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Abstract

This paper introduces Choice Trees (CTrees), a monad for modeling nondeterministic, recursive, and
impure programs in Rocq. Inspired by Xia ef al.’s ((2019) Proc. ACM Program. Lang. 4(POPL))
ITrees, this novel data structure embeds computations into coinductive trees with three kinds of
nodes: external events, internal steps, and delayed branching. This structure allows us to provide
shallow embedding of denotational models with nondeterministic choice in the style of ccs, while
recovering an inductive LTS view of the computation. CTrees leverage a vast collection of bisimula-
tion and refinement tools well-studied on LTSs, with respect to which we establish a rich equational
theory. We connect CTrees to the ITrees infrastructure by showing how a monad morphism embed-
ding the former into the latter permits using CTrees to implement nondeterministic effects. We
demonstrate the utility of CTrees by using them to model concurrency semantics in two case studies:
ccs and cooperative multithreading.
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2 N. Chappe et al.

1 Introduction

Reasoning about and modeling nondeterministic computations is important for many
purposes. Formal specifications use nondeterminism to abstract away from the details
of implementation choices. Accounting for nondeterminism is crucial when reasoning
about the semantics of concurrent and distributed systems, which are, by nature, non-
deterministic due to races between threads, locks, or message deliveries. Consequently,
precisely defining nondeterministic behaviors and developing the mathematical tools to
work with those definitions has been an important research endeavor and has led to the
development of formalisms like nondeterministic automata, labeled transition systems and
relational operational semantics (Bergstra et al., 2001), powerdomains (Smyth, 1976), or
game semantics (Abramsky & Melli¢s, 1999; Rideau & Winskel, 2011), among others,
all of which have been used to give semantics to nondeterministic programming language
features such as concurrency (Sangiorgi & Walker, 2001; Milner, 1989; Harper, 2016).

In this paper, we are interested in developing tools for modeling nondeterministic com-
putations in a dependent type theory such as Rocq’s CIC (The Coq Development Team,
2024). Although any of the formalisms mentioned above could be used for such pur-
poses, and many have been (Sevcik ef al., 2013; Kang et al., 2017; Lee et al., 2020;
Koenig & Shao, 2020; Oliveira Vale et al., 2022), those techniques offer various trade-offs
when it comes to the needs of formalization. Notably, small step operational semantics
are straightforwards to mechanize and extend, but offer little compositionality. On the
contrary, powerdomains and game semantics for instance are denotational approaches,
aiming to ensure compositionality by construction; however, the mathematical structures
involved are themselves complex, typically involving set-theoretical relations and con-
straints (Abramsky & Mellies, 1999; Melli¢s & Mimram, 2007; Rideau & Winskel, 2011)
that are not straightforward to implement in type theory; though there are some notable
exceptions (Koenig & Shao, 2020; Oliveira Vale et al., 2022; Borthelle ef al., 2025).

In the Rocq ecosystem, interaction trees (1Trees) (Xia et al., 2019) strike a sweet spot
in this design space: they package in a library reusable components for defining exe-
cutable denotational semantics. When applicable, they deliver easy to mechanize models
supporting powerful reasoning principles and extraction to definitional interpreters.

This paper introduces an extension to the ITree framework to provide support nondeter-
minism, while retaining its benefits. The main technical contributions are to introduce the
definition of this new structure, the CTrees (“choice trees”), and to develop the suitable
metatheory and equational reasoning principles to accommodate that change. To do so, it
turns out crucial to represent in the tree a notion of delayed branch: a syntactic node that
may represent a nondeterministic branching in the computation, depending on whether the
sub-trees exhibit observable behaviors. Moreover, we demonstrate how giving a meaning
to these trees in terms of labeled transition systems (LTS) is the key to put in light the dis-
tinction between stepping choices (which correspond to t transitions and introduce new
LTS states) and delayed choices (which don’t correspond to a transition and don’t create
a state in the LTS). It furthermore allows us to leverage the process algebra literature and
define equivalence (resp. refinement) of CTrees as bisimilarity (resp. similarity).

The net result of our contributions is a library, entirely formalized in Rocq, that
offers flexible building blocks for constructing executable denotational models of
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nondeterministic, and notably concurrent, computations. To demonstrate the applicability
of this library, we use it to implement the semantics from two formalisms: ccs (Milner,
1989), a process calculus that we use along the paper to illustrate our definitions, as well
as a shared-memory language with cooperative threads inspired from the literature (Abadi
& Plotkin, 2010). Crucially, in both of these scenarios, we are able to define the necessary
parallel composition operator such that the semantics of the programming language can be
defined fully compositionally (i.e., by straightforward induction on the syntax). Moreover,
we recover the notion of bisimilarity of ccs process based on its operational seman-
tics directly from the equational theory induced by the encoding of the semantics using
CTrees; for the language with cooperative threading, we prove some standard program
equivalences.
To summarize, this paper makes the following contributions:

e We introduce CTrees, a novel data structure for defining nondeterministic compu-
tations in type theory, along with a set of combinators for building semantic objects
using CTrees.

e We develop a theory of strong bisimilarity (resp. similarity) of CTrees as equiva-
lence (resp. refinement) and establish their metatheory. Doing so, we connect their
semantics to standard notions from LTS.

e We demonstrate that, as with ITrees, CTrees support interpretation of events and
introduce a novel notion of implementation of branching nodes, opening the way to
reason formally about schedulers, and giving a framework to tweak the executability
of CTree models.

e We demonstrate how to use CTrees in two case studies: (1) to define a semantics for
Milner’s classic ccs and prove that the resulting derived equational theory coincides
with the one given by the standard operational semantics and (2) to model in stages
cooperative multithreading with support for fork and yield operations and prove
nontrivial program equivalences.

e We develop theories for more notions of equivalence and refinement: an alternate
characterization of strong (bi)similarity easing some proofs, as well as notions of
weak bisimilarity, complete similarity, and heterogeneous (bi)similarity.

e Finally, our library show cases at scale that modern libraries (Hur ef al., 2013; Pous,
2016) enable elegant coinductive reasoning in Rocgq.

All of our results have been implemented in the Rocq prover (formerly known as the Coq
proof assistant), and all claims in this paper are fully mechanically verified. For expository
purposes, we stray away from Rocq’s syntax in the body of this paper, but systematically
link our claims to their formal counterpart via hyperlinks represented as (#).

The remainder of the paper is organized as follows. The next section gives some back-
ground about interaction trees and monadic interpreters, along with a discussion of the
challenges of modeling nondeterminism in such context. We introduce the CTrees data
structure and its main combinators in Section 3. Section 4 describes our first case study,
a model for ccs. Section 5 introduces (coinductive) equality, strong bisimilarity, strong
similarity, and trace equivalence for CTrees—and establishes its core equational theory.
Section 6 applies this equational theory to the ccs case study. Section 7 describes how to
interpret uninterpreted events in an ITree into “choice” branches in a CTree, as well as how
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4 N. Chappe et al.

CoInductive itree (E: Type — Type) (R: Type) : Type :=
(* computation terminating with value r *)

| Ret (r: R)
(* event e yielding an answer in A *)

| vis {A: Type} (e : EA) (k : A —»itree ER)
(* "silent tau" transition with child t *)

| Step (t: itree E R).

Fig. 1. Interaction trees: definition.

to define the monadic interpretation of events from CTrees. Section 8 describes our sec-
ond case study, a model for the imp language extended with cooperative multithreading.
Section 9 gives alternative characterization of strong bisimilarity and strong similarity for
CTrees, enabling new proof techniques. Section 10 studies finer notions of (bi)similarity
for CTrees: heterogeneous relations, complete similarity, and weak bisimilarity. Finally,
Section 11 discusses related work and concludes.

This journal paper is a follow-up to the one published in POPL’23 (Chappe et al., 2023),
in which we had introduced CTrees and their usage. The present version is extensively
updated and enriched to describe the current reimplementation of our library.

2 Background

2.1 Interaction trees and monadic interpreters

Monadic interpreters have grown to be an attractive way to mechanize the semantics of a
wide class of computational systems in dependent typed theory, such as the one found in
many proof assistants, for which the host language is purely functional and total. In the
Rocq ecosystem, interaction trees (Xia et al., 2019) provide a rich library for building and
reasoning about such monadic interpreters. By building upon the free(r) monad (Kiselyov
& Ishii, 2015; Letan et al., 2018), one can both design highly reusable components, as
well as define modular models of programming languages more amenable to evolution. By
modeling recursion coinductively, in the style of Capretta’s delay monad (Capretta, 2005;
Altenkirch et al., 2017), such interpreters can model non-total languages while retaining
the ability to extract correct-by-construction, executable, reference interpreters. By gener-
ically lifting monadic implementations of effects into a monad homomorphism, complex
interpreters can be built by stages, starting from an initial structure where all effects are free
and incrementally introducing their implementation. Working in a proof assistant, these
structures are well suited for reasoning about program equivalence and program refine-
ment: each monadic structure comes with its own notion of refinement, and the layered
infrastructure gives rise to increasingly richer equivalences (Yoon et al., 2022), starting
from the free monad, which comes with no associated algebra.

Interaction trees are coinductive data structures for representing (potentially divergent)
computations that interact with an external environment through visible events. A defini-
tion of the ITree datatype is shown in Figure 1. The datatype takes as its first parameter
a signature—described as a family of types E : Type — Type —that specifies the set of
interactions the computation may have with the environment. The Vis constructor builds
a node in the tree representing such an interaction, followed by a continuation indexed by
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[while true do skip] [x::=0; x:=y] [x:=y]
Step wr ‘X 0
St|ep rdy rdy
| AN AN

Step wrx® wrxl ... wrxn ~... wrx® wrxl ... wrxn ~...

tt tt tt tt tt tt

Fig. 2. Example ITrees denoting the imp programs p1, p», and p3.

the return type of the event. The second parameter, R, is the result type, the type of values
that the entire computation may return, if it halts. The constructor Ret builds such a pure
computation, represented as a leaf. Finally, the Step constructor models a non-observable
step of computation, allowing the representation of silently diverging computations; it is
also used for guarding corecursive definitions.!

We illustrate the ITrees approach by defining the semantics for a simple imperative pro-
gramming language, imp. The language contains a skip construct, assignments, sequential
composition, and loops—we assume a simple language of expressions, e.

comm £ skip | x:=e | cl;c2 | whilebdoc
Consider the following imp programs:
p1 £ while true do skip prExi=0x1=y pyExu=y

In the style of Xia et al. (2019), one builds a semantics in two stages. First, com-
mands are represented as monadic computations of type itree MemE unit: commands do
not return values, so the return type of the computation is the trivial unit type; interac-
tions with the memory are (at first) left uninterpreted, as indicated by the event signature
MemE . This signature encodes two operations: rd yields a value, while wr yields only the
acknowledgment that the operation took place, which we encode again using unit .

Variant MemE : Type — Type :=

| rd (x : var) : MemE value
| wr (x : var) (v : value) : MemE unit

Indexing by the value type in the continuation of rd events gives rise to non-unary
branches in the tree representing these programs. For instance, the programs py, p», p3 are,
respectively, modeled at this stage by the trees shown in Figure 2. These diagrams omit
the Vis and Ret constructors, as their presence is clear from the picture. For example, the
second tree p, would be written as

Vis (wr x 0) (A _ = Vis (xrd y) (A ans = (Vis (wr x ans) (L _ = Ret tt)))).

The Step nodes in the first tree are the guards from Capretta’s monad: because the
computation diverges silently, it is modeled as an infinite sequence of such guards. The
equivalence used for computations in the ITree monad is a weak bisimulation, dubbed
equivalence up-to taus (eutt), which ignores finite sequences of Step nodes. It is

! The ITree library uses Tau to represent Step nodes. Tau and t are overloaded in our context, so we rename
it to Step here to avoid ambiguity.
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Variant Flip : Type — Type :=

| flip : Flip bool. Vis flip (1 b = if b then p else @)

flip
/\
lrl T4l

Fig. 3. A boolean event, an example of its use, and the corresponding CTree.

termination-sensitive: the silently diverging computation is not equivalent to any other
ITree.

With ITrees, no assumption about the semantics of the uninterpreted memory events is
made. Although one would expect p; and p3 to be equivalent, their trees are not eutt. This
missing algebraic equivalence is concretely recovered at the second stage of modeling:
imp programs are given a semantics by interpreting the trees into the state monad, by
handling the MemE events. This yields computations in stateT mem (itree voidE) unit,
or, unfolding the definition of stateT, mem — itree voidE (mem * unit), where voidE
is the “empty” event signature. More precisely, an interp combinator applies the handler
Amem to the rd and wr nodes of the trees, implementing their semantics in terms of the state
monad. For p; and p3, assuming an initial state m, the computations become:?

interp Myem [p2]Jm = Step —Step — Step — (m{x < O}{x <~ m(»)}, #7)
interp Myem [p3]m = Step —Step — (m{x < m(y)}, )

One can show that m {x <— O}{x <~ m(y)} and m {x <— m(y)} are extensionally equal, and
hence p, and p; are eutt after interpretation.

2.2 Nondeterminism

While the story above is clean and satisfying for stateful effects, nondeterminism is much
more challenging. Suppose we extend imp with a branching operator br p or q whose
semantics is to nondeterministically pick a branch to execute. This new feature is modeled
very naturally using a boolean-indexed f1ip event, creating a binary branch in the tree.
The new event signature, a sample use, and the corresponding tree are shown in Figure 3.

Naturally, as with memory events, f1ip does not come with its expected algebra:
associativity, commutativity, and idempotence. We therefore seek to interpret £1ip into
an executable monad in which we recover these necessary equations, and furthermore
combine them with the state algebra in order to establish program equivalences such as
p3 =br p, or ps3.

CTrees will form a suitable monad for modeling such nondeterministic effects. The core
idea is to build an ITree-like coinductive data structure, with an additional kind of node to
represent nondeterminism. The resulting definitions are very expressive. As foreseen, they
form a proper monad, validating all monadic laws up-to coinductive structure equality,
they allow us to establish desired imp equations such as p3 =br p, or pj3, but they also
scale to model ccs and cooperative multithreading.

2 Writing the trees horizontally to save space.
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(a) (b) (c)

print print print

Q) Q)

) O O
print
T 0
Observation: branches Observation: branching Observation: none

Fig. 4. Three possible semantics for the program p, from an LTS perspective.

Before getting to that, and to better motivate our definitions, let us further extend our
toy language with a block construction that cannot reduce, and a print instruction that
simply prints a dot. We will refer to this language as ITmpBr.

comm £ skip | xi=e | cl;c2 | whilebdoc | brcl or c2 | block | print

Consider the program p £ br (while true do print) or block. Depending on the intended
operational semantics associated with br, this program can have one of two behaviors: (1)
either to always reactively print an infinite chain of dots or (2) to become nondeterministi-
cally either similarly reactive or completely unresponsive. The former corresponds in the
literature to the same kind of choice that exists in ccs (Milner, 1989). The latter can be
though of as a form of infernal choice, found natively as well in CSP, and encoded in ccs
by guarding processes by an internal t step. We shall emphasize this analogy in Section 4
when providing a model for ccs.

When working with (small-step) operational semantics, the distinction between these
behaviors is immediately apparent in the reduction rule for br (we only show rules for the
left branch here).

g — ¢
————— BRINTERNAL ———— BRDELAYED
br cl or ¢2 — ¢l br ¢; orcz—>c/]

BRINTERNAL specifies that br may simply reduce to the left branch, while
BRDELAYED specifies that br can reduce to any state reachable from the left branch. From
an observational perspective, the former situation describes a system where, although we
do not observe which branch has been taken, we do observe that a branch has been taken.
On the contrary, the latter only progresses if one of the branches can progress, we thus
directly observe the subsequent evolution of the chosen branch, but not the branching
itself.

In order to design the right monadic structure allowing for enough flexibility to model
either behavior, we think of imp programs as labeled transition systems. From this perspec-
tive, the imp program p may correspond to three distinct LTSs depending on the intended
semantics, as shown in Figure 4.

Figure 4(a) describes the case where picking a branch is an unknown external event,
hence where taking a specific branch is an observable action with a dedicated label: this
situation is naturally modeled by a Vis node in the style of ITrees, that is [br p or g] =
Vis £1ip Ab - if b then [p] else [q].
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Figure 4(b) corresponds to BRINTERNAL: both the stuck and the reactive states are
reachable, but we do not observe the label of the transition. This transition exactly cor-
responds to the internal 7 step of process algebra. This situation could® be captured by
introducing a new kind of node in our data structure, a Brg branch, that maps in our bisim-
ulations defined in Section 5 to a nondeterministic internal step. For this semantics, we
thus have [br p or g £ Bri Ab - if b then [p] else [g].*

Figure 4(c) corresponds to BRDELAYED, but raises the question: how do we build such
a behavior? It could be the responsibility of the model, i.e., the function mapping imp’s
syntax to the semantic domain, CTrees, to explicitly compute this LTS. Here, [p] would be
an infinite sequence of Vis print nodes, containing no other node. But recall we seek to
compute our models, typically by recursion on the syntax. But to build this LTS directly,
the model for br p or q would then need to introspect the models for [p] and [g]
to decide whether they can take a step, and hence whether it should introduce a branching
node. In general, statically determining whether a given program is semantically equivalent
to block is intractable: consider a computation that checks the convergence of the Collatz
sequence on its input before performing an observable event for instance. The introspection
required to directly compute this LTS is therefore hard (or impossible) to implement in
general.

We thus extend CTrees with a third category of nodes, a Br node, which does not directly
correspond to states of an LTS. Instead, Br nodes aggregate sub-trees such that the (induc-
tively reachable) Br children of a Br node are “merged” in the LTS view of the CTree.
This design choice means that, for the BRDELAYED semantics, the model is again trivial
to define: [br p or g] 2 Br? Ab - if b then [p] else [¢], but the definition of bisimilarity for
CTrees ensures that the behavior of [[p] is precisely the LTS in Figure 4(c).

3 CTrees: Definition and combinators

3.1 Core definitions

We are now ready to define our core datatype, displayed in the upper part of Figure 5.
The definition remains close to a coinductive implementation of the free monad, but hard-
codes support for an additional effect: unobservable branching. The CTree datatype, much
like an ITree, is parameterized by a signature of (external) events E encoded as a family
of types and a return type R. Contrary to ITree, it is parameterized by a second family of
types B characterizing the allowed arities of branching. This B parameter is an improve-
ment in expressiveness over the first iteration of CTrees (Chappe et al., 2023), which only
supported unlabeled finite choice; It will be useful in Section 7.2. We discuss in depth the
differences between both implementations in Section 11.

CTrees are coinductive trees’ with four main kinds of nodes: pure computations
(Ret), external events (Vis), unary node with an implicitly associated t step (Step),
and delayed branching (Br ). Nullary (Stuck constructor) and unary (Guard constructor)

3 We will see shortly that these nodes are actually an encoding in the implementation.

4 The 2 indicates the arity of the branching.

> The implementation uses a negative style with primitive projections. We omit this technical detail in the
presentation.
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(* Core datatype *)

CoInductive ctree (E B : Type — Type) (R : Type) :=

| Ret (r : R) (* pure computation *)
Step (t : ctree) (* internal step *)
Vis {X : Type} (e : E X) (k : X —>ctree) (* external event *)
Br {X : Type} (c : BX) (k : X —ctree) (* delayed branching *)
Guard (t : ctree) (* unary Br *)
Stuck (* stuck process *)

(* Bind, sequencing computations *)

CoFixpoint bind {E T U} (t : ctree EBT) (k : T —»ctree E B U)
: ctree EB U :=

match u with

| Retr =kr

| Stuck = Stuck

| Step t = Step (bind t k)

| Guard t = Guard (bind t k)

| Vis e h >Vis e (1 x =bind (h x) k)

| Br bh =Br b (1 x =bind (h x) k)

end

(* Stepping branching *)
Definition BrS {X : Type} (c : BX) (k : X —>ctree) :=
Br ¢ (1 x = Step (k x))

(* Main fixpoint combinator *)
CoFixpoint iter {I: Type} (body : I —ctree E B (I + R))
: I —»ctree EBR :=
bind (body i) (1 lr = match 1lr with
| inr r >Ret r
| inl i = Guard (iter body i)
end)

Notation "E ~F" := (V X, EX —F X)

(* Atomic ctree triggering a single event *)

Definition trigger : E ~>ctree EB := AR (e : ER) =Vis e (1 x = Ret x)
(* Atomic branching ctrees *)

Definition branch : B ~ctree EB := AR (b : BR) =Br b (1 x = Ret x)
Definition branchS : B ~»ctree EB := AR (b : BR) =BrS b (1 x =Ret x)

Fig. 5. CTree structure definition (#).

delayed branching could be expressed as special cases of Br over an appropriate interface
B, but we provide specific constructors for them for convenience given their central role.
The continuation following external events is indexed by the return type specified by the
emitted event. Similarly, the continuation following delayed branching is indexed by the
return type specified by the emitted branch. When using finite branching in examples, we
assume a suitable branching interface B that includes such finite indexed types, and we
abusively write, for instance, Br? ¢ u for a computation branching on a finite type with
two inhabitants, and B, the corresponding signature it draws from, rather than explicitly
spelling out an event with a boolean signature and the continuation that branches on the
boolean index: A i = match i with 0 = t | 1 = u end. We write Stuck nodes as “(”
in equations.

The remainder of Figure 5 displays (superficially simplified) definitions of the core com-
binators. In particular, step branching that materializes internal choice, denoted Brg and
informally introduced in Section 2.2, is defined as the composition of Br and Step. The
minimal computations respectively triggering an event e, delaying a branch, or generating
observable branching are defined as trigger, branch and branch.
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(* Stuck processes *)
Definition stuck : ctree E B void := Stuck
Definition stuckE (e : E void) : ctree E B void :=

trigger e
Definition stuckB (b : B void): ctree E B void :=
branch b

CoFixpoint stagnate : ctree E B R := Guard stagnate
CoFixpoint stagnate_nary n (bn : B (fin n)) : ctree E B R
:= branch bn ;; stagnate_nary n bn

T
(* Spinning processes *) .
CoFixpoint spinS : ctree E B R := Step spinS
CoFixpoint spinS_nary n (bn : B (fin n)) : ctree E B R :=

branchS bn ;; spinS_nary n

Fig. 6. Concrete representations of stuck and spinning LTSs, where fin n is a finite type with n
elements.

As expected, ctree E B forms a monad for any interfaces E and B : the bind combinator
simply lazily crawls the potentially infinite first tree and passes the value stored in any
reachable leaf to the continuation. The iter combinator is central to encoding looping
and recursive features: it takes as argument a body, body, intended to be iterated, and
is defined such that the computation returns either a new index over which to continue
iterating or a final value; iter ties the recursive knot. Its definition is analogous to the
one for ITrees, except that we need to ask ourselves how to guard the cofix: if body is
a constant, pure, computation, unguarded corecursion would be ill-defined. ITrees insert
a Step node between iterations for this purpose, treated weakly by the eutt equivalence
built on the structure. Here, we instead use the Guard constructor, encoding a unary non-
observable branch. A Step node would also be a valid choice, with different resulting
semantics, this option will be further discussed in Section 7.4.

Convenience in building models comes at a cost: many CTrees represent the same LTS.
Figure 6 illustrates this phenomenon by defining several CTrees implementing the stuck
LTS and the silently spinning one. Indeed, the Stuck constructor is intended to canonically
represent the stuck process. However, it can be mimicked via nullary branching: stuckE
asks the environment a question without answer, while stuckB internally chooses among
none. More convoluted, the stagnate and stagnate_nary trees are infinitely deep struc-
tures made of delayed branches; they yet never find in their structure a transition to take.
In contrast, the spinS and spinS_nary processes exhibit a different behavior, depicted in
the spinS LTS: they generate infinite traces of ts.

Section 5 will introduce the necessary notions of equivalence on CTrees, bisimilarity in
particular, to formally express and prove the semantic equivalence between these various
representations of stuck processes.

Example: ImpBr.In this example, and the remaining of the paper, we consider the
BRDELAYED operational semantics for the ImpBr’s branching operator, as per Section 2.2.

We define a representation repr_imp : comm — ctree (MemE + PrintE) B2 unit by
recursion on the syntax: ImpBr programs are computations that may diverge, draw
from binary choices, and emit read and write events to the memory, or printing sig-
nals. Assuming that we have already defined similarly the representation for expressions

repr_expr :
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Definition interp (h : E ~ M) : ctree EB ~M := AR =
iter (1 t > match t with
| Ret r = ret (inr r)
| Stuck = mStuck
| Guard t = ret (inl t)
| Step t =>bind mstep (1 _ = inl t)
| Br n k =bind (mBr n) (1 x = ret (inl (k x)))
| Vis e k =bind (h e) (1 x =ret (inl (k x)))
e

Fig. 7. Interpreter for CTrees (class constraints omitted) (¥%).

Fixpoint repr_imp (s : comm) : computation unit :=
match s with

| Assign x e = v <« repr_expr e ;; trigger (wr x v) (¥ x 1= e %)

| Print = trigger print (* print *)

| Seq ¢l c2 = repr_imp cl ;; repr_imp c2 (*a; Db *)

| While b ¢ = (* while t do b
*)

while (v <« repr_expr b ;;
if is_true v
then repr_imp c ;; ret (inl tt)
else ret (inr tt))
| Branch cl c¢2 = Br2 (repr_imp c1) (repr_imp c2) (¥ br cl or c2 *)

| Skip = Ret tt (* skip *)
| Block = Stuck (* block *)
end.

Similarly to ITrees, trigger is used for emitting events, monadic binds and returns for
sequences and terminated programs, and the iter combinator is used to encode a suit-
able while looping combinator.® Finally, the two unusual constructs for an Imp language,
branches and stuck programs, directly map to two new primitive concepts in CTrees.

3.2 Interpretation

ITrees support interpretation: provided a handler h:E ~» M implementing a signature of
events E into a suitable monad M, the (interp h):itree E ~» M combinator provides
an implementation of any computation into M.” The only restriction imposed on the tar-
get monad M is that it must support its own iter combinator, i.e., be iterative, so that
divergence, modeled coinductively in the tree, can also be internalized in M. For this imple-
mentation to be sensible and amenable to verification in practice, one must, however, check
an additional property: interp h should form a monad morphism—in particular, it should
map eutt [Trees to equivalent monadic computations in M.

Unsurprisingly, given their structure, CTrees enjoy their own interp combinator. Its
definition, provided in Figure 7, is very close to its [Tree counterpart. The interpreter relies
on the target monad’s own iter to chain the implementations of the external events in the
process. But additionally to being iterative, i.e., being able to internalize divergence, the
target monad must also be able to internalize nondeterminism by providing a stuck state
(mStuck) ), an observable tick (mStep), and a nondeterministic branching (mBr). CTrees and

® We omit its definition and refer the reader to our formal development.
7 Recall thatE ~» F isdefinedasV X, E X — F X.

https://doi.org/10.1017/50956796825100105 Published online by Cambridge University Press


https://github.com/vellvm/ctrees/tree/v2.0/theories/Interp/Fold.v#L57
https://doi.org/10.1017/S0956796825100105

12 N. Chappe et al.

Variant action E B R :=
| ARet (r : R)
| AStep (t : ctree E B R)
| AVis {X} (e : EX) (k : X —>ctree E B R).

CoFixpoint head {E B R} (t : ctree E B R) : ctree E B (action E B R) :=
match t with
| Ret r = Ret (ARet r)
| Stuck = Stuck

| Step t = Ret (AStep t)

| Guard t = Guard (head t)

| Vis e k = Ret (AVis e k)

| Br bk Br b (1 x =>head (k x))

end.

Fig. 8. Lazily computing the set of reachable observable nodes (#).

stateful CTrees are both valid target monads, we provide straightforward instances for
them.

We shall see that handlers must satisfy some conditions for the induced interpretation
to be well-behaved: we defer this discussion to Section 7 once all the necessary tools have
been introduced.

Example: ImpBr. We can now complete our model for ImpBr by implementing read and
write events using a stateful handler:

Definition h_imp : (MemE + PrintE) ~-stateT env (ctree PrintE B2) :=
A_es =

match e with

| rd x = Ret (s, lookup_default x O s)

| wr x v = Ret (Maps.add x v s, tt)

| print = trigger print

end.
Read and write events are implemented concretely over a domain of maps env, while
printing events are retriggered, and hence left uninterpreted. The final model is therefore
[c] = interp h_imp (repr_imp c).

3.3 A hint of introspection: Heads of computations

Brnodes prevent the need for introspection over trees when modeling something as generic
as a delayed branching construct such as the one specified by BRDELAYED. However,
introspection becomes necessary to build a tree that depends on the reachable external
actions of the sub-trees (i.e., the non-Br nodes immediately reachable from the root after
a series of Br nodes). This is the case for many parallel operators, including the one of
ccs that we model in Section 4. The set of reachable external actions is not computable
in general, as we may have to first know if the computation to the left of a sequence
terminates before knowing if the events contained in the continuation are reachable. We
are, however, in luck, as we have at hand a semantic domain able to represent potentially
divergent computations: CTrees themselves!

The head combinator, described in Figure 8, builds a pure, potentially diverging com-
putation only made of delayed choices, and whose leaves contain all reachable subtrees

https://doi.org/10.1017/50956796825100105 Published online by Cambridge University Press


https://github.com/vellvm/ctrees/tree/v2.0/theories/Misc/Head.v#L35
https://doi.org/10.1017/S0956796825100105

Choice trees 13

Br?
RN
Ret (AVis print...) Br?
/ \

Ret (AVis(wrx1)...) stagnate

Fig. 9. The LTS for program p (on the left) and its head CTree (on the right).

starting with an observable node. These “immediately” observable trees are captured in
an action datatype, which is used as the return type of the built computation. The head
combinator simply crawls the tree by reconstructing all delayed branches, until it reaches
a subtree with any other node at its root; it then returns that subtree as the corresponding
action. The resulting head tree could be more precisely typed at the empty event interface
if need be.

As such, head provides a constructive computation of the set of visible actions a CTree
computation can draw. We demonstrate in the next section how it is used to build a model
for ccs, but illustrate it first on an artificial example.

Example: ImpBr. Consider p £ br (print) or br (x::= 1; print) or (while #rue do skip),
a program that may have three behaviors: printing, writing in memory then printing, or
looping. Figure 9 represents on the left the LTS of repr_imp(p) : the looping behavior
is not observable, as its model is stagnate—we revisit formally this representation in
terms of LTS in Section 5. On the right, it shows the CTree head(repr_imp(p)) : notice
that detecting that stagnate will exhibit no observable behavior is not computable in
general, the head therefore also exhibits a stagnating branch. The two other branches
return respectively the printing and writing events. The dots in the Ret nodes stand for the
continuations. In particular, the continuation for the wr x 1 event contains the subsequent
print event.

4 Case study: ccs, a model

We claim that CTrees form a versatile tool for building semantic models of nondetermin-
istic systems, concurrent ones in particular. In this section, we illustrate the use of CTrees
as a model of concurrent communicating processes by providing a denotational semantics
for Milner’s Calculus of Communicating Systems (ccs) (Milner, 1989). The result is a
shallowly embedded model for ccs in Rocq that could be easily, and modularly, combined
with other language features.

4.1 Syntax and operational semantics

The syntax and operational semantics of ccs are shown in Figure 10. The language
assumes a set of names, or communication channels, ranged over by c. For any name
¢, there is a co-name ¢ satisfying ¢ = c. An action is represented by a label /; it is either a
communication label ¢ or ¢, representing the sending/reception of a message on a channel,
or the reserved action 7, which represents an internal action.
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le=71|c|cC P:=0|ILP|P+Q | P|Q| veP |!P
PLu P 05 O PLes P’
aPSP P4Qb P P05 0 P05 P 0
05 0 PSP 0S50 O PLe P 1g{c,c)
P Q—I>ccs Pl O’ PO S P IO vc.P—l>CCS ve.P'
PP P
1PL P!

Fig. 10. Syntax for ccs (#) and its operational semantics (#).

The standard operational semantics, shown in the figure, is expressed as a labeled tran-
sition system, where states are terms P and labels are actions /. The ccs operators are the
following: 0 is the process with no behavior. A prefix process /.P emits an action / and then
becomes the process P. The choice operator P+ Q behaves either like the process P, or
like the process Q, in the same fashion as the BRDELAYED semantics for br in Section 2.2.
The parallel composition of two processes P || O interleaves the behavior of the two pro-
cesses, while allowing the two processes to communicate. If the process P emits a name ¢
and the process Q emits its co-name ¢, then the two processes can progress simultaneously
and the parallel composition emits an internal action t. Channel restriction vc.P prevents
the process P from emitting an action c or ¢: the operational rule states that any emission
of another action is allowed. Finally the replicated process !P behaves as an unbounded
replication of the process P. Operationally, !P has the behavior of P ||!P.

4.2 Model

We define a denotational model for ccs using ctree actE ccsB void as domain, writ-
ten ccs” in the following. As witnessed by this type, processes do not return any
value, but may emit actions modeled as external events expecting unit for answer:
Inductive actE ::= | act a : actE unit.Because the semantics of CCS limits the pos-
sible different outcomes at each program point, its model can exhibit only binary, ternary,
or quaternary branches, captured in ccsB. Specifically, a ternary branch is used to express
the behaviour of the parallel operator where either the left sub-term or the right sub-term
progresses, or a synchronisation between the two sub-terms happens. Quaternary branches
are required for the semantics of the replication operator—we detail its model below.
Naturally, nested operators will lead to nested branches.

Figure 11 defines the semantic operators associated with each construct of the language.
They are written as over-lined versions of their syntactic counterparts, and defined over
ccs”.

The empty process is modeled as a stuck tree—we cannot observe it. Actions are directly
defined as visible events, and thus the prefix triggers the action, and continues with the
remaining of the process. As discussed in Section 2.2, the delayed branching node fits
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020 azp = triggera; p pP¥FqBripg Ip2plitp
; 0 ife=act =act¢é
ve-P £ interp hpey ¢ P where hyey ¢ € = . ne a,c core=acte
trigger ¢ otherwise

pllg2cofix Fpg-Br' (p’ «<headp; actLFgqp’)
(¢’ <—head g ;;actRF p q’)
(p’ <headp;; ¢’ < headq;;actLR F p’ q’)

actL F q (AStep t) = Step (F t q)
actL F q (AVise k)= Vise (Ai-F (ki) q)

actR F p (AStep t) = Step (F pt)
actR F p (AVise k)= Vise (Ai-F p (ki)

actLRFrr £

Step- F (k () (k' ()) if3a. r=Vis (act a) k Ar' =Vis (act a@) k’
0 otherwise

Fig. 11. Denotational model for ccs using ccs” as a domain (#).

exactly with the semantics of the choice operator in ccs, only progressing if one of the
composed terms progresses. Restriction raises a minor issue: the compositional defini-
tion implies that the CTree for the restricted term has already been produced when we
encounter the restriction and, a priori, that tree might contain visible actions on the name
being restricted. We enforce scoping by replacing those actions by a stuck tree, @, effec-
tively cutting these branches. This is done using the interp operator from CTrees, with
hpew, a handler that does the substitution.

Parallel composition is more intricate, as the operator requires significant introspec-
tion of the composed terms. The traditional operational semantics of ccs is not explicitly
constructive: each of the three reduction rules depends on the existence of specific tran-
sitions in the sub-processes. We perform this necessary introspection, in a constructive
way, defining the tree as an explicit cofixpoint, and using the head operator introduced
in Section 3.3. While the operation head p precisely captures the desired set of actions
that p may perform, computing this set could, in general, silently diverge. We therefore
cannot bluntly initiate the computation by sequencing the heads of p and ¢, as divergence
in the former may render inaccessible valid transitions in the latter.® Instead, we initi-
ate the computation with a ternary delayed choice: the left (resp. middle) branch captures
the behaviors starting with an interaction by p (resp. g), while the right branch captures
the behaviors starting with a synchronisation between p and ¢. Essentially, the tree non-
deterministically explores the set of applicable instances of the three operational rules for
parallel composition. In particular, if the operational rule to step in the left (resp. right) pro-
cess is non-applicable, the left (resp. middle) branch of the resulting tree silently diverges.

8 Technically, the variant of ccs considered here actually cannot generate such a computation, so we could
therefore rule this case out extensionally. The case could, however, easily arise in a variant of ccs relying
on recursive processes rather than replication, and in other calculi, so we therefore favor this more general,
reusable, approach.
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Fig. 12. Depiction of the tree resulting from p | g.

plllg% cofix F pq-Br* (p’ —headp:actl F g p’)
(¢’ < headq;;pbR F g p q')
(p’ «<headp;; ¢’ < headq;;pbLR F g p’ q')
(¢’ <—headq;;q” «—headq;;pbRR F g ¢’ q”’)

actL F g (AStep t) = Step(F t q)
actL F g (Visek)=Vise (li-F (ki) q)

pbR F g p (AStep t) = Step(di - F (pﬂt) q)
PbRF g p (Vise k)= Vise (Ai-F (p || ki) q)

pbLR Fgrr' %

Step- F (kO Nk ) g if 3a.r=Vis (act a) k Av’ =Vis (act a) k'
0 otherwise

PbRR F grr’ &

Step- F (p |k Ok O) g if3a. r=Vis (act a) k A+’ =Vis (act @) k’
0 otherwise

Fig. 13. Definition of the auxiliary operator p||! (#).

The right branch silently diverges if neither process can step, but, in general, it also con-
tains branches considering the interaction of incompatible actions; we cut these branches
by inserting ¥. In all cases, the operator continues corecursively, having progressed in
either or both processes. Figure 12 shows the CTree resulting from p || g.

The last operator to consider is the replication !. In theory, it could be expressed in
terms of parallel composition directly, as the cofix Ip £ p || !p. Unfortunately, although it
is sound, defining the ! operator in this way is too involved for Rocq’s syntactic criterion
on cofixes to recognize that the corecursive call is guarded under | . To circumvent this
difficulty, we use an auxiliary operator, defined in Figure 13, and define the replication
operator as !p £ p||!p. The intuition behind this operator, p||lg, is to capture the parallel
composition of a process p with a replicated process !q. By extending the domain of the
function, we manage to recover a syntactically guarded cofix, therefore accepted by Rocq.
The operator p||!q nondeterministically explores the four kinds of interactions that such a
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process could exhibit: a step in p; the creation of a copy of ¢ performing a step to ¢’, before
being composed in parallel with p; the creation of a copy of ¢ synchronizing with p; or the
emission of two copies of ¢ synchronizing one with another. .

Finally, we define the model [-] : ccs — ccs” by recursion on the syntax.

5 Strong (bi)similarity and associated equational theory for CTrees

Section 3 introduced CTrees as domain of computations, as well as a selection of com-
binators upon it. We now turn to the question of comparing computations represented as
CTrees for notions of equivalence and refinement.

Readers familiar with ITrees may recall that their notions of equivalence, strong and
weak bisimilarity, are defined syntactically on ITrees, and that strong bisimulation even
corresponds to structural coinductive equality on ITrees. Because of the more subtle
semantics of Br nodes, equality and strong bisimulation are distinct notions on CTrees,
and definitions are more involved. In particular, our notions of refinement and equivalence
use a formalization of the LTS representation of a CTree that we have sketched.

Through this section, we first introduce a (coinductive) syntactic equality of CTrees
(Section 5.1). We then take an LTS view on CTrees (Section 5.2) to lift standard rela-
tions on processes to ctrees: namely, strong bisimilarity (Section 5.3) and strong similarity
(Section 5.4). We equip both of these notions with primitive up-to principles and establish
an equational theory for CTrees. Section 5.5 illustrates equational reasoning on CTrees
with a detailed example of a similarity proof.

The theories discussed throughout this section provide the building blocks necessary
for deriving domain-specific equational theories, such as the ones established in Section 6
for ccs, and in Section § for cooperative scheduling. Furthermore, additional reasoning
principles for strong (bi)similarity are introduced in Section 9, and other equivalences and
refinements are defined in Section 10.

Conventions and preliminary definitions. We define in this section some coinductive
relations, and establish their meta-theory. A coinductive relation is defined as the greatest
relation of an adequate family of relations: for instance, bisimilarity, written ~, is the
greatest bisimulation.

The meta-theory of such relations is essentially composed of two levels. On one hand,
top-level proof rules give means of proving that two computations are bisimilar. On
the other hand, up-to principles establish additional proof rules valid during a proof by
coinduction of bisimilarity, resulting in an enhanced coinduction principle.

To distinguish the latter, we write ~% the goal of an ongoing proof of bisimulation
with candidate R. From there, such proof rules can be of two natures: if the premise is
expressed in terms of ~, its application is valid, but does not give access to the coinduc-
tion hypothesis; otherwise, its premise is expressed in terms of R, and it gives access to
the coinduction hypothesis.

We refer the interested reader to Appendix A for a more detailed introduction to these
concepts and to their mechanization in Rocq.
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REFL“PR £ {(x,x)} sYMPR= {(y,x) | Rxy}
TRANS"PR 2 {(x,z) | 3y, RxyARyz}
BIND"P (EQuIV) R= {(x >=k,y>=1) | BQUIVX yAVV, R (kv) (I v)}

upto'P (EQuIv) R = {(x,y) | 3x" y’, BQuIvx x’ AR x" y' A EQUIV Y’ y}

Fig. 14. Main generic up-to principles used for relations of CTrees where R : rel (ctree
EBX).

Figure 14 describes some main generic up-to principles we use for our relations on
CTrees.’ Recall that over C, these potential up-to functions are endofunctions of relations:
for instance, REFL'? is the constant diagonal relation, SYM'? builds the symmetric relation,
TRANS is the composition of relations. The validity of REFL?, SYM'?, and TRANS'? for
a given endofunction b entails, respectively, the reflexivity, symmetry, and transitivity of
the relations b(t, R) and (t, R). These two relations are precisely the ones involved during
a proof by coinduction up-to companion: the former as our goal, the latter as our coinduc-
tion hypothesis. The BIND*”(_) up-to function helps when reasoning structurally, allowing
to cross through bind constructs during proofs by coinduction. Finally, validity of the
UPTO"(EQUIV) principle allows for rewriting via the equiv relation during coinductive
proofs for b.

5.1 Coinductive equality for CTree

Rocq’s equality, eq, is not a good fit to express the structural equality of coin-
ductive structures—even the eta-law for a coinductive data structure does not hold
up-to eq. We therefore define, as is standard, a structural equality'” by coinduction

equ: rel(ctree E B A) (written = in infix). The endofunction simply matches head
constructors and behaves extensionally on continuations.

Definition 1 (Structural equality (#)).

equ2 gfp AR -{(Ret v, Ret v)} U
{((Visek, Visek') | Yv, R (kv) (K v)} U
{(Br" k, B k') | Yv, R (kv) (K v)}U
{(B,0)} U
{(Guard t,Guard u)} | Rtu} U
{(Step t,Stepu)} | Rtu}

The equ relation raises no surprises: it is an equivalence relation, and is adequate
to prove all eta-laws—for the CTree structure itself and for the cofixes we manipulate.
Similarly, the usual monadic laws are established with respect to equ.

9 These are the core examples of library level up-to principles we provide. For our ccs case study, we also prove
the traditional language level ones.

10 Note that for ITrees, this relation corresponds to what Xia ef al. dub as strong bisimulation, and name
eq_itree. We carefully avoid this nomenclature here to reserve this term for the relation we define in
Section 5.3.
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label=tau | obsev | valv

1 1
kv—ot t—u

1 1 tau . obs val v
Br’ k>t Guardt— u Stepr—t Vise k —2% kv Ret v —5% 0

Fig. 15. Inductive characterization of the LTS induced by a CTree (#).

Lemma 1 (Monadic laws (#)).

Retv>==kZ=kv X<t;Retx=t (t=k)>=IZt>=0Qx=kx>=])

Of course, formal equational reasoning with respect to an equivalence relation other
than eq comes at the usual cost: all constructions introduced over CTrees must be proved
to respect equ (in Rocq parlance, they must be Proper ), allowing us to work painlessly
with setoid-based rewriting.'!

Finally, we establish some enhanced coinduction principles for equ.

Lemma 2 (Enhanced coinduction for equ (#)). REFL*”, SYM"?, TRANS*”, BIND"/ (%) (#)
and UPTO" (=) (W) provide valid up-to principles for equ.

With these lemmas, one has the ability, in the middle of a proof by coinduction aiming to
establish that two trees are equ, to invoke reflexivity, symmetry, transitivity, congruence
for bind, and to rewrite previously established equations.

While equ, as a structural equivalence, is very comfortable to work with, it naturally is
much too stringent. To reason semantically about CTrees, we need a relation that remains
termination sensitive, but allows for mismatch in the amount of branching nodes, that still
imposes a tight correspondence over external events, but relaxes its requirement for non-
deterministically branching nodes. We achieve this by drawing from standard approaches
developed for process calculi.

5.2 Looking at CTrees under the lens of labeled transition systems

To build a notion of bisimilarity between CTree computations, we associate a labeled tran-
sition system to a CTree, as defined in Figure 15. This LTS exhibits three kinds of labels:
a tau'? witnesses a stepping branch, an obs e x observes the encountered event together
with the answer from the environment considered, and a val v is emitted when returning
a value. Note that there is a significant mismatch between the structure of the tree and the
induced LTS: each state of the LTS corresponds, in the CTree, to a node that is not immedi-
ately preceded by a Br node. Accordingly, the definition of the transition relation between
states inductively iterates over delayed branches. On the contrary, stepping branches and
visible nodes map immediately to a set of transitions, one for each outgoing edge; finally,
a return node generates a single val transition, moving onto a stuck state, encoded as the

As is the case for the eq_itree over ITrees, postulating as an axiom that equ coincide with definitional
equality would be sound in Rocq. We are, however, doomed to embrace setoids anyway for all other relations,
we therefore avoid doing so.

We warn again the reader accustomed to ITrees to think of tau under the lens of the process algebra literature,
and not as a representation of ITree’s Tau constructor.
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1 val v 1
t—u [#valvy t—— 0 kvou

; (trans bind 1) B — (trans bind r)
t>=k—u>=k t>=k—u

1
t>=k—u

(trans_bind inv)
1 1 - —
(I#val v AT t>0 Au=t' 3>=k)V (3,1 —50 Ak v— u)

Fig. 16. Lemmas for transitions under bind (#).

¢ constructor. These rules formalize the intuition we gave in Section 2.2 and that allowed
us to derive the LTSs of Figure 4 from the corresponding ImpBr terms.

Defining the property of a tree to be stuck, that is: & £ Vil u, —(t N u), we can make
the depictions of stuck processes from Figure 6 precise: @ itself and nullary nodes are
stuck by construction, since stepping would require a branch, while stagnate_nary and
stagnate are proven to be stuck by induction on the transition relation (#). It follows that
), stagnate_nary and stagnate are semantically undistinguishable.

/s B 4 stagnate_naryn b, />

The stepping relation interacts slightly awkwardly with bind : indeed, although a unit for
bind, the Ret construct is not inert from the perspective of the LTS: it has one outgoing
transition labeled with the return value. Non val transitions can therefore be propagated
below the left-hand side of a bind, while a val transition in the prefix does not entail the
existence of a transition in the bind . Figure 16 describes lemmas capturing this intuition,
by distinguishing cases of a val v transition (trans_bind_r for backward reasoning and
the second case of the conclusion of trans_bind_inv for forward reasoning about bind )
or another kind of transition (trans_bind_1 and the first case of trans_bind_inv).

5.3 Bisimilarity

Having settled on the data structure and its induced LTS, we are back on a well-traveled
road: strong bisimilarity (referred simply as bisimilarity in the following) is defined in a
completely standard way over the LTS view of CTrees.

Definition 2 (Bisimulation for CTrees (®)). The progress function sb for bisimilarity maps
a relation R over CTrees to the relation such that sb R t u, also noted t ~r u, holds if
and only if:

I I
Vit,t>¢ = . {RuUANu=U
and conversely
I l
Vi, u—=uv = A {fRUNt=>T

The bisimulation game is represented visually in Figure 17. Solid lines represent uni-
versal hypotheses and dashed ones represent existential conclusions. Bisimilarity, written
t~ u, is defined as the greatest fixpoint of sb: sbisim £ gfp sb.
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t U t U
~MR | | ~MR
l l
l I [ l
l l
t/ ,,,,,,, u/ t/ ,,,,,,, ul
R R
Fig. 17. The bisimulation game ~7.
x=y Vx, hx~kx (Vx, 3y, hx~ky)A(Vy,3x, hx~ky)
Retx ~Rety Vise h~Visek Br® h~Brék
t~u (Vx,3y, hx~ky)A(Vy,3x, hx~ky)
Stept~Stepu Bré’ h~Brgk
t~u (Vx, gx~kx)
t>=g~u>=k
u=+ 2 2 2 (p,2 2 2
Guard  ~ ¢ — Brot (Br-uv)~Br- (Br-tu)v Britu~Brout
Brotu~t
Briii~t Brr (BrPtu)v~Brituv Brétu~Br§ut Br§t1~5tept
Stept 4t stagnate_ nary n ~ stagnate_nary m

(n>0Am>0)V(n=m=0)

spinS_nary n ~spinS_nary m

Fig. 18. Elementary equational theory for CTrees (#).

All the traditional tools surrounding bisimilarity can be transferred to our setup. The
rest of this subsection shows the proof rules and up-to principles that are proved valid for
CTree bisimilarity.

5.3.1 Core equational theory

Bisimilarity forms an equivalence relation satisfying a collection of primitive laws for
CTrees summed up in Figure 18. We use simple inference rules to represent an implication
from the premises to the conclusion and double-lined rules to represent equivalences. Each
rule is proved as a lemma with respect to the definitions above.

The first four rules recover some structural reasoning on the syntax of the trees from
its semantic interpretation. These rules recover reasoning principles close to what eutt
provides by construction for ITrees: leaves are bisimilar if they are equal, computations
performing the same external interaction must remain point-wise bisimilar, and unary steps
can be matched against one another. Delayed branches, potentially of distinct arity, can be
matched one against another if both domains of indexes can be injected into the other to
reestablish bisimilarity. This is only an implication and not an equivalence since the points
of the continuation structurally immediately accessible do not correspond to accessible
states in the LTS. By contrast, this same condition is necessary and sufficient for stepping
branches, as their Step nodes induce additional 7 transitions, thus new states in the LTS.
Finally, bisimilarity is a congruence for bind .
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Unlike ITrees, two CTrees can be strongly bisimilar despite different head constructors.
The simplest example is that sbisim can ignore (finite numbers of) Guard nodes, making
e.g. Guard (Ret #f) bisimilar to Ret ##. Another example is that stuck processes behave as a
unit for delayed branching nodes. The fact that Br and Guard nodes are treated weakly by
strong bisimilarity can be slightly disconcerting, but our definition of strong bisimilarity is
standard. Rather, this mismatch is due to the fact that we completely collapse B» nodes in
the LTSs we build from CTrees. This choice has far-reaching consequences that Section 9
will further discuss.

We obtain the equational theory that we expect for nondeterministic effects. Delayed
branching is associative, commutative, idempotent, and can be merged into delayed
branching nodes of larger arity w.r.t. sbisim.!> By contrast, stepping branches are only
commutative, and almost idempotent, provided we introduce an additional Step. This
Step cannot be ignored w.r.t. ~, but one can move to weak bisimilarity to this end: we
discuss this setup in Section 10.3.

Finally, two stagnating processes are always bisimilar (neither process can step) while
two stepping spins are bisimilar if and only if they are both nullary (neither one can step),
or both non-nullary.

We omit the formal equations here, but we additionally prove that the iter combinator
deserves its name: the Kleisli category of the ctree E B monad is iterative w.r.t. strong
bisimulation (#). Concretely, we prove that the four equations described in Section 4 of
Xia et al. (2019) hold true. The fact that they hold w.r.t. strong bisimulation is a direct
consequence of the design choice taken in our definition of iter : recursion is guarded by
a Guard. One could provide an alternate iterator guarding recursion by a Step and recover
the iterative laws w.r.t. weak bisimulation, but we have not proved it and leave it as future
work. We expand further on a handful of delicate points related to weak bisimilarity in
Section 10.3.

Example: ImpBr. Naturally, this equational theory gets trivially lifted at the language level
for ImpBr. More specifically, the equational theory over CTrees is lifted to the syntax
through repr_imp (#). Furthermore, anticipating on Section 7, the theory will be trans-
ported for free by interpretation, and hence hold on the full model [-] as well, in which we
can additionally reason about state, and in particular establish the equation p; = br p; or p3
(™) suggested in Section 2.2.

The acute reader may notice that in exchange for being able to work with strong bisim-
ulation, we have mapped the silently looping program to stagnate, hence identifying it
with stuck processes. Indeed, both of these programs have the same observable behav-
ior (no observable transition). For an alternate model observing recursion, one would
need to investigate the use of the alternate iterator mentioned above and work with weak
bisimilarity.

5.3.2 Proof system for bisimulation proofs

As is usual, the laws in Figure 18, enriched with domain-specific equations, allow for
deriving further equations purely equationally. But to ease the proof of these primitive

13 Stating these facts generically in the arity of branching is quite awkward, we hence state them here for binary
branching, but adapting them at other arities is completely straightforward.

https://doi.org/10.1017/50956796825100105 Published online by Cambridge University Press


https://github.com/vellvm/ctrees/tree/v2.0/theories/Eq/IterFacts.v#L114
https://github.com/vellvm/ctrees/tree/v2.0/examples/ImpBr/ImpBr.v#L131
https://github.com/vellvm/ctrees/tree/v2.0/examples/ImpBr/ImpBr.v#L220
https://doi.org/10.1017/S0956796825100105

Choice trees 23

Vv, (kv) R (k" v)

Ret v~gRet v
Vis e k~gVis e k’

(Vx, Jy, (k x)~r(k" y))A(¥y, 3, (kx)~g (K" y)) vy, (kv)~g(k'v)
Br? k~pBr¢ k' Br? k~zBr® k'
t~Ru tRu
Guard t~rGuard u Step t~RStep u
(Vx, Jy, (kx)R (k" y)) A (¥y,3x, (kx) R (k" y)) Vv, (kv) R (k" v)
Brg k~gBrg k’ Brg k~RBr§ k'

Fig. 19. Proof rules for coinductive proofs of sbisim (#).

laws, as well as new nontrivial equations requiring explicit bisimulation proofs, we provide
proof rules that are valid during bisimulation proofs, derived from valid up-to principles.

We recall that given a bisimulation candidate R, we write ¢t ~x u for sb R t u, i.c.,
the proof goal in which R is the bisimulation candidate, and this coinduction hypothesis
is not yet accessible. We depict the main rules we use in Figure 19. From the standpoint
of the proof scientist, these rules notably avoid the exponential explosion in the number
of subgoals that would arise by playing each side the bisimulation game separately: for
all CTree constructors, there is a reasoning rule with no binary split at each level of play.
These rules essentially match up counterpart CTree constructors at the level of bisimilarity,
but additionally make a distinction between two cases. In the first case, applying the rule
soundly acts as playing the game. i.e., the premises refer to R, allowing to conclude using
the coinduction hypothesis. In the second case, the premises still refer to ~ and the proof
rule strip off delayed branches from the structure of our trees. In this second case, on either
side of the bisimulation, the rule does not entail any step in the corresponding LTSs, but
rather corresponds to recursive calls to its inductive constructor.

Furthermore, we provide a rich set of valid up-to principles:

Lemma 3 (Enhanced coinduction for sbisim (#)). The functions REFLY”, SYM",
TRANSY, BINDP(~) (#), UPTO’(=) (#™) and UPTO"(~) (®) provide valid up-to
principles for sbisim.

In particular, the UPTO"(~) rewriting principle can be used with the equation Guard ¢ ~
t during bisimulation proofs, allowing for asymmetric stripping of guards.

We always strive to provide powerful up-to principles, but from a library user perspec-
tive ~; is still harder to work with than ~. All the results that are valid for ~% are also
valid for ~, it is thus desirable to reason as much as possible at the ~ level. Proofs involv-
ing, e.g., loops are by nature coinductive, but this layer of complexity can sometimes be
abstracted away. Section 7 provides a few high-level proof principles for that purpose, in
particular around the interp combinator.

We omit the details, but our library additionally provides a characterization of the
traces of a CTree, defined as the set of colists'* of labels induced by the LTS of the tree.

14 Colists are coinductively defined possibly infinite lists.
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Trace-equivalence (written =) () is hence defined as the extensional equality of these
sets of traces. With this infrastructure, we prove the standard result that sbisim entails
trace-equivalence (W).

5.4 Similarity

Similarity is a specific, well-studied, notion of refinement for LTSs. In particular, simi-
larity entails behavior inclusion, making it a popular proof tool for verified compilation
(a compiled program should be simulated by its corresponding source program), but also
when reasoning about scheduling (a scheduler is correct when it shrinks the determinism
induced in a process by the set of all valid schedulers).

There exists a variety of subtly distinct variants of similarity. We focus in this section
on strong similarity, the relation defined as the greatest fixpoint of the left half-game of
bisimulation as depicted on Figure 17.

Definition 3 (Simulation for CTrees (#)). The progress function ss for similarity maps a
relation R over CTrees to the relation such that ss R t u (also noted t <g ) holds if and

only if:
I I
Vit t—>f{ = W . ' Ruru=>u

Similarity, written t < u, is defined as the greatest fixpoint of ss: ssim £ gfp ss.

The coinductive proof rules for simulation are depicted in Figure 20. The rules are simi-
lar to those for bisimulation (Figure 19), but more permissive. In particular, a stuck process
is simulated by any CTree (ss_stuck). Furthermore, additional asymmetric reasoning
principles are available over Br nodes. ss_br_1 states that a Br node is simulated by a
CTree u if and only if all its branches are simulated by u. Conversely, ss_br_r states that
a CTree starting with a Br node simulates a CTree ¢ if one of its branches simulates ¢. These
powerful rules illustrate the semantic particularity of Br nodes: they are collapsed and thus
completely invisible in the LTS. The composition of ss_br_1 and ss_br_r gives ss_br,
which is similar to the sbisim proof rule for Br, with the symmetric condition dropped.

For convenience, the proof rules are lifted to ssim-level, raising equations similar to the
ones in Figure 18. We omit the details as the resulting rules can be trivially deduced from
the <z ones by replacing occurrences of both R and S by < in Figure 20.

All the up-to principles valid for sbisim are also valid for ssim except of course for the
symmetry principle.

Lemma 4 (Enhanced coinduction for ssim (#)). The functions REFL*’, TRANSY,
BIND”(X) (#), UPTO"P(X) (W), and UPTO"(~) (W) provide valid up-to principles for
ssim.

5.5 Proof example

Let us pause to illustrate concretely over a minimalist toy example how one can conduct
a proof of similarity by enhanced coinduction with our library. We consider here CTrees
with a print event for printing a boolean value and binary Br branches.
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t - Vv, (kv) R (k" v)

(ss_stuck) Ret v<rRet v (ss_ret) ——— (ss_vis_id)
ISRU Vis e kspVis e k'
Vx, (k x)Sru Ay, t<sr(k’ y)
= (ss _br 1) —_— (ss_br r)
Br? k<pu tSRBr’ k'
Vx, Ay, (kx)sr(k’y) Vv, (kv)sr(k'v)
3 - (ss_br) — (ss_br id)
Br” ksrBreé k’ Br® k<srBr” k’
t<SRuU tSRU
—————(ss_guard 1) ——————(ss_guard r)
Guard t<ru t<rGuard u
tSRpu tRu
—————(ss_guard) —————(ss_step)
Guard t<SrGuard u Step t<SrStep u
Vx, 3y, (kx) R (k" y) Vv, (kv) R (k" v)
- (ss_brS) — (ss_brS_id)
Brb ksrBr k' Bri ksrBri k

Fig. 20. Rules for coinductive proofs of ssim, with their names in our Rocq library—rules with a
double bar are equivalences ().

Variant PrintE : Type — Type := print : bool — PrintE unit.

CoFixpoint t : ctree PrintE B2 void :=
Vis (print true) (A _ =
Vis (print false) (A _ =1t)).

CoFixpoint u : ctree PrintE B2 void :
Br2
(Vis (print true) (A _ =u))
(Vis (print false) (A _ =u)).

CoFixpoint u’ : ctree PrintE B2 void :=
Br2
(trigger (print true))
(trigger (print false))

(,}1,1ard u’.

Example CTrees t and u represent programs that repeatedly print booleans, with
slightly different behaviors. t alternates printing true and false, while each iteration of u
nondeterministically chooses a boolean and prints it. u> has the same semantics as u, but
it is written in a different style: u exclusively uses the CTree constructors while u’ uses
higher-level trigger and bind (through the ;; syntax) operators. In the second case, there
is an additional Guard node as Rocq needs a syntactic guard before co-recursive calls.
Because of this Guard, u and w’> are not coinductively equal, but this has no consequence
on the underlying LTS: they are still in strong bisimulation. The LTS underlying t and u
are represented in Figure 21.

It is clear that program u simulates program t . We establish this fact, ¢ < u, through the
following detailed proof steps, which correspond exactly to the Rocq implementation (#).
We write the current state of the proof goal to the right of the sequent, the coinduction
hypothesis to its left, and the proof rule leading us there at the beginning of the line.

https://doi.org/10.1017/50956796825100105 Published online by Cambridge University Press


https://github.com/vellvm/ctrees/tree/v2.0/theories/Eq/SSim.v#L576
https://github.com/vellvm/ctrees/tree/v2.0/examples/SimpleSim/SimExample.v#L1
https://doi.org/10.1017/S0956796825100105

26 N. Chappe et al.

. print true
print true

@0

print false
print false

Fig. 21. The LTS for t (left) andu /u’ (right).

Ft<u

coinduction

E&——tRubtt<gu

&tRu FVis (print true) (A _=> Vis (print false) (A _=> t)) <p

br branch2 (A b => Vis (print b) (A _=> u))

ss_br_r true
=

tRu FVis (print true) (A _=> Vis (print false) (A _=> t)) g
Vis (print true) (A _=> uw)

ss_vis_id

&—=—+tRu F Vis (print false) (A _=> t) Ru

£ L Ru Fvis (print false) (A _=> t) Sru

afold o 2w b Vis (print false) (h _=> t) <g

br branch2 (A b => Vis (print b) (A _=> u))

Ebrrfle o2y b vis (print false) (A _=> t) <g

Vis (print false) (A _=> w)

ss_vis_id

E——tRuhbtRu

The proof proceeds by coinduction: taking the singleton pair (¢, #) as the simulation can-
didate R,'> we prove that t < u, i.e., the pair (¢, «’) obtained after a simulation step is still
in R. After initializing the coinduction, we unfold one iteration of t and one iteration of u.'®
At this point, CTree constructors appear in the goal. In particular, the Vis (print true)
at the head of the left-hand side should be matched against another Vis (print true) in
order to progress. This can be achieved by choosing the true outcome of the br on the
right-hand side using ss_br_r. Then, the matching Vis (print true) can be stripped
using the ss_vis_id theorem. Notice that the relation in the goal is no longer S but R,
as consuming Vis nodes performs a simulation step. But we want to perform one more
simulation step to consume the second Vis of the left CTree, so we strengthen the proof
goal from R to S again using the ss up-to ss principle through the step tactic. Then, the
remaining Vis on the left can be matched using the same method as the first one, finally
reducing to the goal t R u, which is precisely our coinduction hypothesis, concluding the
proof.

This simple example emphasizes that our infrastructure is robust enough to formally
conduct, in Rocq, a proof that closely mimics the detailed one we would write on paper.

15 Note that this candidate would not be a valid simulation without any enhancement.
16 Unfolding the body of a loop is a nontrivial operation that involves an unfolding lemma and the up-to-equ
principle.
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For a similar pedagogical proof of bisimilarity of u and «/, illustrating the use of
bisimulation up-to bisimilarity, we refer the interested reader to our development (#).

6 Case study: ccs, equational theory

Recall the model for ccs introduced in Section 4: we show that the generic bisimilarity of
CTrees introduced in the previous section is directly suitable for this model. The results
we obtain—the usual algebra, up-to principles, and precisely the same equivalence relation
as the usual operational-based strong bisimulation—are standard, per se, but they are all
established by exploiting the generic notion of bisimilarity of CTrees.

6.1 Equational theory

We provide a first validation of our model by proving that it satisfies the expected equa-
tional theory with respect to CTrees’s notion of strong bisimulation, enabling the usual
algebraic reasoning advocated for process calculi. In particular, we prove that our defi-
nition for the replication is sane in that it validates equationally the expected definition:
Ip~1p || p (). We also prove an illustrative collection of expected equations satisfied by
our operators (#):

p+a~q+p p+ag+n~@+q+r p¥O~p p+p~p

pl10~p pla~qlp pl@In~@lglr
To facilitate these proofs, we first prove sound up-to principles at the level of ccs for
each constructor: strong bisimulation up-to ¢[-1, [-] F [-1, [-1 | [-], '[], and ve:[-] are all
valid principles, allowing us to rewrite sbisim under semantic contexts during bisimu-
lation proofs. Additionally to these language-level up-to principles, we inherit the ones

generically supported by sbisim (Lemma 3).

6.2 Equivalence with the operational strong bisimilarity

In addition to proving that we recover in our semantic domain the expected up-to principles
and the right algebra, we furthermore show that the model is sound and complete with
respect to strong bisimulation compared to its operational counterpart. We do so by first
establishing an asymmetrical bisimulation between ccs and ccs”, matching operational
steps over the syntax to semantic steps in the CTree. We write [ for the obvious translation
of labels between both LTSs.

Definition 4 (Strong bisimulation between ccs and ccs®).
A relation R : rel(ccs, ccs®) is a strong bisimulation if and only if, for any label I, ccs
term P, and ccs? tree q:

PRGAPS P = 3¢, PR NG
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P R 4
1 7
P’ R q’

Fig. 22. The bisimulation game for ccs.

and conversely
PRgAGS ¢ = IP.PRGAPLP

Figure 22 depicts this bisimulation game graphically.
Lemma 5 (#®). The relation R= {(P,q) | [P] ~ q} is a strong bisimulation.

We derive from this result that the operational and semantic strong bisimulations define
exactly the same relation over ccs:

Lemma 6 (Equivalence of ccs bisimulations (#)). VP Q, [P] ~ [O] iff P ~ccs O

This establishes CTrees as a fitting framework for reasoning about channel-based
concurrency. We shall illustrate in Section 8 that they are flexible enough to model
shared-memory-based concurrency as well.

7 Interpretation from and to CTrees

The ITree ecosystem fundamentally relies on the incremental interpretation of effects, rep-
resented as external events, into their monadic implementations. Section 3.2 has defined
interpretation of CTrees, showing that they also fit into this narrative. Through this sec-
tion, we go further down this path by developing the meta-theory of CTree interpretation
(Section 7.1), and showing that they form a suitable target monad for ITrees, for the
implementation of nondeterministic branching (Section 7.4). Section 7.2 studies the related
CTree combinator refine that can interpret Br branches of a CTree to reduce its nondeter-
minism. Finally, Section 7.3 discusses the extraction of CTrees that enables their execution
after their effects have been interpreted away.

7.1 Interpretation

Section 3.2 introduced CTree interpretation. With the tools developed in Section 5, we can
now turn to theoretical results around the interp combinator. Perhaps a bit surprisingly,
the requirement that interp h defines a monad morphism unearths interesting subtleties.
Let us consider the elementary case where the interface E is implemented in terms of
(possibly pure) uninterpreted computations, that is, when M := ctree F B for some F.
The requirement becomes: V¢ u, f ~ 1 — interp h ¢~ interp h u. But this result does not
hold for an arbitrary h: intuitively, our definition for sbisim has implicitly assumed that
implementations of external events may eliminate reachable states in the computation’s
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2 2 AN

Br Br Step Step Step Step
/N /N o [
flip flip flip flip flip flip flip flip

VAT VRN VAT VAT
01 2 3 2 1 0 3 01 2 3 2 1 0 3

Fig. 23. Two strongly bisimilar trees before interpretation (left), but not after (right).

induced LTS—through pure implementations—but should not be allowed to introduce
new ones.

The counter-example in Figure 23, where flip is the binary event introduced in
Section 2.2, fleshes out this intuition. Indeed, the two trees on the left are strongly bisim-
ilar: each of them can emit the label obs flip false by stepping to either the Ret 0 or
Ret 2 node or emit the label obs £1ip frue by stepping to either the Ret 1 or Ret 3 node.
However, they are strongly bisimilar because the induced LTS processes the question to
the environment—f1ip—and its answer—false/true—in a single step, such that the com-
putations never observe that they have had access to distinct continuations. However, if one
were to introduce in the tree a Step node before the external events, for instance using the
handlerh := A e = Step (trigger e), a new state allowing for witnessing the distinct
continuations would become available in the LTSs, leading to non-bisimilar interpreted
trees as shown on the right in the figure. We hence prove that the desired property holds
on a subclass of handlers.

Definition 5 (Quasi-pure handlers). Given signatures E,F,B, a handler h : E ~
ctree F B is said to be quasi-pure if it implements each event e either as:

.. i
e a pure computation, i.e, ¥l t',he—t —> Jr,l=valr,

L 1
e or always performs exactly one step before returning, i.e., ¥l ', h e >t =
Ir, =Ret r.

We say that h : E ~ statel S (ctree F B) is quasi-pure if it is point-wise quasi-pure.
We show that we recover monad morphisms when working with quasi-pure handlers:

Theorem 1 (Quasi-pure handlers interpret into monad morphisms (#)).

e I[fh : E~ ctree F B is quasi-pure, then
Vtu, t~u— interp h t~ interp h U.
e Ifh : E~ statelT S (ctree F B) is quasi-pure, then
Vtu, t~u— Vs, interp h t s~ interp h us.
The same is true for <.
The stateful version is, in particular, sufficient to transport ImpBr equations estab-

lished before interpretation—such as the theory of br _ or _—through interpretation
(™). More generally, we can reason after interpretation to establish equations relying
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Definition refine (h : B ~M) : ctree EB ~M := AR =
iter (1 t = match t with
| Ret r = ret (inr r)

Stuck = mStuck

Guard t = ret (inl t)

|

|

| Step t = bind mstep (1 _ =inl t)

| Br b k = bind (h b) (1 x =ret (inl (k x)))

| Vis e k =>bind (mTrigger e) (1 x = ret (inl (k x)))
end) .

Fig. 24. Refining CTrees (class constraints omitted) (#).

both on the nondeterminism and state algebras, for instance to establish the equivalence
p3 =br p; or p3 mentioned in Section 2.2 (#). Bahr & Hutton (2023) have established
that the restriction to quasi-pure handlers can be lifted by defining the LTS a bit differently
(see Section 11). For the time being, we have decided against making this change in the
CTrees library because it represents too much added complexity for little benefit.

The former theorem links CTrees before and after interpretation. It can also be interest-
ing to compare alternative implementations of a handler for the same kind of event, e.g.,
different memory models for memory access events. In this case, we provide a theorem to
lift a simulation result on handlers to a simulation result on interpreted CTrees.

Theorem 2 (A simulation between handlers can be lifted through interp (#)).

e VY (h W : E~ ctree FB) t,(Ne,he Sh’e) = interp h t < interp W t.
e YV (h K : E~ statelT § (ctree F B)) t,(Nes,hes<h’es) = interp h t s <
interp W ts.

This theorem is presented here in the homogeneous case for simplicity, but we provide
it for heterogeneous simulations, thus the heavily parameterized Rocq statement of the
mechanized theorem. Note that unlike Theorem 1, we do not need any assumption on the
handlers or the trees.

7.2 Refinement

Interpretation provides a general theory for the implementation of external events.
Importantly, CTrees also support an analogous facility for the implementation of its Br
branches. In particular, one would typically use this process to shrink the set of accessible
paths in a computation—and, notably, determinize it—hence leading to a new computation
that refines by the original one. For this reason, we abusively refer to this process as the
refinement of its Br branches, and capture sufficient conditions to ensure that it defines a
computation simulated by the original one.

We provide, to this end, a new combinator, refine, defined in Figure 24. The definition
is very similar!” to interp, except that it takes as an argument a handler specifying how
to implement branches rather than external events into a monad M. The target monad must

17 In our development, interp and refine are defined as special case of a fold operator allowing for the
simultaneous implementation of both external events and nondeterministic branches.
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naturally still be iterative, able to provide a stuck state, and an observable tick, but must
additionally explain how it can re-embed an uninterpreted event (mtrigger )—a device
already used by Yoon et al. (2022).

Similarly to interp, it can be desirable to write handlers that refine only part of the
Br nodes. For instance, a CTree containing Br nodes for thread scheduling and other Br
nodes for random number generation can be refined to schedule the threads in a round-
robin way while not touching the Br nodes for random number generation. Note that this
was not possible in the original CTrees library (Chappe et al., 2023) because there was no
branching signature in the CTree type.

As hinted at by the combinator’s name, the source program should be able to simu-
late the refined program. Fixing M to ctree F B, this is expressed as V¢, refine h ¢ <t
However, one cannot hope to obtain such a result for an arbitrary h because it could imple-
ment branches with an observable computation that can’t be simulated by . We hence
prove this result for refinement handlers implementing branches in terms of finite pure
CTrees (W): finite-height CTrees that do not contain any Step or Vis node.

Lemma 7 (Finite pure refinements are proper refinements (#) ).

e Ve, he finite pure => Vt, refine (N := ctree ) ht<t

e Ves, hes finite pure = Vts, refine (M := statel _ (ctree

)) hts <t

Note that the second statement introduces a heterogeneous simulation (see Section 10.2):
the return types of the trees are not identical—the refined tree maintains an additional
state that we ignore.

Unlike interp, refine 1is typically nof a monad morphism. The CTrees
Br? (Ret 0) (Ret 1) and Br? (Ret 1) (Ret 0) are clearly bisimilar, but refining them by
always choosing the left branch of Br nodes gives, respectively, Ret 0 and Ret 1, which
are not bisimilar. This highlights the major difference between Vis and Br: Vis nodes rep-
resent external events whose response from the environment has a strong semantic value,
while Br nodes represent nondeterminism, with branches indistinguishable for sbisim.

7.3 Extraction

The shallow nature of CTrees also offers testing opportunities. Xia et al. (2019) describe
how external events such as IO interactions can alternatively be implemented in 0Caml and
linked against at extraction. Similarly, we demonstrate on ImpBr how to execute a CTree
by running an impure refinement implemented in 0Caml by picking random branches along
the execution.

In comparison with ITrees, the random execution of CTrees requires some care because
of the locally angelic nondeterminism of Br nodes. Indeed, the naive approach (#) of ran-
domly choosing a branch when encountering a Br node is not semantically correct because
of stuck branches: the semantics of Br* @ ¢ should be the semantics of . We provide a cor-
rect implementation run for the ImpBr example (#) that backtracks when it encounters a
stuck branch, as shown in Figure 25.
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let rec run t =
match observe t with
| RetF r -> print_int (int_of_nat r); true
BrF (_, k) —>
let b = Random.bool() in
if run (k (Obj.magic b)) then true
else run (k (Obj.magic (not b)))
| GuardF t -> run t
| StuckF -> false
| -> failwith "unreachable";;

let rec collect t =
match observe t with
RetF r -> [int_of_nat r]
GuardF t -> collect t
StuckF -> []
BrF (_, k) ->
collect (k (Obj.magic true)) @ collect (k (Obj.magic false))
| _ -> failwith "unreachable";;

Fig. 25. A random interpreter and a collecting interpreter for ImpBr, implemented in OCaml.

This fixed version still chooses Br branches randomly, but if it subsequently reaches a
stuck node (materialized by a false return value), it explores the other branch. Again on
the ImpBr example, we can define a collecting interpreter collect (see Figure 25) that,
given an ImpBr program, crawls its CTree to build the list of its possible return values.

We observe that these interpreters exhibit correct behavior on an example CTree ().
However, a limitation of the proposed implementations is that they may loop when given
a program with an infinite chain of Guard or Br nodes (e.g., the stagnate CTree from
Figure 6). If it reaches a stagnate, the random interpreter will loop on the Guard case
and never terminate. As for the collecting interpreter, it will always loop as it always
explores every branch of the CTree. For the random interpreter, performing a breadth-first
search instead of a depth-first search would solve this limitation. But this is not an option
for the collecting interpreter. Instead, the maximal exploration depth could be limited as a
workaround.

7.4 ITree embedding

We have used CTrees directly as a domain to represent the syntax of ImpBr, as well as
in the ccs case study (see Section 4). CTrees can, however, fulfil their promise sketched
in Section 2 and be used as a domain to host the monadic implementation of external
representations of nondeterministic events in an ITree.

To demonstrate this approach, we consider the family of events C and aim to define an
operator embed taking an ITree computation modeling nondeterministic branching using
these external events and implementing them as branches indexed similarly into a CTree.
This operator, defined in Figure 26, is the composition of two transformations. First, we
inject ITrees into CTrees by (ITree) interpretation. This injection rebuilds the original
tree as a CTree, where (because of the Guard-based definition of iter on CTrees) Step;
nodes have become Guard nodes and an additional Guard has been introduced in front of
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Definition inject {E} : itree E ~»ctree E := interp (1 e = trigger e).
Definition internalize {E} : ctree (C + E) B ~>ctree E (B + ) :=
interp (1 e = match e with | inll b = branchS b | inrl e = trigger e).
Definition embed {E} : itree (Choose + E) ~» ctree E :=
A _ t = internalize (inject t).

Fig. 26. Implementing external branching events into the CTree monad ().

each external event. Second, we internalize the external branching contained in a CTrees
implementing a C event, using the isomorphic stepping branch. The resulting embedding
forms a monad morphism transporting eutt ITrees into sbisim CTrees:

Lemma 8 (embed respects eutt (W)).  Viu, eutt t u = embed(t) ~ embed(u)

The proof of this theorem highlights how Step; nodes in ITrees (adding a subscript to
distinguish them from their CTree homonym) collapse two distinct concepts that nondeter-
minism forces us to unravel in CTrees. The eutt relation is defined as the greatest fixpoint
of an inductive endofunction euttF. In particular, one can recursively and asymmetri-
cally strip finite amounts of Step,—the corecursion is completely oblivious to these nodes
in the structures. Corecursively, however, Step,; nodes can be matched symmetrically—a
construction that is useful in exactly one case, namely to relate the silently spinning com-
putation, Step{’, to itself. From the CTrees perspective, it is therefore natural to think of
recursing in euttF as corresponding to the inductive case in the definition of the LTS: in
this sense, Step, nodes behave as Guard nodes. Semantically, however, restricting our-
selves to the deterministic case, i.e., where a CTree contains no Br nodes other than Stuck
and Guard, the process of substituting Guard nodes for Step nodes lead to a strongly
bisimilar computation.

Conversely, the corecursive case in eutt corresponds to both LTSs taking a syn-
chronous internal step: we are tempted to think of Step{ as corresponding to Step®.
However, here again, we have actually more lenience. Indeed, ITrees do not have a notion
of stuck computation,'® contrary to CTrees: it turns out that it is just as sound, in the sense
of Lemma 8, to map Step{ to Guard®, i.e., to Stuck.

In the embedding we present here, we have taken this latter choice: to see this, one
needs to unfold a couple of definitions. The internalize function relies on an interp that
consumes ITrees and produce CTrees. The behavior of this interp, when faced with a
Step;, is to consume it and recurse w.r.t. the notion of iteration provided by CTrees: as
introduced in Figure 5, this recursion is guarded by Guard.

In the proof of Lemma 8, the choice of embedding Step; into Guard materializes by
the fact that an induction on euttF leaves us disappointed in the symmetric Step; case:
we have no applicable induction hypothesis, but expose in our embedding a Guard, which
does not allow us to progress in the bisimulation. We must resolve the situation by proving
that being able to step in embed t implies that t is not Step?, i.e., that we can inductively
reach a Vis or a Ret node (¥).

18 Tt can typically be encoded as a nullary event, but this event is observable: such an encoding of stuck does not
refine an arbitrary computation.
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Limitations: on guarding recursive calls using Guard. We have shown that CTrees
equipped with iter as recursor and strong bisimulation as equivalence form an itera-
tive monad. Furthermore, building interpretation atop this iter combinator gives rise to
a monad morphism respecting eutt, hence is suitable for implementing nondeterministic
effects represented as external in an ITree.

However, we stress that the underlying design choice in the definition of iter, guarding
recursion using Guard, is not without consequences. It has strong benefits, mainly that
a lot of reasoning can be performed against strong bisimulation. More specifically, this
choice allows the user to reserve weak bisimulation for the purposes of ignoring domain-
specific steps of computations that may be relevant both seen under a stepping or non-
stepping lens—e.g., synchronizations in ccs—but it does not impose this behavior on
recursive calls. However, it also leads to a coarse-grained treatment of silent divergence:
in particular, the silently diverging ITree (an infinite chain of Step,) is embedded into
an infinite chain of Guard, which, we have seen, corresponds to a stuck LTS. For some
applications—typically, modeling other means of being stuck and later interpreting them
into a nullary branch—one could prefer to embed this tree into the infinite chain of Step to
avoid equating both computations. While one could rely on manually introducing a Step
in the body iterated upon when building the model, that approach is a bit cumbersome.

Instead, a valuable avenue would be to develop the theory accompanying the alter-
nate iterator mentioned in Section 5.3 and guarding recursion using Step. Naturally, the
corresponding monad would not be iterative with respect to strong bisimulation, but we
conjecture that it would be against weak bisimulation. From this alternate iterator would
arise an alternative embedding of ITrees into CTrees: we conjecture it would still respect
eutt, but seen as a morphism into CTrees equipped with weak bisimulation. The devel-
opment accompanying this paper does not yet support this alternate iterator, we leave its
implementation for future work.

Currently, the user has the choice between (1) not observing recursion at all, but getting
away with strong bisimulation in exchange, (2) manually inserting Step at recursive calls
that they chose to observe. With support for this alternate iterator, the user would be given
additional option to (3) systematically tau-observe recursion, at the cost of working with
weak bisimulation everywhere.

8 Case study: Modeling cooperative multithreading

Through the previous sections, we have used CCS to illustrate the use of CTrees. As a
second case study, we now consider cooperative multithreading. Cooperative scheduling
is used in languages such as Javascript, async Rust, or Akka/Scala actors, but is also a very
general model, as preemptive multi-tasking is equivalent to cooperative scheduling where
threads are willing to yield (i.e., let other threads run) at any time.

We extend the syntax of imp with two additional constructs:

comméskip | x:=e | cl;c2 | whilebdoc | forkcl c2 | yield

The command fork cl c2 forks the current thread into two, running, respectively, c1
and c2. Importantly, the thread running ¢2 retains control, and the one running c1 will only
get a chance to execute affer c2 voluntarily yields control, or terminates. This yielding of
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control is achieved by the yield statement, which signals that the current thread suspends
its execution and lets a new thread be scheduled—possibly the same one again.

This semantics implements a mechanism akin to the fork system call, which duplicates
the current process, but without a possibility for joining threads. For example, the program

(fork (x::=1) (yield; x::=2)); yii=x

forks two copies of the program, with the “main” thread immediately yielding, allowing
for either thread to run next. Its semantics is to first spawn a thread for x::= 1, then have the
main thread reach the yield, giving x::= 1 a chance to run. Assuming the spawned thread
goes next, it runs in sequence x::= 1 and y::= x, after which the main thread recovers
control and finishes its execution. y::= x is part of both threads and is thus executed twice,
after each assignment to x.

Alternatively, some cooperative scheduling languages (Abadi & Plotkin, 2010) consider
a spawn operator that simply spawns an independent thread: we can encode this behavior
in several ways. Notably, if spawn always occurs in tail position, there is no continuation
to duplicate. For instance, the program

fork (x::=1) (fork (x::= 2) skip)

spawns two threads that set x to different values, and terminates. The two spawned threads
can then be scheduled in either order, resulting in x =1 or x =2 in the final state. This
constraint could be syntactically enforced in the language if relevant. Alternatively, one
can use the command while frue do yield! to “terminate” a thread; for instance to
prevent the first thread above from reaching y::= x. With fancier encodings using reserved
shared-variables, nested “joins” and other synchronization operations can be modeled. In
this case study, we do not concern ourselves with such extensions and restrict ourselves to
the formalization of the syntax described above.

8.1 Model

The model for ImpBr, described in Section 2, was defined in two stages: a represen-
tation into a nondeterministic CTree with interaction with memory, and then a stateful
interpretation. We proceed this time in three stages: a representation into a determinis-
tic CTree with concurrent interaction represented as external events, a scheduling pass
introducing nondeterminism by interleaving all the valid executions, and finally a stateful
interpretation.

Representation. First, we represent statements as computations of type
ctree (YieldE + ForkE + MemE) voidB unit. At this stage of representation, they
are modeled as deterministic computations,”’ as highlighted by the use of the empty
interface voidB for branches. The computation can however perform events from two
additional signature, namely yielding and forking:

19 Or more elegantly, introduce block in the language.
20 We could have alternatively used ITrees as semantic domain at this stage.
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Variant YieldE : Type — Type := Variant ForkE : Type — Type :=
| Yield : YieldE unit. | Fork : ForkE bool.

Yield carries no additional information and acts purely as a signal to yield control, and
Fork introduces a binary branch in the CTree, allowing us to store the asynchronous thread
in one branch and the main thread that continues running in the other branch. These events
are used to represent the corresponding statements:

[yield] £ trigger (Yield)
[forkcl c2] & b < trigger (Fork) ;; if b then [c1] else [c2]

The remaining of the representation is entirely standard. We write [p] the representation
of p.

Interleaving. The model’s second pass makes explicit the nondeterminism implicitly
induced by the Fork events (extending the thread pool) and the Yield events (nondeter-
ministically picking a new active thread to schedule). At a high level, our goal is hence to
write a function:

schedulel: ctree (YieldE + ForkE + MemE) voidB unit — ctree MemE Bn unit

where Bn allows arbitrary finite branching—at run time, we may pick an identifier out of
the current pool set, i.e., out of an unbounded finite set.

This combinator, like in the case of parallel composition for ccs, cannot be simply
defined via interp. We hence craft this function by co-recursion, but need to generalize it
first to this end. Let us pose a couple of definitions:

Variant SpawnE : Type — Type := | Spawn : SpawnE unit.
Notation thread := ctree (YieldE + ForkE + MemE) voidB unit.
Notation prog := ctree (YieldE + SpawnE + MemE) Bn unit.

We introduce an external event Spawn containing no information that we will use to keep
track of points where a fork happened. We write thread as a shorthand for the datatype
of represented threads, i.e., intermediate, deterministic, models of pieces of code that have
not been scheduled yet. In contrast, we write prog for the second semantic domain we aim,
the datatype of already scheduled (and therefore nondeterministic) computations.

Our updated goal is therefore to craft a cofixpoint:

schedule n (pool: fin n — thread) (curr : option (fin n)): prog,

where n is the arity of the current set of threads left to interpret, and curr is the index of
the thread currently under focus, if any. The result is a scheduled computation, i.e., a prog.
Once we have this function, we shall define our second stage of interpretation by simply
starting with the singleton thread pool:

Definition schedulel t := schedule 1 (A _ = t) (Some F1)

Figure 27 defines the function formally.?! We write v, for a vector of size n, and vec-
tor operations for removing the i-th element as v[—i], updating the i-th element to x as
v[i — x], and adding an element x to the front as x:: v (so x is the new 0-th element in

2l The implementation relies on Sozeau & Mangin (2019)’s Equations library given the heavy reliance on
dependent pattern matching on vectors.
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schedule vq |-]
schedule v, |-]
schedule v, |i]

ret ()
Vis Yield (branch, (di-schedule v, [i])) forn>0

[ 1

if v[i] = then

ret () Guard (schedule v[—i],-1 |-])

Guard t Guard (schedule v[i— t], i])
Step t Step (schedule v[i 1], |i])
Stuck Stuck

Vis Yield k Guard (schedule v(i—k ()], L-])
Vis Fork k Vis Spawn (1__ - schedule (k true ::v[i — k false])n1 i +1])

Visek Vis e (Ax - schedule (v[i— k x]), i])

Fig. 27. The definition of schedule (#).

the resulting vector). The traditional constructors of the option type None and Some v are
written respectively |[-]and |v]. References to schedule in its body should be interpreted
as corecursive calls—we abuse notations to lighten the presentation.

The first two cases cover the situation where no thread is active, i.e., the second argument
is |-]. If the thread pool is empty, the computation simply terminates. Otherwise, it picks
a thread to be scheduled: a Yield event is inserted, followed by a branching node of arity
the cardinality of the thread pool, and sets the chosen thread active.

If there is an active thread, |i], the schedule makes progress in that thread, analyzing
the corresponding tree in the pool. If the active thread has terminated, it is removed from
the pool, and out of focus. Guard, Step, and memory event nodes are simply kept, the
active thread updated, and scheduling continues without changing focus. A stuck thread
blocks the whole computation. The remaining cases correspond to events and in particular
concurrency events.”? The Yield nodes are substituted for an invisible Guard, and remove
the current focus—the event is hence reintroduced right after in the focusing rule. The Fork
nodes are replaced by a simple unary Spawn marker, and corecursion occurs over the vector
extended with the new thread, and the updated thread that stays under focus (note that this
shifts the active thread from index i to i 4 1).

The acute reader may wonder why we keep Yield and Spawn events in the prog datatype
since they do not contain any data. And indeed, we follow this scheduling process by an
interpretation phase simply removing these events. However, they offer an intermediate
semantic domain at which less programs are equated, but where there are more contexts
inside which program equivalence is preserved: intuitively, equivalent programs are known
to yield at the exact same points. We illustrate on an example the distinction between
both equivalences in Section 8.2; leveraging this intermediate model to strengthen the
language’s equational theory is left for future work.

We write S[p] = schedule [p]; |-] : ctree (YieldE + SpawnE + MemE) unit and S[[p]] :
ctree MemE Bn unit the resulting tree after clean up of the Yield and Spawn events.

Stateful interpretation. Remains only to interpret the memory events. No difficulty
remains, as already informally described over ImpBr and formalized in Section 2.1, we

22 Note that the typing of thread rules out statically the Br case, which simplifies greatly the proof of the
meta-theory of schedule.
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can simply use the generic facility for stateful interpretation over CTrees. The resulting,
final, semantic domain is therefore stateT mem (ctree voidE Bn) unit.

Scheduling and Extraction. Yielding models execution points where the control is handed
back to the scheduler that gets to pick the next thread. The nondeterminism in the model
accounts for the fact that we are at a level of abstraction where we do not have any control
on the scheduler: programs should be safe against an arbitrary scheduler. We do not go fur-
ther in this case study, but we observe that the refine operator studied in Section 7.2 can
be used to reduce the set of supported schedulers, and in particular to provide a determin-
istic one, resulting by extraction into a deterministic executable interpreter. Alternatively,
one can extract the model as is, and implement a scheduler directly in OCaml. We refer to
Chappe et al. (2025c¢) for a larger case study on modeling shared memory concurrency with
CTrees that notably features the implementation of simple schedulers and the extraction of
the model for testing purpose.

8.2 Equational theory

The model described in Section 8.1 allows us to derive some program equivalences at
source-level w.r.t. weak bisimilarity of their models. For example, the following pro-
grams all just run ¢, though some of them first perform some “invisible” steps related
to concurrency (¥):

S[fork ¢ skip] ~ S[yield; c] ~ S[c]

We emphasize that these equations are not compositional, they only hold in the absence
of additional concurrent threads, hence when yield behaves as a noop. Indeed, when
another thread is running, in the program in the middle yield lets the other thread run first,
whereas the right program immediately runs ¢ and only lets the other thread run afterward.
In contrast, we conjecture that the monadic equivalence between S[-] representations is a
congruence, albeit we have not proved it formally at the moment. Indeed when scheduling
events are observable, only programs that allow thread interleaving to occur at the same
time can be considered equivalent.

Other equations, especially ones that make use of multiple threads in nontrivial ways,
rely on the stability of schedule under sbisim:

Lemma 9 (schedule preserves ~ (W)). If the delayed branches of every element of vectors
v, and wy, have arity less than 2, and the elements of both vectors are strongly bisimilar
up to a permutation p, then schedule v, |i] ~ schedule w, | p i].

The arity requirement is satisfied by all denotations of programs in this language. This
condition greatly simplifies the proof by constraining the shape that the strongly bisimilar
CTrees can take.

Lemma 9 allows us to permute the thread pool, which is useful in examples such as (#):

S[fork cl (fork 2 skip)] &~ S[fork 2 (fork cl skip)]
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This program spawns two asynchronous threads then yields control to one of the two. This
equivalence captures the natural fact that it does not matter which thread is spawned first,
since neither can run until both are spawned.

Furthermore, Lemma 9 allows us to validate some simple optimizations that do not
directly involve reasoning about concurrency or memory, such as (#):

S[fork cl (fork (while frue do yield) skip)]
~ S[fork (yield; while true do yield)(fork cl skip) |

Here, one of the spawned threads is a while loop, which we wish to unroll by one iteration.
Crucially, the loop and its unrolled form are strongly bisimilar, so this equivalence follows
from Lemma 9 just as in the previous example. Other optimizations that can be done before
interpreting events, such as constant folding or dead code elimination, can be proven sound
similarly.

Finally, equivalences involving memory operations are still valid as well (#):

fork (x:=2) (xi=1)=x1:=2

where = here refers to equivalence (= in this case) after interpreting both concurrency
and memory events. This result follows from the result in Section 7.1, which allows us
to transport equations made before interpreting state events into computations in the state
monad after interpretation.

9 Reasoning on a Br-aware LTS

In some cases, (bi)simulation proofs that involve Br nodes can be unwieldy. Recall from
Figure 6 that stagnate is defined as an infinite chain of Guard nodes. Since it can take no
transition, it is semantically equivalent to ¥, and one may therefore consider proving that
it refines any computation: V¢, stagnate < ¢. In order to prove this property, we could of
course simply apply the rule ss_stuck, but in order to build intuition about the problem
at hand, let us try to proceed by coinduction, using the rules from Figure 20.

F Vi, stagnate < ¢

coinduction

Vt, stagnate Rt - V¢, stagnate Sg t

fold
=V, stagnate Rt F Vz,Guard stagnate Sgt

&ard_l Vt, stagnate Rt - Vi, stagnate Sg t

After initializing the coinduction, we can unfold one iteration of stagnate and use the
relevant proof rule to remove the Guard, leading back to the original state. However, this
process did not give access to the coinduction hypothesis: similarity asks of us to draw a
transition in the LTS! Rather, in the middle of our game, we need to proceed by induction
over the transition considered—in this case to realize there is no such transition, but more
generally to capture enough information on the states that can be reached by a transition.

This need for inductive proofs is not surprising, as the definition for the transition rela-
tion (Figure 15) is inductive itself. While in this simple example, it is manageable, it
becomes extremely painful in more complex theorems that require proper nesting of coin-
ductive and inductive reasoning, including many results established on iter and interp
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from Section 7. In particular, the proof of Theorem 1 was very convoluted in Chappe ef al.
(2023) and was lacking in generality. The current version of the proof is much simpler and
more general thanks to the theory that will be developed in the present section.

This need for nested coinductive and inductive reasoning is actually quite common in the
realm of weak (bi)similarity defined as strong bisimilarity on weak transition systems (van
Glabbeek, 1993; Sangiorgi, 2012). Consider the standard case of weak bisimilarity: a natu-

ral definition is to state it as strong bisimilarity over the weak LTS where ¢ — b is defined

asas 55 bforl # 7. The challenge quantifying on inductively reachable observable
transition leads to a similar proliferation of undesired inductions. In this case, the standard
solution is to observe that the same relation can be generated by an asymmetric game over
the strong LTS—a solution which we indeed follow ourselves in our definition of weak
bisimilarity of CTrees (see Section 10.3).

We follow a similar intuition, albeit adapted to our non-standard setup. In Section 9.1,
we first introduce a straightforward alternative characterization of strong similarity of
CTrees. We then do the same for strong bisimilarity in Section 9.2: this characteriza-
tion turns out more challenging, requiring a definition by mutual coinduction that we dub
intertwined bisimilarity.

9.1 Alternative characterization of CTree similarity

Our definition of strong bisimilarity is based on a completely standard strong simulation
game (see Definition 3), and we have established convenient proof rules and up-to prin-
ciples over it. However, it is defined on an LTS that bears some distance to the CTrees
data-structure itself: all the Br nodes are skipped/collapsed. An unfortunate consequence
is that we cannot reason at the level of the simulation on these Br nodes, as they do not
even appear in the LTS. In this section, we alternatively consider LTSs in which Br nodes
generate a special € transition, and define a fitting simulation game that “ignores” these €
transitions.

In the following, we refer to this new LTS as the €-LTS, or explicit LTS, and to the
original one as the implicit LTS. Figure 28 shows the definition of the €-LTS: it is no
longer inductive, each syntactic node in the CTree maps to transitions to its children in
the LTS.? For instance, Figure 29 depicts the explicit LTS for the example CTree u from

Section 5.5. We observe that given a CTree ¢, it admits an implicit transition ¢ — ¢ if and

only if it admits an explicit sequence of transitions ¢ <4 ¢, where <4 is a shorthand for
sS4

Working over this €-LTS, one must be careful about terminology: we seek to redefine
strong similarity (meaning, strong w.r.t. T transitions), but will treat € transitions weakly in

doing so. Figure 30 recalls the simulation game ss introduced in Section 5.4, but spelled

. . iy I
out from the perspective of the €-LTS. We write t <> u for € transitions and ¢ — u for
other transitions. This simply makes it explicit that the simulation challenge we have been

23 For historical reasons, this LTS is not explicitly defined in our Rocq development, but rather baked in the
definition of the alternative simulation game. Making it explicit would make many Rocq definitions described
in this section cleaner and closer to the definitions in this paper, but it has no consequence on the theory: we
leave this refactoring for future work.
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label2 € | tau | obsev | valv

Bk Skv Guardt 5t Steptfiu—n Vise k 5% 1y

val v
Retv ——0

Fig. 28. Inductive characterization of the alternative €-LTS induced by a CTree. The Br and Guard
cases differ from the original LTS.

t u
)
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—
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Fig. 30. The simulation game and bisimulation half-game t <% u, in the €-LTS.

considering may involve an arbitrary number of € transitions before reaching an observ-
able label, which is indicative of a flavor of a weak simulation game, defined as a strong
simulation game over a flavor of a weak transition system. And as illustrated in the toy
example proof above, the awkwardness in the game translates in the proof system: consider
Figure 20, the proof rule for Br does not unlock the coinduction hypothesis.

We can now provide a definition of strong similarity of CTrees that is equivalent to
ssim, while avoiding its drawbacks: Figure 31 depicts the corresponding game.

Definition 6 (Simulation for CTrees on the explicit LTS (#)). The progress function ss’
Jfor similarity over the explicit e-LTS maps a relation R over CTrees to the relation such
that ss' R t u (also noted t S u) holds if and only if:

! x
Vit l#e t>7 = {RuAuZ>d
Ve, tS ¢ =W R AuS .

Similarity, written t <' v, is defined as the greatest fixpoint of ss': ssim’ £ gfp ss'.
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Fig. 31. The two cases of the simulation game t </, u.

The key to the definition of this new game ss’ is to distinguish apart e-transitions as a
special kind of challenge. While other transitions are handled as in the original definitions,
€ transitions can be answered by any number of € transitions, possibly 0.

Our definition is very close to the standard notion of weak simulation Sangiorgi (2012).
The definition of CTree simulation on the explicit LTS has two subtle differences: it is
weak with respect to € transitions instead of 7, and the answer to the non-epsilon challenge

is different. Usually, classical weak simulation involves ﬁn but Definition 6 does not
allow e transitions after the / transition. This is to match the semantics of the original
CTree transition relation (Figure 15), which inductively skips Br nodes until it reaches a
productive node, and stops just after. This slight difference is of no consequence on the
greatest fixpoint: ssim’ could equivalently be defined as the greatest fixpoint of either of
these simulation games.

Crucially, we prove that both definitions of similarity coincide:

Theorem 3 (Equivalence of the two notions of similarity (#)).

Viu, t Su<+= t<'u

All the proof rules for ss are also proved valid on ss’, and more powerful rules are valid
for Br and Guard nodes. But crucially, consuming a Guard node now unlocks the coin-
ductive hypothesis, alleviating the need for a nested induction encountered when working
with ss.

t <rp u tRu
———— (ss_guard_1) —— (ss’_guard_1)
Guardt <g u Guardt < u

The up-to-bind and up-to-equ principles are valid for ss’. However, the up-to-sbisim
principle that allows rewriting top-level strongly bisimilar terms is no longer valid. Indeed,
rewriting using the theorem sb_guard : Guard t ~ t would allow introducing a guard
node and coinductively removing it using ss’ _guard_1. This echoes the classical result
that weak (bi)simulation is not valid up-to weak (bi)simulation when presented as gener-
ated by the asymmetric game. Fortunately, it is still possible to strip Guard nodes using a
dedicated up-to principle:

&7 RE((x,y) |3V, y S YV AxRY)

This up-to principle is used to recover asymmetric Guard- and Br-stripping proof rules
for the right-hand side of the simulation.
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Br? Br? Br? Br?
/N /N /N /N

Ret 0 Ret 1 Ret 2 Ret 3 Ret 0 Ret 2 Ret 1 Ret 3

Fig. 32. Two bisimilar CTrees that motivate the definition of intertwined bisimilarity.

Lemma 10 (Enhanced coinduction for <'). The functions REFLY? (#), BIND(S) (W),
€ (W), ss (W), and UPTOY (=) (W) provide valid up-to principles for </'.

Another interesting new up-to principle is ss, the original strong simulation game. In
fact, it is more than an up-to principle. At any point during the proof of a ssim’ simulation,
we can perform a regular ss step instead of an ss’ step. This is because an ss step always
corresponds to one or more ss’ steps. To state this fact formally, we have to leak the
implementation details of our relations in terms of tower induction:

Lemma 11 (ss is a sub-chain of ss' (®)). Given R : Cyy, i.e., a chain for ss', the following
implication holds.

Ytu, ss Rtu = ss Rtu

With our alternative characterization of CTree simulation, we can now revisit our moti-

vating example from the header of this section and conclude via a coinductive proof
().

F Vt, stagnate < ¢
& Vi, stagnate <' ¢

coinduction

&——=Vt,stagnate Rt I Vt, stagnate < t

fold
&= Vi1, stagnate Rt I V¢, Guard stagnate <p t

s’ d_l
vy, stagnate Rt V¢, stagnate Rt

9.2 Alternative characterization of CTree bisimilarity

Naturally, we want a similar improvement for strong bisimilarity. However, while the solu-
tion in the case of similarity turned out to be a fairly standard recipe, bisimilarity calls for
more inventiveness. Indeed, bisimulation games are usually defined as the intersection of
a simulation game and its symmetrized version—that was the case for the bisimulation
game in Section 5.3. However, this would not work for the game on the €-LTS. Consider
the CTrees in Figure 32. They are bisimilar since they have the same available transi-
tions, (val i) forie {0, 1,2, 3}, to the empty state. But a naive symmetrization of <’ (by
intersecting two half games) would require an € challenge to be matched by exactly one €
transition (as it would essentially amount to defining a standard weak bisimulation w.r.t.
€), which is not possible in the example. No matter which branch of the left CTree is taken,
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there is no branch in the right CTree that is bisimilar with the intermediate node. Hence,
this definition would be too strong.

Rather, we define bisimulation over the €-LTS as two mutually coinductive relations:
intuitively, one for the left half-game and another one for the right half-game. The inter-
section of the greatest fixpoints of these relations gives the bisimulation relation. We
dub this notion intertwined bisimilarity, to emphasize that it is an intersection of two
interdependent simulation relations. This construction is reminiscent of coupled simula-
tions (Parrow & Sjodin, 1994; Sangiorgi, 2012), which is defined as a pair of simulations
and a coupling relation between them, though the principles are not comparable. To our
knowledge, mutual coinduction has been used before as a key proof device in the context
of applicative bisimilarity (Levy, 2006), but never in an actual definition of bisimulation.

To define formally intertwined bisimilarity, we define the pair of games we consider by
indexing them by a boolean, encoding which half we are currently participating in. While
the games encountered so far were monotone functions over binary CTree relations, ~ is
a monotone function over ternary bool * ctree * ctree relations R. In the following,
we note R; for the left simulation R true, R, for the right simulation R false, and Ry,
for the intersection of R; and R,.

Definition 7 (Bisimulation for CTrees on the explicit LTS (#)). The progress function sb’
for similarity over the explicit e-LTS maps a relation R over a boolean and two CTrees to
the relation such that

o sb' R truet u (also noted ~’Rl) holds if and only if:

! *.]
Vit l#e, t—>1 =3 . ¢ Ry Au>u
YV, 1S = AR Ausd
o sb' R false t u (also noted ~1, ) holds if and only if:

! *.]
Vi, l#£e, u—u =3 { Rpu Nt >7
Vil, us>u =W IR uUAtS T
The bisimulation relation t ~' u is defined as Vside:bool, (gfp ~() side t u. The

“Vside” is critical as it requires a CTree pair to be both in R; and R, to be considered
bisimilar.

This definition is similar to the one of </, (Definition 6), but the € case in the bisimu-
lation left (resp. right) half-game has a weaker conclusion: it only leads to the left (resp.
right) half-relation. When the head of a CTree is an € node, both the left and right half
games need to be played (possibly several times) to get back to R; N'R,.

Intuitively, tN/R, u means that u can simulate one step of ¢ (possibly skipping € transi-
tions before reaching the matching transition), and the resulting ¢ and «’ are bisimilar (in
~'z,)- In case ¢ admits an € transition, the u side can answer with any number of € transi-
tions, or no transition at all. Symmetrically, 7 ~7, u means that 7 can simulate one step of u
(possibly skipping € transitions before reaching the matching transition), and the resulting

¢ and u’ are bisimilar (in N/Rzr)' The name intertwined bisimulation comes from the fact
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Fig. 33. The four cases of the intertwined bisimulation game t NIR; u. Note that the left and right
half-games are symmetric, with R; and R, swapped.

Vv, (k)R (k' v)

Vis e /(r»,’?, Vise k'
,

Vx, (kx)Rju

b ’
Br k~R1u

Vx, t R, (k x)

Ret v~;, Retv
Ris
. t~5 Br’ k

(Y, Ty, (kx)~p, (K ANy, 3x, (kx)~p, (K 3) W, (k)R (K v)

Br? k~g, Bre k'

tRiy u

Guard 7~ Guard u
1r

(Vx, 3y, (kx)R (K" y)) A(Vy,3x, (kx)R (k" y))

BrP k~7'€1r Brl k'

tRiru

Step I~R, Step u

’
R

Vv, (kv)Ry (k' v)

b c 1.7 b b g
Brg k “Ri Brg k Brg k R Brg k

Fig. 34. Proof rules for coinductive proofs of ~' (#).

that R; and R, can go separate ways when encountering € transitions, but converge back
together when there is another transition.

For readers familiar with ITrees (Xia et al., 2019), our boolean parameter may evoke a
proof device that was used in the definition of eqit, a coinductive relation parameterized
by two booleans. However, the point of the booleans in eqit was to factor out four similar
definitions of simulation and bisimulation (eutt, etc.). In this context, the booleans were
outside the greatest fixpoint, while our boolean is not fixed, it is part of the coinduction
domain and does evolve during a coinductive proof. Freely stuttering simulation Cho et al.
(2023) is another case of an extension of a coinductive domain in an ITree-adjacent setting
that will be discussed in Section 11.

The main proof rules for intertwined bisimulation are shown in Figure 34.* The ones
related to Guard and Br are more powerful than the sb rules, and the other ones (greyed
out) are equivalent.

As usual, various up-to principles are valid, but this time R is not a binary but a ternary
relation (because of the additional boolean). For each of the up-to principles proved for <’
in Lemma 10, we proved the validity of a ternary counterpart for ~'.

24 Note: for technical reasons, the rules involving Brg nodes are only valid when the relation R is an element of
the chain Cy;. This is completely transparent, as we never consider any other relation.
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t U t U
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R : R E*J‘l

€ e l U1
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R RNR°

Fig. 35. The two cases of the homogeneous alternative bisimulation game 7 ~/, u. R° represents
the converse of R.

Lemma 12 (Enhanced coinduction for ~'). The up-to reflexivity (W), up-to equ (W), up-to
bind (W), up-to ss (W) and up-to epsilon (W®) principles are valid for ~'. A new up-to
negated symmetry NSYMy' principle is also valid (#).

NSYMYR = {(b,x,y) | R—byx}

The up-to negated symmetry principle is a ternary variant of the standard up-to symme-
try principle. It swaps two CTree operands of a relation and negates its boolean, because
after swapping the operands, R; and R, become inverted.

Again, a major result on this alternative characterization of bisimilarity is its equiva-
lence with the bisimilarity previously presented in Section 5.3. Interestingly, the theorem
statement can be split into a result on the left and right halves of ~'.

Theorem 4 (Equivalence of the two notions of bisimilarity (#)).

Viu, t ~u &=t~ u
Vtu, ss (sbisim t u) < gfp ~[ truetu
Vtu, ss (sbisim u t) <= gfp ~ falsetu

We have presented alternative characterizations of similarity and bisimilarity in the
homogeneous case, but as with most definitions of Section 5, we implemented them in
Rocq with support for heterogeneous relations (see Section 10.2). In fact, in the homoge-
neous case, the bisimulation game of Figure 33 degenerates to a simpler game (Figure 35)
that does not rely on mutual coinduction, nor a ternary relation with a boolean. This simpler

game stems from the observation that an homogeneous R verifies R btu <= R —but
().

10 More notions of equivalence and refinement for CTrees

Section 5 extensively studied strong bisimilarity, strong similarity, and their equational
theory. The aim of the present section is to demonstrate that the CTree data structure is not
limited to these relatively simple notions and that more involved notions of equivalence or
refinement can be modeled in a similar way.

Section 10.1 defines a deadlock-sensitive notion of similarity, complete similarity.
Section 10.2 shows how our notions of program comparison generalize to allow relat-
ing programs with different return types or signatures. Section 10.3 describes observations
and preliminary results for weak bisimilarity. Numerous other equivalences or refinement
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Fig. 36. The complete simulation game 7.

relations exist in the literature (e.g., branching bisimilarity or stutter bisimulation); we
believe most of them can easily be expressed over CTrees.

10.1 Complete similarity

Section 5.4 introduced strong similarity, a standard notion of program refinement. This sec-
tion studies complete similarity, a slightly more complex notion of similarity that behaves
better in presence of stuck LTSs.

A well-known limitation of similarity is its deadlock-insensitivity: it directly follows
from the definition of the simulation game that a stuck LTS is simulated by any LTS, and
we have indeed a corresponding proof rule in Figure 20.

In many applications, when stating that a program or process p refines a non-stuck pro-
cess ¢, we mean to prove that p exhibit a nonempty subset of the behaviors of ¢, which
strong similarity therefore fails to capture. Several notions of similarity tackle this limita-
tion (see for instance Chapter 6 of Sangiorgi, 2012). This section is dedicated to complete
similarity, an intuitive answer to this problem. Concretely, a complete simulation game is
defined like a simulation game, with the additional constraint that if either LTS is stuck, the
other one should be too. Figure 36 depicts graphically the following complete simulation

. i . .
game. In these rules, we write t — for 3/ ¢, ¢ — ¢, i.e., t is not stuck.

Definition 8 (Complete simulation for CTrees (W¥)). The progress function css for com-
plete similarity maps a relation R over CTrees to the relation such that css R t u (also
noted t <% u) holds if and only if

(ss Rtu) A(if u— thent—)

Complete similarity, written t <€ u, is defined as the greatest fixpoint of css: cssim =
gfp css.

The coinductive proof rules for complete simulation are depicted in Figure 37. The proof
rules are basically the same as with ssim, with conditions to ensure that a CTree does not
become stuck after taking a step. Note, however, that in cases where a node is matched
against the exact same node, no additional condition is enforced. Cases that are identical
to the rules for ssim are grayed out in the figure.

The up-to principles that are valid for ssim are also valid for cssim, except the up-to
bind principle. We define a more restrictive up-to principle for complete similarity that
requires the continuation not to be stuck.

BIND!”(EQUIV) R L{x>s=k,y>=I) | EQUIVXyAYu,R(kv) (I v)Akv—)}
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Ret \'gf\;Ret v
vy, (kv)R (K" v) VxeX, (kx)sSu inhabited X Iy, 155K y) 11—
Vise ksSVise K Br? ks%u tsgBrb k'
Vx, 3y, (k x)sg(k'y) x, kx— Vv, (k \')S;\;(/\" V) /S(Rﬂ u
Br? ks,,gBrC k' Br /;g,gb’r/’ k' Guard rsf\,vGuard u
tRu Vx € X,3y, (kx)R (k" y) inhabited X Vv, (kv)R (k" v)
Step rggStep u Brg kscBrg’ kK’ Brf /\'g,gb’rg kK’

Fig. 37. Proof rules for coinductive proofs of cssim (#).

Lemma 13 (Enhanced coinduction for cssim (#)). The functions REFL'?, TRANS",
BINDYP(<C) (W), UPTO(Z) (W) and UPTO"(~) (¥) provide valid up-to principles for
cssim.

10.2 Heterogeneous (bi)similarity

Throughout this paper, we have defined various relations for comparing programs which
essentially match transitions with identical labels—with the exception of weak bisimilarity
that we have briefly mentioned, and come back to in Section 10.3. From the perspective of
program verification, this is insufficient: val v labels may carry in v the memory configu-
ration of our language, and we may need to express nontrivial relational invariants between
such configuration, rather than enforcing equality.

The ITree library has had this notion since its inception, parameterizing their equiva-
lence, eutt, by an arbitrary relation on leaves. When dealing with some more advanced
reasoning, one may even wish to relate distinct external events. This led Silver et al.
(2023) to introduce over ITrees the rutt relation in order to express security invariants—
Michelland ez al. (2024) have also made crucial use of this facility to relate concrete and
abstract events to prove the soundness of abstract interpreters.

Although we have omitted for conciseness these details through our presentation, our
library supports a similar generalization for all the relations we have introduced. In our
setting, we recover immediately the full generality of rutt by parameterizing the relations
by an arbitrary relation £ on labels. As an example, we reproduce below our definition of
strong bisimilarity, and the other ones are generalized the same way.

Definition 9 (Bisimulation for CTrees, with arbitrary relation on labels (#®)). The progress
Sfunction sb L for bisimilarity maps a relation R over CTrees to the relation such that
sb L R s t holds if and only if:

1 r
Vit,t=>¢ =AU {RUNILINu—U
and conversely

1 !
Vi, u—u = AW {LRUANILINt—>T
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Bisimilarity w.r.t. L, written t~,u, is defined as the greatest fixpoint of sb L:
sbisim £ £ gfp (sb L).

Many of the proof rules, up-to principles, and theorems (in particular, Theorem 2) intro-
duced in the previous sections are generalized to this setting and can be used seamlessly
in presence of such a heterogeneous relation on labels. The most interesting rule to extend
is the bind rule. In terms of usefulness first, it becomes a very general cut rule allowing
for the introduction of an intermediate relational invariant on the values returned by the
first parts of the computations. In terms of statement second, where we must be careful
to introduce the necessary machinery to allow for this update to the val - of the relation,
while maintaining a consistent view on the other labels.

A class of L relations is of particular interest: relations between labels that lift a rela-
tion V of type X — Y — Prop between return values (#). Such a relation 1V of type
ctree E B X — ctree E B Y — Prop coincides with equality for obs and tau labels and
relies on the V relation for comparing val labels of possibly heterogeneous types. This is
useful for comparing CTrees that are semantically related but typed differently.

10.3 Weak bisimilarity

Weak bisimilarity is a bisimilarity relation that ignores silent steps (called t steps). It is an
equivalence relation where programs are considered equivalent if they differ only in their
number of finite T steps. Weak bisimilarity, written s & ¢, is derived from the definition of
the weak transition (#). We will not detail our formal definition of weak bisimulation: it
is based on the standard asymmetric game (see for instance Chapter 4 of Sangiorgi, 2012).

We first define the traditional weak transition s = t on the LTS that can perform tau
transitions before or after the / transition (and possibly no transition at all if / = 7). This
part of the theory is so standard that we can directly reuse parts of the development for ccs
that Pous developed to illustrate the companion (Pous, 2024b). Weak bisimilarity enjoys
additional equations compared to sbisim (see Figure 18): Step nodes can be ignored, and
Bry is therefore properly idempotent. Crucially, however, it is still not associative.

Step t~t Britt~t Bri t (Bryuv)# Brs (Bratu) v

Our library currently offers restricted support for weak bisimilarity. This situation stems
in part by needs: existing applications of CTrees, including the examples in Sections 4
and 8, but also the artifact of Chappe et al. (2025¢) have so far only leveraged strong
bisimilarity. While in the case of ccs it is naturally only a matter of having not pushed
the development of the case study further, the two other examples are more interesting: by
using Guard in corecursive definitions and careful definitions of the models, strong bisim-
ilarity appears to be sufficient to recover a satisfying equivalence. This is partly explained
by the fact that Br nodes exhibit a form of weak behavior w.r.t. strong bisimilarity.
Section 9.1 will expand on this perspective.

But our limited support for weak bisimilarity also comes from interesting technical
challenges. As is well known in the field of process algebra (Milner, 1989, p.152), weak
bisimilarity can be unwieldy. Specifically, it is not a congruence for the + operator of ccs
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(see Section 4) and of the w-calculus, of which the CTree Br nodes can be seen as a direct
generalization. This has several consequences in the CTree setting. First, unlike strong
bisimilarity, weak bisimilarity is not a congruence for Br: we cannot define a general proof
rule on the same model. Furthermore, the up-to bind principle is not verified in the general
case either, as it would, with well-chosen CTrees, imply the former result.

Example 1 (Counter-example to the &~ up-to bind principle). Consider the CTree t and the
continuations k and k' below. We havet ~ t, k true X~ k’ true, and k false Xk’ false;
yet, we do not have t >=k~t>=1¥k'.
t:=Br* (Ret true) (Ret false)
k true:=Ret 2
k false:=Br* (Step (Ret 0)) (Step (Ret 1))
k’ true:=Ret 2
k’ false:=Step (B (Step (Ret 0)) (Step (Ret 1))
Below are depicted the LTSs for t ==k (on the left) and t =k’ (on the right). On the

right, the gray state corresponds to the first Step of k’ false. It has no equivalent on the
left, which explains why there is no bisimulation between these LTSs.

val 2 val 2
O
>
val 0
IN
val 1

This limitation of weak bisimilarity is commonly circumvented in process algebra by
requiring processes to be guarded:* the operands of the ccs + operator should begin with
a deterministic transition. In a CTree setting, if we restrict ourselves to t-guarded parallel
composition, it means that each branch of a Br should begin with a Step, which is precisely
the definition of Brg (#). Similarly, we proved that an up-to bind principle that requires
continuations to begin with Step is valid (#).

BIND”(~) R £ {(x = (fun x => Step (k x)),y>= (fun x => Step (1 x))) |
x ~ yAYv, R (kv) (v)}

This principle is however not completely satisfying: we can note that the hypothe-
sis involves the plain relation R (rather than ~5) and strips the leading Step nodes.
Transferred to an enhanced principle, this would translate to a bind-rule for Step-guarded
continuations that does not unlock the coinduction hypothesis. We leave the definition of
a more comfortable proof principle to future work.

25 Beware that this use of “guarded” is not directly related to the notion of coinductive guard, nor to our Guard
nodes.
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11 Related work

Since Milner’s seminal work on ccs (Milner, 1989) and the m-calculus (Milner et al.,
1992), process algebras have been the topic of a vast literature (Bergstra et al., 2001). We
mention only a few parts of it that are most relevant to our work. In the Rocq realm, Ambal
et al. (2021) have formalized HOx, a minimal 7 -calculus, notably exhibiting the difficulty
inherent to the formal treatment of name extrusion. Beyond its formalization, dealing with
scope extrusion as part of a compositional semantics is known to be a challenging prob-
lem (Crafa et al., 2012; Cristescu ef al., 2013). By restricting to ccs in our case study, we
have side-stepped this difficulty. Foster ez al. (2021) formalize in Isabelle/HOL a semantics
for CSP and the Circus language using a variant implementation of ITrees, where contin-
uations to external events are partial functions. However, they only model deterministic
processes, leaving nondeterministic ones for future work. This paper introduces the tools
to address that problem. CSP has also been extensively studied by Brookes (2002) by pro-
viding a model based on the compositional construction of infinite sets of traces: CTrees
offer a complementary coinductive model to this more set-theoretic approach. Brookes
tackles questions of fairness, an avenue that we have not yet explored in our setup. The
CTrees notion of “delayed choice” corresponds to ccs’s choice operator and is named
mixed choice in De Nicola (2014); it allows the encoding of both internal choice as a
mixed choice where each branch starts by an invisible uncontrolled t transition; external
choice (as found in CSP (Hoare, 1978)) is a mixed choice when each branch starts by a
visible transition, but cannot be straightforwardly encoded for branches starting with t
transitions. Encodings of the different types of choice and their properties and limitations
are further discussed by van Glabbeek (1997).

Formal semantics for nondeterminism are especially relevant when dealing with low-
level concurrent semantics. In shared-memory-based programming languages, rather than
message passing ones, concurrency give rise to the additional challenge of modeling their
memory models, a topic that has received considerable attention. Understanding whether
monadic approaches such as the one proposed in this paper are viable to tackle such mod-
els vastly remains to be investigated. Early suggestions that they may include Lesani ef al.
(2022) : the authors prove correct concurrent objects implemented using ITrees, assum-
ing a sequentially consistent model of shared memory. They relate the ITrees semantics
to a trace-based one to reason about refinement, something that we conjecture would not
be necessary when starting from CTrees. Operationally specified memory models, in the
style of which increasingly relaxed models have been captured and sometimes formal-
ized, intuitively seem to be a better fit. Major landmarks in this axis include the work
by Sevcik et al. on modeling TSO using a central synchronizing transition system link-
ing the program semantics to the memory model in the CompCertTSO compiler (Sevcik
et al., 2013); or Kang et al.’s promising semantics (Kang et al., 2017; Lee et al., 2020)
that have captured large subsets of the C++11 concurrency model without introducing out-
of-thin-air behaviors. On the other side of the spectrum, axiomatic models in the style of
Alglave et al.’s (Alglave et al., 2014, 2021) framework appear less likely to transpose to
our constructive setup.

Our model for cooperative multithreading is partially reminiscent of Abadi and Plotkin’s
work (Abadi & Plotkin, 2010): they define a denotational semantics based on partial traces
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that they prove fully abstract and satisfying an algebra of stateful concurrency. The main
difference between the two approaches is that partial traces use the memory state explicitly
to define the composition of traces, where CTrees can express the semantics of a similar
language independently of the memory model. The formal model we describe here tackles
a slightly different language than theirs, but we should be able to adapt it reasonably easily
to obtain a formalization of their work. More recently, Din et al. (Din et al., 2017, 2022)
have suggested a novel way to define semantics based on the composition of symbolic
traces, partially inspired by symbolic execution (King, 1976). They use it, in particular, to
formalize actor languages, which rely on cooperative scheduling, with a similar modular-
ity as the one we achieve (orthogonal semantic features can be composed), but not in a
compositional way.

Our work brings proper support for nondeterminism to monadic interpreters in Rocq. As
with ITrees, however, the tools we provide are just right to conveniently build denotational
models of first order languages, such as ccs, but have difficulty retaining composition-
ality when dealing with higher-order languages. In contrast, on paper, game semantics
has brought a variety of techniques lifting this limitation. In particular in a concurrent
setup, event structures have spawned a successful line of work (Rideau & Winskel, 2011;
Castellan ef al., 2017) from which inspiration could be drawn for further work on CTrees.

Comparison with Works adjacent to ITrees

Previous models of nondeterminism based on ITrees In the Vellvm project (Zakowski
et al., 2021), Zakowski et al. use nondeterministic events of an [Tree for formalizing the
nondeterministic features of the LLVM IR. They then interpret these events in order to
reason on them. More specifically, their model consists of a propositionally specified

set of computations: ignoring other effects, the monad they use is itree E _ — Prop.

The equivalence they build on top of it essentially amounts to a form of bijection up-
to equivalence of the contained monadic computations. However, this approach suffers
from several drawbacks. First, one of the monadic laws is broken: the bind operation
does not associate to the left. Although stressed in the context of Vellvm (Zakowski et al.,
2021) and Yoon et al.’s work on layered monadic interpreters (Yoon et al., 2022), this
issue is not specific to ITrees but rather to a hypothetical “Prop Monad Transformer,”
ie.to A M X = M X — Prop, as pointed out previously in Maillard et al. (2019). The
definition is furthermore particularly difficult to work with. Indeed, the corresponding
monadic equivalence is a form of bijection up-to setoid: for any trace in the source, we
must existentially exhibit a suitable trace in the target. The inductive nature of this existen-
tial is problematic: one usually cannot exhibit upfront a coinductive object as witness, they
should be produced coinductively. This challenge is particularly apparent in Beck et al.
(2024) when proving that the change in perspective from an infinite domain of memory
addresses to a finite one is sound.

Second, the approach is very much akin to identifying a communicating system with
its set of traces, except using a richer structure, namely monadic computations, instead of
traces: it forgets all information about when nondeterministic choices are made. While such
a trace equivalence is well suited for some applications, it tends to equate more processes
than desired, which in turn may lead to failing to be a congruence for some contexts.
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In a general purpose semantics library, we believe we should strive to provide as much
compositional reasoning as possible and offer flexibility to the user: thus, our structure
supports both trace equivalence,and bisimulations (Bloom et al., 1988).

Third, because the set of computations is captured propositionally, this interpretation is
incompatible with the generation of an executable interpreter by extraction, losing one of
the major strengths of the ITree framework. Zakowski et al. work around this difficulty by
providing two interpretations of their nondeterministic events and formally relating them.
But this comes at a cost—the promise of a sound interpreter for free is broken—and with
constraints—nondeterminism must come last in the stack of interpretations, and combina-
tors whose equational theory is sensible to nondeterminism are essentially impossible to
define.

This difficulty with properly tackling nondeterminism extends also to concurrency.
Lesani et al. used ITrees to prove the linearizability of concurrent objects (Lesani et al.,
2022). Here too, they rely on sets of linearized traces and consider their interleavings.
While a reasonable solution in their context, that approach strays from the monadic
interpreter style and fails to capture bisimilarity.

Differences in design compared to Chappe ef al. (2023). The original CTrees paper
(Chappe et al., 2023) is the basis for the present one. We detail below the main differences
and limitations of this previous iteration.

At the time, the structure was not parameterized by a signature B. Rather, Br nodes were
limited to finite branching in fin n. This limitation was triple. First, most obviously, it
prevented infinite branching (which is heavily used by Chappe ef al., 2025¢). Second, it
did not allow carrying information about the origin of a given nondeterministic choice:
when encountering a branching on fin n, there was no way to know whether it represents
the generation of a random number or the choice of a thread to schedule, for instance.
The new parameterization allows for the theory of refine we develop in Section 7.2 and
more generally enables the possibility of writing interesting schedulers based on source-
level information. Finally, the case study presented in Section 8 had to rely on an extrinsic
coinductive invariant to express and exploit the fact that the first level of representation is
deterministic. We can now capture it statically with an empty branching interface.

On the other hand, # and Guard used to be particular cases of Br, respectively, nullary
and unary branching nodes. However, with this parameterization, maintaining this encod-
ing required class constraints to every definition relying on them. This overhead led us to
expose a sort of canonical encoding of these two constructs as dedicated constructors.

Finally, Brg nodes used to have their own constructor, and it was proved that they could
be equivalently encoded as Br nodes guarded with a Step (unary Brs) node. Since we
introduced a dedicated Step node for the same reason as @ and Guard, we removed the
Brg constructors and directly work with Step -guarded Br nodes.

On the semantic side, without the alternative definition of the LTS from Section 9, some
results, especially from Section 7, were significantly harder to establish and were proved
in more restrictive cases. In particular, the monad morphism result for interp was only
proved for handlers reduced to trigger or Ret. Similarly, the simulation result for refine
was only proved for constant handlers. The introduction of the alternative LTS enables
more concise and more general proofs for these results.
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On the proof engineering side, the equational theory was based on an older version
of Pous’ coinduction library that relied on the companion (Pous, 2016), instead of tower
induction. These two theories are proved equivalent in Pous’ library, but tower induction
is more comfortable to work with, especially when up-to principles are involved.

Last, stepping back from these two existing, concrete, incarnations of the CTree data-
structure, we observe that all new CTree constructions could be encoded into ITree events.
Actually, already in the design of ITrees, leaves could have been special events with empty
return types, and Step; nodes an identified event with a unary return type. While seeking
such minimalism in the structure itself can occasionally avoid some code duplication, we
argue that having dedicated constructors for crucial constructs is beneficial from an engi-
neering standpoint. Indeed, with a shallow encoding into events, operators whose behavior
depends on them must assume their presence (through a partially concrete signature, or
a typeclass constraint), leading to a more complex management of the injection of signa-
tures. Furthermore, the code itself would have to pattern match on events and hence feature
a lot more dependent programming, the type of the branches in the match having to reify
the return type of the event.

Comparison to Bahr & Hutton (2023).Following the original publication of
CTrees (Chappe et al., 2023), Bahr & Hutton (2023) have proposed an implementation
in Agda of a variant on the CTree structure and extensively compared it to the original
paper on CTrees. The most important difference they introduce is to statically prevent
infinite chains of Br nodes, i.e., in particular infinite structures denoting stuck processes,
by defining the datatype through mutual induction-coinduction: intuitively, a Step guard
must always be finitely reachable. Their definition as is would not be accepted by Rocq, but
investigating alternate encodings would be an interesting perspective. Another distinction
came from one of the observations in the original paper: to avoid the necessary restriction
on handlers described in Section 7, visible events generate two successive transitions in
the LTS: one deterministically labeled with the event (a question to the environment), and
a second one labeled by the response from the environment. This split makes the definition
of the LTS more cumbersome, since the domain of states is no longer the datastructure
itself, but it does recover a (tighter) equivalence unconditionally preserved by interpreta-
tion. Moving our CTree library to such a finer LTS would make sense, but we leave it to
future work as we have not yet encountered a concrete case where our simpler definition
does not suffice.

The paper focuses on concurrency for functional programming, relying notably on a
binary parallel operator. In this setting, the definition of their parallel operator relies
on a codensity monad, and their notion of program equivalence relies on step-indexed
bisimilarity. These various theories are exploited for calculating compilers for concurrent
programs.

Comparison to Cho et al. (2023).Cho et al. (2023) introduce DTrees, a generalization
of ITrees with support for nondeterminism: the (D)Tau sort of node is the counterpart of
our BrS nodes. DTrees are equipped with a novel notion of weak simulation that they
call freely-stuttering. The key element of this notion of simulation is that its game oper-
ates not only on 2 programs but also on additional indices that enable more powerful
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reasoning principles, especially for the asymmetric stripping of Taus. In this regard, this
approach has some similarities with our alternative characterization of strong bisimilarity
that relies on an extra boolean in the bisimulation game. The paper additionally studies
new ATau nodes, representing angelic nondeterminism, with no equivalent in CTrees. Cho
et al. (2023) defined freely stuttering simulations in a generic way so that they can be
applied to LTSs that are not defined as DTrees. Note that due to their lack of equivalent to
Br nodes, some LTSs that can be represented as CTrees cannot be represented as DTrees,
in particular LTSs with nondeterminism that stems from non-t nodes. Finally, they focus
on notions of similarity, but do not study notions of bisimilarity.

Interestingly, Cho ef al. (2023) observe not only that the forward and backward similar-
ity from CompCert (Leroy, 2009) are subrelations of freely-stuttering similarity, but that
each step of these notions of simulation from CompCert can be replayed by one or several
steps of freely-stuttering simulation. They formally study this kind of relation and dub it
replayability. 1t is stronger than top-level relation inclusion. Our initial definition of CTree
simulation (resp. bisimulation) can be replayed by our finer alternative characterization of
CTree simulation (resp. bisimulation). Lemma 11 expresses this result for strong simula-
tion. However, replayability is not a silver bullet, in particular it does not guarantee that
up-to principles valid on the replayed relation are also valid on the replaying relation.

12 Conclusion and perspectives

We have introduced CTrees, a model for nondeterministic, recursive, and impure programs
in Rocq. Inspired by ITrees, we have introduced two kinds of nondeterministic branching
nodes and designed a toolbox to reason about these new computations. Beyond the various
strong (bi)similarity games that we studied in depth, future extensions of our work could
develop the meta-theory around weak (bi)similarity. More ambitiously, we could refactor
our library to clearly separate our various reasoning principles on LTSs from the CTree
structure, so that they can be used more widely.

We have illustrated the expressiveness of the framework through two significant case
studies. Both nonetheless offer avenues for further work, notably through an extension
of ccs to name passing a la w-calculus and to further extend the equational theory for
cooperative multithreading that we currently support.

With this extended version, we have presented how the library has evolved during the
two years that separates us from its introduction. Not only has the library evolved in the
meantime, but it has also been put to great use. In particular, Chappe ef al. (2025¢) have
shown that it is expressive enough to model complex weak memory models, paving realis-
tically the long-term goal to leveraging the library as the basis for a verified compiler with
realistic concurrency support.

The library has been greatly enriched, from introducing additional equivalences and
simulations, generalizing their meta-theory, but also to reimplementing its structure based
on slightly tweaked design points. These design choices matter greatly. It is particularly
interesting to see at around the same time alternate proposals for similar structures, in
particular in Bahr & Hutton (2023) and Cho ef al. (2023). Conducting an in-depth compar-
ison of these approaches could fuel the next iteration toward a formal library for building
monadic models of concurrent programming languages.
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Appendix
A Coinductive proofs and up-to principles in Rocq

Working with CTrees requires the use of a swarm of coinductive predicates and relations
to describe equivalences, simulations and invariants. Doing so at scale in Rocq would be
highly impractical by relying only on its native support for coinductive proofs. Indeed, the
language provides no abstract reasoning principle, native proofs by coinduction boil down
to writing corecursive terms. But these terms must be provably productive to maintain the
language’s soundness as a logic, which Rocq enforces through a syntactic guard checker.
However, in the case of corecursion, guard checking is incompatible with any automation,
and not compositional. Thankfully, coinduction is nowadays possible in Rocq thanks to
library support (Hur et al., 2013; Pous, 2016; Zakowski et al., 2020). In essence, they all
rely on an internalization of the theory of coinduction inside a library instead of using
Rocq’s native coinduction support for defining the relation of interest,

Consequently, our development relies on Pous’s coinduction library (Pous, 2024a) to
define and reason about the various coinductive predicates and relations we manipulate.
Rather than relying on Rocq’s native coinduction support, the library defines the necessary
tools for coinductive reasoning from scratch, based on the companion (Pous, 2016) and
tower induction (Schifer & Smolka, 2017). This appendix presents the library we use in
the rest of our developments.

Knaster-Tarski. The core construction provided by Pous’s library is a greatest fixpoint
operator (gfp b:X), for any complete lattice X, and monotone endofunction b:X — X.
In particular, the sort of Rocq propositions Prop forms a complete lattice, as does any
function from an arbitrary type into a complete lattice—coinductive relations, of arbitrary
arity, over arbitrary types, can therefore be built using this combinator. In the context
of this paper, we mostly instantiate X with the complete lattice of binary relations over
CTrees, written C. C := ctree E B A — ctree E B A — Prop for fixed parameters E, B,
and A. We write such binary relations as rel(4,B) for A - B — Prop, and rel(a) for
rel(A,A) ; for instance: C := rel(ctree E B A) .
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At the most elementary level, the library provides tactic support for coinductive proofs
based on Knaster-Tarski’s theorem: any post fixpoint is below the greatest fixpoint. Spelled
out formally in the general case over a complete lattice (X, C) (left), and specialized to C
(right):

xCyCby RCS Vtu Stu—bStu

xEgfpb Vtu, Rtu—gfpbtu

Over C, the proof method therefore consists in exhibiting a relation R, that can be thought
of as a set of pairs of trees, providing a “coinduction candidate”, and proving that it is stable
by a play of the bisimulation game, i.e., stable under the endofunction b.

Enhanced coinduction. The larger the coinduction candidate R, the more work needed:
one must play the bisimulation game over any pair of trees in R. As often, this inherent
difficulty gets even more salient in a proof assistant. Enhanced coinduction principles,
or equivalently up-to principles, seek to provide more general reasoning principles. They
intuitively consist in allowing one to fall slightly out of the coinduction principle after
playing the game,and still conclude: rather than looking for a post fixpoint of b, we look
for one of b £, where £ should be thought of as enlarging the candidate. Concretely, we say
that a function £ : X — X defines a valid enhanced coinduction principle if the following
reasoning principle is valid:

XSy bfy RCS Vitu Stu—>b(fS)tu
xCgfpb Vtu, Rtu—gfpbtu

Let us illustrate the concept on a few concrete examples. Suppose you start from a non-
reflexive candidate R and observe during your proof that pairs of processes in R either
progress to pairs in R, or to definitionally equal pairs of processes. Unable to conclude in
the latter case, one would typically backtrack and expand R by taking its reflexive clo-
sure, before going through the proof again, adding in the process proofs for the new pairs.
Instead, one may prove that the function f.z R £ RU({(1, 1)} is a valid principle and close
the original proof with R as a candidate.

As a second standard example, consider a proof of bisimilarity over your trees, as
introduced formally in Section 5.3. Your pairs may progress only so slightly out of the
candidate R: on each side, the resulting trees are themselves bisimilar to elements in R.
Saturating your candidate to close it under strong bisimilarity might complicate greatly
your proof, while establishing the validity of bisimulation up-to bisimilarity, that is the
principle associated to fyim R= {(t,u) | 37w/, t~1 A u' ~u A Rt '}, is sufficient to
conclude.

Lastly, given a source language, up-to congruence are a commonly crucial reasoning
principle. For instance, considering in ImpBr the br - or - construct, one may wonder
whether f;, R {(brp or ¢,br p' or ¢') | Rpp' AR q ¢’} is valid.

But what if we need to use both up-to reflexivity and up-to br - or - context in the same
proof? Is the combined principle still valid? To answer such questions, and more generally
ease the construction of valid up-to principles, significant effort has been invested in identi-
fying classes of sound up-to principles, and developing ways to combine them (Sangiorgi,
1998; Pous, 2007; Sangiorgi & Rutten, 2012).
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In particular, Pous’s library is built upon the so-called companion, a construction which
relies on one particular class of functions, the so-called compatible functions. Their charac-
terization is fairly elementary: a monotone endofunction f is compatible with b if b C bf
(i-e., VR, f(b(R)) € b(f(R))). The class is of particular interest for two main properties.
First, all compatible functions are sound up-to functions. Furthermore, the set of com-
patible functions for a given b forms a complete lattice. One may therefore consider the
greatest compatible function, dubbed the companion and written ¢, and observe it is itself
compatible. We refer the interested reader to Pous (2016) for more details and to Pous
(2024b) for pedagogical example of the library in action.

From a user perspective, this is priceless: rather than craft and pick the right up-to prin-
ciple for each proof, they can systematically work up to the companion, progressively
enhance their database of proven compatible principles,?® and access them on the fly during
the proofs. In the three examples above, access to these up-to principles would therefore
be granted by proving, respectively, frog T by, foisim T bz, and f3 E b;, which in turn can be
in particular proved by showing that f..4, fyisim, and fp, are compatible.

Tower induction. Pous’s library relies on Schifer and Smolka’s characterization of the
companion via tower induction (Schéfer & Smolka, 2017). They associate to the endofunc-
tion b the so-called b — tower, or Cj the Chain of b, i.e., the inductive type closed under
b and greatest lower bound. The greatest fixpoint of b is recovered as the infimum of its
chain, gfp b = inf Cp,, and more generally the companion as #,(x) = inf{y € C}, | xC y}.
Once again, we refer the interest reader to Schéfer & Smolka (2017) for technical details
and only highlight here the consequences for us, users of the library: since version 1.7,
Pous’s library has been reimplemented following Schéfer and Smolka’s construction.

The usability improvement compared to the earlier companion-based implementation
shows when proving the validity of additional proof principles: in particular, exploiting
previously established sound principles in the proof of a new one required a clever but
non-trivial notion of second-order companion before. In contrast, when working with tower
induction, the statement of validity of an up-to principle defined by a function f is much
more natural: it essentially amounts to proving that f preserves membership in the chain.

Let us make things concrete over our the three illustrative examples. Validity of f..q is
now expressed by stating that all elements of the chain are reflexive, i.e., V(c: Cp) t, c ¢ t.
Validity of fp;sim captures that elements of the chain are stable by bisimilarity on both
side,i.e,V(c:Cp)tf ui, t~¢ —u ~u—>ct u' — ctu,or more concisely expressed
in Rocq as Proper (sbisim == sbisim == iff) c. Finally, validity of f, is written as
Yc:Co)pp qq, cpp' —cqq — c(br por q) (br p’ or ¢'), or again more concisely
expressed in Rocq as Proper (¢ == ¢ == c¢) br.

Furthermore, the construction comes with a powerful proof principle for proving these
properties: tower induction, i.e., it suffices to prove that these universal properties over
elements of the chain are stable under b and greatest lower bound to establish them.

During proofs by coinduction, the difference is mostly cosmetic, although it also lightens
the proofs: since every principle is directly expressed in terms of the chain, there is no need
to awkwardly pull out valid principles from the chain, we can directly apply them.

26 Or slightly more generally, of any function proven below the companion.
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