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Abstract

We analyse a Markovian SIR epidemic model where individuals either recover naturally
or are diagnosed, leading to isolation and potential contact tracing. Our focus is on digital
contact tracing via a tracing app, considering both its standalone use and its combination
with manual tracing. We prove that as the population size n grows large, the epidemic
process converges to a limiting process, which, unlike with typical epidemic models,
is not a branching process due to dependencies created by contact tracing. However, by
grouping to-be-traced individuals into macro-individuals, we derive a multi-type branch-
ing process interpretation, allowing computation of the reproduction number R. This
is then converted to an individual reproduction number R(ind), which, in contrast to R,
decays monotonically with the fraction of app-users, while both share the same thresh-
old at 1. Finally, we compare digital (only) contact tracing and manual (only) contact
tracing, proving that the critical fraction of app-users, πc, required for R = 1 is higher
than the critical fraction manually contact-traced, pc, for manual tracing.
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1. Introduction

One of the main reasons for modelling epidemics is to understand the effects of different
preventive measures, such as vaccination and non-pharmaceutical interventions. During the
recent Covid-19 pandemic, research on the effects of various non-pharmaceutical interven-
tions, including social distancing, case isolation, contact tracing and lockdown, has received
much attention. Some related papers (e.g. [10, 12, 19]) have been highly influential on public
health policies.

This paper focuses on the preventive measure known as contact tracing. Contact tracing is
traditionally performed by public health agency officers who interview diagnosed individuals
and then call the named contacts to advise them to self-quarantine and test, which is often
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Epidemic models with digital and manual contact tracing 1431

referred to as manual contact tracing. This type of contact tracing has been successful in
reducing transmission of many epidemics, such as Ebola [24], SARS [18], influenza [1], and
measles [17]. In the present paper, we investigate a different type of contact tracing: digital
contact tracing. In the case of Covid-19, [11] suggested that manual contact tracing is not rapid
enough to control the epidemic, and the idea arose of developing a contact tracing app: once
an app-user is diagnosed, a warning message will be instantaneously sent out to all the app-
users who have recently been near the confirmed case for a sufficient duration. Such notified
contacts are then advised to test and quarantine themselves. Several contact tracing apps have
been developed and released (e.g. [11, 25] in the UK and [14] in the Netherlands).

Various papers exist that analyse digital contact tracing (e.g. [7, 15, 16, 21]), focusing on
simulation-based epidemic models, and the results of [22] are based on a combination of sim-
ulations and mean-field analysis of the related percolation problem. Several papers on digital
contact tracing for Covid-19 (e.g. [9, 11]) are based on the mathematical model first intro-
duced in [13] in terms of recursive equations for analysing the timing of infectiousness and the
appearance of symptoms. In particular, the results of [11] showed that the Covid-19 epidemic
was unlikely to be contained only by manual tracing.

Modelling contact tracing is mathematically challenging and does not easily lend itself to
analysis using differential equations. This paper focuses on the beginning of an outbreak before
a massive fraction of the population has been infected. For this reason, we use stochastic mod-
els, which are also suitable because the outcome of contact tracing itself is random rather
than deterministic. The early phase of an epidemic without preventive measures can often be
approximated by a suitable branching process (e.g. [3]) using the underlying model assumption
that once an individual has been infected, they behave (transmit) independently of their infec-
tor. When contact tracing is introduced, this independence breaks down and other methods
need to be developed. In the past few decades there has been some progress in more rigorous
analyses of epidemic models with manual contact tracing (e.g. [5, 6, 20]).

In [27], we considered a Markovian SIR epidemic model with manual contact tracing which
assumes that once individuals are diagnosed, manual tracing is performed without delay, thus
reaching each contact with probability p. In the present paper, we analyse a model with digital
contact tracing by assuming that a fraction π of individuals install a contact tracing app (and
follow the advice if notified). Once an app-user is diagnosed, all their app-using contacts are
notified, with the result that these contacts isolate and test themselves without delay. For those
who test positive, their app-using contacts are also notified, and so on. Furthermore, for both
manual and digital contact tracing, we assume that traced individuals who have recovered
naturally are also identified and are subject to contact tracing. Note the conceptual difference
between digital and manual contact tracing: manual contact tracing may happen if a contacted
individual is traced (which happens with probability p), whereas digital contact tracing happens
if both the individuals are app-users, thus creating an app-using connection (or edge).

Using large-population asymptotics, we prove that the early epidemic process with digital
tracing may be approximated by a two-type branching process where type-1 ‘individuals’ are
app-using components (in terms of app-users) and type-2 individuals are non-app-users. We
then analyse the model with both types of contact tracing in place, i.e. reaching a fraction p of
all contacts using manual contact tracing and additionally all app-using contacts if the tested
individual is an app-user (making up a fraction π of the community). The limiting process in
this case is shown to be a two-type branching process, where both type 1 and type 2 represent
the to-be-traced components, referred to as ‘macro-individuals’, but type 1 starts with an app-
user and type 2 with a non-app-user.
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1432 T. BRITTON AND D. ZHANG

We derive reproduction numbers for the two limiting processes. These reproduction num-
bers are hard to interpret, however, being reproduction numbers of multi-type branching
processes where some of the types are not actual individuals but rather groups of individuals.
The reproduction numbers therefore reflect the average number of new clumps infected by such
clumps during the early phase of the epidemic. These average numbers need not be the same
as the average number of individuals that one typical infected individual infects during the
beginning of the outbreak, which would define the individual basic reproduction number. The
important connection between such complicated reproduction numbers and individual repro-
duction numbers is that they are either both above 1 (the super-critical case), both below 1 (the
sub-critical case), or both exactly 1. Because the multi-type reproduction numbers are hard to
interpret, we also derive corresponding individual reproduction numbers.

However, individual reproduction numbers may also be defined differently depending on
whom specific infections are attributed to. For example, in a household epidemic model,
if all infections in a household are attributed to the person infecting the household index
case, then this will give rise to one individual reproduction number. In contrast, attributing
infections to the person who actually infected the individual (a more natural but also less math-
ematically tractable definition) gives rise to the individual basic reproduction number. As a
consequence, there may also be different individual reproduction numbers for a given model
(relating to the time ordering of when infections occur). Fortunately, they also share the prop-
erty of all being larger than 1, smaller than 1, or equal to 1. For a further treatment of various
reproduction numbers and their interpretation, we refer to [4]. An interesting observation is
that the component reproduction number for the digital-only model may in fact increase with
π , the fraction of app-users. Still, it is proven that the corresponding individual reproduction
number is monotonically decreasing with π , as expected.

We also compare the digital (only) contact tracing model with the manual (only) contact
tracing model of [27] to see how the critical app-using fraction πc relates to the critical fraction
pc of contacts that are manually contact-traced, with all other model parameters being equal.
We prove that πc > pc and, as a by-product, obtain a new explicit expression for pc that was
given only implicitly in [27].

In Section 2, we define the digital contact tracing model as well as the model having both
manual and digital contact tracing. In Section 3, we present the main results and provide some
intuition. Next, we give the proofs and explain more about approximating the initial phase
of the epidemic in a large population (Section 4 for digital tracing only and Section 5 for
both types of tracing). Then, in Section 6, we illustrate our results numerically, compare the
effects of manual and digital contact tracing, and investigate their combined effect. Finally, in
Section 7 we summarize our conclusions and discuss potential improvements of the present
models.

2. Model description

2.1. The epidemic model

First, we consider a continuous-time Markovian SIR (Susceptible → Infectious →
Recovered) epidemic spreading in a closed, homogeneously mixing population of fixed size n.
Initially there is one infectious individual, and the rest are susceptible. An infectious individ-
ual makes contact at rate β, each time with an individual chosen uniformly at random from the
population. The individual-to-individual contact rate is thus β/n. If the contacted individual is
susceptible, they become infected immediately; otherwise, nothing happens. Each infectious
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individual recovers naturally at rate γ and plays no further part in the disease spreading (thus
having an infectious period, denoted by TI , exponentially distributed with mean 1/γ ).

To incorporate contact tracing, we add a testing strategy to this SIR model. We assume that
once infected, infectious individuals test positive and are immediately isolated (referred to as
‘diagnosed’) after random periods, which are independent and identically distributed according
to a random variable TD ∼ Exp(δ). Therefore, infectious individuals can stop spreading the
disease after a random time min{TI, TD} ∼ Exp(γ + δ), either through natural recovery (at rate
γ ) or diagnosis (at rate δ). All the random quantities described are assumed to be mutually
independent. The epidemic stops when no infectious individuals remain in the population.

In this epidemic model (with testing but without contact tracing), each infectious period
follows an exponential distribution with intensity γ + δ. Consequently, it is straightforward
to compute the mean number of secondary infections produced by a single infective before
recovery or diagnosis:

R0 = β

γ + δ
. (1)

To emphasize the effect of contact tracing, we refer to this as the basic reproduction number
R0, though more correctly R0 should represent the situation without testing (so δ → 0 and R0
will be equal to β/γ ). However, we use expression (1) to study the impact of contact tracing
versus no contact tracing, assuming the testing rate remains unchanged.

2.2. The epidemic model with digital contact tracing

We add digital contact tracing to the epidemic model in Subsection 2.1 by assuming that
a fraction π of individuals use the tracing app (and follow the recommendations) and that
individuals mix uniformly irrespective of whether they use the app, i.e. each individual is an
app-user with probability π independently. In the following, we assume that 0 < π ≤ 1 unless
otherwise specified. Clearly, when π = 0 there is no digital tracing, so we would have the same
epidemic model as in Subsection 2.1.

The infectious individuals (either app-users or non-app-users) recover naturally at rate γ and
are diagnosed at rate δ. The digital contact tracing procedure is defined as follows. If and when
an infectious app-user is diagnosed, all app-using contacts of the infective will be notified,
with the result that they test and isolate themselves without delay, and so stop spreading the
disease if infectious. The app-using contacts who have been infected, including those who
have recovered, are then also assumed to trigger digital tracing among their app-using contacts
without delay according to the same procedure, and so on.

2.3. The epidemic model with digital and manual contact tracing

Finally, we describe the epidemic model with digital contact tracing when there is also man-
ual contact tracing in place and call this the combined model. First, following the assumption
in Subsection 2.2, a fraction π of the community are app-users and follow the instructions. If
such an app-user is diagnosed, all of their app-using contacts (on average being a fraction π of
all contacts) will be traced. To this, we now add manual contact tracing by assuming that once
an infectious individual is diagnosed, app-user or not, each of their contacts will be reached
independently by manual tracing with probability p. This means that for diagnosed app-users,
all app-using contacts will be traced, and each non-app-using contact will be traced manually
with probability p. For diagnosed non-app-users, each contact, app-user or not, will be traced
manually with probability p. As before, all traced individuals are tested and isolated with-
out delay if testing positive. Traced individuals who test positive, including those who have
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TABLE 1. Model parameters

Parameter Notation

Size of population n
Transmission rate β

Rate of natural recovery γ

Rate of diagnosis δ

Community fraction using the contact tracing app π

(and following the advice)
Probability that contact is manually traced p

recovered, are then contact-traced in the same manner without delay, and so on. The model
parameters are summarized in Table 1.

3. Main results

The main goal of this paper is to analyse the initial phase of the epidemic with digital
contact tracing in place. We start by showing that the epidemic converges to a limiting process,
asymptotically as the population size n grows to infinity.

3.1. Digital contact tracing only

Let E(n)
D (β, γ, δ, π) denote the epidemic model with digital contact tracing only in a pop-

ulation of size n (defined in Subsection 2.2). It is convenient to consider the epidemic as a
two-type process where the type of infective corresponds to whether they are app-users or
not. The limiting process, denoted by ED(β, γ, δ, π), is described as follows. Each alive (i.e.
infectious) individual gives birth to (i.e. infects) app-users at rate βπ and non-app-users at rate
β(1 − π ), recovers naturally at rate γ , and is diagnosed at rate δ (the individual is considered
dead, not giving rise to any more births, in both cases). Moreover, if a diagnosed individual is
an app-user, all of their app-using offspring as well as their parent (if an app-user) are diag-
nosed at the same time. Such diagnosed individuals will, in turn, lead to all app-users among
their offspring and parent being diagnosed without delay, and so on.

The limit process in terms of app-users and non-app-users will not be a branching process
when contact tracing is in place, since an infectious app-user may be contact-traced by its
app-using infector or one of its app-using infectees, thus giving rise to dependence between
individuals, which violates the basic assumption of independence in branching processes. But
if we instead treat non-app-users as one type of individual and ‘app-using components’ (con-
sisting of a whole transmission chain of app-users) as a second type of ‘macro-individual’,
this process will evolve according to a two-type branching process (see Figure 1 in the next
section for an illustration). This holds because there will never be contact tracing between any
combination of such individuals, thus making individuals behave independently.

Next, we study the birth and death of app-using components. Such a component starts
with one infectious app-user infected by a non-app-user (we call this the root of the com-
ponent). The component can then grow as the root infects other app-users, who in turn infect
more app-users, and so on. Eventually, the whole app-using component will die out (i.e. stop
spreading the infection) either when someone within the component is diagnosed (leading to
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immediate tracing and diagnosis of the whole component) or when all individuals in the com-
ponent recover naturally. While the component has infectious individuals, it can also infect
non-app-users. These infected non-app-users can subsequently infect other non-app-users and
app-users; in the latter case, new app-using components are created.

Following multi-type branching process theory [2, 8], we define

M =
(

m11 m12
m21 m22

)
(2)

as the next-generation matrix of the limiting two-type branching process, where mij is the
expected number of secondary infections of type j produced by a single infected individual
of type i, for i, j = 1, 2 (type 1 refers to app-using components and type 2 to non-app-users).
Then, a major outbreak occurs with positive probability if and only if the largest eigenvalue of
M, denoted by RD, is above 1 (the elements of M are derived in Subsection 4.2). We call RD
the effective reproduction number for the epidemic with digital tracing.

We summarize our findings in the following proposition and corollary.

Proposition 1. Consider the sequence of epidemic processes with digital tracing,
E(n)

D (β, γ, δ, π) for each population size n, starting with one random initial infective and the

rest susceptible. Then on any finite time interval, E(n)
D (β, γ, δ, π) converges in distribution to

the limit process ED(β, γ, δ, π) as n → ∞.

Corollary 1. The limit process ED(β, γ, δ, π) is super-critical, meaning that it will grow
beyond all limits with positive probability if and only if RD > 1, where

RD = R0(1 − π )

2
+
√

(R0(1 − π ))2

4
+ f (π )R0π (3)

with

f (π ) = (1 − π )

2πδ

(
βπ − γ − δ +

√
(βπ + γ + δ)2 − 4βπγ

)
. (4)

Let Z(n)
D be the final number of infected in the whole epidemic E(n)

D (β, γ, δ, π). Then if RD > 1,

Z(n)
D →∞ with positive probability, whereas if RD ≤ 1 then the final fraction getting infected,

Z̄(n)
D , satisfies Z̄(n)

D = Z(n)
D /n

p→ 0 (a minor outbreak for sure).

Our next result compares the effect of digital contact tracing with the effect of manual
contact tracing. More precisely, we compare the current model with the manual contact tracing
model of [27], which has the same transmission model, no digital contact tracing, but instead
a kind of manual contact tracing where each contact is traced upon diagnosis, independently,
with probability p. Keeping all epidemic parameters fixed and equal in the two models, we
compare πc, the app-using fraction for which RD = 1, with pc, the critical fraction manually
contact-traced such that the corresponding manual reproduction number satisfies RM = 1. The
following theorem shows that a larger app-using fraction is needed than the manual tracing
probability so as to reduce the reproduction number to 1.

Theorem 1. Let β, δ, γ > 0 be fixed parameters and assume R0 = β/(δ + γ ) > 1 (otherwise
contact tracing is unnecessary). Then

πc > pc = β − (γ + δ)

β − γ
.
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The reproduction number RD cannot be interpreted as some mean number of infections
caused by one individual, since it is based on a two-type branching process in which one of the
types is a to-be-traced component. A notable consequence of this is seen in Figure 5a, where
it can be observed that RD is not monotonically decreasing in π ; in some situations, increasing
the fraction of app-users can lead to a larger reproduction number!

In Subsection 4.4 we therefore derive an individual reproduction number R(ind)
D for the

epidemic with digital tracing,

R(ind)
D = π f (π )

1 − π + π f (π )
+ (1 − π )

β

δ + γ
,

with f (π ) given by (4). For this individual reproduction number R(ind)
D , we have the following

theorem showing that it is monotonically decreasing in π . The subsequent theorem shows that
R(ind)

D is indeed an epidemic threshold.

Theorem 2. Let β, γ and δ be fixed. Then R(ind)
D is monotonically decreasing in π . That is, for

any 0 ≤ π1 < π2 ≤ 1, we have R(ind)
D (π1) > R(ind)

D (π2).

Theorem 3. Let β, γ and δ be fixed. Then RD = R(ind)
D = 1 at π = πc, and RD > 1 as well as

R(ind)
D > 1 if π < πc, with the opposite being true if π > πc.

3.2. Combined model with manual and digital contact tracing

Finally, we state related results as above, but now for the beginning of the epidemic in the
combined model of Subsection 2.3, including digital as well as manual contact tracing, which
we denote by E(n)

DM(β, γ, δ, p, π ). More specifically, the result shows that the combined tracing
model is well approximated by the multi-type process defined in the text, and that this process
when characterized by its to-be-traced components allows for a branching process description.

Proposition 2. Consider a sequence of epidemic processes with both manual and digital
tracing, E(n)

DM(β, γ, δ, p, π ) for population size n, starting with one initial infective. Then

on any finite time interval, E(n)
DM(β, γ, δ, p, π ) converges in distribution to the limit process

EDM(β, γ, δ, p, π ) as n → ∞.

Corollary 2. Let Z(n)
DM be the final number infected in the whole epidemic E(n)

DM(β, γ, δ, p, π ). If

the reproduction number RDM > 1, then Z(n)
DM→∞ with non-zero probability; and if RDM ≤ 1,

then the final fraction Z̄(n)
DM = Z(n)

DM/n
p→ 0, i.e. there will be a minor outbreak for sure.

Table 2 lists the important quantities.

4. Approximation of the initial phase in a large community with digital tracing only

In this section, we first prove Proposition 1 in Subsection 4.1 and then, in Subsection 4.2,
derive the effective reproduction number for digital tracing and prove Corollary 1. In
Subsection 4.3, the proof of Theorem 1 is presented, where we compare the effectiveness
of manual and digital tracing analytically. Finally, in Subsection 4.4, we derive an individual
reproduction number for digital tracing and prove Theorems 2 and 3.
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TABLE 2. Key quantities related to the epidemic processes and their corresponding limit branching
processes

Notation Description

E(n)
D (β, γ, δ, π) Epidemic process with digital tracing

(population size n, starting with one initial infective)
ED(β, γ, δ, π) Limit branching process for epidemic with digital tracing
RD Reproduction number for the limit process ED(β, γ, δ, π)
R(ind)

D Individual reproduction number for the epidemic
with digital tracing

E(n)
DM(β, γ, δ, p, π ) Epidemic process with digital and manual tracing

(population size n, starting with one initial infective)
EDM(β, γ, δ, p, π ) Limit branching process for epidemic with digital

and manual tracing (combined model)
RDM Reproduction number for the limit process EDM(β, γ, δ, p, π )

4.1. Proof of Proposition 1

We recall that for a population of size n, the epidemic process with digital contact trac-
ing is denoted by E(n)

D (β, γ, δ, π), where there is one initial infective. The limit process
ED(β, γ, δ, π) is defined as follows. There are two types of individuals: non-app-users and
app-users. At time t = 0, there is one initial ancestor (who has the same type as the initial case
in E(n)

D (β, γ, δ, π)). During the lifetime, each individual gives birth to app-users at rate βπ

and non-app-users at rate β(1 − π ). Individuals recover naturally at rate γ and are diagnosed
at rate δ. Once an app-user is diagnosed, all of their app-using descendants and their parent
(if an app-user) are diagnosed at the same time, and so on. In particular, if traced individuals
have recovered, they will still be diagnosed, implying that their app-using contacts will also be
traced, and so on.

First, we note that there is a new infection, recovery, or diagnosis in the epidemic whenever
a new birth, death, or removal occurs in ED(β, γ, δ, π), respectively. The rates of recovery
(γ ) and diagnosis (δ) are the same as those of death and removal. An infection is ‘successful’
only when the contacted person is susceptible. Let Sn(t) be the number of susceptibles in the
nth epidemic E(n)

D (β, γ, δ, π) at time t; then the probability that a given infective infects a new
app-user is πSn(t)/n. This implies that the rate of new infection of app-users is βπSn(t)/n. On
the other hand, the rate of birth to app-users is βπ . When n is large and at the beginning of the
epidemic, we have Sn(t) ≈ n, so the rate of infection of app-users is close to the app-using birth
rate in the limit process ED(β, γ, δ, π). Similarly, the rate of infection of non-app-users, β(1 −
π )Sn(t)/n, is close to the rate of birth to non-app-users, β(1 − π ). Using the standard cou-
pling arguments for epidemic models (see [3]), it can be shown that on any fixed time horizon
the epidemic E(n)

D (β, γ, δ, π) converges in distribution to the limit process ED(β, γ, δ, π) as
n → ∞.

As discussed in Section 3, instead of describing ED(β, γ, δ, π) in terms of the actual
individuals, we treat it as a process of app-using components and non-app-users, which is a
two-type branching process. If there are currently k alive (i.e. infectious) app-users in an app-
using component, and each such individual gives birth to (infects) new app-users at rate βπ ,
the total birth rate is kβπ . Each individual recovers naturally at rate γ , so the overall recovery
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FIGURE 1. Example of the dynamics of app-using components and non-app-users for the model with
digital contact tracing: the circular nodes represent app-users and the squares non-app-users. The white,
black, and grey shadings correspond to infectious, diagnosed, and naturally recovered, respectively. A
rectangular region surrounded by dashed lines represents an app-using component, and the area is hatched
with diagonal lines when the whole component is diagnosed and removed.

rate equals kγ . Finally, the whole component is diagnosed once one of the k infectious individ-
uals is diagnosed, so the total rate of diagnosis is kδ. While having k infectious app-users, the
component generates new (i.e. infects) non-app-users at rate kβ(1 − π ), whereas the compo-
nent cannot give birth to new app-using components because any infected app-user will belong
to the same component. On the other hand, the non-app-users give birth to new app-using
components at rate βπ and non-app-users at rate β(1 − π ).

In Figure 1, we illustrate how the two types of ‘individuals’, app-using components (sur-
rounded by dashed lines) and non-app-users (square-shaped nodes), grow and eventually die
out. We set the app-user A1 to be the initial case. While the app-using component C(app)

1 evolves
(as new app-users get infected or existing ones recover), it infects two non-app-users N1 and
N2. The non-app-user N1 infects one non-app-user and one new app-using component C(app)

2
with root A2, whereas N2 infects two other non-app-users. Once the app-user A2 is diagnosed,
the whole app-using component C(app)

2 will die out.
The advantage of the approximation outlined above is that multi-type branching processes

are well studied (see e.g. [2, 8]). As a consequence, in the next subsection, we derive an
effective reproduction number which has a threshold value of 1, determining whether a major
outbreak is possible or not.
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4.2. Proof of Corollary 1

From standard multi-type branching process theory [2, 8], the limit process ED(β, γ, δ, π)
is known to be sub-critical if RD < 1, critical if RD = 1, and super-critical if RD > 1, where RD
is the largest eigenvalue of the mean-offspring matrix M defined by (2), which is given by

RD = m11 + m22

2
+
√

(m11 + m22)2

4
− m11m22 + m12m21. (5)

Let ZD be the total progeny of ED(β, γ, δ, π). Then ZD < ∞ (the process goes extinct) with
probability 1 if RD < 1; and if RD > 1, ZD = ∞ (the process grows beyond all limits) with
a strictly positive probability. Then it follows from Proposition 1 that if RD > 1, Z(n)

D → ∞
with non-zero probability (there may be a large outbreak of the epidemic), and if RD ≤ 1,

Z(n)
D → ZD, implying that the final fraction getting infected, Z(n)

D /n, tends to 0. Hence, we have
proved that RD is an epidemic threshold. We denote the effective reproduction number for the
epidemic model with digital tracing by RD.

To get an explicit expression for RD, we derive the elements mij as follows. First, we
note that the app-using components (type 1) cannot give birth to new app-using components,
since app-users infected by an app-using component will belong to the same component.
Consequently, we have that

m11 = 0. (6)

As for non-app users, they will never be reached by digital tracing and thus spread the infec-
tion like in the epidemic without any contact tracing. That is, each infectious non-app-user
infects non-app-users at rate β(1 − π ) and app-users at rate βπ , where the infectious peri-
ods of non-app-users are independent and identically exponentially distributed with intensity
δ + γ . Hence, the numbers of app-using components (type 1) and non-app-users (type 2)
infected by one typical non-app-user are geometrically distributed with support {0, 1, 2, . . .}
and, respectively, mean

m21 = βπ

δ + γ
= R0π (7)

and mean

m22 = β(1 − π )

δ + γ
= R0(1 − π ), (8)

where R0 is given by (1).
Finally, it remains to compute m12. Let X(t) be the number of infectious app-users in an app-

using component at time t, with X(0) = 1. We know that {X(t), t ≥ 0} behaves as a linear birth–
death process with birth rate βπ (new app-users infected) and death rate γ (natural recovery),
and this process stops when a diagnosis event happens at rate δ (the whole component is then
diagnosed). Further, at time s, the component gives birth to new components at rate X(s)β
(1 − π ). Let T be the random variable representing the time of first diagnosis. Then

m12 =E

[∫ T

0
β(1 − π )X(t) dt

]
= β(1 − π )E[A],

where we set

A :=
∫ T

0
X(t) dt.
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The process {X(t)} is piecewise constant, and the jump rate of X(t) is proportional to X(t).
More precisely, the contribution to the integral between two jumps Ti and Ti+1 (prior to T) is
X(Ti)Y , where Y ∼ Exp((βπ + γ + δ)X(Ti)). But this contribution is simply 1 · Ỹ where Ỹ ∼
Exp(βπ + γ + δ). For this reason, A equals the integral of 1 integrated up until the first time a
new process {X̃(t), t ≥ 0}, which is a random time-change version of the process {X(t), t ≥ 0},
reaches the value 0. More precisely, the time span of {X̃(t)} is slowed down by {X(t)−1} at
time t. This new process {X̃(t), t ≥ 0} is therefore a continuous-time random walk going up at
βπ , going down at γ , and absorbing at zero. Let T̃rw = inf{t > 0 : X̃(t) = 0} and T̃ = T̃rw ∧ T̃D,

where T̃D ∼ Exp(δ), which is independent of {X̃(t), t ≥ 0} and hence independent of T̃rw. Then

it follows that A = ∫ T
0 X(t) dt and T̃ = ∫ T̃

0 1 dt have the same distribution. As a consequence,

E[A] =E[T̃]

=
∫ ∞

0
P(T̃rw > t)P(T̃D > t) dt

=
∫ ∞

0
P(T̃rw > t)e−δt dt

= 1 − φ(δ)

δ
,

where φ(δ) :=E[e−δT̃rw ].
Further, if we condition on the first jump of {X̃(t), t ≥ 0}, we get the following equation

for φ(δ):

φ(δ) = βπ + γ

βπ + γ + δ

(
βπ

βπ + γ
φ(δ)2 + γ

βπ + γ

)
,

which has two roots, φ(δ) = (
βπ + γ + δ ±√

(βπ + γ + δ)2 − 4βπγ
)
/(2βπ ). Since

φ(0) = 1, we get

φ(δ) = βπ + γ + δ −√
(βπ + γ + δ)2 − 4βπγ

2βπ
,

implying that

E[A] = βπ − γ − δ +√
(βπ + γ + δ)2 − 4βπγ

2βπδ
.

Hence we obtain
m12 = f (π ) := β(1 − π )E[A]

for 0 < π ≤ 1.
In conclusion, the effective component reproduction number RD for the model with digital

tracing only is the largest eigenvalue of the matrix M = (mij), which is given by (3).

Remark 1. It can be easily checked that

lim
π→0

f (π ) = β(γ + δ) + βδ − βγ

2δ(γ + δ)
= β

γ + δ
= R0.

This implies that the reproduction number RD converges to the basic reproduction number R0
when π → 0, as expected:

lim
π→0

RD(π ) = R0 = β

γ + δ
.
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Remark 2. The analytical expression for f (π ) can be used to obtain an analytical expression
also for the manual tracing model considered in [27]. A related birth and death process was
studied there. Considering such a to-be-traced component with size k, the component would
increase by 1 at rate kβp, decrease by 1 at rate kγ , and jump to 0 at rate kδ. And before jumping,
the component gave birth to new components at rate kβ(1 − p). Using similar arguments to the
above, we get the following explicit expression for the reproduction number (which in [27]
was expressed using an infinite sum):

R(c)
M (p) = f (π = p) = 1 − p

2pδ

(
βp − γ − δ +

√
(βp + γ + δ)2 − 4βpγ

)
. (9)

4.3. Proof of Theorem 1

In this section, we compare the separate effects of manual and digital contact tracing by
proving Theorem 1. We fix the epidemic parameters β, δ, and γ such that β/(δ + γ ) > 1, and
consider the reproduction number for manual tracing, R(c)

M (p), and the one for digital tracing,
RD(π ), as functions of p and π , respectively. We first state and prove two lemmas.

Lemma 1. Suppose that R0 = β/(δ + γ ) > 1. Then the critical manual reporting probability
pc (satisfying R(c)

M (pc) = 1) is given by

pc = β − (γ + δ)

β − γ
. (10)

Proof. First, we show the existence of the critical probability pc. Based on Remarks 1 and 2,
R(c)

M (p) is continuous in p with R(c)
M (0) = R0 > 1 and R(c)

M (1) = 0 < 1. By the intermediate value

theorem, there exists at least one pc in (0,1) such that R(c)
M (pc) = 1.

Next, we compute pc and show that there is only one pc. Without loss of generality, we can
assume that γ + δ = 1; then the formula for R(c)

M in (9) becomes

R(c)
M (p) = (1 − p)

2p(1 − γ )

(
βp − 1 +

√
(βp + 1)2 − 4βpγ

)

= 1

2(1 − γ )

(1 − p)

p

(
βp − 1 +

√
(βp − 1)2 + 4βp(1 − γ )

)

= (1 − p)

2(1 − γ )

⎛
⎝β − 1

p
+
√(

β − 1

p

)2

+ 4β(1 − γ )
1

p

⎞
⎠ .

It follows by standard calculations that R(c)
M (pc) = 1 is equivalent to

pc = β − 1

β − γ
.

We recall that the parameters have been scaled so far. Returning to the original scale, we have

pc = β − (γ + δ)

β − γ
. �

Lemma 2. Let pc be the critical manual reporting probability such that R(c)
M (pc) = 1. Then

there exists at least one πc lying in (pc, 1) that satisfies RD(πc) = 1.
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Proof. First, we know that RD(π ) is continuous in π and that when π = 1, RD = 0. Letting
π = pc in (3) gives

RD(pc) = R0(1 − pc)

2
+
√

(R0(1 − pc))2

4
+ R0pc > 1 (11)

(the first equality follows from f (pc) = R(c)
M (pc) = 1). Then it follows by the intermediate value

theorem that there exists at least one πc lying in (pc, 1) that satisfies RD(πc) = 1. �
Lemma 3. For any critical app-using fraction πc such that RD(πc) = 1, the reproduction
number with manual tracing at p = πc is below 1, i.e.

R(c)
M (πc) < 1.

Proof. The equality RD(πc) = 1 is equivalent to

R(c)
M (πc) = 1 − R0(1 − πc)

R0πc
= 1 − R0 − 1

R0πc
.

On the other hand, we get (R0 − 1)/(R0πc) > 0, since R0 > 1 by assumption. This implies that
R(c)

M (πc) is smaller than 1. �
We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 2, we know that there exists at least one πc lying between
pc and 1. Suppose that there exists a π ′ which is smaller than pc (π ′ < pc) and such that
RD(π = π ′) = 1. Then, by Lemma 3, the reproduction number with manual tracing at point
p = π ′ satisfies

R(c)
M (π ′) < 1.

Again using the facts that R(c)
M (p = 0) = R0 > 1 and that R(c)

M (p) is continuous in p, by the
intermediate value theorem there must exist one p′ lying in (0, π ′) such that

R(c)
M (p′) = 1.

On the other hand, with Lemma 1 we have shown that p′ = pc, implying that π ′ > pc, which
leads to a contradiction. Hence, there does not exist a π ′ which is smaller than pc and such that
RD(π ′) = 1. �

4.4. The effective individual reproduction number R(ind)
D

The interpretation of RD is complicated in that the two types in the limiting branching pro-
cess are different kinds of objects: type-2 individuals are actual individuals (non-app-users), but
type 1 consists of ‘macro-individuals’, the to-be-traced app-using components. In this section,
our aim is therefore to convert RD to an individual reproduction number R(ind)

D .

We first derive R(ind)
D-A , the average number of individuals (of any type) infected by a newly

infected app-user, and R(ind)
D-N , the average number of individuals (of any type) infected by a

newly infected non-app-user. We note that each infection, irrespective of the type of infector,
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is of an app-user with probability π and a non-app-user with probability 1 − π . This implies
that R(ind)

D can be expressed as the sum

R(ind)
D = πR(ind)

D-A + (1 − π )R(ind)
D-N . (12)

It remains to compute R(ind)
D-A and R(ind)

D-N . From the previous results in Subsection 4.2, we see that

a given app-using component infects, on average, m12 non-app-users. Let μ
(A)
c be the mean

number of app-users that ever get infected in an app-using component. All but one of these
μ

(A)
c are infected within the component, and there are, on average, m12 ‘external’ infections.

So in total, there are on average (μ(A)
c − 1) + m12 infections by an app-using component. As a

consequence, the average number of infections per app-user, R(ind)
D-A , is given by

R(ind)
D-A = (μ(A)

c − 1) + m12

μ
(A)
c

, (13)

where we recall from (4) that m12 = f (π ).
Next, we compute μ

(A)
c . We recall that the size of an app-using component jumps up by

1 if there is a new app-user infection, down by 1 if an app-user recovers naturally, and goes
to 0 if an app-user is diagnosed. When considering only the number of jumps the process
makes, we can forget the jump rates and simply let each time step correspond to a jump. The
true process starts at X0 = 1 and jumps up, down, or to 0 with probabilities βπ/(βπ + γ + δ),
γ /(βπ + γ + δ), or δ/(βπ + γ + δ), respectively, and the process is absorbed when it hits 0
for the first time, K. Let X+ be the number of up-jumps before the process is absorbed to 0;
then we have

μ(A)
c = 1 +E[X+]. (14)

In order to get an expression for E[X+], we extend the process X = {Xk} to X̃ = {X̃k}, which
is a renewal process (see Figure 2 for an illustration). More precisely, X̃k = Xk for k ≤ K; once
absorbed, we continue the X̃ process by making it jump up to 1 with probability βπ/(βπ +
γ + δ) and stay at 0 with the remaining probability. As a consequence, X̃ will jump up to 1 after
a number of time steps N ∼ Geo(βπ/(βπ + γ + δ)) (N ≥ 1), and then the process restarts: a
renewal has occurred. We also note that the process X̃ makes an up-jump with probability
βπ/(βπ + γ + δ) each time, whether it is currently at 0 or not.

Let X̃+
k denote the total number of up-jumps the extended process X̃ has made up to the k’th

jump. Using the renewal reward theorem (see e.g. [23, Chapter 7.4]), we have

lim
k→∞

E[X̃+
k ]

k
= E[X+] + 1

E[K] +E[N]
. (15)

Clearly X̃+
k ∼ Bin(k, βπ/(βπ + γ + δ)) with expectation kβπ/(βπ + γ + δ). The left-hand

side of (15) therefore equals βπ/(βπ + γ + δ). And, as stated above, N is geometrically
distributed with success probability βπ/(βπ + γ + δ) on the support {1, 2, 3, . . .}, so

E[N] = βπ + γ + δ

βπ
.

It follows from (15) that

E[X+] + 1 = 1 + βπ

βπ + γ + δ
E[K]. (16)
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FIGURE 2. Illustration of the extended process {X̃k}. At first, the original process X hits 0 at the K1th
jump (after a total of X+ = 4 up-jumps); then it stays at zero for N1 time steps before jumping up to 1,
so a renewal occurs. Next, the process restarts and makes a number K2 of jumps until it is absorbed to
0; then, after N2 time steps, a second renewal happens. The numbers K1 and K2 are independent and
identically distributed copies of K, and N1 and N2 are independent and identically distributed copies
of N.

To derive E[K], we first recall that f (π ) is the total number of non-app-users infected by an
app-using component, so we can write f (π ) as

f (π ) =E

[
K∑

i=1

X(na)
i

]
,

where X(na)
i denotes the number of non-app-users infected between the (i − 1)th and ith jump.

For the distribution of X(na)
i , we briefly outline the idea as follows. At the (i − 1)th jump,

suppose that there are l infectives in the component; then the time until the next, i.e. ith, jump
is exponentially distributed with intensity l(βπ + γ + δ). During this time, such a component
infects non-app-users at rate lβ(1 − π ). It follows that the distribution of X(na)

i is geometrically
distributed with success probability

l(βπ + γ + δ)

l(βπ + γ + δ + β(1 − π ))
= βπ + γ + δ

β + γ + δ

on the support {0, 1, 2, . . .}. Because the success probability is independent of the current
state l, this implies that the X(na)

i are not only independent but also identically distributed.
Consequently, we obtain

f (π ) =E[K]
β(1 − π )

βπ + γ + δ
. (17)

Together with (14) and (16), this gives

μ(A)
c = 1 + π

1 − π
f (π ). (18)

Finally, it follows from (13) that

R(ind)
D-A = f (π )

1 − π + π f (π )
. (19)

For non-app-users the analysis is easier, since a given infectious non-app-user infects on
average m21 + m22 individuals (app-users and non-app-users). Using (7) and (8), it follows
that
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R(ind)
D-N = m21 + m22 = β

δ + γ
, (20)

which is identical to R0 in (1). This is not surprising as non-app-users will never be contact-
traced. Substituting (19) and (20) into (12) gives

R(ind)
D = π f (π )

1 − π + π f (π )
+ (1 − π )R0, (21)

with f (π ) defined in (4) and R0 = β/(δ + γ ).

4.4.1. Proof of Theorem 2. Our aim is to prove that the derivative R(ind)
D

′(π ) is negative.
Without loss of generality, we assume that δ + γ = 1; then we have R0 = β and f (π ) =
(1 − π )g(π )/(2πδ) with g(π ) := βπ − 1 +√

(βπ − 1)2 + 4βπδ ≥ 0. Together with (21), this
implies that

R(ind)
D (π ) = (1 − π )g(π )/(2δ)

(1 − π ) + (1 − π )g(π )/(2δ)
+ (1 − π )β = g(π )

2δ + g(π )
+ (1 − π )β.

By differentiating the equation above with respect to π , we get

R(ind)
D

′(π ) = g′(π )(2δ + g(π )) − g(π )g′(π )

(2δ + g(π ))2
− β = 2δg′(π )

(2δ + g(π ))2
− β.

Further, the derivative of g is given by

g′(π ) = β + (βπ − 1)β + 2βδ√
(βπ − 1)2 + 4βπδ

= β

(
1 + βπ − 1 + 2δ√

(βπ − 1)2 + 4βπδ

)

= β(2δ + g(π ))√
(βπ + 1)2 − 4βπγ

.

Then R(ind)
D

′(π ) satisfies

R(ind)
D

′(π ) = 2δβ(2δ + g(π ))

(2δ + g(π ))2
√

(βπ − 1)2 + 4βπδ
− β

= 2δβ

(2δ + g(π ))
√

(βπ − 1)2 + 4βπδ
− β

= βh(π )

(2δ + g(π ))
√

(βπ − 1)2 + 4βπδ
,

with

h(π ) := 2δ − 2δ

√
(βπ − 1)2 + 4βπδ − g(π )

√
(βπ − 1)2 + 4βπδ

= 2δ − 2δ

√
(βπ − 1)2 + 4βπδ − (βπ − 1)

√
(βπ − 1)2 + 4βπδ − (βπ − 1)2 − 4βπδ.

Since β, δ > 0 and g(π ) ≥ 0, we complete the proof by showing that

h(π ) ≤ 2δ − 2δ(1 − βπ ) − (βπ − 1)2 − (βπ − 1)2 − 4βπδ

= −2(βπ − 1)2 − 2βπδ < 0,

where the first inequality follows from
√

(βπ − 1)2 + 4βπδ ≥ 1 − βπ .
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4.4.2. Proof of Theorem 3. First, we assume 0 < π < 1. Upon multiplying both sides of (21)
by 1 − π + π f (π ), R(ind)

D = 1 is equivalent to

π f (π )R0(1 − π ) = (1 − π ) − (1 − π )2R0.

As a consequence,

f (π ) = 1 − R0(1 − π )

πR0
. (22)

On the other hand, it follows from (3) that RD = 1 is equivalent to

(R0(1 − π ))2

4
− R0(1 − π ) + 1 = (R0(1 − π ))2

4
+ f (π )R0π,

which gives the same result as in (22). Thus, we have shown that R(ind)
D = 1 is equivalent to

RD = 1. Identical arguments can be used to show that R(ind)
D < 1 is equivalent to RD < 1, as

well as the opposite inequality.
In addition, when π = 0, it can be easily shown that R(ind)

D = RD = R0. If π = 1, i.e. every-
one is an app-user, there is one app-using component that will eventually die out, implying that
R(ind)

D will be below 1 (sub-critical). Then using (3) gives RD = 0. So both RD and R(ind)
D are

below 1 when π = 1.

Remark 3. Similar to the situation for the individual component reproduction for manual
contact tracing (see [27]), this individual reproduction number R(ind)

D does not possess the tradi-
tional interpretation of the basic reproduction number, namely the average number of infections
caused by infected people at the beginning of the outbreak. This is due to the delicate timing of
event issues in an exponentially growing situation, closely related to the settings explained in
[4]. More specifically, when we derive the component reproduction number (upon which the
individual reproduction number is based), we consider how many new components a compo-
nent infects, but we do not keep track of when in time individuals of components get infected.
For instance, root individuals of components might on average infect more new individuals
than other individuals in the component, since they are not traced by their infector, and root
individuals are infected earlier than other individuals in the component. So, at the beginning of
an epidemic that grows exponentially, these root individuals are over-represented when com-
puting the mean number of infections among those infected early in the epidemic. However,
our individual reproduction number R(ind)

D still possesses the important threshold property as
shown in Theorem 3.

5. Approximation of the initial phase in a large community for the combined model

We now analyse the early stage of the epidemic with both manual and digital contact tracing.
First, we define the limit process EDM(β, γ, δ, p, π ) as follows. In the process, individuals are
either app-users or non-app-users. There is one initial ancestor who has the same type as the
initial case in E(n)

DM(β, γ, δ, p, π ). During the lifetime, each individual gives birth to app-users
with manual tracing link at rate βπp and without link at rate βπ (1 − p), and gives birth to non-
app-users with manual tracing link at rate β(1 − π )p and without link at rate β(1 − π )(1 − p).
Individuals recover naturally at rate γ and are diagnosed at rate δ. Once diagnosed, each of
the individual’s descendants and parent with manual tracing link are diagnosed immediately,
and so on. If such a diagnosed individual is an app-user, all of their app-using descendants,
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as well as their parent (if an app-user), will also be diagnosed at the same time, and so on.
Note that tracing is also iterated for traced individuals who have recovered naturally upon
diagnosis, so their parents and descendants are diagnosed according to the same rule. We first
prove Proposition 2, which is proved similarly to Proposition 1.

5.1. Proof of Proposition 2

First, we note that the only difference between the n-epidemic E(n)
DM(β, γ, δ, p, π ) and the

limit process EDM(β, γ, δ, p, π ) is that the rate of new infections in the epidemic is deflated
by the factor S(t)/n, since infectious contacts result in infection only if the contacted person is
still susceptible. Using standard coupling arguments as described in the proof of Proposition
1, it can be shown that the time Tn of first contact with an already infected person tends to
infinity in probability as n → ∞, and prior to this the epidemic and the limiting process agree
completely. Consequently, the n-epidemic converges in distribution to EDM(β, γ, δ, p, π ) on
any finite time interval.

Following a similar idea to the proof of Theorem 4.1 in Subsection 4.1, we describe
this limit process EDM(β, γ, δ, p, π ) in terms of to-be-traced components. For the combined
model, the app-users could be traced not only by app-users but also by non-app-users with
probability p. Further, non-app-users could be traced by individuals (either app-users or non-
app-users) with probability p. Accordingly, to-be-traced components also contain infections
between app-users and non-app-users and between pairs of app-users, who will be traced man-
ually. Moreover, new components are created if an app-user infects a non-app-user without
manual contact tracing taking place or if a non-app-user infects either type and there is no
manual contact tracing. The new components thus differ only in how they are created, i.e. with
an app-user (infected by a non-app-user without manual contact tracing) or a non-app-user
(without manual contact tracing), and given the current state, the evolution of such compo-
nents does not depend on how they were initiated and is therefore the same for both types of
components. There will be no contact tracing between any of these components, which thus
makes them evolve independently, as stipulated for branching processes. We give an exam-
ple in Figure 3 to illustrate how the two types of components (starting with an app-user or a
non-app-user) grow and reproduce. We start with case 1, which is the root of the component
C(NA)

1 , which generates two new components C(NA)
2 and C(A)

3 . The component C(NA)
2 has as its

root non-app-user 2, and C(A)
3 starts with app-user 3. Once individual 1 is diagnosed, the whole

component C(NA)
1 is diagnosed.

5.2. Proof of Corollary 2

We see that the combined model can be approximated by a suitable two-type branching
process during the early stage of the epidemic, where type-1 ‘individuals’ are to-be-traced
components starting with an app-user and type-2 ‘individuals’ are components with a non-
app-user as root. Let M(c) be the corresponding mean-offspring matrix,

M(c) =
(

m(c)
11 m(c)

12

m(c)
21 m(c)

22

)
, (23)

where element m(c)
ij is the mean number of new components of type j produced by a single

component of type i, for i, j = 1, 2. Let RDM be the largest eigenvalue of M(c); then RDM can
be expressed similarly to the digital reproduction number RD as shown in (5), but with m(c)

ij
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FIGURE 3. Example of the process of to-be-traced components started by app-users and non-app-users for
the combined model; the circles represent app-users and the squares non-app-users. The nodes in white,
black, and grey correspond to infectious, diagnosed, and naturally recovered individuals, respectively.
A rectangular region surrounded by dashed lines represents a component, and the rectangle is hatched
with diagonal lines when the component is diagnosed. Solid edges stand for contacts that could be traced
by either manual or digital contact tracing (so there are always solid edges between pairs of app-users),
whereas dashed edges represent infectious contacts that will not be traced.

replacing mij. Similar to RD, RDM determines whether a major outbreak is possible or not. We
call RDM the effective component reproduction number for the combined model. As shown in
the proof of Corollary 1, it follows from standard multi-type branching process theory [2, 8]
that the limit process EDM will surely go extinct if RDM ≤ 1. If RDM > 1, the process will grow
beyond all limits with non-zero probability. Then, by Proposition 2, it can be shown that if
RDM > 1 there will be a large outbreak of the epidemic with non-zero probability, whereas if
RDM ≤ 1 there will be a minor outbreak for sure.

In the following, we derive the elements m(c)
ij . We first note that the to-be-traced components

may also contain non-app-users that are manually traced, so it is necessary to track both the
number of infectious app-users and the number of infectious non-app-users in the component.
Let N(i)

j (t) be the number of infectious type-j individuals in the component, starting with one
type-i individual at time t (i, j = 1, 2), where we take type 1 to be app-users and type 2 to
be non-app-users. When the components are born (t = 0), we have N(1)(0) = (1, 0), whereas
N(2)(0) = (0, 1). Suppose that at time t there are k infectious app-users and l infectious non-
app-users in a component starting with a type-i individual, denoted by

N(i)(t) := (N(i)
1 (t), N(i)

2 (t)) = (k, l).

There are five different competing events that can occur: an app-user is newly infected by
an app-user or with a manual tracing link by a non-app-user (N(i)(t) + (1, 0)); one of the k
app-users recovers naturally (N(i)(t) − (1, 0)); a non-app-user is newly infected with a manual
tracing link irrespective of the type of the infector (N(i)(t) + (0, 1)); one of the l non-app-users
recovers naturally (N(i)(t) − (0, 1)); or one of the k + l infectious individuals (of either type) is
diagnosed, so the whole component is diagnosed (drops to (0,0)). The corresponding transition
rates are given by
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N(i)(t−) →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N(i)(t) + (1, 0) at rate kβπ + lβπp,

N(i)(t) + (− 1, 0) at rate kγ,

N(i)(t) + (0, 1) at rate (k + l)β(1 − π )p,

N(i)(t) + (0, −1) at rate lγ,

(0, 0) at rate (k + l)δ.

Next, we describe the birth of new components. We note that only infections with no digital
or manual contact tracing links create a new component. This can only occur to pairs of non-
app-users or pairs of app-users and non-app-users, but it never happens between two app-users.
As a consequence, given that N(i)(t) = (k, l) (k infectious app-users and l infectious non-app-
users), the component gives birth to new components with an app-user as root at rate lβπ

(1 − p) and gives birth to new components with a non-app-user as root at rate (k + l)β(1 − π )
(1 − p). Based on the previous discussion, we have derived the birth rates of new components
of type i conditional on N(i)(t). The expected total numbers m(c)

ij of new type-j components pro-
duced by a type-i component are therefore the expected values of these expressions integrated
over time:

m(c)
11 =

∫ ∞

0
E[N(1)

2 (t)]βπ (1 − p) dt, (24)

m(c)
12 =

∫ ∞

0
(E[N(1)

1 (t)] +E[N(1)
2 (t)])β(1 − π )(1 − p) dt, (25)

m(c)
21 =

∫ ∞

0
E[N(2)

2 (t)]βπ (1 − p) dt, (26)

m(c)
22 =

∫ ∞

0
(E[N(2)

1 (t)] +E[N(2)
2 (t)])β(1 − π )(1 − p) dt. (27)

We have not been able to derive E[N(i)
j (t)] analytically. The main reason is that not all of

the four jump rates are linear in the number of infectious individuals. In particular, the rate at
which N(i) = (k, l) increases in the first component equals kβπ + lβπp (nonlinear in k + l).

In Section 6, we perform simulations to derive the m(c)
ij and numerically compute the com-

ponent reproduction number RDM for given parameters. Based on the numerical results, we
examine how RDM depends on the manual tracing probability p and the app-using fraction π .

6. Numerical investigation

In this section, we numerically study the effects of digital contact tracing, as well as the
combined effect of both types of contact tracing. For all the numerical results (except Table 3),
we take the epidemic parameters to be fixed: β = 6

7 and γ = 1
7 so that the reproduction number

without any testing or contact tracing is β/γ = 6. When also considering diagnosis (δ > 0), we
would have the basic reproduction number R0 = β/(γ + δ) smaller than 6. The code used for
this section is available on GitHub at [26].

6.1. Comparison of digital and manual tracing only

In Figure 4a we plot the necessary testing rate measured by the testing level δ/(δ + γ ), for
which the manual R(c)

M given by (9) equals 1 and the digital component reproduction number RD
given by (3) equals 1, for given values of p and π , respectively. The figure confirms Theorem
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TABLE 3. Results from 10 000 simulated epidemics and the corresponding limiting branching processes

Mean fraction of infected
Reproduction Fraction of major outbreaks among major outbreaks

p π number n = 1000 n = 5000 n = ∞ n = 1000 n = 5000

0 0 R0 = 2.80 0.637 0.638 0.639 0.924 0.925
0 2

3 RD = 2.20 0.478 0.482 0.480 0.812 0.814 —
2
3 0 RM = 1.49 0.280 0.276 0.282 0.492 0.507
2
3

2
3 RDM = 0.92 0.067 0.014 0.011 0.200 0.147

(a) (b)

FIGURE 4. (a) The red curve shows the combinations of the testing fraction δ/(δ + γ ) and the fraction π

of app-users for which RD = 1 for digital contact tracing, and the blue curve shows the combinations of
the testing fraction δ/(δ + γ ) and the tracing probability p for which RM = 1 in manual contact tracing.
(b) The same curves are plotted as in (a), but now with π2 instead of π on the horizontal axis (motivated
by the fact that both individuals have to be app-users for digital tracing to take place).

1 in showing that for a given testing level δ/(δ + γ ), a larger app-using fraction π is required
than the tracing probability p for the model with manual contact tracing.

One potential explanation for this could be that the effectiveness of digital contact tracing
is more related to the square of the fraction of app-users (π2): the digital tracing is carried
out only if both the confirmed case and the contact are app-users. In Figure 4b we therefore
plot the critical combination of δ/(δ + γ ) against π2 instead. It can be seen that the curve
for π2 is closer to that for p but still different; we still need a larger value of π2 for the
reproduction number to equal unity. An alternative explanation is that there is a fraction 1 − π

of individuals who will never be digitally contact-traced, whereas manual tracing can reach all
individuals. This suggests that digital tracing requires a higher effectiveness among app-users
to compensate for the absence of contact tracing among non-app-users.

6.2. The individual and component reproduction numbers for digital tracing only

In Figure 5 we plot the variation of the digital reproduction number RD and individual
reproduction number R(ind)

D with the testing fraction δ/(δ + γ ) and the fraction of app-users π .
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(a) (b)

FIGURE 5. Heatmaps of the effective reproduction numbers for digital tracing: (a) RD and (b) R(ind)
D vary

with the testing fraction δ/(δ + γ ) in [0.01, 0.83] and the fraction of app-users π in [0.01, 0.99], with
β = 6

7 and γ = 1
7 fixed. The white solid lines indicate where the corresponding reproduction number

equals 1; the black dashed lines in (a) are for RD = 2, 4, 6, 8, 10 from top to bottom, and the black
dashed lines in (b) are for R(ind)

D = 3, 2.5, 2, 1.5 from left to right.

By looking at the colours at the bottom or the dashed curves at RD = 6, 8, and 10 in Figure 5a,
we observe that the component reproduction number RD is not monotonically decreasing in π .
This is at first surprising, since we expect a smaller reproduction number with more app-users.

This non-monotonicity of RD can be explained as follows. First of all, it can be easily seen
from (7) and (8) that the element m21 is increasing while m22 is decreasing with π . Then, at a
very low level of the testing fraction, increasing π leads to more app-users, and hence the size
of the app-using component will grow even if fewer non-app-users will be infected per app-
user. The average number of non-app-users infected by one app-using component m12 may
thus increase with π . Then, according to the expression for RD in (3), RD could increase with
π when the testing fraction δ/(δ + γ ) is low. On the other hand, we see from Figure 5b that
the individual reproduction number R(ind)

D is monotonically decreasing in π , as was proven in
Theorem 2.

In Figure 6 we illustrate Theorem 3, which states that the two reproduction numbers RD and

R(ind)
D have the same threshold at 1. As before, we fix β = 6

7 and γ = δ = 1
7 such that R0 = 3 and

half of the infected are diagnosed (and subject to being contact-traced). The two reproduction
numbers are plotted as functions of π , the fraction of app-users. The figure shows that the
reproduction numbers are different but that they both attain the value 1 for the same critical
fraction of app-users, πc ≈ 94%.

6.3. Effect of combining digital and manual tracing

We now illustrate the effect of the combined model by computing RDM numerically as fol-
lows. For β = 6

7 , γ = 1
7 , two distinct values 1

7 and 1
28 for δ, and a grid of values for π (the

fraction of app-users) and p (the fraction of contacts that are traced manually), we perform
10 000 simulations to compute the integrals in (24)–(27) for each simulation (without expec-
tation). We then take averages over the simulations to obtain estimates of the four elements
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FIGURE 6. Plot of curves of R(ind)
D (in red) and RD (in blue) against π with β = 6

7 , γ = 1
7 , and δ = 1

7 fixed.
The horizontal dashed line indicates where the reproduction number equals 1, and the vertical dashed line
stands for the critical πc ≈ 0.94.

m(c)
ij , and compute the largest eigenvalue to obtain estimates of RDM. In Figure 7 we plot the

heatmaps of RDM as functions of p and π for the two choices of δ. We see from Figure 7a
that RDM seems monotonically decreasing in both π and p, as expected when δ = 1

7 , but the
monotonicity fails when δ is smaller, as seen in Figure 7b. This can be explained in a similar
way to the phenomenon for RD. For example, suppose that π and δ are both small; then the
size of a component (starting with either an app-user or a non-app-user) may increase with
p since more infections happen within a component. As a consequence, such a component
may, in fact, infect slightly more new components, thus resulting in a larger reproduction num-
ber. However, on the individual scale, a much larger component infecting slightly more new
components would still imply that each individual will infect fewer new individuals. Here, it
might be possible to derive an individual reproduction number, R(ind)

DM , which one would expect
decreases monotonically in both π and p, but we have not pursued this route, partly because
the expression for the component reproduction number RDM is complicated in itself. But if we
focus on the curve RDM = 1 in Figure 7b, it seems to be monotone, suggesting that decreasing
one of the contact tracing procedures requires the other to be increased in order to maintain
herd immunity. A proof of this is missing.

All of the above results are for the limiting processes ED and EDM. To see how the results
fit the finite-n case, we perform 10 000 simulations of the epidemic for n = 1000 and 5000,
starting with one initial infective. We choose the parameters in four different cases: without
any contact tracing (p = π = 0), with digital tracing only (p = 0, π = 2

3 ), with manual tracing
only (p = 2

3 , π = 0), and with both manual and digital tracing (p = π = 2
3 ), while keeping β =

0.8, γ = 1
7 , and δ = 1

7 fixed. It can be seen from Table 3 that the fraction of major outbreaks
(defined by having more than 10% infected) is distinctly away from 0 when the reproduction
number exceeds 1 and is very close to 0 when the reproduction number is smaller than 1 (thus
supporting Corollaries 1 and 2). In addition to our epidemic simulations, we have included a
column for the limiting results (denoted by n = ∞), for which we simulate the corresponding
limiting branching process with a single ancestor 10 000 times. We then determine the limit
fraction of major outbreaks, defined as scenarios with more than 1000 individuals born. The
results indicate that our limiting approximations are effective.
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(a) (b)

FIGURE 7. Heatmaps of the effective reproduction number RDM varying with the manual tracing proba-
bility p in [0, 0.99) and the fraction of app-users π in [0, 0.99), with β = 6

7 and γ = 1
7 fixed, and for (a)

δ = 1
7 and (b) the smaller δ = 1

28 . The white solid lines indicate where RDM = 1; the black dashed lines
in (a) are for RDM = 2.5, 2, 1.5 from left to right, and those in (b) are for RDM = 8, 6, 4, 2.

7. Discussion

In this paper, we have analysed a Markovian epidemic model with digital contact tracing,
without or with manual contact tracing. For the epidemic model with digital tracing only,
the early stage of the epidemic was proven to converge to a two-type branching process (as
the population size n → ∞), with one type being to-be-traced app-using components and the
other being non-app-users, and with RD being the largest eigenvalue of the of mean-offspring
matrix of the two-type branching process. An individual reproduction number R(ind)

D was also

derived. We investigated both analytically and numerically how RD and R(ind)
D depended on

model parameters as well as on each other. The reproduction number RD was shown to be
non-monotone in π (the fraction of app-users) in general, whereas the individual reproduction
number R(ind)

D was proven to be monotonically decreasing in π . When comparing digital tracing
with manual tracing, it was proven that a smaller tracing probability p is needed than the
corresponding app-using fraction π in order to lower the reproduction number down to 1.

We then analysed the combined model and proved that the beginning of the epidemic
converges to a different two-type branching process, with both types being to-be-traced com-
ponents, differing only in the type of root (app-user or non-app-user). The corresponding
reproduction number had a rather complicated expression, which currently can only be evalu-
ated numerically, and it was shown numerically not to be monotonically decreasing in π and p
in general.

There are several extensions of the present model that would make it more realistic. On
the one hand, we have assumed that there is no delay in both manual and digital contact trac-
ing, i.e. any traced contact (by either manual or digital tracing) is assumed to be immediately
diagnosed. This neglects a crucial difference between manual and digital tracing: manual trac-
ing is time- and labour-intensive, so there is often a delay between the case confirmation and
notification of contacts, whereas digital tracing is designed to avoid (or shorten) this delay.
Additionally, a limitation of a contact tracing app is that there could be close contacts that can
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lead to transmission but are too short to be registered by the app. For this reason, it would
be of interest to extend our model to allow for infectious contacts between app-users that are
not registered with a certain (small) probability and thus do not lead to tracing. It is, however,
not straightforward to analyse such an extended model, since it mixes aspects of both digital
(requiring both to be app-users) and manual (the possibility that such an app contact is not
recorded) contact tracing. Further, we make the simplifying assumption that traced individuals
who have by then recovered are also identified and contact-traced (see [20], which does not
make this assumption). In reality, this may happen for individuals who have recently recov-
ered, but perhaps not for those who have recovered several weeks earlier. Therefore, the results
in this paper give an upper bound on how effective the real contact tracing would be.

A different extension would be to consider a structured community (e.g. a social network)
combined with homogeneous random contacts. Then, digital contact tracing would work in
the same way for random contacts and contacts in the social network (as long as both are app-
users), whereas manual contact tracing would most likely only happen on the social network
(for example, very rarely would one be able to name the person one sat next to in the bus).

On the mathematical side, we have focused only on the early stage of the epidemic.
Analysing later parts of the epidemic remains an open problem. Moreover, obtaining a more
explicit expression for RDM in the combined model could shed more light on the effect of
combining digital and manual contact tracing. For instance, RDM was shown numerically not
to be monotone in π and p, but one would expect the critical curve RDM = 1 to be monotone
in the (π, p) plane (cf. Figure 7a and 7b), but a proof of this is missing. Further, it would be of
interest to derive an individual reproduction number R(ind)

DM and prove properties for it, e.g. that
it has the same threshold as RDM and that it decreases monotonically in both π and p.

Despite these model limitations, we consider this work an important step in increasing our
understanding of the effects of different forms of contact tracing on spreading disease.
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