-
vations y that we are assimilating. Although the likelihood in (9) is
Gaussian, our data generating model y = G(6) makes it nonlinear.
To further simplify the likelihood (9) we also make a standard
assumption that the observation errors are conditionally indepen-
dent (Carrassi and others, 2018; Sirkkd and Svensson, 2023). As
such, our N, X N, observation error covariance matrix R becomes
diagonal with entries corresponding to the observation error vari-
ance o}, associated with each of the m = 1,...,N, observations
¥ in the observation vector y. When we only assimilate one type
of observation, these entries are constant and equal to the observa-
tion error variance of either snow depth (Uﬁ) or albedo (02). For
joint assimilation, where both types of observation are assimilated,
both error variances appear along the diagonal of R in accordance
with the entries in y.

2.5.2. Farticle batch smoother

The Particle Batch Smoother was introduced in the snow litera-
ture by Margulis and others (2015) as a batch smoother version of
the widely used particle filter (see Chopin and Papaspiliopoulos,
2020; Sarkka and Svensson, 2023). Algorithmically, the PBS boils
down to performing basic sequential importance sampling (van
Leeuwen, 2009) which effectively represents the posterior through
a particle approximation

N,
p(Bly) =) w66, (10)

i=1
where w; are the weights associated with each of thei =1, ..., N,

particles (samples) 6; in parameter space. These particles weights

are self-normalized such that Zf\il w; = 1. The 6(-) in (10) denotes
the Dirac delta which is a generalized function with properties
J6(6—6,)d0 = 1and [g(6)5(6 — 6,)d0 = g(0,) for some
function of the parameters g(0). Thereby, the particle approx-
imation represents the continuous posterior probability density
function as a sum of discrete particles with probability mass given
by their weights w;. Posterior expectations become straightfor-
ward to compute, for example setting g(6) = 6 we recover the
particle approximation to the posterior mean of the parameters
as the weighted sum over particles 6;. The corresponding pos-
terior expectations in state space are obtained analogously. With
minimal loss of accuracy, simpler unweighted posterior statistics
are computed by first resampling particles based on the weights
(Alonso-Gonzilez and others, 2022). The weights w; in the PBS

are obtained through basic importance sampling approach using
the prior as a proposal distribution to sample particles 8; ~ p(0)
so that the weights effectively become the likelihood ratio

_ plyl6)
L p(yl6)

which when we insert for our Gaussian likelihood becomes
(Aalstad and others, 2018)

(11)

exp (—2ly— 3R 'y 7))

S exp (=5 by vl Ry — i)

where y; = G(0;) denotes the vector of N, predicted observables
from CryoGrid for particle i with associated parameter vector 6;,

w; =

. (12)

1
2

HT denotes the transpose, and R™! is the inverse of the N, x N,
observation error covariance matrix. In practice, we first compute
the logarithm of the PBS weights in (12) to ensure numerical sta-
bility as described in Alonso-Gonzélez and others (2022). Both the
PBS and ES are batch smoothers in the sense that they assimilate
a single batch of observations in a long data assimilation window,
unlike a filter which updates sequentially as observations become
available. The length of the window is typically defined by a typical
timescale of the system being modeled, which we here take to be
one mass balance year. This smoothing property is crucial since it
allows the future to update the past: observations in the accumula-
tion season can inform model states in the preceding accumulation
season (Margulis and others, 2015; Aalstad and others, 2018). A
computational advantage of the PBS is that it only requires run-
ning a single ensemble model integration of N particles sampled
from the parameter prior. A particle approximation of the poste-
rior for model parameters and state variables can then be obtained
solely using the weights in (12) followed by a resampling step. As
such, the computational cost of the PBS is incurred almost entirely
by the need to run N, forward simulations of the data generating
model G. It is this feature that helped motivate our design of a large
ensemble of twin experiments, in that it is straightforward to test a
large number of observation types and parameter scenarios based
on a single large ensemble run by using a (fixed) prior distribution
p(0) as the proposal.

2.5.3. Ensemble smoother

We also test the ensemble smoother (ES) scheme that was originally
proposed by van Leeuwen and Evensen (1996) as a batch smoother
version of the widely used ensemble Kalman filter (EnKF, Evensen
and others, 2022, Chapter 6). Here we use the classic stochastic
version of the ES with perturbed observations to avoid underes-
timating ensemble covariances (van Leeuwen, 2020). The general
framework of ensemble Kalman methods, which the ES falls under,
extends the domain of applicability of classical Kalman filtering
methods (Sirkkd and Svensson, 2023), that require Gaussian linear
data generating models, to Gaussian nonlinear models (Evensen
and others, 2022). The Gaussian assumption in the prior and like-
lihood can also be relaxed through transformations using Gaussian
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Figure 3. Structure of the large ensemble twin experiments
based on permutations of four parameter scenarios, three
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types of assimilated observation vectors, and three experi-
mental areas generating a total of 36 twin experiments. The
scenarios combine either a rapid or slow albedo evolution

rate with either a high or low snowfall factor. The assimi-
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lated observation vectors are either albedo only, snow depth
only, or joint assimilation of albedo and snow depth. The
experimental areas are either the ablation (ABL), equilibrium
line altitude (ELA), and accumulation (ACC) areas depicted

anamorphosis functions (Bertino and others, 2003). Herein we
use an analytical approach to Gaussian anamorphosis using the
generalized logit transform in (7). Among the ensemble Kalman
methods, the ES is most widely used for parameter estimation such
as the strong constraint problem that we are tackling here.

The ES is initialized by sampling an ensemble of N, parameter
vectors 0,@ from the prior 0,(0> ~ p(0). Using this prior parameter
ensemble, following Aalstad and others (2018) the stochastic ES
with analytical anamorphosis proceeds in the following steps while
looping over ensemble membersi =1, ..., N,:

(1) Generate an ensemble of prior predicted observables by run-

ning the parameters through the data generating model ?fo) =

g (05())) which implicitly also involves generating an ensemble
of prior model state vectors x50> for the whole data assimilation
window (i.e., mass balance year in our case).

Transform the prior parameter ensemble to Gaussian space
using Gaussian anamorphosis ¢,(.0> = \11(0,(0)
the generalized logit transform (7).

Perform the ensemble Kalman analysis step to update the

parameters

2

) in the form of

(©)

ol = et (yrai) (13)

where the ensemble Kalman gain K*) is obtained using ensem-
ble covariance matrices together with R as outlined in Aalstad
and others (2018) while realizations of Gaussian observation
noise €; ~ N(0,R) are used to perturb the observations y in
this stochastic scheme (van Leeuwen, 2020).

Apply the inverse transformations using (8) to recover the pos-
terior parameter ensemble in the original model parameter

space 051) =w (oM.

1
Rerun the data generating model to obtain an ensemble of

(4)

©)
posterior predicted observables ?,(-U =g (95”) which also

implicitly yields an ensemble of posterior model state vectors
1

i

in Fig. 1.

Note that the parameters 8 are updated directly while the model
state x are updated indirectly. As such, to recover the posterior state
x with the ES it is necessary to run the data generating model twice

for each ensemble member, first with the prior parameters 050) in

step 1 and subsequently with the posterior parameters 0,(‘1) in step
5. Thereby, for posterior state estimation the ES is twice as costly as
the PBS in that it requires running the data generating model 2N,
times.

2.6. Twin experiments

The conceptual diagram in Fig. 3 shows the structure of the twin
experiments where we generated synthetic truth scenarios along
with synthetic noisy observations. We constructed four different
scenarios by using different true parameter vectors 8 with dif-
ferent values for the true snow albedo evolution rate 7} and true
snowfall factor ;. These true parameter vector scenarios include
combinations of high and low values for each of the two parame-
ters. The true parameter vector scenarios are then used in CryoGrid
to generate synthetic true state x* scenarios including the true
observables y* = G(6"). These diverse true parameter scenar-
ios are used to effectively mimic the variability of meteorological
conditions and location-specific characteristics under differnet cli-
matic scenarios. The synthetic albedo and snow depth obtained
under these four different climatic scenarios were generated and
perturbed with Gaussian noise that was scaled with the appro-
priate variances (02 and 0’3) to mimic observation error. These
noisy synthetic observations are then assimilated to constrain the
prior CryoGrid simulations. Note that in this assimilation exer-
cise, the model has no access to the hidden synthetic truth (6, x*,
y*) other than through the corrupted information present in the
noisy synthetic observations. This is the standard setup for widely
used identical twin experiments where the same model is used
to generate the observations and in the subsequent assimilation
experiments (Arnold and Dey, 1986; Masutani and others, 2010).
The generated synthetic observations, albedo and snow depth, can
be assimilated either individually or jointly, amounting to a total
of three assimilated observation scenarios. All experiments are
applied in three different glacier zones, namely the ablation, ELA,
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and accumulation areas. In total, we conducted 864,000 unique for-
ward model realizations by using 4 scenarios x 3 glacier zones
x 3 combinations of assimilated observations x 2 assimilation
methods x 12 years x 1000 ensemble members.

The prior ensemble of CryoGrid simulations consists of N, =
1000 ensemble members that were generated by perturbing albedo
evolution rate and snowfall factor. We implemented the prior sim-
ulation with the same initial conditions for all data assimilation
experiments. When initiating the model, we performed a 5 years
spin-up to eliminate initialization shocks. Two different ensemble-
based data assimilation methods, the PBS and ES, were compared
in the twin experiments.

2.7. Evaluation of the experiments

To evaluate the performance of all experiments, we use the
Continuous Ranked Probability Score (CRPS) to compare the pos-
terior surface mass balance distribution to the synthetic truth
surface mass balance. As outlined in Hersbach (2000), the CRPS
is a statistical metric that compares probabilistic ensemble predic-
tions to deterministic ground-truth values. Compared with Root
Mean Square Error (RMSE) which is mainly used for determinis-
tic forecasts, the CRPS is designed for probabilistic forecasts, which
can evaluate the entire predictive distribution and provide a com-
prehensive assessment of the quality of predictions that include
uncertainty quantification. The CRPS evaluates both the accuracy
and the precision of the ensemble. The precision is a gauge of how
well calibrated the ensemble is by punishing ensembles that are
overconfident (too narrow) and underconfident (too wide). The
CRPS is a negatively oriented score where a score of zero means
that the probabilistic prediction is perfect, which only occurs for
deterministic forecasts centered on the truth, while a larger CRPS
entails a lower score. The CRPS is given by (Gneiting and others,
2005)

CRPS(P, x*) = / h (P(x) — H(x — x*))* dx (14)

where P(x) is the cumulative distribution function of the ensemble
prediction for variable x, x* is the reference value which can be a
synthetic truth or an observation, and H(x — x*) is the Heaviside
function, which is 1 if x > x* and 0 otherwise. The CRPS inherits
the same units as the variable x whose ensemble prediction is being
evaluated.

3. Results

3.1. Influence of observations on surface mass balance
modeling by PBS

Here, we present the results of surface mass balance (SMB) simu-
lations in several twin experiments achieved by assimilating two
observational datasets, albedo and snow depth, using the PBS
scheme on an ensemble with N, = 1000 members. Figure 4 shows
the posterior annual SMB for the ablation area for the four different
scenarios. The prior and posterior CRPS are calculated by com-
paring the prior and posterior SMB estimates with the synthetic
truth over a 12-year period across these scenarios. Since this is the
ablation area, the effect of the snow albedo evolution rate on the
SMB (compare panels b to ¢ and panels a to d) is clearly negligi-
ble because the surface albedo is mostly that of bare ice in either
scenario. As such, snow depth is a stronger constraint on the SMB

than albedo in this case. After assimilation, the average CRPS val-
ues (Fig. 5) for the posterior SMB estimates are 0.05 m for albedo
assimilation, 0.03 for snow depth assimilation, and 0.02 m for
jointly assimilating both observations. For all assimilated observa-
tion scenarios this is a marked improvement from the prior CRPS
0f0.16 m. These improvements represent CRPS reductions of 69%,
80%, and 86%, respectively, compared to the prior, showing the
enhanced skill of the posterior estimates obtained after data assim-
ilation. On the one hand, snow depth assimilation is particularly
effective in bringing the posterior ensemble median SMB closer
to the truth. On the other hand, the 95th percentile of the poste-
rior ensemble after albedo assimilation often scarcely encompassed
the true values. A comparison of error reduction demonstrates
(Fig. 4) that joint assimilation of albedo and snow depth pro-
vides the most substantial improvements in the performance of
posterior SMB simulations in the ablation area. When comparing
the four scenarios, it becomes evident that snow depth assimila-
tion performs better under high snowfall conditions, yielding a
CRPS of 0.03 m compared to 0.04 m in low snowfall conditions.
Conversely, albedo assimilation performs better in low snowfall
scenarios, with a CRPS of 0.04 m compared to 0.06 m under high
snowfall conditions.

Figure 5 provides a comprehensive evaluation of the exper-
iments using the PBS assimilation scheme across all scenarios
and areas. In both the ablation and equilibrium line altitude
areas, the assimilation of either albedo or snow depth substan-
tially reduces CRPS compared to the prior estimates. The average
CRPS reduction is 71% and 74%, respectively, when albedo and
snow depth are assimilated individually. The difference in perfor-
mance improvement in terms of CRPS between albedo and snow
depth assimilation is particularly notable, ranging from a 10% to
19% difference, especially under the high snowfall scenario. In
most experiments, joint assimilation of albedo and snow depth
consistently yields the lowest CRPS values. However, in the accu-
mulation area, results indicate an increase in CRPS following snow
depth assimilation under low snowfall scenarios, relative to the
prior. In contrast, albedo assimilation still improves performance,
though the improvements are less pronounced than in the ablation
and equilibrium line altitude areas, especially under high snowfall
conditions. Similarly, joint assimilation of albedo and snow depth
exhibits behavior similar to snow depth assimilation alone in the
accumulation area.

The results indicate that the assimilation of joint albedo and
snow depth observations within the PBS framework improves the
skill of surface mass balance simulations, particularly in scenarios
with high snowfall. The results show that snow depth assimilation
tends to perform better under high snowfall conditions in the abla-
tion area, while albedo assimilation is more effective under low
snowfall scenarios in the ablation and accumulation areas. In the
ELA area, albedo assimilation outperforms snow depth assimila-
tion under high snowfall scenarios, while the two methods yield
comparable results in low snowfall conditions. Moreover, joint
assimilation tends to yield the best (including ties) results across
the majority of experiments (10 out of 12) in Fig. 5, providing
the greatest improvements both in terms of reducing uncertainty
and bringing the posterior closer to the truth. These findings
highlight the importance of selecting appropriate observations to
assimilate based on specific climatic conditions to optimize the
performance of SMB simulations. In particular, the most robust
choice is generally joint data assimilation which can automatically
handle trade-offs in the information content of different types of
observations.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 10:06:32, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

10

LI

3 "

Annual SMB (m w.e.)

) o n%
@¢§$@Hﬂ?&?&
n,\\ '\Q ONMGENMEN ’WQ 16 '\Q '\\ N

b |

o S5
MMV NUAU
Q&&Q&QQ

‘L
@
a

—

o

"
[y

'
o

Annual SMB (m w.e.)

'
o

4

[
W

)
@\\'\\\\Q\\ 1,\\' \y\
EOMENENENGAN

Wenxue Cao et al.

2
t Prior SMB
b » Synthetic Truth
? 1 { Posterior Alb SMB
. Posterior SD SMB
=3 Posterior Joint SMB
= 0
2.
% i 4J4) | g
ERIEE 'Iy
53 :
o4
-4
v » 9 D N ay q
\Q\\,\x\\’ q\\\?‘)\\\}\\ <3\\’ g\\ *\\N oc\\ q\' Q\' \'
AR E BN ENP NS
2
_|d
g 1
=
=
a | [ [ N
= I [
w2
ER '-{ I‘l
23 l ]
-4
N H o q\ q/
Q\\' \\\' n\\' 5\\ >,\\' <_3\\’ b\\ «\\' Q;\\' q\' Q \’

BN NN KN NN N NN X

Figure 4. Comparison of prior, posterior, and true surface mass balance in the ablation area when using the PBS to assimilate albedo only, snow depth only, and both
observations jointly. The figure presents four scenarios based on the snow albedo evolution rates and snowfall factors: (a) Rapid snow albedo evolution with high snowfall.
(b) Slow snow albedo evolution with low snowfall. (c) Rapid snow albedo evolution with low snowfall. (d) Slow snow albedo evolution with high snowfall. Error bars represent
the 95th central percentile range of the ensemble with the points indicating the median value for surface mass balance estimates.

The ES scheme overall exhibits performance similar to that of
the PBS scheme after assimilating albedo and snow depth (Fig. S1
and Fig. S2). Joint assimilation yields the best results, while the
assimilation of albedo and snow depth individually shows varying
outcomes across different scenarios. A detailed comparison of the
two assimilation schemes follows in the next section.

3.2. Comparison of two data assimilation schemes

We evaluated both the PBS and ES schemes against synthetic
truth using an ensemble size of 1000 members for all experi-
ments. Table 4 presents the improvement in CRPS performance in
terms of surface mass balance achieved by the two data assimila-
tion schemes relative to the prior. The values represent the average
improvement across four truth scenarios, calculated by compar-
ing the posterior results with the prior. For albedo assimilation,
PBS shows a significantly better overall performance compared to
ES across all glacier zones. However, for snow depth assimilation,
ES performs slightly better than PBS, except in the accumulation
zone. Joint assimilation of both albedo and snow depth yields the
best performance, regardless of the assimilation method used. In

terms of different glacier zones, the performance in the ablation
area is generally the best across both data assimilation schemes.
In the ELA region, the results slightly underperform those in the
ablation area, considering the average performance of three dis-
tinct assimilated observation scenarios. The accumulation zone
yields the lowest accuracy improvement among the glacier zones
for both schemes. Nonetheless, the posterior always improved
over the prior in terms of surface mass balance CRPS. Note that
these results represent averages across four scenarios and consid-
erable differences exist between individual scenarios, particularly
when assimilating snow depth generated under different snowfall
factors.

Figure 6 presents statistical properties of the posterior annual
surface mass balance results derived from the two data assimila-
tion schemes in the ELA region under a scenario of rapid snow
albedo evolution and high snowfall. Joint assimilation under the
ES scheme demonstrates the best overall performance, achiev-
ing the lowest RMSE and standard deviation compared to other
configurations. While the PBS scheme also performs well with
joint assimilation, but the variability in standard deviation across
years is notably higher than in the ES results. For albedo assimila-
tion, both methods considerably enhance the accuracy and reduce
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Figure 5. Continuous ranked probability score (CRPS) for the prior and posterior surface mass balance after assimilating albedo, snow depth, and both observations jointly
using the PBS, for all scenarios: (a) rapid albedo evolution rate & high snowfall factor, (b) slow albedo evolution rate & low snowfall factor, (c) rapid albedo evolution rate
& slow snowfall factor, (d) slow albedo evolution rate & high snowfall factor, and three different areas of interest (AOI): ablation area (ABL), equilibrium-line area (ELA),

accumulation area (ACC), compared to synthetic true surface mass balance.

uncertainty compared to the prior. However, the PBS scheme
yields slightly lower RMSE and standard deviation than the ES
scheme but exhibits higher interannual variability. In contrast,
the ES scheme demonstrates a more stable annual performance.
Regarding snow depth assimilation, the posterior results from the
PBS scheme reveal overconfidence, characterized by an ensemble
spread near zero and high annual variability, along with a higher
average RMSE than the ES scheme. In comparison, the ES scheme
produces a smaller standard deviation and maintains stable annual
performance after snow depth assimilation, with no marked inter-
annual fluctuations. However, this disadvantage of the results from
PBS may partially stem from the bias introduced by overconfi-
dence, especially influenced by snow depth assimilation. In PBS,
particles are weighted based on their likelihood given the observa-
tions. If the observations strongly favor one particle, that particle’s
weight approaches 1 (Margulis and others, 2015). During resam-
pling, particles with low weights are discarded, and the dominant
particle is replicated multiple times. This reduces the effective num-
ber of particles, collapsing the posterior to a single point or a very
narrow range (Aalstad and others, 2018). It is also unclear if the
higher computational cost of 2N, CryoGrid running with the ES,

Table 4. Comparison of two data assimilation methods in improving the
average CRPS of surface mass balance simulations by assimilating different
observations for various glacier zones. The values in the table represent the
average CRPS improvement, calculated by comparing the percentage improve-
ment of the posterior CRPS results to that of the prior CRPS results, across all
four scenarios

Albedo Snow depth Joint

PBS ABL 68.4% 77.8% 85.4%
ELA 72.2% 66.9% 79.5%

ACC 31.0% 19.9% 25.5%

ES ABL 48.3% 79.0% 85.6%
ELA 47.9% 67.4% 76.7%

ACC 24.1% 11.6% 25.4%

compared to just N, with the PBS, justifies the slight gain in per-
formance in this case. If the prior ensemble is so biased that it
does not encompass the observations, the PBS is incapable of cor-
recting the posterior towards the observations outside the bounds
of the prior (Aalstad and others, 2018), while ES can address this
problem by re-run the model with updated parameters and higher
computational cost.
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Figure 6. Comparison of the performance of two assimilation schemes applied to the ELA area under rapid albedo evolution and high snowfall scenario in terms of RMSE
(top row) and ensemble standard deviation (bottom row) for the Particle Batch Smoother (left panels a and c) and the Ensemble Smoother (right panels b and d). Dashed
lines represent the mean value of RMSE and ensemble standard deviation of the simulation performance.

3.3. Sensitivity of data assimilation performance to the
ensemble size

In this section, we present the results of analysing the sensitivity of
data assimilation performance to the number of ensemble mem-
bers N,. The range of ensemble sizes N, investigated was selected
to be regular on a logarithmic scale, generating a vector of seven
logarithmically spaced values between 10! and 10* ensemble mem-
bers. Figure 7 illustrates the mean and variance of CRPS values
obtained from 100 iterations of bootstrapping (resampling with
replacement) prior ensembles of variable size N® from the origi-
nal large ensemble of 1000 prior parameters (used in the rest of
the study) followed by the assimilation of joint albedo and snow
depth under the PBS scheme. The results indicate that, across all
experiments, both the average CRPS and its Monte Carlo vari-
ance decrease as the ensemble size increases. This replicates the
improvement in performance, both in terms of mean and vari-
ance, with increased ensemble size as expected from Monte Carlo
methods. Moreover, as expected, the rate of error reduction dimin-
ishes considerably, particularly after the ensemble size reaches 100,
the mean CRPS starts to show clear convergent behavior towards
an asymptote around 0.025 (m w.e.) with a steadily decreasing
variance. However, unlike the Monte Carlo variance, interannual

variability remains relatively stable and does not exhibit any clear
dependence on ensemble size.

4. Discussion

4.1. Influence of observations on surface mass balance
modeling

Across all scenarios and regions, the assimilation of albedo consis-
tently brings the ensemble median of the SMB simulations closer to
the true values while effectively reducing the ensemble spread. This
improvement is consistent with the findings of Dumont and oth-
ers (2012), which demonstrated that assimilating MODIS-derived
albedo in a snowpack model improves the accuracy of the SMB
simulation for an alpine glacier in the French Alps through vari-
ational assimilation. Despite claims to this effect, Dumont and
others (2012) did not show how their variational data assimilation
scheme constrained uncertainty. In contrast, our ensemble-based
data assimilation results show that both the PBS and ES schemes
effectively constrain the ensemble, leading to significant reduc-
tions in uncertainty. Moreover, unlike variational methods, the
ensemble-based schemes pursued herein do not require a differen-
tiable data-generating model and are thus more widely applicable.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 10:06:32, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Journal of Glaciology

0.14 mMC lle.«:.’unpﬁn;; Std
# Interannual Std
0.12
< 0.1
£ 0.08
£ 0.06
=
D 0.04
0.02
0

1000

10 22 46 100 215 464
Number of ensemble members

Figure 7. Sensitivity of the posterior surface mass balance CRPS to ensemble size
following joint assimilation of albedo and snow depth using the PBS scheme under
the scenario of rapid albedo evolution rate and high snowfall factor in the ablation
area. For each ensemble size (N,) the CRPS statistics were estimated by resampling
with replacement (i.e., bootstrapping) an ensemble of N, particles from the complete
large ensemble (1000 members) 100 times, evaluating the CRPS for each of these 100
bootstrapped ensembles, and subsequently computing sample statistics.

Figure 6 highlights the improvement in accuracy and the reduction
in uncertainty achieved by albedo assimilation, with PBS outper-
forming ES in both metrics.

The impact of snow depth assimilation on SMB simulations
exhibits some spatial variability, but overall, snow depth assim-
ilation generally enhances SMB accuracy, with more consistent
improvements observed outside the accumulation area. Under
high snowfall factor scenarios, snow depth assimilation markedly
improves SMB simulation accuracy across all regions, aligning with
the general findings by Landmann and others (2021) for surface
mass balance and Magnusson and others (2017) for seasonal snow.

Our results show a substantial impact of snow depth assimi-
lation on model performance in terms of SMB , with an average
improvement of 74% in SMB accuracy in both the ablation and
ELA regions. This demonstrates similar performance gains to pre-
vious studies. For example, Landmann and others (2021) reported
a relatively low CRPS of 0.012 m w.e. surface mass balance com-
pared with cumulative observations, while Magnusson and others
(2017) observed a 64% reduction in SWE error from snow depth
assimilation across 40 sites in Switzerland. Unlike these studies that
use particle filtering techniques, we apply the smoothing-based
PBS and ES schemes that allow information from the observations
to propagate backward in time which has been shown to be advan-
tageous for retrospective snow data assimilation (Alonso-Gonzalez
and others, 2022).

Under low snowfall scenarios, snow depth assimilation alone
yields less favorable results, particularly in the accumulation area.
As illustrated in Fig. 8, posterior estimates in PBS collapse to
a single particle with snow depth assimilation in this scenario.
This phenomenon is likely due to limitations inherent in the PBS
scheme (Robinson and others, 2018; Pirk and others, 2022) and
the nature of the low snowfall setting, which produces some SMB
truth values that fall outside the prior ensemble range. This discrep-
ancy prevents the posterior from fully encompassing true values,
and, when coupled with the ensemble’s overconfidence, results
in an increased CRPS due to bias and overconfident predictions.
Under the same conditions, ES outperforms PBS due to funda-
mental differences in both the assumptions and updates steps in
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these methods (Margulis and others, 2015; Aalstad and others,
2018; Alonso-Gonzalez and others, 2022). Additionally, synthetic
snow depth data were perturbed with Gaussian noise, maintaining
a uniform standard deviation of 50 cm across all glacier zones. In
practice, the RMSE of in situ snow depth measurements in Svalbard
is around 5cm, particularly in accumulation zones with rare rain-
fall, which is substantially lower than the applied noise level (An
and others, 2020). Assimilation of lower-quality observational data
into the model may compromise the posterior estimates, resulting
in suboptimal performance.

To address data availability challenges, we generated synthetic
observational data for albedo and snow depth, potentially provid-
ing daily coverage over a full year. Subsequently, we applied the
specific methods mentioned above to select data points that mimic
the temporal availability of ICESat-2 and MODIS measurements.
This approach enabled us to control the experimental environment
under conditions of parameter uncertainty, thereby facilitating the
execution of large ensemble experiments. While this approach
theoretically fulfilled continuous data requirements, achieving
similar completeness with real observational data remains chal-
lenging (Gabarré and others, 2023; Sandven and others, 2023).
Satellite-based measurements, such as those from ICESat-2 and
MODIS, face limitations due to cloud contamination, which
degrades data quality and restricts data acquisition (@ stby and oth-
ers, 2014; Neuenschwander and Magruder, 2019; Kotarba, 2022).
Additionally, optical satellites that provide albedo data are lim-
ited by daylight availability (Wang and others, 2018), resulting
in data gaps in areas with heavy cloud cover or reduced sun-
light. Consequently, while synthetic data can theoretically satisfy
continuous data requirements, real-world data collection remains
inherently constrained by these observational challenges that we
aimed to replicate in the design of our twin experiments.

4.2. Performance of data assimilation schemes

For all the given observations and research areas, both data assim-
ilation schemes contribute to considerably reductions in uncer-
tainty and error in SMB simulations. The PBS showed superior
performance in albedo assimilation, offering a more confident and
accurate ensemble. Conversely, ES generally outperformed PBS in
snow depth assimilation scenarios, particularly where the model’s
prior did not bracket the truth value (Fig. 8). The PBS operates by
weighing the ensemble of states based on their likelihood (Margulis
and others, 2015; Aalstad and others, 2018), avoiding the need to
move particles in parameter space. This results in lower computa-
tional demands for state estimation as it only requires one model
run per ensemble member. In our study, PBS was particularly
effective for albedo assimilation, offering significant uncertainty
reduction with less computational effort. However, the perfor-
mance of PBS can be limited when the true state falls outside the
range of the prior ensemble(Robinson and others, 2018; Pirk and
others, 2022), as seen in scenarios with low snowfall where the pos-
terior ensemble sometimes became degenerate and overconfident.
To address this limitation, a potential approach involves imple-
menting hybrid schemes that combine ensemble Kalman methods
and particle methods to alleviate this issue (Pirk and others, 2022),
although this would increase computational costs.

In contrast, ES updates the state by moving particles in param-
eter space, which can lead to better coverage of the true state, espe-
cially when it lies outside the prior ensemble range (van Leeuwen
and Evensen, 1996; Evensen and others, 2022). This adaptability
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Figure 8. Comparison of the prior, posterior, and true annual surface mass balance in the accumulation area when assimilating different types of observations with the PBS

(a) and the ES (b) under a low snowfall factor and slow albedo evolution rate scenario.

was evident in our results, where ES performed better in assimilat-
ing snow depth, particularly under low snowfall scenarios. The ES
method requires twice the number of model runs compared to PBS
because it requires rerunning the model with updated parameters,
which increases computational cost, but can lead to more accurate
results in certain scenarios.

Whereas traditional Markov Chain Monte Carlo (MCMC)
methods involve numerous sequential iterations to converge on a
solution, both PBS and ES use parallelizable ensemble approaches,
significantly reducing computational time. For instance, in the
study by Rounce and others (2020), MCMC methods were used to
quantify parameter uncertainty in glacier models, involving costly
iterations to sample the posterior distribution. Our methods avoid
the mainly iterative sampling of MCMC by directly updating an
ensemble of parameter vectors, providing a faster convergence to
a posterior estimate. While MCMC methods can be very accurate
due to their thorough sampling of parameter space, they are often
computationally heavy for complex models like CryoGrid, where
each model simulation is expensive. Our approach integrates the
complexity of CryoGrid with efficient data assimilation methods,
allowing for more frequent updates or larger ensembles without a
proportional increase in computational demand.

4.3. Sensitivity to ensemble size

The sensitivity is evaluated based on two components: resampling
(Monte Carlo) variance and interannual variability. As reported in
the results, the average CRPS decreases with increasing ensemble
size. Notably, the variance of CRPS from interannual variability
remains unchanged, whereas the variance of CRPS associated with
Monte Carlo resampling error follows the overall decreasing trend
of the total error. Interannual variance reflects the natural variabil-
ity in the system over the different years, capturing the system’s
response to varying climatic conditions (Malone and others, 2019;
Wei and others, 2019). In this study, all experiments are forced
using the same meteorological data source, meaning that inter-
annual variance is inherent to the system and remains unaffected
by ensemble size. The problem of small ensemble sizes resulting
in large resampling variance is well-documented, as subsets sam-
pled from smaller ensembles may fail to adequately represent the
full diversity of a larger ensemble, leading to greater variance in

the results (Choi and Lee, 2025). In our study, as the ensemble
size increases to 100, the rate of improvement in CRPS (result
accuracy) and the reduction in resampling variance both exhibit a
diminishing trend. While larger ensembles generally reduce sam-
pling errors, they come at the cost of increased computational
demands (Sacher and Bartello, 2008). The optimal ensemble size,
however, depends on the specific design of the experiment and the
acceptable trade-off between computational cost and error toler-
ance for the user (Milinski and others, 2020). When the ensemble
size reaches 1000, the resampling variation might be expected to
approach zero in our experiment design, as the entire large ensem-
ble pool comprises 1000 unique members. However the resampling
variation remains non-zero even when the ensemble size is 1000.
This is because the CRPS statistics are estimated through a boot-
strapping process, where an ensemble of N particles is resampled
with replacement from the complete large ensemble. Even when
the number of samples matches the original pool size, the ran-
domness introduced by bootstrapping with replacement ensures
that the resampled subset does not perfectly replicate the origi-
nal pool (Davison and Hinkley, 1997). Some particles may appear
multiple times, while others may be excluded entirely. This stochas-
tic nature of the bootstrapping process introduces Monte Carlo
sampling error, leading to persistent variability in the results and
ensuring a non-zero resampling variance that mimics the actual
Monte Carlo variance that would arise when individual particles
are sampled multiple times within 1000 ensemble members. The
bootstrap technique used herein is a computationally affordable
way to probe Monte Carlo sampling error that could otherwise be
prohibitively expensive to evaluate in that it would require running
multiple distinct large ensembles through CryoGrid.

5. Conclusions

In this study, we applied two data assimilation schemes, the PBS
and ES, to simulate glacier surface mass balance from 2010 to
2022 across different glacier zones in Kongsvegen with 2.5 km grid
cells through extensive large ensemble twin experiments. The pos-
terior results were evaluated by comparing them with synthetic
true surface mass balance values using the CRPS metric with the
prior CRPS as a reference from which improvement was measured.
Cross-comparisons across different scenarios further illustrated
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the impact of various observational data on surface mass balance
simulations under different assimilation schemes. From this study,
the following conclusions can be drawn:

- Assimilating albedo generally improves SMB simulation across
all glacier zones, with 68.4% improvement by PBS and 48.3%
improvement by ES. However, the degree of improvement varies
between different glacier areas. In particular, results in the abla-
tion area show an average improvement of 58.4%, which is
greater than the 27.5% improvement observed in the accumu-
lation area.

- The assimilation of snow depth yields results comparable to
those of albedo assimilation, particularly in the ablation and ELA
zones, 77.8% (79%) and 66.9% (67.4%) respectively, for the PBS
(ES) data assimialtion scheme. However, under the low snow-
fall scenarios within the PBS scheme, methodological limitations
cause the posterior results to collapse to a single point in the
accumulation zone, resulting in an overly constrained ensem-
ble. This excessive constraint leads to outcomes that are both
overconfident and biased.

- Both assimilation schemes lead to marked improvements in sur-
face mass balance simulations. While the PBS outperforms the
ES in assimilating albedo, the ES demonstrates marginally better
performance over the PBS when assimilating snow depth.

- 'The joint assimilation of both observation types gives the best
performance across all experiments except those given by low
snowfall level in the accumulation area. The average improve-
ment in CRPS after joint assimilation across all different glacier
areas is 63.5%.

- Resampling from the large 1000 members ensemble using vary-
ing ensemble sizes, the rate of improvement, reflected in both
the variance of the Monte Carlo resampling and the median
CRPS, slows considerably when the ensemble size reaches 100
indicating diminishing performance gains with further compu-
tationally costly increases in ensemble size.

The twin experiments in this study demonstrated strong perfor-
mance gains in most scenarios, including various glacier zones and
observational data. This establishes the assimilation approach as
effective in synthetic experiments and suggests that it is poten-
tially transferable for estimating surface mass balance of all glaciers
on Svalbard. Corroborating this claim will require further experi-
ments with real observations. However, observational data can be
inconsistent in real-world applications, posing further implemen-
tation challenges when relying on satellite-based observations due
to factors such as gaps and retrieval uncertainty.
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