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Transonic buffet presents time-dependent aerodynamic characteristics associated with
shock, turbulent boundary layer and their interactions. Despite strong nonlinearities and
a large degree of freedom, there exists a dominant dynamic pattern of a buffet cycle,
suggesting the low dimensionality of transonic buffet phenomena. This study seeks a
low-dimensional representation of transonic airfoil buffet at a high Reynolds number
with machine learning. Wall-modelled large-eddy simulations of flow over the OAT15A
supercritical airfoil at two Mach numbers, M∞ = 0.715 and 0.730, respectively producing
non-buffet and buffet conditions, at a chord-based Reynolds number of Re = 3 × 106 are
performed to generate the present datasets. We find that the low-dimensional nature of
transonic airfoil buffet can be extracted as a sole three-dimensional latent representation
through lift-augmented autoencoder compression. The current low-order representation
not only describes the shock movement but also captures the moment when the separation
occurs near the trailing edge in a low-order manner. We further show that it is possible
to perform sensor-based reconstruction through the present low-dimensional expression
while identifying the sensitivity with respect to aerodynamic responses. The present model
trained at Re = 3 × 106 is lastly evaluated at the level of a real aircraft operation of
Re = 3 × 107, exhibiting that the phase dynamics of lift is reasonably estimated from
sparse sensors. The current study may provide a foundation towards data-driven real-time
analysis of transonic buffet conditions under aircraft operation.
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1. Introduction
Transonic buffet phenomena determine the high-speed limit of a flight envelope. To extend
the flight envelope towards the high-speed side with a better and safer design of modern
commercial aircraft that includes asymmetric supercritical wings, the transonic buffet,
specifically referred to as Type II buffet (Giannelis, Vio & Levinski 2017), needs to be
tamed, rooted in profound understandings of its physics and practically useful models to
describe the buffet. While extensive analyses using simulations and experiments have been
performed providing a variety of posits to describe complex behaviours of transonic airfoil
buffet, what is commonly believed is that there exists a self-sustained shock buffet cycle
(Giannelis et al. 2017). We pose a question of whether such a seemingly complex, but
cyclic dynamics of transonic buffet phenomena can be described in a low-order manner
with nonlinear machine learning.

The aerodynamic instability known as transonic buffet, characterised by self-sustained
shock-wave oscillations on aircraft wings, needs to be taken into account during transonic
or high-subsonic flight. This phenomenon arises because shock waves can form when the
wing geometry accelerates the flow along the leading edge of the suction side, generating
a localised supersonic region (Tijdeman & Seebass 1980). The occurrence of transonic
buffet depends on a flow condition characterised by a combination of parameters such as
Mach number, Reynolds number and angle of attack.

To facilitate characterisation of transonic buffet phenomena, a range of numerical and
experimental endeavours have been carried out. Such studies on the transonic buffet are
classified based on their focus on dimension in phenomena, namely two-dimensional
and three-dimensional. In the two-dimensional airfoil buffet, chordwise large-scale shock
oscillations occur, which are numerically and experimentally reproduced by confining
a flow field in a narrow spanwise domain (Lusher, Sansica & Hashimoto 2024). The
chordwise shock oscillations result in a distinct spectral peak at a low frequency generally
smaller than 0.1, for example, a Strouhal number St ≈ 0.06 for the OAT15A supercritical
airfoil (Deck 2005; Jacquin et al. 2009; Fukushima & Kawai 2018; Cuong Nguyen, Terrana
& Peraire 2022).

On the other hand, the three-dimensional buffet is caused due to characteristics
associated with the three-dimensionality of the wing, such as swept and taper effects. One
notable feature of the three-dimensional buffet, absent in the two-dimensional buffet, is the
occurrence of buffet cells (Iovnovich & Raveh 2015). Buffet cells refer to a cellular flow
structure propagating outboard. A range of numerical (Ohmichi, Ishida & Hashimoto 2018;
Tamaki & Kawai 2024) and experimental (Meneveau & Katz 2000; Dandois 2016; Sugioka
et al. 2018, 2021; Masini, Timme & Peace 2020) studies have reported the occurrence of
buffet cells.

It has widely been observed that the power spectrum density of relevant quantities,
such as the pressure coefficient fluctuation, typically presents a broadband spectrum peak
with a Strouhal number ranging from 0.2 to 0.6 (Dandois 2016; Koike et al. 2016),
10 times higher in frequency than that of the two-dimensional buffet counterpart,
depending on the sweep angle (Plante, Dandois & Laurendeau 2020; Sugioka, Kouchi &
Koike 2022; Lusher, Sansica & Hashimoto 2025). Particularly considering a full-aircraft
configuration of the NASA Common Research Model, understanding of the buffet cell
structure has been deepened with modal analysis, including tri-global stability analysis
(Timme 2020; Sansica & Hashimoto 2023), tri-resolvent analysis (Houtman, Timme &
Sharma 2023), dynamic mode decomposition (Ohmichi et al. 2018) and its Hankel variant
(Asada & Kawai 2025). Based on them, the buffet cell has been recognised as a key player
in the self-sustaining instability mechanism of a three-dimensional buffet. However, there
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is still no widely accepted physical model that explains the self-sustaining mechanism of
a three-dimensional buffet.

While acknowledging the significance of buffet cells, this study focuses on the two-
dimensional airfoil buffet mechanism, which remains active and critical even under
three-dimensional buffet conditions. Sugioka et al. (2018) experimentally demonstrated
that shock-wave oscillations over the NASA Common Research Model at high angles
of attack exhibit behaviour similar to that of a two-dimensional buffet. Paladini et al.
(2019) showed that a two-dimensional global instability mode, akin to that observed in
airfoil buffet (Crouch et al. 2009), can coexist with a spanwise-varying three-dimensional
mode associated with buffet cells. Similar modal structures have been reported by Crouch
et al. (2018, 2019). Paladini et al. (2019) performed a wavemaker analysis to reveal that
the two-dimensional mode is primarily linked to the shock-wave dynamics, whereas
the spanwise-varying mode originates from the separated shear layer. These findings
highlight the importance of considering not only the three-dimensional buffet cells but
also the underlying two-dimensional instability mechanisms that remain fundamental to
understanding buffet phenomena.

For these reasons, the mechanism of self-sustained large-scale shock oscillations is of
particular interest in the community (Lee 2001; Iwatani et al. 2023). While a Reynolds-
averaged formulation had been considered for numerical investigations (Crouch et al.
2009; Iovnovich & Raveh 2012; Sartor, Mettot & Sipp 2015), recent advancements in
computational resources along with wall-modelling approaches enable performing large-
eddy simulations (LES) (Fukushima & Kawai 2018; Tamaki & Kawai 2024; Goc et al.
2025). This offers further reliable assessments of transonic buffet flows by accurately
capturing the interaction between the shock wave and the turbulent boundary layer.
Along with spatiotemporal high-resolution measuring techniques such as laser Doppler
velocimetry (Jacquin et al. 2009), particle image velocimetry (D’Aguanno et al. 2021)
and schlieren visualisation (Schauerte & Schreyer 2023), experimental studies have not
only provided a simplified model of transonic buffet supporting the understanding of
buffet phenomena (Lee 1990; Crouch, Garbaruk & Magidov 2007) but also suggested
passive control devices to suppress buffet-associated instabilities (Lagemann et al. 2024).
However, the self-sustaining mechanisms of the transonic airfoil buffet still require further
clarification.

In analysing transonic buffet flows with a large degree of freedom in the direction of
space, time and flow parameters, one can consider applying data-driven order-reduction
techniques to flow-field snapshots made available through simulations and experiments.
For example, proper orthogonal decomposition (POD) (Lumley 1967) has been considered
to obtain a low-order representation of transonic buffet phenomena (Ohmichi et al. 2018;
Poplingher, Raveh & Dowell 2019; Iwatani, Asada & Kawai 2022; Sansica et al. 2022).
However, seeking a minimal representation of unsteady flows with such a linear technique
is generally challenging because given data are linearly projected onto a flat manifold
(Graham & Floryan 2021).

To extract a low-order representation that best captures the underlying characteristics
of transonic buffet flows from data, this study considers a nonlinear autoencoder-based
compression (Hinton & Salakhutdinov 2006). Nonlinear activation functions inside an
autoencoder enable better compression of unsteady flow data compared with linear
techniques, which has been discussed with wake shedding (Omata & Shirayama 2019;
Murata, Fukami & Fukagata 2020), channel flow (Fukami et al. 2019; Yousif, Yu &
Lim 2022), Kolmogorov turbulence (Page et al. 2024) and aerodynamic flows under
gusty environments (Mousavi & Eldredge 2025). Compressed representations obtained
from the autoencoder can be used for a range of analyses including mode decomposition
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(Fukami, Nakamura & Fukagata 2020; Mo, Traverso & Magri 2024), dynamical modelling
(Fukami et al. 2021b; Constante-Amores & Graham 2024; Solera-Rico et al. 2024), shape
optimisation (Tran et al. 2024) and flow control (Linot, Zeng & Graham 2023; Liu,
Beckers & Eldredge 2025).

Although a nonlinear autoencoder can be employed as a powerful data compressor of
unsteady flows, it is important to note that careful use of an autoencoder by incorporating
prior knowledge of physics is essential to promote understanding of flows in a low-
order latent space (Fukami & Taira 2023). It is challenging to use compressed variables
obtained through a naive application of a standard autoencoder for characterising and
controlling unsteady flows (Fukami, Nakao & Taira 2024; Smith et al. 2024). In response,
we incorporate aerodynamic coefficients into the nonlinear autoencoder formulation in
identifying a low-order subspace. Equipped with this observable-augmented autoencoder,
this study reveals the existence of a three-dimensional representation of transonic airfoil
buffet flows, which describes the complex phenomena over the buffet cycle dynamics in a
compact manner. Furthermore, the current model trained at a wind-tunnel-scale Reynolds
number based on a chord length Re ∼ 106 can be used for sparse-sensor reconstruction
of aerodynamic responses at the level of a real-aircraft-operation high Reynolds number
Re ∼ 107. The present approach may facilitate data-driven analysis of transonic buffet
flows across a range of Reynolds numbers.

This paper is organised as follows. The simulation set-up used for data generation and
flow physics are expressed in § 2. The present autoencoder technique is described in § 3.
Results and discussion are presented in § 4. Conclusions are offered in § 5.

2. Transonic airfoil buffet flows at high Reynolds numbers
This study seeks a low-dimensional representation of two-dimensional transonic airfoil
buffet flows, capturing time-varying characteristics over the buffet cycle using nonlinear
machine learning. We consider datasets of Fukushima & Kawai (2018) generated by
wall-modelled LES of the transonic buffet over the OAT15A supercritical airfoil at
a high Reynolds number of Re = u∞c/ν∞ = 3 × 106 for nonlinear machine-learning
compression. Here, u∞, c and ν∞ describe the free-stream velocity, the chord length
and the kinematic viscosity, respectively. Following the observation in our previous study
(Fukushima & Kawai 2018), we consider two different Mach numbers of M∞ = u∞/a∞ =
(0.715, 0.730), where a∞ is the free-stream sonic speed. While a steady shock wave is
observed at M∞ = 0.715, the unsteady shock oscillating buffet phenomena emerge on
increasing the Mach number to 0.730. Involving both non-buffet and buffet conditions
in the present datasets for the nonlinear machine-learning analysis enables extracting the
difference between them in a low-order manner. All the physical variables throughout
the paper are normalised using combinations of c, a∞ and the density ρ∞. We further
consider a higher-Reynolds-number case of Re = 3 × 107 with M∞ = 0.730, exhibiting
unsteady buffet phenomena, to evaluate the applicability of the current technique trained
at a wind-tunnel-scale Reynolds number Re ∼ 106 to a scenario at a real aircraft-scale
Reynolds number Re ∼ 107.

The computational mesh used in the present study is shown in figure 1. The spatially
filtered compressible Navier–Stokes equations are numerically solved, where the LES
with modelled wall shear stresses and wall heat fluxes resolves the outer-layer turbulence
(Fukushima & Kawai 2018). We follow our previous studies (Kawai & Larsson 2012,
2013; Fukushima & Kawai 2018) for the numerical schemes as well as the treatment of
the boundary conditions.
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Figure 1. The computational grid used in the present wall-modelled LES of two-dimensional transonic airfoil
buffet at a high Reynolds number (Fukushima & Kawai 2018). An instantaneous streamwise velocity field u
near the wall and the density gradient magnitude |∇ρ| are superposed. The grey grid lines are displayed every
fifth point in the g1 and g2 (wall-normal) directions. The inset is focused on the region of the shock wave–
turbulent boundary layer interactions with the grey grid lines plotted every fifteenth point in the g1 direction
and every fifth point in the g2 direction.

The spatial derivatives at interior grid points are evaluated using the sixth-order compact
differencing scheme (Lele 1992). Time integration is performed with the third-order total
variation diminishing Runge–Kutta scheme (Gottlieb & Shu 1998). To accurately resolve
the shock wave, the localised artificial diffusivity method is employed with the sixth-order
compact scheme (Kawai, Shankar & Lele 2010). While we compute the subgrid-scale
turbulent eddy viscosity with a selective mixed-scale model (Lenormand, Sagaut & Ta
Phuoc 2000), the equilibrium wall model (Kawai & Larsson 2012) is considered.

The computational mesh for the present wall-modelled LES is designed based on the
grid resolution requirements (Kawai & Larsson 2012; Larsson et al. 2016). Although we
use the same mesh at both Reynolds numbers, Re = 3 × 106 and 3 × 107, the employed
mesh satisfies the resolution requirements across the streamwise domain of the attached
fully turbulent boundary layer upstream of the shock wave (0.2 � x/c � 0.35), providing
more than 23–25 grid points in each direction per boundary-layer thickness. Specifically,
the mesh resolves the boundary layer with at least 29, 34 and 38 points in the wall-
normal direction at x/c ≈ 0.2, 0.25 and 0.3, respectively. In the wall-parallel directions,
the resolution corresponds to at least 23, 28 and 33 grid points per local boundary-layer
thickness at the same stream locations. These values meet the standards for wall-modelled
LES resolution (Kawai & Larsson 2012).

Furthermore, previous studies have reported that wall-modelled LES with the equilib-
rium wall model can reasonably produce the flow states associated with the interaction
between the shock waves and turbulent boundary layer even with the simplification of
the equilibrium wall model (Bermejo-Moreno et al. 2014; Fukushima & Kawai 2018; De
Vanna et al. 2022; Sashida et al. 2024). Therefore, the present wall-modelled LES provides
a high-fidelity dataset for the present nonlinear machine-learning analysis. Further details
on the simulation set-up are provided in Fukushima & Kawai (2018).
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Figure 2. Lift coefficient and pressure fields at M∞ = 0.715 (a–d) and 0.730 (e–h). A note concerning the
shock location is provided underneath each contour of M∞ = 0.730. The arrow in each subcontour represents
the direction of shock movement.

The temporal evolution of lift coefficient CL and a sectional pressure field p extracted
from the wing centre in the spanwise direction at Re = 3 × 106 obtained through the
present simulation is presented in figure 2. The case for M∞ = 0.715 shows statistically
steady states, producing small fluctuations of lift over time. The shock mostly appears at
x/c ≈ 0.55 while slightly oscillating in the streamwise direction on the wing.

In contrast, the case for M∞ = 0.730 clearly presents its time-varying feature associated
with self-sustained large-scale shock oscillation. The shock wave periodically moves in
large amplitude over the wing while the separation near the trailing edge is triggered
depending on the shock location, which coincides with observations in wind-tunnel
experiments (Jacquin et al. 2009). Correspondingly, the lift response also exhibits a
periodic signal over the buffet cycle. Hence, the phase of shock location over the buffet
cycle is almost identical to that of lift. The separation height is particularly increased
when the shock wave moves upstream, which is shown later. The interaction between
the wake and separation at this stage causes the upstream-travelling wave (Lee 2001;
D’Aguanno et al. 2021; Iwatani et al. 2023). The lift response is greatly affected by the
time-varying area size of supersonic flow along with the aforementioned processes. Note
that these buffet dynamics are further discussed and quantified later with observation in
the machine-learning-based low-dimensional subspace.

3. Nonlinear machine-learning-based compression of transonic airfoil buffet flows
To seek a low-dimensional representation of transonic airfoil buffet flows from data, we
consider a nonlinear autoencoder-based data compression (Hinton & Salakhutdinov 2006).
An autoencoder FAE aims to reconstruct (or output) the same data as the input data q ∈
R

n . The autoencoder is designed to possess a bottleneck, referred to as a latent space
ξ ∈R

m , as illustrated in figure 3. The latent dimension m is generally set to be much
smaller than the original data dimension n such that m � n. Hence, the latent vector ξ can
be considered as a compressed representation of the given data q if the autoencoder FAE
accurately reconstructs the data. The aforementioned process is described as

q ≈FAE (q) =Fd(Fe(q)), ξ =Fe(q), q ≈ q̂ =Fd(ξ), (3.1)
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Figure 3. Lift-augmented nonlinear autoencoder (Fukami & Taira 2023).

where (̂·) denotes a reconstructed variable and Fe and Fd correspond to an encoder
and a decoder, respectively. A range of neural-network models with nonlinear activation
functions can be considered for the construction of autoencoder FAE . The use of nonlinear
activation functions promotes network capabilities, providing better compression than
linear techniques, which is mathematically proven through the relationship between
a linear activation autoencoder and other linear compression approaches (Oja 1982;
Bourlard & Kamp 1988; Fukami et al. 2021a).

We consider a sectional pressure field sampled from the wing centre in the spanwise
direction as the input and output q of a nonlinear autoencoder to extract the underlying
characteristics of transonic airfoil buffet flows. While a standard autoencoder achieves
significant data compression of fluid flows, it is often challenging to interpret the
identified subspace in a physically understandable manner. To facilitate the present latent
identification from the viewpoint of aerodynamics, this study uses a lift-augmented
nonlinear autoencoder (Fukami & Taira 2023) producing a lift response from the latent
vector through a branch network, as illustrated in figure 3. The optimisation for the
parameters (or weights) w inside the lift-augmented autoencoder is performed with

w∗ = argminw

[
||q − q̂||22 + β||CL − ĈL ||22

]
, (3.2)

where β balances the pressure field and lift reconstruction loss terms. This weighting
parameter β is set to 0.03 and 0.05 based on the L-curve analysis (Hansen & O’Leary
1993) for the observable-augmented autoencoder, while a regular autoencoder, i.e. β = 0,
is also considered for comparison. To minimise the above cost function, the model needs
to accurately estimate CL(t) while performing data compression of the pressure field data
q(t). In other words, the current formulation enables w to be tuned to capture structures
appearing over the buffet cycle that are associated with the lift response. As the periodic
shock movement over an OAT15A airfoil, clearly observed in the pressure field, is highly
correlated with the lift coefficient CL(t), the resulting low-dimensional representation is
expected to emphasise aerodynamically important events during the buffet cycle.

The current dataset for the nonlinear autoencoder analysis is composed of 6800
snapshots with M∞ = 0.715 (non-buffet condition) over 30.8 non-dimensional time,
t/(c/u∞), and 17 300 snapshots with M∞ = 0.730 (buffet condition) over 26.4 non-
dimensional time. We consider a subdomain of (x, y)/c ∈ [−0.6, 1.5] × [−0.5, 1.3]
with spatially uniform grid points (Nx , Ny) = (480, 200) extracted from the entire
computational domain for the data-driven analysis, where the leading edge of the wing is
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Encoder Decoder Lift subnetwork

Layer Data size Layer Data size Layer Data size

Input q (480, 200) Latent vector ξ (3) Latent vector ξ (3)
Conv. (3, 3, 16) (480, 200, 16) MLP (16) MLP (32)
Conv. (3, 3, 16) (480, 200, 16) MLP (32) MLP (64)
Maxpooling (2, 2) (240, 100, 16) MLP (256) MLP (32)
Conv. (3, 3, 16) (240, 100, 16) MLP (480) Output ĈL (1)
Conv. (3, 3, 16) (240, 100, 16) (Reshape) (12, 5, 8)
Maxpooling (2, 2) (120, 50, 16) Conv. (3, 3, 8) (12, 5, 8)
Conv. (3, 3, 8) (120, 50, 8) Conv. (3, 3, 8) (12, 5, 8)
Conv. (3, 3, 8) (120, 50, 8) Upsampling (5, 5) (60, 25, 8)
Maxpooling (2, 2) (60, 25, 8) Conv. (3, 3, 8) (60, 25, 8)
Conv. (3, 3, 8) (60, 25, 8) Conv. (3, 3, 8) (60, 25, 8)
Conv. (3, 3, 8) (60, 25, 8) Upsampling (2, 2) (120, 50, 8)
Maxpooling (5, 5) (12, 5, 8) Conv. (3, 3, 16) (120, 50, 16)
Conv. (3, 3, 8) (12, 5, 8) Conv. (3, 3, 16) (120, 50, 16)
Conv. (3, 3, 8) (12, 5, 8) Upsampling (2, 2) (240, 100, 16)
(Reshape) (480) Conv. (3, 3, 16) (240, 100, 16)
MLP (256) Conv. (3, 3, 16) (240, 100, 16)
MLP (64) Upsampling (2, 2) (480, 200, 16)
MLP (32) Conv. (3, 3, 16) (480, 200, 16)
MLP (16) Conv. (3, 3, 16) (480, 200, 16)
Latent vector ξ (3) Output q̂ (480, 200)

Table 1. The architecture of observable-augmented nonlinear autoencoder. The convolutional layers are
denoted as ‘Conv.’ . The size of the convolutional filter F and the number of the filter K are shown for each
convolutional layer as (F, F, K ). The maxpooling/upsampling ratio R is shown for each layer as (R, R).

positioned at the origin. The interior of the wing is set to be zero. As a fixed angle of attack
is considered for all the data in this study, the model is not affected by this operation. The
present autoencoder is composed of convolutional neural networks (LeCun et al. 1998) and
multi-layer perceptrons (Rumelhart, Hinton & Williams 1986) following the original study
of the lift-augmented autoencoder, as summarised in table 1. While the convolutional
network learns large-scale structures in a flow field through filter-based operations, the
multi-layer perceptrons are used for the bottleneck part of the autoencoder, where the
data dimension is very low and the spatial coherence is less important than the complex
relationship among the latent variables (Fukagata & Fukami 2025). This combination
enables data-driven compression of fluid flow data with reasonable computational costs
compared with a model based solely on a multi-layer perceptron that often encounters the
curse of dimensionality (Fukami et al. 2021a; Morimoto et al. 2021). Further details on
machine-learning set-ups with the present L-curve analysis for the decision of β are given
in Appendix A and a sample code at https://github.com/kfukami/Observable-AE.

4. Results and discussion

4.1. Latent space identification of transonic airfoil buffet flows
This section discusses data-driven compression and the resulting subspace identification
of transonic airfoil buffet flows. Let us first examine the latent dimension that accurately
reproduces the original flow state. The relationship between the latent dimension nξ and
the L2 reconstruction error norm εq is shown in figure 4. Here, the L2 reconstruction error
norm between a variable f and its reconstruction f̂ is defined as ε f = || f − f̂ ||22/|| f ′||22,
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Figure 4. Comparison of compression performance for transonic airfoil buffet flow data between linear POD
and a standard nonlinear autoencoder (AE, β = 0). (a) The relationship between the latent dimension nξ and the
L2 reconstruction error ε. (b) Representative reconstructed pressure snapshots with nξ = (1, 3, 5) for M∞ =
0.730 with (c) the reference field. (d) The absolute error field eL1 = |q − q̂| corresponding to panels in (b).

where f ′ represents the fluctuation of f from the time-averaged value. While a standard
nonlinear autoencoder without lift incorporation, i.e. β = 0, is considered for this analysis,
linear POD is also used for comparison.

The nonlinear autoencoder is superior to POD across the latent dimension, suggesting
that the use of nonlinear activation functions inside the model facilitates compression
performance. Compared with the POD-based reconstruction exhibiting high error near
the shock, the autoencoder accurately reproduces a flow state, as presented in figure 4.
We also find that the error curve of the autoencoder plateaus once the latent dimension
reaches three. This reveals that the primary large-scale feature of the pressure fields for
the present transonic airfoil buffet flows at Re = 3 × 106 can be represented with solely
three-dimensional latent variables with nonlinear machine learning. To achieve a similar
reconstruction level of εq ≈ 0.1 to a nonlinear autoencoder with nξ = 3, 85 linear POD
modes are needed.

The plateau behaviour for the autoencoder is in part due to the present network
architecture shown in table 1, which compresses data with 480 dimensions given by the
portion of the convolutional network to be O(100) using multi-layer perceptrons. A similar
observation of producing plateau behaviour in capturing dominant large-scale features has
recently been found (Fukami, Smith & Taira 2025) for extremely strong vortex–airfoil
interactions with turbulent vortical structures. It is anticipated that the error would be
further reduced once fine-scale structures begin to be captured in the latent space with
much larger latent dimensions. Since large-scale motions have already been extracted with
nξ = 3, the resulting curve for the autoencoder likely exhibits a step-type behaviour in
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Figure 5. Latent subspace identified by a standard autoencoder (β = 0) and the lift-augmented autoencoder
(β = 0.03 and 0.05) coloured by the cases of different Mach numbers M∞ = (0.715, 0.730) (a) and the time-
varying lift coefficient CL (t) (b). The pressure fields over time corresponding to the points (i)−(iv) in the
latent space are also shown. The arrow in each subcontour represents the direction of shock movement. The
zoomed-in view of wake and the downstream region visualised with a different colour scheme are also depicted
to emphasise the interaction between the wake, shock and turbulent boundary layer.

which the plateaued error reduces again once the latent dimension becomes sufficiently
large. Hereafter, we choose a latent dimension of 3 for the discussions.

Next, we examine the behaviour of low-dimensionalised transonic airfoil buffet flows
in the latent space. The three-dimensional subspace identified by a standard autoencoder
(β = 0) and the lift-augmented autoencoder (β = 0.03 and 0.05) is exhibited in figure 5.
For all cases, the trajectory for the non-buffet and buffet cases appears in different regions
of the latent space. The non-buffet case for M∞ = 0.715 across the autoencoders is
described in a similar way, that is, a small-sized circle-like orbit. This representation likely
corresponds to the statistically steady dynamics with small oscillations of aerodynamic
responses for the present non-buffet flows, which is evident from the reconstruction of lift
response and pressure fields for the non-buffet case presented in Appendix B.

While all the present subspaces capture the relationship between the non-buffet and
buffet cases and the characteristics of the non-buffet flow in a low-order manner, the latent
expression for the buffet case of M∞ = 0.730 shows a clear difference by introducing
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Figure 6. Time trace of latent vectors ξ obtained from nonlinear autoencoders, shock location xs , lift
coefficient CL and separation height h for the buffet case.

the lift augmentation. This can be observed with the difference in the relative location of
the low-dimensionalised flow states (i), (iv) and (v). Here, the shock in the flow field (i)
moves downstream while that in (iv) and (v) moves upstream. The standard model encodes
them into nearby regions in the latent space. In contrast, their locations begin to differ due
to the lift augmentation. Consequently, the low-order trajectory with β = 0.05 presents a
geometric structure possessing two wings, while that with β = 0 and 0.03 rather shows a
regular cyclic orbit.

To discuss what physics are captured in the present low-order representation, the
temporal behaviour of latent vectors ξ(t) is compared with the shock location xs(t), the
lift coefficient CL(t) and the separation height h(t), as shown in figure 6. Here, the shock
location xs is defined as a streamwise position at which the density gradient magnitude
|∇ρ| takes the maximum value. The separation height h is set to be a distance from the
wall in which the streamwise momentum ρu becomes 0 at x/c = 0.6 in measuring across
the wall-normal direction.

The latent expression from the standard autoencoder emphasises the cyclic behaviour of
shock location as the notable peak of latent vectors at t ≈ 13. With the lift incorporation
of β = 0.05, the latent vectors possess an additional dominant peak around t = 20,
corresponding to the emergence of the wing-type geometric structure in the low-order
subspace. While this moment is under-evaluated with β = 0 and 0.03, we find that the peak
appearing at t ≈ 20 coincides with the timing when the separation height h is increased,
as shown in figure 6. This increase in the separation height h is attributed to the upstream-
moving shock wave, not only producing a strong shock due to the increase of relative
shock Mack number but also inducing a large separation due to a strong shock adverse
pressure gradient. In this manner, the separation height varies depending on the direction
of shock movement across the streamwise direction, i.e. relative shock Mach number, in
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addition to the shock location. Hence, it can be argued that the current lift augmentation
well captures the relationship between the shock motion and the aerodynamic responses
in its latent representation. Although the flow field data themselves given as the input may
also include phase information of the buffet cycle as the phase of shock location matches
that of lift response as presented in figure 6, the present observation suggests that providing
an aerodynamic variable as an observable output through the subnetwork is essential to
identify the physically interpretable subspace. The dependence of the latent representation
geometry on the number of training samples and the initial random seed assigned to the
weights in the observable-augmented autoencoder is examined in Appendices C and D,
respectively.

Note that all the latent spaces across β represent the cyclic transonic buffet dynamics
while achieving the same level of reconstruction through the decoder. The latent
expression hence becomes stretched by highlighting the events associated with a given
observable. In other words, all the latent subspaces are regarded as the compact
representation of transonic airfoil buffet flows, although their ways of presentation are
different from each other. The present lift augmentation can highlight aerodynamically
important events as a manifold geometry while a regular model does not capture them in
an interpretable manner, e.g. points (i), (v) and (iv) in figure 5.

4.2. Sparse-sensor reconstruction of transonic airfoil buffet flows via low-order
subspace

The current findings through autoencoder compression imply that the right set of variables
may capture the essence of transonic airfoil buffet flows. This also makes us anticipate
that sparse sensors could also be such a set of low-order variables, thereby achieving
sparse-sensor-based reconstruction. Furthermore, of interest here is whether it is possible
to gain situational awareness from sparse sensors towards guiding flight operations based
on insights into the physically interpretable latent subspace. Based on this viewpoint, we
further consider leveraging the discovered low-order subspace for the data-driven global
flow field reconstruction.

Since the decoder Fd provides the pressure field from the latent vector, we aim to
estimate the latent vector ξ(t) from sparse sensors s(t) by preparing an independent
machine-learning model Fs . By feeding the estimated latent vector ξ̂ =Fs(s(t)) into the
pretrained decoder Fd , a pressure field q(t) is reconstructed, as illustrated in figure 7. The
above-mentioned procedure is expressed as

q(t) ≈ q̂(t) =Fd(ξ̂(t)) =Fd(Fs(s(t))), (4.1)

with an optimisation for the weights ws of the latent vector estimator Fs :

w∗
s = argminws

||ξ −Fs(s; ws)||22. (4.2)

We use multi-layer perceptrons (Rumelhart et al. 1986) with the units of 14–32–64–
128–32–3 across the layers for constructing the latent vector estimator Fs that maps sensor
measurements s ∈R

ns to ξ ∈R
3, where ns represents the number of sensors. This low-

order mapping between sparse sensors and the latent vector enables avoiding a naive
learning for the relationship between the sensor inputs and the global field output (Fukami,
Fukagata & Taira 2023; Eldredge & Mousavi 2025). While such a field reconstruction
problem often becomes computationally expensive due to a significant difference in data
dimension between the input and output, this approach can save costs by leveraging the
pretrained decoder.
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Figure 7. Sparse-sensor-based reconstruction via the low-order subspace. (a) Pressure sensor placements on
the wall and responses in time. (b) The present full state reconstruction combined with a latent vector estimator
Fs and the pretrained decoder Fd . An example of the reconstructed field with the L2 error norm εq and
reproduced lift coefficient from 14 sensors is shown.

An example of the reconstructed pressure field and estimated lift coefficient from 14
sensors is shown in figure 7. Here, these sensors are placed along the airfoil surface in
an equispaced manner, enabling a comprehensive analysis of data-driven sensor reduction
performed later. We use the latent vector ξ extracted from the lift-augmented autoencoder
with β = 0.05. In addition to the flow state including wake shedding and shock location,
the lift response is accurately reproduced from the sensor readings. As implied through
the discovery of a low-dimensional subspace, sparse-sensor-based reconstruction is indeed
possible for the present transonic airfoil buffet flow.

Furthermore, the minimal number and appropriate placements of sensors can be
quantified with the latent vector estimator trained with 16 sensors above and the lift
subnetwork prepared for subspace identification. This is achieved by performing a
sensitivity analysis between a machine-learning estimate and a given input (Morimoto
et al. 2022; Chen et al. 2024). Considering the gradient between the sensor input s and the
output of machine-learning model ẑ, γ (t) = ∂ ẑ(t)/∂s(t), the importance of each sensor
for estimation, i.e. sensitivity S(t), is quantified as a weighted input:

S j (t) = γ j (t)s j (t), (4.3)

where j is an index of pressure sensor s j . As an output variable ẑ, the estimated lift
coefficient ĈL and latent vector ξ̂ are considered.

The sensitivity S with respect to the lift and latent vectors is shown in figure 8. In
addition to the time trace, the absolute time-averaged values are also presented to further
gain insights into the general trend of sensitivities over the buffet cycle. As the present
autoencoder is trained such that the latent vector extracts the flow features associated with
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Figure 8. Gradient-based sensor sensitivities with respect to the lift and latent vectors. Both the time trace and
the time-averaged sensitivities over 14 sensors are shown. The sensor index here corresponds to that shown in
figures 7, 9 and 10.

the lift coefficient, both sensitivity maps present a consistent trend in the direction of
time and sensor index. Note that high-frequency fluctuations of the sensitivity are caused
because the present sensitivity is calculated using the estimate by the machine-learned
model, which includes the estimation error varying in time. We have confirmed that the
rank of sensor importance is not affected by such high-frequency fluctuations through a
preliminary analysis by taking moving averages.

Focusing on the lift estimation, the sign of sensor sensitivity seems to be opposite
between the suction (index 2–7) and pressure (index 9–14) sides due to their different
role in contributing to lift. The responsible sensors are clearly shown where |S| > 0.02:
sensor 1 at the leading edge, sensor 8 at the trailing edge, sensors 5, 6 and 7 placed on
the suction side and sensors 10 and 13 placed on the pressure side. In turn, less sensitive
sensors are also identified. Sensors 2 and 3, placed in the supersonic region, particularly
show very small |S|, likely because their sensor signals are less affected by the shock
movement compared with others according to figure 7(a).

The present sensitivity information is further leveraged to reduce the number of sensors
for subspace estimation. Let us consider removing the sensors following the rank of
absolute time-averaged sensitivity |S| so that sensors with small contribution to estimation
are eliminated while keeping the highly contributing sensors. The relationship between
the number of sensors ns and the estimation errors is shown in figure 9. The error for the
latent vector and lift response is depicted on a single plot. The error curves are flat between
ns = 7 and 14, exhibiting that accurate estimation of lift and flow fields is achieved up to
ns = 7. This is also evident from the reconstructed flow field shown in figure 9, and the
estimated latent subspace and lift response presented in figure 10.

All seven sensor readings here report the absolute time-averaged value of |S| > 0.02,
exhibiting a relatively larger value compared with other less-contributing sensors observed
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Figure 9. Sensitivity-based sensor reduction. The relationship between the number of sensors ns and the
estimation errors of latent vectors εξ and lift εCL is shown. The reconstructed fields are presented with the
L2 error norm εq underneath each contour.

in figure 8. Once the sensors are further removed, the error of the latent vector starts
to increase. However, the error curve for the lift coefficient presents a slower slope
at ns � 6 compared with that for the latent space. In fact, the lift response at ns = 3
still exhibits reasonable agreement with the reference data. This is likely because a
global quantity of lift coefficient aggregating the flow information over the entire body
is easier to estimate than the latent subspace, a representation of the whole flow field
itself.

To examine the dependence of reconstruction performance on the choice of sensor-
selection technique and compression approach, we further consider the QR pivot-based
sensor placement optimisation (Manohar et al. 2018) with ns = 7. Their approach finds
the optimal sensor locations through QR factorisation with column pivoting applied
to the POD bases. Further details on this linear technique are provided in Manohar
et al. (2018). The original placements of sensors before performing the QR pivot-
based reduction are constrained on the wing surface and the same as those used
in the autoencoder-based analysis shown in figure 7(a). Here, three approaches are
considered:
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Figure 10. The estimated latent subspace and estimated lift coefficient across ns reduced via the sensitivity
analysis.

(i) Estimate the three-dimensional latent vectors ξ based on the sensors reduced via the
gradient sensitivity and decode a flow using the nonlinear decoder Fd (the original
formulation).

(ii) Estimate the dominant three POD coefficients a based on the sensors reduced via the
QR pivot and decode a flow with POD modes.

(iii) Estimate the three-dimensional latent vectors ξ based on the sensors reduced via the
QR pivot and decode a flow using the nonlinear decoder Fd .

For fair comparison, we use the same multi-layer perceptron architecture for all three
cases in estimating the latent vectors and the three dominant POD coefficients. The flow
fields are then decoded using the nonlinear decoder Fd or POD modes Φ. While (4.1) is
applied for cases (i) and (iii), case (ii) with the POD multi-layer perceptron model with
QR pivot-based sensor reduction is expressed as

q(t) ≈ Φ â(t) = Φ(Fs(s(t))). (4.4)

Let us compare the reduced sensor placements in figure 11. Four sensors (index 5, 7,
8 and 13), reporting high |S| with the gradient-based approach, are commonly kept with
both sensor-reduction methods through the reduction process. However, the remaining
three sensors are placed in a different way. While sensors chosen by the QR pivot are
grouped with neighbours (s3–s5, s7–s8 and s13–s14), the gradient-based method seems to
attempt to cover the entire wing surface. This result suggests that the dominant features
captured by both POD and the autoencoder make the reduction approach keep the common
four sensors, while the subdominant characteristics that are better compressed with the
nonlinear autoencoder cause the difference in the location of the remaining three sensors.

The reconstruction fields with cases (i)–(iii) are also shown in figure 11. When using the
nonlinear decoder, the reconstruction with the gradient-based approach is slightly better
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Figure 11. Dependence of sparse-sensor reconstruction performance on the choice of sensor-reduction
technique and compression approach with nξ = 7.

than that with the QR pivot. These accurate reconstructions suggest that the high error for
case (ii) is primarily due to the use of linear POD modes as a decoder rather than the sensor
placements determined by the QR pivot. We note that the error for case (iii) of the QR
pivot and the autoencoder latent variables starts to increase with ns � 6, similarly to case
(i) using the gradient-based method, although not shown. While both the gradient-based
method and the QR pivot currently provide a similar level of sensor reduction performance,
they could be further improved by accounting for redundancy between sensor readings,
which can be quantified with inter-correlations and mutual information.

The present analysis is focused on transonic airfoil buffet flow at Re = 3 × 106. While
the current Reynolds number may be higher than those often considered for numerical and
data-driven analyses in the community, this still resides in the range of wind-tunnel-scale
conditions. Of particular interest here is whether the current model trained at a wind-
tunnel-scale Reynolds number can be applied to a scenario under a real aircraft operation
level of Reynolds number. In response, this study lastly evaluates the applicability of the
present method to a transonic airfoil buffet flow at Re = 3 × 107 with M∞ = 0.730.

The wall-modelled LES is performed for the case with (Re, M∞) = (3 × 107, 0.730)

at α = 3.5◦, as presented in figure 12(a). There is a self-sustained shock buffet cycle that
produces almost the same frequency and oscillation amplitude of aerodynamic coefficients
as those for Re = 3 × 106, as seen in figure 12(b). The difference in the flow between
the two Reynolds numbers is examined with the instantaneous streamwise velocity u
sampled at the same phase t/T = 0.70, where T denotes the time window across the buffet
cycle, as depicted in figure 12(c). The shock location moves downward and the separation
height becomes greater on increasing the Reynolds number, strengthening the shock wave
accompanied by a large adverse pressure gradient and triggering a larger separation, which
is also evident from the time-averaged flow fields shown in figure 12(d). Due to the
trade-off relationship between the suppression effect of separation due to the increment
of Reynolds number and the separation induced by the strong shock wave, the resulting
shock-wave oscillation is sustained.

Let us finally apply the present sensor-based reconstruction model trained at Re = 3 ×
106 to the level of real aircraft operation at Re = 3 × 107, as shown in figure 13. Here, we
use the latent vector estimator Fp trained with seven sensors following the observation
in figures 9 and 10. The reconstructed fields exhibit a smaller height of shock compared
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Figure 12. (a) An instantaneous snapshot of transonic airfoil buffet flows at Re = 3 × 107 visualised by
the isocontours of the Q-criterion. Comparison of (b) lift coefficient and (c) instantaneous streamwise
velocity fields sampled at t/T = 0.70 with Re = 3 × 106 and Re = 3 × 107. (d) Time- and spanwise-averaged
streamwise velocity fields at Re = 3 × 106 and Re = 3 × 107.

with the reference snapshots as such a shock with a greater height does not appear in
the training data at Re = 3 × 106. However, it is worth noting that the shock locations
of the machine-learning reconstruction are constantly evaluated forward compared with
that of the reference at Re = 3 × 107. Since the shock moves downward on increasing the
Reynolds number while keeping its phase as presented in figure 12, this constant shift
indicates that the present model may correctly capture the phase information across the
buffet cycle even at the current real-aircraft-level Reynolds number. This is further evident
from the reproduced lift response. While the magnitude of lift is underestimated due to the
difference in Reynolds number between the training and testing data, the temporal trend of
the lift signal accurately matches the reference. This observation suggests that nonlinear
machine learning can be transferred to scenarios where the characteristics of variables of
interest remain relatively consistent across different Reynolds numbers.

5. Concluding remarks
This study examined a low-dimensional representation of transonic airfoil buffet flows at a
high Reynolds number with nonlinear machine learning. Wall-modelled LES of flow over
the OAT15A supercritical airfoil at Mach numbers M∞ = 0.715 and 0.730, corresponding
to non-buffet and buffet conditions, were performed at a chord-based Reynolds number
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Figure 13. Application of the sparse-sensor reconstruction model trained at Re = 3 × 106 to a flow at the
level of a real aircraft operation of Re = 3 × 107. The reconstructed pressure field and lift response are shown.

of Re = 3 × 106 to generate the datasets used in the present data-driven analysis. To
derive a low-order expression from the data, we considered nonlinear lift-augmented
autoencoder-based compression. We found that there exists a compact three-dimensional
latent subspace reflecting the characteristics of transonic airfoil buffet flow. The discovered
representation captures key flow features, including shock movement and shock-induced
separation, in a reduced-order manner.

Based on these physical implications, sparse-sensor-based reconstruction via the
learned representation was further performed. Equipped with the sensitivity analysis,
the sensor configuration required for accurately reproducing aerodynamic responses can
be determined. Finally, the model trained at a wind-tunnel-scale Reynolds number of
Re = 3 × 106 was assessed at a real aircraft operational level of Re = 3 × 107, revealing
its ability to reasonably predict phase dynamics of aerodynamic loads from sparse sensors.

While we considered two configurations of buffet/non-buffet conditions at a fixed angle
of attack, additional cases with a range of different parameters, including angle of attack,
Reynolds number and Mach number, would be needed to fully characterise the whole
picture of buffet onset. Although it is anticipated that a low-order subspace capturing the
difference in such parameters and the occurrence of transonic buffet could be identified,
a major challenge arises from a collection of datasets through large-scale simulations.
From this aspect, one can consider data fusion between LES, unsteady Reynolds-averaged
Navier–Stokes and experimental measurements to supplement the pros and cons across
different datasets with each other in extracting a low-order submanifold with observable-
augmented learning (Fukami & Taira 2025).

The present analysis reveals that three latent variables are needed to represent transonic
airfoil buffet flows. Although buffet dynamics is often modelled as a self-sustained
oscillator subjected to stochastic forcing (Feldhusen-Hoffmann et al. 2021; Sansica et al.
2022; Crouch, Ahrabi & Kamenetskiy 2024), our findings suggest the necessity of a
third dimension. This additional latent dimension likely corresponds to aerodynamic
phenomena related to the separation height, according to the observation in figure 6. To
characterise this dynamics more precisely, it is essential to investigate the nonlinear modal
structures associated with each latent variable. This can be achieved by integrating mode-
decomposing autoencoders (Fukami et al. 2020; Murata et al. 2020), which we plan to
pursue in future work.

With the present formulation of observable-augmented learning, users have to choose
an appropriate observable from the candidates, and it currently takes some level of
computational effort to find a physically relevant subspace. Note, however, that the former
point of the non-automatic process enables us to have the opportunity to incorporate
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physical or mathematical knowledge based on what we would like to associate with, while
the computational cost for the latter point is still manageable as the degree of freedom of
observables is much less than that of the original simulations. A series of recent studies
on observable-augmented manifold learning have revealed that an appropriate choice of
observable assists in compactly extracting physics for a range of unsteady flow scenarios
including vortex–airfoil interactions (Fukami & Taira 2023; Fukami et al. 2024; Liu et al.
2025; Mousavi & Eldredge 2025), vehicle aerodynamics (Tran et al. 2024), turbulent
boundary layers (Fukami & Taira 2025) and roughness turbulence (Nair et al. 2025),
enabling the enjoyment to learn physics from data for fluid mechanicians. More broadly, an
‘observable’ here does not need to be a variable. Some applied mathematical techniques,
such as persistent homology (Smith et al. 2024) and information theory (Fukami & Araki
2025), can also be considered as observables depending on the physics of interest. Hence,
adding an observable may be regarded as one approach to support data-driven analysis for
unsteady flows.

Based on the current findings considering flows around a wing, the applicability of the
present data-driven subspace identification to transonic buffet conditions around a full-
aircraft configuration would also be of interest (Asada et al. 2023; Tamaki & Kawai 2024).
For such cases, a combination of linear, scalable compression techniques such as POD
and the present observable augmentation would be helpful to reduce the computational
burden (Linot & Graham 2023; Tran et al. 2024; Asada & Kawai 2025). The current study
may offer a new perspective on the analysis and determination of flight envelopes towards
next-generation air vehicle operations.
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Appendix A. Training procedures and L-curve analysis
Here, we provide details on training procedures and the choice of weighting parameter β

in (3.2) for the present observable-augmented nonlinear autoencoder. The Adam optimiser
(Kingma & Ba 2014) with the default parameter sets in Keras is used to update the
weights through machine-learning training. The maximum number of training iterations
is set to be 50 000, while early stopping (Prechelt 1998) with the criterion of a series of
100 continuous epochs is employed to avoid overfitting. We use 70 % of the datasets for
training and the remaining 30 % are prepared for validation. The number of grid points
(Nx , Ny) = (480, 200) for the current data-driven analysis is determined such that the
shock can be represented without exhibiting any discontinuous artefacts, which is evident
from a comparison with other resolutions (Nx , Ny) = (240, 100) and (960, 400) shown
in figure 14. In using the entire data set of 24 100 snapshots, the training process takes
approximately two hours in an NVIDIA A100 GPU environment, and the inference time
for each snapshot is 0.003 seconds.

The weighting parameter β in (3.2) is determined based on the L-curve analysis (Hansen
& O’Leary 1993) that finds an appropriate regularisation parameter of the cost function,
as shown in figure 15. We consider nine different values of β (0.005, 0.01, 0.03, 0.05, 0.1,
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Figure 14. Pressure field interpolated onto a spatially uniform grid with a resolution of (nx , ny) = (240, 100),
(480, 200) and (960, 400).
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Figure 15. L-curve analysis for the present observable-augmented autoencoder.

0.5, 1, 5 and 10). The cases with β = 0.03 and 0.05, providing low reconstruction errors
for the lift response and the pressure field in a balanced manner, are chosen for the present
analysis.

Appendix B. Reconstructed variables for the non-buffet case
We exhibit in figure 16 the decoded lift coefficient and pressure fields obtained from the
present lift-augmented autoencoder with β = 0.05. While achieving accurate estimation
of the lift coefficient, the reconstructed pressure fields are in agreement with the reference
data, reporting less than 8 % L2 norm error over time. Along with the observation of a
small-sized cyclic orbit in figure 5 and small oscillations of the pressure coefficient C p in
figure 16, it is argued that the present model well represents statistically steady dynamics
of the non-buffet case in the identified low-order subspace.

Appendix C. Effect of the number of training samples
We examine the dependence of reconstruction performance and latent space geometry
on the number of training snapshots by subsampling them to be 25 % and 50 % of the
original amount, as presented in figure 17. We use the same autoencoder network with the
same weighting parameter β of 0.05 as that used in the original case. The case with 50 %
presents a similar result to the original model. However, the latent geometry with the 25 %
case starts to deform from the original shape, although there still exists a two-wing-shaped
submanifold. Since the dimensionality in the subspace is determined based on whether
the given data cover the entire space of the attractor or not, rather than the number of
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Figure 16. Decoded lift coefficient and pressure fields via a lift-augmented autoencoder with β = 0.05 for the
non-buffet case with M∞ = 0.715. The flow fields (a–d) correspond to those shown in figure 2. The whole
(bottom left) and zoom-in (bottom right) views of the pressure coefficient C p on the wing surface for the
snapshots (a–d) are also presented.

snapshots, the latent dimension is not affected for this analysis, in which we subsample the
snapshots while keeping the entire time window.

The deformation of latent space geometry is caused by several factors. There may exist
an optimal weighting parameter β for the case with 25 % data. Furthermore, the primary
reason is likely less temporal density of data compared to the original case, which may
cause miscapturing of some events over the buffet cycle. A sufficient temporal resolution
is needed to obtain an interpretable low-order subspace in a data-driven manner.

Appendix D. Uniqueness of latent representation
To consider the uniqueness of latent representation, we examine the dependence of the
latent geometry on the initial random seed assigned to the weights in the observable-
augmented autoencoder, as shown in figure 18. A weighting parameter β of 0.05 is used for
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Figure 17. Dependence of field reconstruction performance and latent space geometry on the number of
training snapshots.
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Figure 18. Dependence of the latent geometry on the initial random seed assigned to the weights in the
observable-augmented autoencoder.

this analysis. The model exhibits reasonable robustness across the three runs, presenting
a two-wing-shaped submanifold while distinguishing the non-buffet and buffet cases in a
low-order manner. Although this paper only considers a single-network configuration of
observable-augmented autoencoder, the results above indicate that a model may provide
a similar wing-shaped geometry over a range of the network capacities by choosing the
optimal value of β through the L-curve analysis.
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