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Abstract
We consider a new family (T𝑛)𝑛≥1 of aperiodic sets of Wang tiles and we describe the dynamical properties of the set
Ω𝑛 of valid configurations Z2 → T𝑛. The tiles can be defined as the different instances of a square-shaped computer
chip whose inputs and outputs are 3-dimensional integer vectors. The family include the Ammann aperiodic set of
16 Wang tiles and gathers the hallmarks of other small aperiodic sets of Wang tiles. Notably, the tiles satisfy additive
versions of equations verified by the Kari–Culik aperiodic sets of 14 and 13 Wang tiles. Also configurations in Ω𝑛
are the codings of a Z2-action on a 2-dimensional torus like the Jeandel–Rao aperiodic set of 11 Wang tiles. The
family broadens the relation between quadratic integers and aperiodic tilings beyond the omnipresent golden ratio
as the dynamics of Ω𝑛 involves the positive root 𝛽 of the polynomial 𝑥2 − 𝑛𝑥 − 1, also known as the n-th metallic
mean. We show the existence of an almost one-to-one factor map Ω𝑛 → T2 which commutes the shift action on
Ω𝑛 with horizontal and vertical translations by 𝛽 on T2. The factor map can be explicitly defined by the average of
the top labels from the same row of tiles as in Kari and Culik examples. The proofs are based on the minimality of
Ω𝑛 (proved in a previous article) and a polygonal partition of T2 which we show is a Markov partition for the toral
Z2-action. The partition and the sets of Wang tiles are symmetric which makes them, like Penrose tilings, worthy
of investigation.
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1. Introduction

Turing machines can be encoded into a finite set of Wang tiles (unit squares with labeled edges) in such
a way that the Turing machine does not halt if and only if there exists a tiling of the plane by translated
copies of the tiles respecting the condition that the common edge of adjacent tiles have the same label
[7], see also [49, 43, 22]. As a consequence, the existence of a valid tiling of the plane with a given
finite set of Wang tiles (called the domino problem) cannot be decided by an algorithm. Indeed, if the
domino problem were decidable, we could use the algorithm solving the domino problem to solve the
halting problem, which is a contradiction [60].

Therefore, we can think of Wang tiles as if their tilings are computing something. As observed by
Wang, the undecidability of the domino problem implies the existence of aperiodic sets of Wang tiles
[62]. Shortly after, Berger proved the undecidability of the domino problem and constructed the first
known aperiodic set of Wang tiles [7]. Since then, aperiodic tilings has developed into an active subject
of study with applications to the theory of quasicrystals [19, 53, 5, 6]. Thus, sets of Wang tiles (and their
computations) can be classified into three cases:

◦ Finite: the Wang tiles do not tile the plane,
◦ Periodic: the Wang tiles tile the plane and one of the valid tiling is periodic,
◦ Aperiodic: the Wang tiles tile the plane and none of the valid tilings are periodic.

The finite cases can be associated with computations that halt. The periodic cases can be associated
with computations that do not halt and fall into an infinite loop. The aperiodic cases can be associated
with computations that do not halt and never repeat.

For applications, computations that halt are usually preferred over computations that loop forever.
Among computations that halt, the description of those “busy beavers” [9, 1] running for the maximum
number of steps before halting is an open question even for Turing machines made of only 6 rules [42]
(it was recently solved for 5 rules1). In this article, we are interested in the description of computations
that do not halt and never repeat. We focus on those that happen to be performed by small aperiodic sets
of Wang tiles. We aim to reveal their links with dynamical systems and the coding of their orbits.

The Kari–Culik outliers

The smallest sets of aperiodic Wang tiles until 2015 were discovered by Kari and Culik in 1996. Kari
[24] proved that a well-chosen set of 14 Wang tiles admits tilings of the plane, and that none of them is
periodic. The proof that they are not periodic is cleverly short. It is based on an arithmetic interpretation
of the edge labels of the Wang tiles. The tiles have labels 𝑟, 𝑡, ℓ, 𝑏 ∈ Q satisfying an equation

𝑟

𝑡

ℓ

𝑏

𝑞𝑡 + ℓ = 𝑏 + 𝑟 (1.1)

1https://github.com/ccz181078/Coq-BB5
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Figure 1. Averages of horizontal labels in a tiling with Kari’s 14 tiles are orbits under the map g on the
interval [ 2

3 , 2]; see [14, 27].

for some 𝑞 ∈ Q. We may interpret the Wang tile as a computation (the multiplication by q) with value t
as an input and b as an output. The value ℓ is a carry input on the left and r is a carry output on the right.
Kari [24] proposed a set of four tiles satisfying (1.1) with 𝑞 = 2 and ten tiles with 𝑞 = 2

3 . The proof of
the nonexistence of a periodic tiling with those 14 tiles uses the fact that the equation 2𝑚3𝑛 = 1 has only
one solution over the integers (𝑚 = 𝑛 = 0), see Figure 1. Based on the same idea, Culik [11] proposed a
smaller aperiodic set of 13 tiles (four tiles satisfying (1.1) with 𝑞 = 3 and nine tiles with 𝑞 = 1

2 ). Note
that generalizations of Kari–Culik tilings exist [15] and that further results were obtained about their
entropy [14] and on a minimal subsystem [54].

Among aperiodic tilings of the plane by Wang tiles, Kari and Culik sets seem like outliers. The
aperiodicity of Penrose tiles [44], Berger tiles [7], Robinson tiles [49], Knuth tiles [29], Ammann tiles
[19, 3] can be explained by the hierarchical decomposition of their tilings. Often, aperiodic tilings
have a self-similar structure [58, 59, 46, 45, 2] and this is the case for recently discovered aperiodic
geometrical tiles [57, 55, 56]. However, Kari and Culik tilings have positive entropy. Thus, they are not
self-similar and do not possess a hierarchical decomposition [14]. Note that the absence of hierarchical
decomposition also follows from a cylindricity argument proposed by Thierry Monteil and explained in
[14, §4.2]. Moreover, except some extensions of Kari and Culik sets [15, §6], no other known aperiodic
sets of tiles satisfy equations explaining their nonperiodicity.

The metallic mean family of aperiodic Wang tiles

The current article is the second article about a new family of aperiodic Wang tiles related to the metallic
mean. Recall that the metallic mean 𝛽 is the positive root of the polynomial 𝑥2 − 𝑛𝑥 − 1 where 𝑛 ≥ 1 is
an integer [13], that is,

𝛽 = [𝑛; 𝑛, 𝑛, · · · ] = 𝑛 + 1
𝑛 + 1

𝑛+ 1
𝑛+···

= 𝑛 + 1
𝛽
.

Metallic means were also called silver means in [52] and noble means in [5].
Let us recall the main results proved in the first article of the series. For every integer 𝑛 ≥ 1, the 𝑛𝑡ℎ

metallic mean Wang shift Ω𝑛 is defined from a set T𝑛 of (𝑛 + 3)2 Wang tiles. An illustration of the set
T3 is shown in Figure 2. The labels of the Wang tiles are vectors in N3. In Figure 2, we represent vectors
as words for economy of space reasons. For instance, the vector (1, 1, 4) is represented as 114. A finite
rectangular valid tiling is shown in Figure 3 for the set T3. More images of valid tilings with metallic
mean Wang tiles are available in [37].

It was shown in the previous article that the metallic mean Wang shift Ω𝑛 is self-similar, aperiodic
and minimal. We gather in the next theorem the main results already proved about Ω𝑛.
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Figure 2. The metallic mean Wang tile set T𝑛 for 𝑛 = 3.

Figure 3. A valid 15 × 15 pattern with Wang tile set T3.
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Theorem 1.1 [37]. For every integer 𝑛 ≥ 1,

(i) the metallic mean Wang shift Ω𝑛 is self-similar, aperiodic and minimal,
(ii) the inflation factor of the self-similarity of Ω𝑛 is the n-th metallic mean, that is, the positive root of

𝑥2 − 𝑛𝑥 − 1.

Also, when 𝑛 = 1, Ω1 is equivalent to the Wang shift defined from the 16 Ammann Wang tiles [19, p.595,
Figure 11.1.13].

In order to describe the substitutive structure of the Wang shift Ω𝑛 generated from the set T𝑛, it
was needed in [37] to introduce a larger set T ′

𝑛 satisfying T𝑛 ⊆ T ′
𝑛 . It was shown that the set T ′

𝑛 is in
bijection with the set of possible return blocks allowing to decompose uniquely the configurations of
Ω𝑛. The return blocks are rectangular blocks of tiles with a unique junction tile (a tile where horizontal
and vertical color stripes intersect) at the lower left corner. Also, it was proved in [37] that in a valid
configuration of Ω′

𝑛, only the tiles from T𝑛 appear. From this observation follows the self-similarity
of Ω𝑛.

This article

In this article, we demonstrate that Kari and Culik tilings are not a complete oddity within aperiodic
sets of tiles. In particular, we show for the first time that substitutive aperiodic sets of Wang tiles can
also satisfy equations and even be defined by them, see Figure 4. This article is devoted to a family of
aperiodic Wang tiles associated with the metallic mean numbers, the positive roots of the polynomials
𝑥2 − 𝑛𝑥 − 1 where 𝑛 ≥ 1 is a positive integer. When 𝑛 = 1, the family recovers the Ammann set of 16
Wang tiles [19].

The labels of the Wang tiles are not numbers like in Kari and Culik sets, but rather integer vectors.
Note that integers vectors were already used as labels of Wang tiles in [25, 26], see also [27]. The
equations satisfied by the tiles are derived from a function that expresses a relation between the labels
of the Wang tiles. The function provides an independent definition of the family of metallic mean
Wang tiles as the instances of an aperiodic computer chip. The family (Ω𝑛)𝑛≥1 of metallic mean Wang
shifts was introduced separately in [37] where it was shown to be aperiodic as a consequence of its
self-similarity.

Here, in this second article on the metallic mean Wang tiles, we prove that Ω𝑛 is aperiodic for another
reason. Namely, we show that the Z2 shift action on Ω𝑛 is an almost 1-to-1 extension of a minimal

Aperiodic sets of Wang tiles

Positive entropy

Kari
Culik
and their extensions

Matching rules satisfy arithmetic equations

Substitutive

this is non-empty!
Metallic mean
Wang tiles

Berger
Knuth
Robinson
Ammann
Jeandel–Rao

Figure 4. A Venn diagram of aperiodic sets of Wang tiles. Aperiodicity of Kari [24] and Culik [11] sets
of tiles and their extensions [15] follows from the arithmetic equations satisfied by their matching rules.
In this article, we show that the dashed region in the Venn diagram is nonempty, that is, there exists a
family of substitutive (self-similar) aperiodic sets of Wang tiles whose matching rules satisfy arithmetic
equations.

https://doi.org/10.1017/fms.2025.10098 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10098


6 S. Labbé

Z2-action by rotations on T2. This reminds of a result proved for Penrose tilings [48] and the two reasons
for them to be aperiodic. Aperiodicity of Penrose tilings follows from its self-similarity [44] and from
their being a cut-and-project scheme [12, 5].

For every integer 𝑛 ≥ 1, we show that valid configurations in Ω𝑛 are computing the orbits of a
dynamical system defined by a Z2-action 𝑅𝑛 on the 2-dimensional torus T2. The dynamical system
Z2 𝑅𝑛
� T2 is defined by horizontal and vertical translation on T2 by the n-th metallic mean modulo 1. As

for the Jeandel–Rao Wang shift [33], the proof is based on a polygonal partition of T2 which we prove
is a Markov partition for the toral Z2-action. We also prove the existence of an almost one-to-one factor
map Ω𝑛 → T2 commuting the shift Z2 𝜎

� Ω𝑛 with the toral Z2-rotation Z2 𝑅𝑛
� T2. Since 𝑅𝑛 is a free

action, this provides a second reason for the Wang shift Ω𝑛 to be aperiodic.
The factor map can be defined by taking averages of the dot product involving the top labels of the

Wang tiles in the biinfinite row of tiles passing through the origin in a configuration. The existence of
the factor map proves that the average changes from row to row by an irrational rotation by the n-th
metallic mean number. This can be seen as an additive version of a multiplicative phenomenon known
for Kari–Culik tilings. Recall that the average of top label values along a row is at the heart of Kari and
Culik’s construction of aperiodic tilings where the average change by a rational multiplication from row
to row [14, Theorem 6].

The polygonal partition used to encode the toral Z2-action is symmetric and is much more simple
to define compared to the Markov partition associated with the Jeandel–Rao Wang shift. Moreover, the
label of the polygonal atoms of the partition have a meaning in the sense that they define the linear
inequalities describing their boundaries. The symmetry and simplicity of the partition was helpful to
extend the family beyond the golden ratio. The results proved here for the metallic mean Wang tiles
should serve as an inspiration to replace the labels of the Jeandel–Rao tiles by integer vectors satisfying
equations. Understanding the matching rules of Jeandel–Rao tiles by means of arithmetic would open
the door for discovering a vast family of aperiodic sets of Wang tiles beyond the family of metallic mean
Wang tiles. See Section 11 for more open questions.

Structure of the article

In Section 2, we state the main results proved in this article. In Section 3, we present preliminary notions
on dynamical systems, subshifts and Wang shifts. In Section 4, we recall the definition of the family
of metallic mean Wang tiles. In Section 5, we show that instances of the 𝜃𝑛-chip are the metallic mean
Wang tiles. This proves Theorem A. In Section 6, we prove Theorem B and we present more equations
satisfied by the metallic mean tiles and their tilings. In Section 7, we use the floor function on linear forms
to construct valid tilings with the metallic mean Wang tiles and we prove Theorem C. In Section 8, we
define an explicit factor map Ω𝑛 → T2 and we prove Theorem D. In Section 9, we define the partition P𝑛
for every integer 𝑛 ≥ 1 and we show that the metallic mean Wang shift is equal to the symbolic dynamical
system defined by the coding of a toral Z2-action by this partition. This shows that Ω𝑛 is isomorphic
as measure-preserving dynamical systems to a toral Z2-action. We prove Theorem E and Theorem F in
this section. In Section 10, we compute the renormalization of the partition P𝑛 and Z2-action 𝑅𝑛 using
computations performed in SageMath when 𝑛 = 3. We illustrate how the Rauzy induction of Z2-actions
and of polygonal partitions can be used to show the self-similarity of the symbolic dynamical system
XP𝑛 ,𝑅𝑛 . In Section 11, we discuss some open questions raised by the current work.

2. Statements of the main results

An aperiodic computer chip

For every integer 𝑛 ≥ 1, we define a finite subset 𝑉𝑛 ⊂ N3 of vectors

𝑉𝑛 = {(𝑣0, 𝑣1, 𝑣2) ∈ N3 : 0 ≤ 𝑣0 ≤ 𝑣1 ≤ 1 and 𝑣1 ≤ 𝑣2 ≤ 𝑛 + 1}
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with nondecreasing entries where the middle entry is at most 1. We introduce a function

𝜃𝑛 : 𝑉𝑛 ×𝑉𝑛 → Z3

(𝑢0, 𝑢1, 𝑢2), (𝑣0, 𝑣1, 𝑣2) ↦→ (𝑟0, 𝑟1, 𝑟2),

taking two vectors as input and returning one vector. Its image is defined by the rule⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟0 = 𝑢0,

𝑟1 =

{
𝑣2 − 𝑛 if 𝑢0 = 0,
1 if 𝑢0 = 1,

𝑟2 =

{
𝑣1 + 𝑢0 if 𝑣0 = 0,
𝑢2 + 1 if 𝑣0 = 1.

(2.1)

Notice that (𝑟0, 𝑟1, 𝑟2) does not depend on 𝑢1. For every integer 𝑛 ≥ 1, we construct a symmetric 𝜃𝑛-chip,
that is, a computer chip taking as inputs 𝑢 ∈ 𝑉𝑛 on the left and 𝑣 ∈ 𝑉𝑛 on the bottom and producing as
outputs 𝜃𝑛 (𝑢, 𝑣) on the right and 𝜃𝑛 (𝑣, 𝑢) on the top (see Figure 5).

If 𝜃𝑛 (𝑢, 𝑣) and 𝜃𝑛 (𝑣, 𝑢) are in 𝑉𝑛, then one can use multiple copies of the 𝜃𝑛-chip and connect them
to each other horizontally and vertically into an arbitrarily large rectangular cluster of 𝜃𝑛-chips (see
Figure 6).

We prove in this work the existence of arbitrarily large rectangular clusters of the 𝜃𝑛-chip all of them
performing correct computations. Also we show that no rectangular cluster of the 𝜃𝑛-chip performs a
periodic computation. Thus, we say that the 𝜃𝑛-chip is an aperiodic computer chip. Perhaps we can
say it is an aperiodic monochip, but we cannot say it is an aperiodic monotile as in [55, 56] because the
same chip with different inputs has to be considered a distinct Wang tile.

𝜃𝑛𝑢

𝑣

𝜃
𝑛 (𝑢

,𝑣)

𝜃𝑛 (𝑣, 𝑢)

Figure 5. The 𝜃𝑛-chip is a computer chip computing 𝜃𝑛 (𝑢, 𝑣) and 𝜃𝑛 (𝑣, 𝑢) from the left input u and
bottom input v.

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

𝜃𝑛

Figure 6. A rectangular cluster of copies of the 𝜃𝑛-chip.
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Instances of the chip are metallic mean Wang tiles

If we consider all possible values of inputs u and v in 𝑉𝑛 and if we restrict the outputs to be in the set
𝑉𝑛, then we obtain a finite set of Wang tiles

C𝑛 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑢

𝑣

𝜃𝑛 (𝑢, 𝑣)

𝜃𝑛 (𝑣, 𝑢)
�����������
𝑢, 𝑣 ∈ 𝑉𝑛 such that 𝜃𝑛 (𝑢, 𝑣), 𝜃𝑛 (𝑣, 𝑢) ∈ 𝑉𝑛

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.2)

which is the finite set of all possible instances of the 𝜃𝑛-chip.

Theorem A. For every integer 𝑛 ≥ 1, the Wang shift ΩC𝑛 defined by the 𝜃𝑛-chip is the 𝑛𝑡ℎ metallic
mean Wang shift Ω𝑛.

Something unexpected and surprising happens in the proof of Theorem A. The set C𝑛 of instances
of the 𝜃𝑛-chip is exactly equal to the extended set T ′

𝑛 of metallic mean Wang tiles introduced in [37] in
order to prove the self-similarity of Ω𝑛, see Proposition 5.1.

Tile labels satisfy Equations

The next result states that every tile in C𝑛 satisfy a system of equations. While the equations associated
with Kari’s [24] and Culik’s [11] aperiodic set of Wang tiles are multiplicative, the ones associated with
C𝑛 are additive.

Theorem B. Let 𝑛 ≥ 1 be an integer, 𝑑 = (0,−1, 1) and 𝑒 = (1, 0, 0). The set of Wang tiles defined by
the 𝜃𝑛-chip satisfy the following system of equations:

C𝑛 ⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ℓ

𝑏

𝑟

𝑡

∈ 𝑉𝑛 ×𝑉𝑛 ×𝑉𝑛 ×𝑉𝑛

�����������
〈 1
𝑛 𝑑, 𝑡 + ℓ〉 − 〈𝑒, ℓ〉 = 〈 1

𝑛 𝑑, 𝑏 + 𝑟〉 − 〈𝑒, 𝑏〉
〈𝑒, ℓ〉 = 〈𝑒, 𝑟〉
〈𝑒, 𝑏〉 = 〈𝑒, 𝑡〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
where 〈_, _〉 denotes the canonical inner product of Z3.

Equivalently, if we let ℓ = (ℓ0, ℓ1, ℓ2), 𝑏 = (𝑏0, 𝑏1, 𝑏2), 𝑟 = (𝑟0, 𝑟1, 𝑟2) and 𝑡 = (𝑡0, 𝑡1, 𝑡2), the
equations in the theorem say that tiles in C𝑛 satisfy ℓ0 = 𝑟0, 𝑏0 = 𝑡0 and

𝑡2 − 𝑡1 + ℓ2 − ℓ1
𝑛

− ℓ0 =
𝑏2 − 𝑏1 + 𝑟2 − 𝑟1

𝑛
− 𝑏0 (2.3)

which reminds of Equation (1.1).
Like Kari’s and Culik’s tiles, these equations behave well with tilings and more equations can be

deduced for valid tilings of a rectangle, see Section 6. In particular, Equation (6.2) says that in a tiling
of a cylinder of height k, the average of the inner product with 1

𝑛 𝑑 of the top labels of the cylinder
is obtained from the average of the inner product with 1

𝑛 𝑑 of the bottom labels of the cylinder by k
rotations on the unit circle by a fixed angle. The angle is equal to the frequency of columns in the
cylinder containing junction tiles and vertical strip colored tiles, which is a rational number. Therefore,
the existence of a cyclic rectangle is not directly forbidden from these equations. Note that we know
from the self-similarity of Ω𝑛 that the frequency of columns containing junction tile in every valid
configuration in Ω𝑛 is equal to 𝛽−1, which is an irrational number [37].
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It remains an open problem to deduce the aperiodicity of the Wang shift Ω𝑛 from the equations
satisfied by the labels of 𝜃𝑛-chip as this is nicely done for Kari and Culik sets of tiles. See Section 11
for related open questions.

Existence of valid tilings

Valid configurations in Ω𝑛 can be constructed using the floor function on linear forms. Let Λ𝑛 :
[0, 1)2 → Z3 be defined as

Λ𝑛 (𝑥, 𝑦) =
��


�𝑦 − 𝛽−1 + 1

�𝛽−1𝑥 + 𝑦 − 𝛽−1 + 1

�𝛽𝑥 + 𝑦 − 𝛽−1 + 1


���.
where 𝛽 is the 𝑛𝑡ℎ metallic mean, that is, the positive root of the polynomial 𝑥2 − 𝑛𝑥 − 1. For every
(𝑥, 𝑦) ∈ R2, let

Tile𝑛 (𝑥, 𝑦) = Λ𝑛 ({𝑥}, {𝑦})

Λ𝑛 ({𝑦}, {𝑥})

Λ𝑛 ({𝑥−𝛽−1}, {𝑦})

Λ𝑛 ({𝑦−𝛽−1}, {𝑥})

be a Wang tile where {𝑥} = 𝑥 − �𝑥
 is the fractional part of a number 𝑥 ∈ R.

Theorem C. For every integer 𝑛 ≥ 1 and every (𝑥, 𝑦) ∈ [0, 1)2, the configuration

𝑐 (𝑥,𝑦) : Z2 → T𝑛
(𝑖, 𝑗) ↦→ Tile𝑛

(
𝑥+𝑖𝛽−1, 𝑦+ 𝑗 𝛽−1)

is a valid tiling of the plane by the set of metallic mean Wang tiles T𝑛.

This construction reminds of the proof of existence of tilings with Kari and Culik tiles based on
the balanced representation of real numbers and first difference of Beatty sequences [24, 11], see also
[15, 54].

A factor map defined from averages of tile labels

In Kari–Culik tilings [24, 11], there is a well-defined notion of average [14] of the top tile labels along a
bi-infinite horizontal row. The change of value from one row to the next row is described by a piecewise
rationally multiplicative map. In this context, metallic mean Wang shifts also behave like Kari–Culik
tilings. It involves the consideration of the average of specific inner products and irrational rotations
instead of multiplications, see Figure 7 which can be compared with Figure 1.

We show that the average of the dot products of the vector 1
𝑛 𝑑 = 1

𝑛 (0,−1, 1) with the top labels of a
given row in a valid configuration Z2 → T𝑛 in Ω𝑛 is well-defined and takes a value in the interval [0, 1]
(see Equation (8.1)). By symmetry of the set T𝑛, the same holds for the right labels of a given column.
By considering the row and column going through the origin of a configuration, the two averages define
a map Φ𝑛 : Ω𝑛 → T2 (see Equation (8.2)). We prove that this map is a factor map from the Wang shift
to the 2-torus.
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10 S. Labbé

Figure 7. A 10×5 valid rectangular tiling with the set T𝑛 with 𝑛 = 3. The numbers indicated in the right
margin are the average of the inner products 〈 1

𝑛 𝑑, 𝑣〉 over the vectors v appearing as top (or bottom)
labels of a horizontal row of tiles and where 𝑑 = (0,−1, 1). We observe that these numbers increase by
3
10 (mod 1) from row to row. The number 3

10 is equal to the frequency of columns containing junction
tiles (a junction tile is a tile whose labels all start with 0). Observe that this is a cylindrical tiling (left
and right outer labels of the rectangle match) which simplifies the equations involved because the left
and right carries cancel.

Theorem D. Let 𝑑 = (0,−1, 1), 𝑛 ≥ 1 be an integer and Ω𝑛 be the 𝑛𝑡ℎ metallic mean Wang shift. The
map

Φ𝑛 : Ω𝑛 → T2

𝑤 ↦→ lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

(
〈 1
𝑛 𝑑,Right(𝑤0,𝑖)〉
〈 1
𝑛 𝑑, Top(𝑤𝑖,0)〉

)
(2.4)

is a factor map, that is, it is continuous, onto and commutes the shift Z2 𝜎
� Ω𝑛 with the toral Z2-rotation

Z2 𝑅𝑛
� T2 by the equation Φ𝑛 ◦ 𝜎𝑘 = 𝑅𝑘𝑛 ◦Φ𝑛 for every 𝑘 ∈ Z2 where

𝑅𝑛 : Z2 × T2 → T2

(𝑘, 𝑥) ↦→ 𝑅𝑘𝑛 (𝑥) := 𝑥 + 𝛽𝑘

and 𝛽 = 𝑛+
√
𝑛2+4
2 is the 𝑛𝑡ℎ metallic mean, that is, the positive root of the polynomial 𝑥2 − 𝑛𝑥 − 1.

As a consequence of Theorem D, we deduce that Ω𝑛 is aperiodic because 𝛽 is irrational and 𝑅𝑛 is a
free Z2-action, see Corollary 8.3. Note that since 𝛽 − 𝛽−1 = 𝑛, we have 𝛽 = 𝛽−1 (mod 1).

Theorem D is an analogue of a result known for Kari and Culik aperiodic Wang tilings which
satisfy equations involving balanced representations of real numbers and orbits of piecewise rationally
multiplicative maps, see also Theorem 16 in [15] and Proposition 3 in [54]. Here the result applies to
all of the configurations in the Wang shift Ω𝑛.

A symbolic dynamical system and a Markov partition

The Wang shift Ω𝑛 can be independently described as a symbolic representation of the dynamical
system Z2 𝑅𝑛

� T2 by encoding its orbits with an appropriate topological partition of T2. The partition of
T2 naturally emerges from the set of preimages of the map Tile𝑛 and from Theorem C.

Since Λ𝑛 is defined as the floor of linear forms, for every tile 𝑡 ∈ T𝑛, the set

𝑃𝑡 = Interior
(
Tile−1

𝑛 (𝑡)
)

is a polygonal open region in the unit square. It satisfies that P𝑛 = {𝑃𝑡 | 𝑡 ∈ T𝑛} is a topological partition
of T2 made of (𝑛 + 3)2 atoms. The polygonal partition P𝑛 is the refinement of two polygonal partitions
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Figure 8. The partition East3 and its image North3 under a symmetry with the positive diagonal. Their
refinement is P3 which is a partition of the unit square into 36 polygonal atoms. Here 𝛽 is the third
metallic mean, that is, the positive root of 𝑥2 − 3𝑥 − 1.

East𝑛 = {Λ−1
𝑛 (𝑣) : 𝑣 ∈ 𝑉𝑛} and North𝑛, the second one being the image of the first under a symmetry

by the positive diagonal. The partition East𝑛 can be constructed by drawing the following geodesics on
the torus T2:

◦ two closed geodesics of slope 0 and ∞ going through the origin (0, 0),
◦ a closed geodesic of slope 0 going through the point (0, 𝛽−1),
◦ a geodesic of slope −𝛽−1 from (0, 𝛽−1) to (1, 0),
◦ a geodesic of slope −𝛽 from (0, 𝛽−1) to (1, 0) wrapping around the unit square fundamental domain

n times.

See an illustration of P𝑛 when 𝑛 = 3 in Figure 8. Every open region defined by the complement of
the geodesics can be identified with a pair of vectors in 𝑉𝑛 and a unique tile in T𝑛 with such top and
right labels. As opposed to the four topological polygonal partitions associated with Jeandel-Rao tilings
[33], P𝑛 can be computed only from East𝑛 and North𝑛 without considering the South𝑛 and West𝑛
partitions. This is because the set T𝑛 of tiles is NE-deterministic, see Theorem 5.3.

The encoding of Z2-orbits under 𝑅𝑛 by the topological partition P𝑛 are 2-dimensional configurations
whose topological closure is the symbolic dynamical system XP𝑛 ,𝑅𝑛 . We prove that XP𝑛 ,𝑅𝑛 = Ω𝑛, and
since Ω𝑛 is a subshift of finite type by definition, we have the following theorem.

Theorem E. For every integer 𝑛 ≥ 1, the symbolic dynamical system XP𝑛 ,𝑅𝑛 corresponding to P𝑛, 𝑅𝑛
is equal to the metallic mean Wang shift Ω𝑛:

Ω𝑛 = XP𝑛 ,𝑅𝑛 .

In particular, P𝑛 is a Markov partition for the dynamical system Z2 𝑅𝑛
� T2.

Markov partitions were originally defined for one-dimensional dynamical systems Z 𝑇
� T2 and were

extended to Z𝑑-actions by automorphisms of compact Abelian group in [16]. Following [33, 34], we use
the same terminology and extend the definition proposed in [40, §6.5] for dynamical systems defined
by higher-dimensional actions by rotations, see Definition 9.1.

The maximal equicontinuous factor and an isomorphism

Using Theorem E and applying the results already proved for Jeandel–Rao Wang shift [33], we have the
following additional topological and measurable properties for the factor map. We refer the reader to the
preliminary Section 3 for the notions and vocabulary on topological and measure-preserving dynamical
systems that are used in the statement. A similar result holds for Penrose tilings [48].
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Theorem F. The Wang shift Ω𝑛 and the Z2-action 𝑅𝑛 have the following properties:

(i) Z2 𝑅𝑛
� T2 is the maximal equicontinuous factor of Z2 𝜎

� Ω𝑛,
(ii) the factor map Φ𝑛 : Ω𝑛 → T2 is almost one-to-one and its set of fiber cardinalities is {1, 2, 8},

(iii) the shift-action Z2 𝜎
� Ω𝑛 on the metallic mean Wang shift is uniquely ergodic,

(iv) the measure-preserving dynamical system (Ω𝑛,Z2, 𝜎, 𝜈) is isomorphic to (T2,Z2, 𝑅𝑛, 𝜆) where 𝜈
is the unique shift-invariant probability measure on Ω𝑛 and 𝜆 is the Haar measure on T2.

3. Preliminaries on dynamical systems, subshifts and Wang shifts

This section follows the preliminary section of the chapter [36] and article [33].

3.1. Topological dynamical systems

Most of the notions introduced here can be found in [61]. A dynamical system is a triple (𝑋, 𝐺,𝑇),
where X is a topological space, G is a topological group and T is a continuous function 𝐺 × 𝑋 → 𝑋
defining a left action of G on X: if 𝑥 ∈ 𝑋 , e is the identity element of G and 𝑔, ℎ ∈ 𝐺, then using additive
notation for the operation in G we have 𝑇 (𝑒, 𝑥) = 𝑥 and 𝑇 (𝑔 + ℎ, 𝑥) = 𝑇 (𝑔, 𝑇 (ℎ, 𝑥)). In other words, if
one denotes the transformation 𝑥 ↦→ 𝑇 (𝑔, 𝑥) by 𝑇𝑔, then 𝑇𝑔+ℎ = 𝑇𝑔𝑇ℎ . In this work, we consider the
Abelian group 𝐺 = Z × Z.

If 𝑌 ⊂ 𝑋 , let 𝑌 denote the topological closure of Y and let 𝑌𝑇 := ∪𝑔∈𝐺𝑇𝑔 (𝑌 ) denote the T-closure
of Y. A subset 𝑌 ⊂ 𝑋 is T-invariant if 𝑌𝑇 = 𝑌 . A dynamical system (𝑋, 𝐺,𝑇) is called minimal if X
does not contain any nonempty, proper, closed T-invariant subset. The left action of G on X is free if
𝑔 = 𝑒 whenever there exists 𝑥 ∈ 𝑋 such that 𝑇𝑔 (𝑥) = 𝑥.

Let (𝑋, 𝐺,𝑇) and (𝑌, 𝐺, 𝑆) be two dynamical systems with the same topological group G. A homo-
morphism 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is a continuous function 𝜃 : 𝑋 → 𝑌 satisfying the commuting
property that 𝑆𝑔 ◦ 𝜃 = 𝜃 ◦ 𝑇𝑔 for every 𝑔 ∈ 𝐺. A homomorphism 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is called
an embedding if it is one-to-one, a factor map if it is onto, and a topological conjugacy if it is both
one-to-one and onto and its inverse map is continuous. If 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is a factor map,
then (𝑌, 𝐺, 𝑆) is called a factor of (𝑋, 𝐺,𝑇) and (𝑋, 𝐺,𝑇) is called an extension of (𝑌, 𝐺, 𝑆). Two
dynamical systems are topologically conjugate if there is a topological conjugacy between them.

A measure-preserving dynamical system is defined as a system (𝑋, 𝐺,𝑇, 𝜇,B), where 𝜇 is a
probability measure defined on the Borel 𝜎-algebra B of subsets of X, and 𝑇𝑔 : 𝑋 → 𝑋 is a measurable
map which preserves the measure 𝜇 for all 𝑔 ∈ 𝐺, that is, 𝜇(𝑇𝑔 (𝐵)) = 𝜇(𝐵) for all 𝐵 ∈ B. The measure
𝜇 is said to be T-invariant. In what follows, when it is clear from the context, we omit the Borel
𝜎-algebra B of subsets of X and write (𝑋, 𝐺,𝑇, 𝜇) to denote a measure-preserving dynamical system.

The set of all T-invariant probability measures of a dynamical system (𝑋, 𝐺,𝑇) is denoted by
M𝑇 (𝑋). A T-invariant probability measure on X is called ergodic if for every set 𝐵 ∈ B such that
𝑇𝑔 (𝐵) = 𝐵 for all 𝑔 ∈ 𝐺, we have that B has either zero or full measure. A dynamical system (𝑋, 𝐺,𝑇)
is uniquely ergodic if it has only one invariant probability measure, that is, |M𝑇 (𝑋) | = 1. One can
prove that a uniquely ergodic dynamical system is ergodic. A dynamical system (𝑋, 𝐺,𝑇) is said strictly
ergodic if it is uniquely ergodic and minimal.

Let (𝑋, 𝐺, 𝑆, 𝜇,A) and (𝑌, 𝐺,𝑇, 𝜈,B) be two measure-preserving dynamical systems. We say that
the two systems are isomorphic (mod 0) if there exist measurable sets 𝑋0 ⊂ 𝑋 and 𝑌0 ⊂ 𝑌 of full
measure (i.e., 𝜇(𝑋0) = 1 and 𝜈(𝑌0) = 1) with 𝑆𝑔 (𝑋0) ⊂ 𝑋0, 𝑇𝑔 (𝑌0) ⊂ 𝑌0 for all 𝑔 ∈ 𝐺 and there exists
a bi-measurable bijection 𝜙0 : 𝑋0 → 𝑌0,

◦ which is measure-preserving, that is, 𝜇(𝜙−1
0 (𝐵)) = 𝜈(𝐵) for all measurable sets 𝐵 ⊂ 𝑌0,

◦ satisfying 𝜙0 ◦ 𝑆𝑔 (𝑥) = 𝑇𝑔 ◦ 𝜙0(𝑥) for all 𝑥 ∈ 𝑋0 and 𝑔 ∈ 𝐺.

The role of the set 𝑋0 is to make precise the fact that the properties of the isomorphism need to hold
only on a set of full measure. In this case, we call 𝜙0 an isomorphism (mod 0) with respect to 𝜇 and 𝜈.
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We also refer to an everywhere defined measurable map 𝜙 : 𝑋 → 𝑌 as an isomorphism (mod 0) with
respect to 𝜇 and 𝜈 if 𝜙(𝑥) = 𝜙0(𝑥) with 𝑥 ∈ 𝑋 for some 𝜙0 and 𝑋0 as above. When 𝜙 is also a factor map,
some authors say that 𝜙 is a topo-isomorphism in order to express both its topological and measurable
nature [18].

3.2. Maximal equicontinuous factor

A metrizable dynamical system (𝑋, 𝐺,𝑇) is called equicontinuous if the family of homeomorphisms
{𝑇𝑔}𝑔∈𝐺 is equicontinuous, that is, if for all 𝜀 > 0 there exists 𝛿 > 0 such that

dist(𝑇𝑔 (𝑥), 𝑇𝑔 (𝑦))<𝜀

for all 𝑔 ∈ 𝐺 and all 𝑥, 𝑦 ∈ 𝑋 with dist(𝑥, 𝑦) < 𝛿. According to a well-known theorem [4, Theorem 3.2],
equicontinuous minimal systems defined by the action of an Abelian group are rotations on groups.

We say that 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is an equicontinuous factor if 𝜃 is a factor map and (𝑌, 𝐺, 𝑆) is
equicontinuous. We say that (𝑋max, 𝐺, 𝑇max) is the maximal equicontinuous factor of (𝑋, 𝐺,𝑇) if there
exists an equicontinuous factor 𝜋max : (𝑋, 𝐺,𝑇) → (𝑋max, 𝐺, 𝑇max), such that for any equicontinuous
factor 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆), there exists a unique factor map 𝜓 : (𝑋max, 𝐺, 𝑇max) → (𝑌, 𝐺, 𝑆) with
𝜓 ◦ 𝜋max = 𝜃. The maximal equicontinuous factor exists and is unique (up to topological conjugacy),
see [4, Theorem 3.8] and [31, Theorem 2.44].

Let 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) be a factor map. We call the preimage set 𝜃−1(𝑦) of a point 𝑦 ∈ 𝑌
the fiber of 𝜃 over y. The cardinality of the fiber 𝜃−1(𝑦) for some 𝑦 ∈ 𝑌 has an important role and is
related to the definition of other notions, see [4]. In particular, the factor map 𝜃 is almost one-to-one if
{𝑦 ∈ 𝑌 : card(𝜃−1 (𝑦)) = 1} is a 𝐺 𝛿-dense set in Y (that is a countable intersection of open sets which
is dense in Y). In that case, (𝑋, 𝐺,𝑇) is an almost one-to-one extension of (𝑌, 𝐺, 𝑆). The set of fiber
cardinalities of a factor map 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is the set {card(𝜃−1 (𝑦)) : 𝑦 ∈ 𝑌 } ⊂ N ∪ {∞},
see [17]. The set of fiber cardinalities of the maximal equicontinuous factor of a minimal dynamical
system is invariant under topological conjugacy, see for instance [33, Lemma 2.2].

3.3. Subshifts and shifts of finite type

In this section, we introduce multidimensional subshifts, a particular type of dynamical systems [40,
§13.10], [51, 39, 20]. Let A be a finite set, 𝑑 ≥ 1, and let AZ𝑑 be the set of all maps 𝑥 : Z𝑑 → A,
equipped with the compact product topology. An element 𝑥 ∈ AZ𝑑 is called configuration and we write
it as 𝑥 = (𝑥𝒎) = (𝑥𝒎 : 𝒎 ∈ Z𝑑), where 𝑥𝒎 ∈ A denotes the value of x at 𝒎. The topology on AZ𝑑 is
compatible with the metric defined for all configurations 𝑥, 𝑥 ′ ∈ AZ𝑑 by dist(𝑥, 𝑥 ′) = 2−min{‖𝒏 ‖ : 𝑥𝒏≠𝑥′𝒏}
where ‖𝒏‖ = |𝑛1 |+· · ·+ |𝑛𝑑 |. The shift action 𝜎 : 𝒏 ↦→ 𝜎𝒏 of the additive groupZ𝑑 onAZ𝑑 is defined by

(𝜎𝒏 (𝑥))𝒎 = 𝑥𝒎+𝒏 (3.1)

for every 𝑥 = (𝑥𝒎) ∈ AZ𝑑 and 𝒏 ∈ Z𝑑 . If 𝑋 ⊂ AZ𝑑 , let 𝑋 denote the topological closure of X and let
𝑋
𝜎 := {𝜎𝒏 (𝑥) | 𝑥 ∈ 𝑋, 𝒏 ∈ Z𝑑} denote the shift-closure of X. A subset 𝑋 ⊂ AZ𝑑 is shift-invariant

if 𝑋𝜎 = 𝑋 . A closed, shift-invariant subset 𝑋 ⊂ AZ𝑑 is a subshift. If 𝑋 ⊂ AZ𝑑 is a subshift we write
𝜎 = 𝜎𝑋 for the restriction of the shift action (3.1) to X. When X is a subshift, the triple (𝑋,Z𝑑 , 𝜎) is a
dynamical system and the notions presented in the previous section hold.

A configuration 𝑥 ∈ 𝑋 is periodic if there is a nonzero vector 𝒏 ∈ Z𝑑 \ {0} such that 𝑥 = 𝜎𝒏 (𝑥) and
otherwise it is nonperiodic. We say that a nonempty subshift X is aperiodic if the shift action 𝜎 on X
is free.

For any subset 𝑆 ⊂ Z𝑑 let 𝜋𝑆 : AZ𝑑 → A𝑆 denote the projection map which restricts every 𝑥 ∈ AZ𝑑

to S. A pattern is a function 𝑝 ∈ A𝑆 for somefinite subset 𝑆 ⊂ Z𝑑 . To every pattern 𝑝 ∈ A𝑆 corresponds

https://doi.org/10.1017/fms.2025.10098 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10098


14 S. Labbé

a subset 𝜋−1
𝑆 (𝑝) ⊂ AZ𝑑 called cylinder. A nonempty set 𝑋 ⊂ AZ𝑑 is a subshift if and only if there

exists a set F of forbidden patterns such that

𝑋 = {𝑥 ∈ AZ𝑑 | 𝜋𝑆 ◦ 𝜎𝒏 (𝑥) ∉ F for every 𝒏 ∈ Z𝑑 and 𝑆 ⊂ Z𝑑}, (3.2)

see [20, Prop. 9.2.4]. A subshift 𝑋 ⊂ AZ𝑑 is a subshift of finite type (SFT) if there exists a finite set F
such that (3.2) holds. In this article, we consider shifts of finite type on Z × Z, that is, the case 𝑑 = 2.

3.4. Wang shifts

A Wang tile is a tuple of four colors (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐼 × 𝐽 × 𝐼 × 𝐽 where I is a finite set of vertical colors
and J is a finite set of horizontal colors, see [62, 49]. A Wang tile is represented as a unit square with
colored edges:

𝑎

𝑏

𝑐

𝑑

For each Wang tile 𝜏 = (𝑎, 𝑏, 𝑐, 𝑑), let Right(𝜏) = 𝑎, Top(𝜏) = 𝑏, Left(𝜏) = 𝑐, Bottom(𝜏) = 𝑑 denote
respectively the colors of the right, top, left and bottom edges of 𝜏.

Let T = {𝑡0, . . . , 𝑡𝑚−1} be a set of Wang tiles such as the one shown in Figure 9. A configuration
𝑥 : Z2 → {0, . . . , 𝑚 − 1} is valid with respect to T if it assigns a tile in T to each position of Z2 so that
contiguous edges of adjacent tiles have the same color, that is,

Right(𝑡𝑥 (𝒏) ) = Left(𝑡𝑥 (𝒏+𝒆1) ) (3.3)

Top(𝑡𝑥 (𝒏) ) = Bottom(𝑡𝑥 (𝒏+𝒆2) ) (3.4)

for every 𝒏 ∈ Z2 where 𝒆1 = (1, 0) and 𝒆2 = (0, 1). A finite pattern which is valid with respect to U is
shown in Figure 10.

Figure 9. The set of 3 Wang tiles introduced in [62] using letters {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} instead of numbers
from the set {1, 2, 3, 4, 5} for labeling the edges. Each tile is identified uniquely by an index from the set
{0, 1, 2} written at the center each tile.

Figure 10. A finite 3 × 3 pattern on the left is valid with respect to the Wang tiles since it respects
Equations (3.3) and (3.4). Validity can be verified on the tiling shown on the right.
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Let ΩT ⊂ {0, . . . , 𝑚 − 1}Z2 denote the set of all valid configurations with respect to T . Together
with the shift action 𝜎 of Z2, ΩT is a subshift that we call a Wang shift. Furthermore, ΩT is a subshift
of finite type (SFT) of the form (3.2) since ΩT is the subshift defined from the finite set of forbidden
patterns made of all horizontal and vertical dominoes of two tiles that do not share an edge of the
same color. Reciprocally, every subshift of finite type can be encoded into a Wang shift following a
well-known construction (see [41, p. 141-142]).

To a configuration 𝑥 ∈ ΩT corresponds a tiling of the plane R2 by the tiles T where the unit square
Wang tile 𝑡𝑥 (𝒏) is placed at position 𝒏 for every 𝒏 ∈ Z2, as in Figure 10. In this article, we consider tilings
from the symbolic point of view. In particular, we represent tilings of plane by Wang tiles symbolically
by configurations Z2 → T .

A configuration 𝑥 ∈ ΩT is periodic if there exists 𝒏 ∈ Z2 \ {0} such that 𝑥 = 𝜎𝒏 (𝑥). A set of
Wang tiles T is periodic if there exists a periodic configuration 𝑥 ∈ ΩT . Originally, Wang thought that
every set of Wang tiles T is periodic as soon as ΩT is nonempty [62]. This statement is equivalent to
the existence of an algorithm solving the domino problem, that is, taking as input a set of Wang tiles
and returning yes or no whether there exists a valid configuration with these tiles. Berger, a student of
Wang, later proved that the domino problem is undecidable and he also provided a first example of an
aperiodic set of Wang tiles [7]. A set of Wang tiles T is aperiodic if the Wang shift ΩT is a nonempty
aperiodic subshift. This means that in general one cannot decide the emptiness of a Wang shift ΩT .

4. The family of metallic mean Wang tiles

In this section, we recall from [37] the definition of the set T𝑛 of metallic mean Wang tiles and the
extended set T ′

𝑛 which satisfies T𝑛 ⊂ T ′
𝑛 . The extended set T ′

𝑛 was used to prove the self-similarity of
the Wang shift Ω𝑛 defined over T𝑛.

For every integer 𝑛 ∈ Z, we write 𝑛 to denote 𝑛 + 1 and 𝑛 to denote 𝑛 − 1:

𝑛 := 𝑛 + 1,
𝑛 := 𝑛 − 1.

For every Wang tile 𝜏 = (𝑎, 𝑏, 𝑐, 𝑑), we define its symmetric image under a symmetry by the positive
diagonal as 𝜏̂ = (𝑏, 𝑎, 𝑑, 𝑐):

if 𝜏 = 𝑎

𝑏

𝑐

𝑑

, then 𝜏̂ = 𝑏

𝑎

𝑑

𝑐

.

4.1. The tiles

For every integer 𝑛 ≥ 1, let

𝑉𝑛 = {(𝑣0, 𝑣1, 𝑣2) ∈ Z3 : 0 ≤ 𝑣0 ≤ 𝑣1 ≤ 1 and 𝑣1 ≤ 𝑣2 ≤ 𝑛 + 1}.

be a set of vectors having nondecreasing entries with an upper bound of 1 on the middle entry and
an upper bound of 𝑛 + 1 on the last entry. The label of the edges of the Wang tiles considered in this
article are vectors in 𝑉𝑛. To lighten the figures and the presentation of the Wang tiles, it is convenient to
denote the vector (𝑣0, 𝑣1, 𝑣2) ∈ 𝑉𝑛 more compactly as a word 𝑣0𝑣1𝑣2. For instance the vector (1, 1, 1) is
represented as 111.

To help the reading of the tiles and tilings, we assign a color to the vectors according to the following
rule: a vector 𝑣 ∈ 00N is drawn in blue, a vector 𝑣 ∈ 01N is drawn in yellow and a vector 𝑣 ∈ 11N is
drawn in white. Overlap between blue and yellow regions will be shown in green.
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For every integer 𝑛 ≥ 1 and for every 𝑖, 𝑗 ∈ N such that 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 ≤ 𝑛, we have the
following white tiles:

white tiles

𝑤
𝑖, 𝑗
𝑛 = 11𝑖

11 𝑗

11𝑖

11 𝑗

For every 𝑖, 𝑛 ∈ N such that 0 ≤ 𝑖 ≤ 𝑛, we have the following blue, yellow, green and antigreen tiles:

horizontal tiles vertical tiles

blue tiles 𝑏𝑖𝑛 = 00𝑖

111

00𝑖

11𝑛

𝑏̂𝑖𝑛 = 111

00𝑖

11𝑛

00𝑖

yellow tiles 𝑦𝑖𝑛 = 01𝑖

112

01𝑖

11𝑛

𝑦̂𝑖𝑛 = 112

01𝑖

11𝑛

01𝑖

green overlap tiles 𝑔𝑖𝑛 = 01𝑖

111

00𝑖

11𝑛

𝑔̂𝑖𝑛 = 111

01𝑖

11𝑛

00𝑖

antigreen no overlap tiles 𝑎𝑖𝑛 = 00𝑖

112

01𝑖

11𝑛

𝑎𝑖𝑛 = 112

00𝑖

11𝑛

01𝑖

For every 𝑛 ∈ N and 𝑘, ℓ, 𝑟, 𝑠 ∈ {0, 1} such that 𝑘 ≤ ℓ and 𝑟 ≤ 𝑠, we have the following junction tiles
(the gray region will be drawn in a blue or yellow color depending on the specific values of 𝑘, ℓ, 𝑟, 𝑠
according to the same rule as above):

junction tiles

𝑗 𝑘,ℓ,𝑟 ,𝑠𝑛 = (0, 𝑘, ℓ)

(0, 𝑟 , 𝑠)

(0, 𝑠, 𝑟 + 𝑛)

(0, ℓ, 𝑘 + 𝑛)

Junction tiles play a similar role as junction tiles in [41].

4.2. The extended set T ′
𝑛 of metallic mean Wang tiles

In this section, we give the definition of the family of extended sets of Wang tiles (T ′
𝑛 )𝑛≥1.

From the above, we define the following sets of tiles:

𝑊𝑛 =
{
𝑤
𝑖, 𝑗
𝑛 | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛

}
(𝑛2 white tiles),

𝐵′
𝑛 =

{
𝑏𝑖𝑛 | 0 ≤ 𝑖 ≤ 𝑛

}
(𝑛 + 1 horizontal blue tiles),
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𝑌𝑛 =
{
𝑦𝑖𝑛 | 1 ≤ 𝑖 ≤ 𝑛

}
(𝑛 horizontal yellow tiles),

𝐺𝑛 =
{
𝑔𝑖𝑛 | 0 ≤ 𝑖 ≤ 𝑛

}
(𝑛 + 1 horizontal green tiles),

𝐴𝑛 =
{
𝑎𝑖𝑛 | 1 ≤ 𝑖 ≤ 𝑛

}
(𝑛 horizontal antigreen tiles).

Finally, we have a set of 9 junction tiles:

𝐽 ′𝑛 =
{
𝑗0,0,0,0𝑛 , 𝑗0,0,0,1𝑛 , 𝑗0,0,1,1𝑛 , 𝑗0,1,0,0𝑛 , 𝑗0,1,0,1𝑛 , 𝑗0,1,1,1𝑛 , 𝑗1,1,0,0𝑛 , 𝑗1,1,0,1𝑛 , 𝑗1,1,1,1𝑛

}
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
011

01𝑛

001

01𝑛

000

00𝑛

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
011

01𝑛

001

01𝑛

000

00𝑛

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

011

000

00𝑛

01𝑛

011

001

01𝑛

01𝑛

011

011

01𝑛

01𝑛

001

000

00𝑛

01𝑛

001

001

01𝑛

01𝑛

001

011

01𝑛

01𝑛

000

000

00𝑛

00𝑛

000

001

01𝑛

00𝑛

000

011

01𝑛

00𝑛

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9 junction tiles) .

We may observe that𝑊𝑛 = 𝑊𝑛 and 𝐽 ′𝑛 = 𝐽 ′𝑛 are closed under reflection. Also, 𝐵′
𝑛 are 𝑛+1 vertical blue

tiles, 𝑌𝑛 are n vertical yellow tiles, 𝐺𝑛 are 𝑛 + 1 vertical green tiles and 𝐴𝑛 are n vertical antigreen tiles.
The extended set of metallic mean Wang tiles T ′

𝑛 can be described in terms of the white, yellow,
green, blue, antigreen and junction tiles seen before.

Definition 4.1 (Extended set of metallic mean Wang tiles [37]). Let

T ′
𝑛 = 𝑊𝑛 ∪ 𝑌𝑛 ∪ 𝑌𝑛 ∪ 𝐺𝑛 ∪ 𝐺𝑛 ∪ 𝐵′

𝑛 ∪ 𝐵′
𝑛 ∪ 𝐴𝑛 ∪ 𝐴𝑛 ∪ 𝐽 ′𝑛.

The set T ′
𝑛 defines the extended metallic mean Wang shift Ω′

𝑛 = ΩT ′
𝑛
.

The set T ′
𝑛 contains 𝑛2 + 2(𝑛 + 1 + 𝑛 + 𝑛 + 1 + 𝑛) + 9 = 𝑛2 + 8𝑛 + 13 Wang tiles. The set of Wang tiles

T ′
𝑛 for 𝑛 = 4 is shown in Figure 11.

4.3. The family T𝑛 of (𝑛 + 3)2 Wang tiles

In this section, we give the definition of the family of sets of Wang tiles (T𝑛)𝑛≥1. The set T𝑛 is a subset
of T ′

𝑛 defined as follows. Let

𝐵𝑛 = 𝐵′
𝑛 \

{
𝑏𝑛𝑛

}
(subset of 𝑛 horizontal blue tiles),

𝐽𝑛 = 𝐽 ′𝑛 \
{
𝑗1,1,0,0
𝑛 , 𝑗0,0,1,1

𝑛

}
(subset of 7 junction tiles).
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Figure 11. Extended metallic mean Wang tile sets T ′
𝑛 for 𝑛 = 4. The junction tiles 𝑗0,0,1,1

𝑛 and 𝑗1,1,0,0
𝑛

are shown with a ×-mark in their center.

Definition 4.2 (Metallic mean Wang tiles[37]). For every positive integer n, we construct the set of
Wang tiles

T𝑛 = 𝑊𝑛 ∪ 𝑌𝑛 ∪ 𝑌𝑛 ∪ 𝐺𝑛 ∪ 𝐺𝑛 ∪ 𝐵𝑛 ∪ 𝐵𝑛 ∪ 𝐽𝑛.

The set of tiles defines the Metallic mean Wang shift Ω𝑛 = ΩT𝑛 .

The subset T𝑛 contains 𝑛2 + 2(𝑛 + 𝑛 + 1 + 𝑛) + 7 = (𝑛 + 3)2 Wang tiles. They are shown in Figure 12
for 𝑛 = 1, 2, 3, 4, 5.

5. The 𝜃𝑛-chip and metallic mean Wang tiles

In this section, we relate the 𝜃𝑛-chip with metallic mean Wang tiles. The proposition below provides
an independent characterization of the extended set T ′

𝑛 of metallic mean Wang tiles as instances of the
𝜃𝑛-chip, see Equation 2.2.

Proposition 5.1. For every 𝑛 ≥ 1, the set of instances of the computer chip is equal to the extended set
of metallic mean Wang tiles, that is, C𝑛 = T ′

𝑛 .

Proof. (⊆) Let 𝜏 = 𝜃𝑛 (𝑢, 𝑣)

𝜃𝑛 (𝑣, 𝑢)

𝑢

𝑣

be a Wang tile such that 𝑢 = (𝑢0, 𝑢1, 𝑢2) ∈ 𝑉𝑛, 𝑣 = (𝑣0, 𝑣1, 𝑣2) ∈

𝑉𝑛, 𝜃𝑛 (𝑢, 𝑣) ∈ 𝑉𝑛 and 𝜃𝑛 (𝑣, 𝑢) ∈ 𝑉𝑛. We proceed case by case:
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Figure 12. Metallic mean Wang tile sets T𝑛 for 𝑛 = 1, 2, 3, 4, 5.

◦ If 𝑢0 = 1 and 𝑣0 = 1, then 1 = 𝑢1 ≤ 𝑢2, 1 = 𝑣1 ≤ 𝑣2 and

𝜃𝑛 (𝑢, 𝑣) = (𝑢0, 1, 𝑢2 + 1) = (1, 1, 𝑢2 + 1) ∈ 𝑉𝑛,

𝜃𝑛 (𝑣, 𝑢) = (𝑣0, 1, 𝑣2 + 1) = (1, 1, 𝑣2 + 1) ∈ 𝑉𝑛.

Thus, 0 ≤ 𝑢2 ≤ 𝑛 and 0 ≤ 𝑣2 ≤ 𝑛 and 𝜏 ∈ 𝑊𝑛 is a white tile.
◦ If 𝑢0 = 0 and 𝑣0 = 1, then

𝜃𝑛 (𝑢, 𝑣) = (𝑢0, 𝑣2 − 𝑛, 𝑢2 + 1) = (0, 𝑣2 − 𝑛, 𝑢2 + 1) ∈ 𝑉𝑛,

𝜃𝑛 (𝑣, 𝑢) = (𝑣0, 1, 𝑢1 + 𝑣0) = (1, 1, 𝑢1 + 1) ∈ 𝑉𝑛,

where 0 ≤ 𝑢2 ≤ 𝑛, 𝑛 ≤ 𝑣2 ≤ 𝑛 + 1 and 0 ≤ 𝑢1 ≤ 1. There are four possibilities according to the
values of 𝑣2 ∈ {𝑛, 𝑛 + 1} and 𝑢1 ∈ {0, 1} that we consider case by case:
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– If 𝑣2 = 𝑛 and 𝑢1 = 0, then 𝜏 = (0, 0, 𝑢2 + 1)

(1, 1, 1)

(0, 0, 𝑢2)

(1, 1, 𝑛)

= 𝑏𝑢2
𝑛 ∈ 𝐵𝑛 ∪ {𝑏𝑛𝑛} is a blue

horizontal stripe tile with 0 ≤ 𝑢2 ≤ 𝑛.

– If 𝑣2 = 𝑛 and 𝑢1 = 1, then 𝜏 = (0, 0, 𝑢2 + 1)

(1, 1, 2)

(0, 1, 𝑢2)

(1, 1, 𝑛)

= 𝑎𝑢2
𝑛 ∈ 𝐴𝑛 is an antigreen

horizontal tile with 1 ≤ 𝑢2 ≤ 𝑛.

– If 𝑣2 = 𝑛 + 1 and 𝑢1 = 0, then 𝜏 = (0, 1, 𝑢2 + 1)

(1, 1, 1)

(0, 0, 𝑢2)

(1, 1, 𝑛 + 1)

= 𝑔𝑢2
𝑛 ∈ 𝐺𝑛 is a green

horizontal overlap tile with 0 ≤ 𝑢2 ≤ 𝑛.

– If 𝑣2 = 𝑛 + 1 and 𝑢1 = 1, then 𝜏 = (0, 1, 𝑢2 + 1)

(1, 1, 2)

(0, 1, 𝑢2)

(1, 1, 𝑛 + 1)

= 𝑦𝑢2
𝑛 ∈ 𝑌𝑛 is a yellow

horizontal stripe tile with 1 ≤ 𝑢2 ≤ 𝑛.
◦ If 𝑢0 = 1 and 𝑣0 = 0, the possibilities are the symmetric image of the previous case. Thus, 𝜏 ∈

𝐵𝑛 ∪ {𝑏̂𝑛𝑛} ∪ 𝐴𝑛 ∪ 𝐺𝑛 ∪ 𝑌𝑛 is a blue, antigreen, green or yellow vertical tile.
◦ If 𝑢0 = 0 and 𝑣0 = 0, then

𝜃𝑛 (𝑢, 𝑣) = (𝑢0, 𝑣2 − 𝑛, 𝑣1 + 𝑢0) = (0, 𝑣2 − 𝑛, 𝑣1) ∈ 𝑉𝑛,

𝜃𝑛 (𝑣, 𝑢) = (𝑣0, 𝑢2 − 𝑛, 𝑢1 + 𝑣0) = (0, 𝑢2 − 𝑛, 𝑢1) ∈ 𝑉𝑛,

where 0 ≤ 𝑢2 − 𝑛 ≤ 𝑢1 ≤ 1 and 0 ≤ 𝑣2 − 𝑛 ≤ 𝑣1 ≤ 1. In particular, (𝑣2 − 𝑛, 𝑣1), (𝑢2 −

𝑛, 𝑢1) ∈ {(0, 0), (0, 1), (1, 1)}. In all cases, we have 𝜏 = (0, 𝑣2 − 𝑛, 𝑣1)

(0, 𝑢2 − 𝑛, 𝑢1)

(0, 𝑢1, 𝑢2)

(0, 𝑣1, 𝑣2)

∈

𝐽𝑛 ∪ { 𝑗0,0,1,1
𝑛 , 𝑗1,1,0,0

𝑛 } is a junction tile.

(⊇) Proving C𝑛 ⊇ T ′
𝑛 is not necessary to conclude the proof, since C𝑛 ⊆ T ′

𝑛 and T ′
𝑛 is a finite set.

Indeed, the set T ′
𝑛 contains #T ′

𝑛 = 𝑛2 + 8𝑛 + 13 elements. Also, in the proof that C𝑛 ⊆ T ′
𝑛 made above,

we exhibited 𝑛2 white tiles, 2(𝑛 + 1) blue tiles, 2𝑛 antigreen tiles, 2(𝑛 + 1) green tiles, 2𝑛 yellow tiles
and 9 junction tiles in C𝑛. Therefore, C𝑛 contains 𝑛2 +2(𝑛+1+𝑛+𝑛+1+𝑛) +9 = 𝑛2 +8𝑛+13 elements.
We conclude that C𝑛 = T ′

𝑛 .

Alternatively, C𝑛 ⊇ T ′
𝑛 can be proved directly. One may check that for every 𝜏 = 𝑟

𝑡

ℓ

𝑏

∈ T ′
𝑛 ,

we have {𝑟, 𝑡, ℓ, 𝑏} ⊂ 𝑉𝑛, 𝑟 = 𝜃𝑛 (ℓ, 𝑏) and 𝑡 = 𝜃𝑛 (𝑏, ℓ). Thus, 𝜏 ∈ C𝑛. �

We may now prove the first main result.
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Theorem A. For every integer 𝑛 ≥ 1, the Wang shift ΩC𝑛 defined by the 𝜃𝑛-chip is the 𝑛𝑡ℎ metallic
mean Wang shift Ω𝑛.

Proof. From Proposition 5.1, we have C𝑛 = T ′
𝑛 . It was shown in [37] that the tiles in the difference set

T ′
𝑛 \T𝑛 do not appear in valid configurations ofΩT ′

𝑛
, so thatΩT ′

𝑛
= ΩT𝑛 . Thus, we conclude the equalities

ΩC𝑛 = ΩT ′
𝑛
= ΩT𝑛 = Ω𝑛.

�

Now, we show that the computation performed by 𝜃𝑛 is invertible. Let

𝜓𝑛 : 𝑉𝑛 ×𝑉𝑛 → Z3

(𝑟0, 𝑟1, 𝑟2), (𝑡0, 𝑡1, 𝑡2) ↦→ (ℓ0, ℓ1, ℓ2),

be the function defined by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓ0 = 𝑟0,

ℓ1 =

{
𝑡2 − 𝑡0 if 𝑟0 = 0,
1 if 𝑟0 = 1,

ℓ2 =

{
𝑡1 + 𝑛 if 𝑡0 = 0,
𝑟2 − 1 if 𝑡0 = 1.

(5.1)

The following proposition states that the south and west colors of tiles in C𝑛 can be deduced from the
right and top colors using the map 𝜓𝑛.

Proposition 5.2. We have

C𝑛 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑟

𝑡

𝜓𝑛 (𝑟, 𝑡)

𝜓𝑛 (𝑡, 𝑟)

���������� 𝑟, 𝑡 ∈ 𝑉𝑛 such that 𝜓𝑛 (𝑟, 𝑡), 𝜓𝑛 (𝑡, 𝑟) ∈ 𝑉𝑛

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (5.2)

Proof. Let ℓ, 𝑏 ∈ 𝑉𝑛 and suppose that 𝑟 = (𝑟0, 𝑟1, 𝑟2) = 𝜃𝑛 (ℓ, 𝑏) and 𝑡 = (𝑡0, 𝑡1, 𝑡2) = 𝜃𝑛 (𝑏, ℓ). From
Equation (2.1), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟0 = ℓ0,

𝑟1 =

{
𝑏2 − 𝑛 if ℓ0 = 0,
1 if ℓ0 = 1,

𝑟2 =

{
𝑏1 + ℓ0 if 𝑏0 = 0,
ℓ2 + 1 if 𝑏0 = 1,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑡0 = 𝑏0,

𝑡1 =

{
ℓ2 − 𝑛 if 𝑏0 = 0,
1 if 𝑏0 = 1,

𝑡2 =

{
ℓ1 + 𝑏0 if ℓ0 = 0,
𝑏2 + 1 if ℓ0 = 1.

(5.3)

The above holds if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓ0 = 𝑟0,

ℓ1 =

{
𝑡2 − 𝑡0 if 𝑟0 = 0,
1 if 𝑟0 = 1,

ℓ2 =

{
𝑡1 + 𝑛 if 𝑡0 = 0,
𝑟2 − 1 if 𝑡0 = 1,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏0 = 𝑡0,

𝑏1 =

{
𝑟2 − 𝑟0 if 𝑡0 = 0,
1 if 𝑡0 = 1,

𝑏2 =

{
𝑟1 + 𝑛 if 𝑟0 = 0,
𝑡2 − 1 if 𝑟0 = 1.
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if and only if ℓ = (ℓ0, ℓ1, ℓ2) = 𝜓𝑛 (𝑟, 𝑡) and 𝑏 = (𝑏0, 𝑏1, 𝑏2) = 𝜓𝑛 (𝑡, 𝑟). Thus, from Equation (2.2), we
have

C𝑛 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜃𝑛 (ℓ, 𝑏)

𝜃𝑛 (𝑏, ℓ)

ℓ

𝑏

���������� ℓ, 𝑏 ∈ 𝑉𝑛 such that 𝜃𝑛 (ℓ, 𝑏), 𝜃𝑛 (𝑏, ℓ) ∈ 𝑉𝑛

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑟

𝑡

𝜓𝑛 (𝑟, 𝑡)

𝜓𝑛 (𝑡, 𝑟)

���������� 𝑟, 𝑡 ∈ 𝑉𝑛 such that 𝜓𝑛 (𝑟, 𝑡), 𝜓𝑛 (𝑡, 𝑟) ∈ 𝑉𝑛

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

�

As a consequence of Proposition 5.2, there is a bijection between the south-west and the north-east
colors for the tiles in C𝑛. Using the vocabulary of [28], we may state the following result. A set T of
Wang tiles is called SW-deterministic if there do not exist two different tiles in T that would have same
colors on their bottom and left edges, respectively. In other words, for all colors 𝐶1 and 𝐶2 there exists
at most one tile in T whose bottom and left edges have colors 𝐶1 and 𝐶2, respectively. NW-, NE- and
SE-deterministic sets of Wang tiles are defined analogously. Thus, we obtain a conceptual proof for a
result already obtained in [37].

Theorem 5.3 [37, Lemma 4.3]. For every integer 𝑛 ≥ 1, the set of Wang tiles C𝑛 is NE-deterministic
and SW-deterministic.

Proof. The set of Wang tile C𝑛 is SW-deterministic by definition and NE-deterministic from Proposition
5.2. �

6. Equations satisfied by the Wang tiles and their tilings

In this section, we show that the set C𝑛 of Wang tiles satisfy a system of equations. Moreover, we show
that the rectangular tilings (of sizes ℎ × 1, ∞× 1 and ℎ × 𝑘) generated by them satisfy equations. While
the equations associated with Kari’s [24] and Culik’s [11] aperiodic sets of Wang tiles are multiplicative,
the ones associated with C𝑛 are additive.

In the next theorem, we show that tiles in C𝑛 satisfy ℓ0 = 𝑟0, 𝑏0 = 𝑡0 and the equation

𝑡2 − 𝑡1 + ℓ2 − ℓ1
𝑛

− ℓ0 =
𝑏2 − 𝑏1 + 𝑟2 − 𝑟1

𝑛
− 𝑏0

which reminds of Equation (1.1).

Theorem B. Let 𝑛 ≥ 1 be an integer, 𝑑 = (0,−1, 1) and 𝑒 = (1, 0, 0). The set of Wang tiles defined by
the 𝜃𝑛-chip satisfy the following system of equations:

C𝑛 ⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ℓ

𝑏

𝑟

𝑡

∈ 𝑉𝑛 ×𝑉𝑛 ×𝑉𝑛 ×𝑉𝑛

�����������
〈 1
𝑛 𝑑, 𝑡 + ℓ〉 − 〈𝑒, ℓ〉 = 〈 1

𝑛 𝑑, 𝑏 + 𝑟〉 − 〈𝑒, 𝑏〉
〈𝑒, ℓ〉 = 〈𝑒, 𝑟〉
〈𝑒, 𝑏〉 = 〈𝑒, 𝑡〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
where 〈_, _〉 denotes the canonical inner product of Z3.
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Proof. Let ℓ = (ℓ0, ℓ1, ℓ2), 𝑏 = (𝑏0, 𝑏1, 𝑏2), 𝑟 = (𝑟0, 𝑟1, 𝑟2) and 𝑡 = (𝑡0, 𝑡1, 𝑡2). We always have 𝑟0 = ℓ0
and 𝑡0 = 𝑏0. Thus, 〈𝑒, ℓ〉 = ℓ0 = 𝑟0 = 〈𝑒, 𝑟〉 and 〈𝑒, 𝑏〉 = 𝑏0 = 𝑡0 = 〈𝑒, 𝑡〉. Moreover,

〈𝑑, 𝑏〉 = 𝑏2 − 𝑏1,

〈𝑑, ℓ〉 = ℓ2 − ℓ1.

The proof of the remaining equality is split in four cases. We use Equation (5.3) in the computations
below.

◦ If (𝑏0, ℓ0) = (0, 0), then

〈𝑑, 𝑡 + ℓ〉 = (𝑡2 − 𝑡1) + (ℓ2 − ℓ1) = (ℓ1 + 𝑏0) − (ℓ2 − 𝑛) + (ℓ2 − ℓ1) = 𝑏0 + 𝑛 = 𝑛

〈𝑑, 𝑟 + 𝑏〉 = (𝑟2 − 𝑟1) + (𝑏2 − 𝑏1) = (𝑏1 + ℓ0) − (𝑏2 − 𝑛) + (𝑏2 − 𝑏1) = ℓ0 + 𝑛 = 𝑛

𝑛〈𝑒, ℓ − 𝑏〉 = 𝑛(ℓ0 − 𝑏0) = 0

◦ If (𝑏0, ℓ0) = (0, 1), then ℓ1 = 1 and

〈𝑑, 𝑡 + ℓ〉 = (𝑡2 − 𝑡1) + (ℓ2 − ℓ1) = (𝑏2 + 1) − (ℓ2 − 𝑛) + (ℓ2 − ℓ1) = 𝑏2 + 𝑛

〈𝑑, 𝑟 + 𝑏〉 = (𝑟2 − 𝑟1) + (𝑏2 − 𝑏1) = (𝑏1 + ℓ0) − (1) + (𝑏2 − 𝑏1) = 𝑏2

𝑛〈𝑒, ℓ − 𝑏〉 = 𝑛(ℓ0 − 𝑏0) = 𝑛

◦ If (𝑏0, ℓ0) = (1, 0), then 𝑏1 = 1 and

〈𝑑, 𝑡 + ℓ〉 = (𝑡2 − 𝑡1) + (ℓ2 − ℓ1) = (ℓ1 + 𝑏0) − (1) + (ℓ2 − ℓ1) = ℓ2

〈𝑑, 𝑟 + 𝑏〉 = (𝑟2 − 𝑟1) + (𝑏2 − 𝑏1) = (ℓ2 + 1) − (𝑏2 − 𝑛) + (𝑏2 − 𝑏1) = ℓ2 + 𝑛

𝑛〈𝑒, ℓ − 𝑏〉 = 𝑛(ℓ0 − 𝑏0) = −𝑛

◦ If (𝑏0, ℓ0) = (1, 1), then 𝑏1 = ℓ1 = 1 and

〈𝑑, 𝑡 + ℓ〉 = (𝑡2 − 𝑡1) + (ℓ2 − ℓ1) = (𝑏2 + 1) − (1) + (ℓ2 − ℓ1) = 𝑏2 + ℓ2 − ℓ1

〈𝑑, 𝑟 + 𝑏〉 = (𝑟2 − 𝑟1) + (𝑏2 − 𝑏1) = (ℓ2 + 1) − (1) + (𝑏2 − 𝑏1) = ℓ2 + 𝑏2 − 𝑏1

𝑛〈𝑒, ℓ − 𝑏〉 = 𝑛(ℓ0 − 𝑏0) = 0

In all the four cases, we have 〈𝑑, 𝑡 + ℓ〉 = 〈𝑑, 𝑟 + 𝑏〉 + 𝑛〈𝑒, ℓ − 𝑏〉. �

The two sets in the statement of Theorem B are not equal. For instance (1, 1, 3)

(0, 0, 3)

(1, 1, 5)

(0, 0, 1)
satisfy the equations when 𝑛 = 4, but it is not a tile in C𝑛.

Equation (1.1) behaves well with valid tiling of an horizontal strip by Wang tiles associated with the
same multiplication factor 𝑞 ∈ Q. The same holds with tiles in C𝑛 which are related to some addition of
a certain value modulo 1.

The equation satisfied by the tiles proved in Theorem B extends to an equation for ℎ × 𝑘 rectangular
valid tilings.

Lemma 6.1. Let 𝑛, ℎ, 𝑘 ≥ 1 be integers and 𝑑 = (0,−1, 1) and 𝑒 = (1, 0, 0). Let

{(𝑟 (𝑖, 𝑗) , 𝑡 (𝑖, 𝑗) , ℓ (𝑖, 𝑗) , 𝑏 (𝑖, 𝑗) )}1≤𝑖≤ℎ,1≤ 𝑗≤𝑘

https://doi.org/10.1017/fms.2025.10098 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10098


24 S. Labbé

𝑏 (1,1)

𝑟 (1,1)

𝑡 (1,1)

ℓ (1,1)

𝑏 (1,2)

𝑟 (1,2)

𝑡 (1,2)

ℓ (1,2)

𝑏 (1,3)

𝑟 (1,3)

𝑡 (1,3)

ℓ (1,3)

𝑏 (2,1)

𝑟 (2,1)

𝑡 (2,1)

ℓ (2,1)

𝑏 (2,2)

𝑟 (2,2)

𝑡 (2,2)

ℓ (2,2)

𝑏 (2,3)

𝑟 (2,3)

𝑡 (2,3)

ℓ (2,3)

𝑏 (3,1)

𝑟 (3,1)

𝑡 (3,1)

ℓ (3,1)

𝑏 (3,2)

𝑟 (3,2)

𝑡 (3,2)

ℓ (3,2)

𝑏 (3,3)

𝑟 (3,3)

𝑡 (3,3)

ℓ (3,3)

· · ·

𝑏 (ℎ,1)

𝑟 (ℎ,1)

𝑡 (ℎ,1)

ℓ (ℎ,1)

· · ·

𝑏 (ℎ,2)

𝑟 (ℎ,2)

𝑡 (ℎ,2)

ℓ (ℎ,2)

· · ·

𝑏 (ℎ,3)

𝑟 (ℎ,3)

𝑡 (ℎ,3)

ℓ (ℎ,3)

...

𝑏 (1,𝑘)

𝑟 (1,𝑘)

𝑡 (1,𝑘)

ℓ (1,𝑘)

...

𝑏 (2,𝑘)

𝑟 (2,𝑘)

𝑡 (2,𝑘)

ℓ (2,𝑘)

...

𝑏 (3,𝑘)

𝑟 (3,𝑘)

𝑡 (3,𝑘)

ℓ (3,𝑘) · · ·

...

𝑏 (ℎ,𝑘)

𝑟 (ℎ,𝑘)

𝑡 (ℎ,𝑘)

ℓ (ℎ,𝑘)

𝐿 =
1
𝑘

𝑘∑
𝑗=1

ℓ (1, 𝑗) 𝑅 =
1
𝑘

𝑘∑
𝑗=1

𝑟 (ℎ, 𝑗)

𝐵 =
1
ℎ

ℎ∑
𝑖=1

𝑏 (𝑖,1)

𝑇 =
1
ℎ

ℎ∑
𝑖=1

𝑡 (𝑖,𝑘)

Figure 13. An ℎ × 𝑘 rectangular tiling of tiles from C𝑛.

be a family of tiles in C𝑛 forming a valid tiling of a ℎ × 𝑘 rectangle, see Figure 13. Let

𝑅 = 1
𝑘

∑𝑘
𝑗=1 𝑟

(ℎ, 𝑗) , 𝑇 = 1
ℎ

∑ℎ
𝑖=1 𝑡

(𝑖,𝑘) , 𝐿 = 1
𝑘

∑𝑘
𝑗=1 ℓ

(1, 𝑗) and 𝐵 = 1
ℎ

∑ℎ
𝑖=1 𝑏

(𝑖,1)

be the average of the right, top, left and bottom labels of the rectangular tiling. Then the following
equation holds

1
𝑘

〈 1
𝑛 𝑑, 𝑇 − 𝐵

〉
− 〈𝑒, 𝐿〉 = 1

ℎ

〈 1
𝑛 𝑑, 𝑅 − 𝐿

〉
− 〈𝑒, 𝐵〉. (6.1)

Proof. From Theorem B, we have 〈𝑒, ℓ (𝑖, 𝑗) 〉 = 〈𝑒, 𝑟 (𝑖, 𝑗) 〉, 〈𝑒, 𝑏 (𝑖, 𝑗) 〉 = 〈𝑒, 𝑡 (𝑖, 𝑗) 〉 and

〈 1
𝑛 𝑑, 𝑡

(𝑖, 𝑗) − 𝑏 (𝑖, 𝑗) 〉 − 〈𝑒, ℓ (𝑖, 𝑗) 〉 = 〈 1
𝑛 𝑑, 𝑟

(𝑖, 𝑗) − ℓ (𝑖, 𝑗) 〉 − 〈𝑒, 𝑏 (𝑖, 𝑗) 〉,

for every integers i and j such that 1 ≤ 𝑖 ≤ ℎ and 1 ≤ 𝑗 ≤ 𝑘 . We have

1
𝑘

〈 1
𝑛 𝑑, 𝑇 − 𝐵

〉
− 〈𝑒, 𝐿〉 = 1

𝑘

〈 1
𝑛 𝑑,

1
ℎ

∑ℎ
𝑖=1 𝑡

(𝑖,𝑘) − 1
ℎ

∑ℎ
𝑖=1 𝑏

(𝑖,1) 〉 − 〈𝑒, 1
𝑘

∑𝑘
𝑗=1 ℓ

(1, 𝑗) 〉

=
1
𝑘ℎ

ℎ∑
𝑖=1

〈 1
𝑛 𝑑, 𝑡

(𝑖,𝑘) − 𝑏 (𝑖,1) 〉 − 1
𝑘

𝑘∑
𝑗=1

〈𝑒, ℓ (1, 𝑗) 〉
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=
1
𝑘ℎ

ℎ∑
𝑖=1

〈
1
𝑛 𝑑,

∑𝑘
𝑗=1 𝑡

(𝑖, 𝑗) −
∑𝑘
𝑗=1 𝑏

(𝑖, 𝑗)
〉
− 1

𝑘

𝑘∑
𝑗=1

〈𝑒, 1
ℎ

∑ℎ
𝑖=1 ℓ

(𝑖, 𝑗) 〉

=
1
𝑘ℎ

ℎ∑
𝑖=1

𝑘∑
𝑗=1

(〈 1
𝑛 𝑑, 𝑡

(𝑖, 𝑗) − 𝑏 (𝑖, 𝑗) 〉 − 〈𝑒, ℓ (𝑖, 𝑗) 〉
)

=
1
𝑘ℎ

ℎ∑
𝑖=1

𝑘∑
𝑗=1

(〈 1
𝑛 𝑑, 𝑟

(𝑖, 𝑗) − ℓ (𝑖, 𝑗)
〉
−

〈
𝑒, 𝑏 (𝑖, 𝑗)

〉)
=

1
𝑘ℎ

𝑘∑
𝑗=1

〈 1
𝑛 𝑑,

∑ℎ
𝑖=1 𝑟

(𝑖, 𝑗) −
∑ℎ
𝑖=1 ℓ

(𝑖, 𝑗) 〉 − 1
ℎ

ℎ∑
𝑖=1

〈
𝑒, 1
𝑘

∑𝑘
𝑗=1 𝑏

(𝑖, 𝑗)
〉

=
1
𝑘ℎ

𝑘∑
𝑗=1

〈 1
𝑛 𝑑, 𝑟

(ℎ, 𝑗) − ℓ (1, 𝑗)
〉
− 1

ℎ

ℎ∑
𝑖=1

〈
𝑒, 𝑏 (𝑖,1)

〉
=

1
ℎ

〈
1
𝑛 𝑑,

1
𝑘

∑𝑘
𝑗=1 𝑟

(ℎ, 𝑗) − 1
𝑘

∑𝑘
𝑗=1 ℓ

(1, 𝑗)
〉
−

〈
𝑒, 1
ℎ

∑ℎ
𝑖=1 𝑏

(𝑖,1) 〉
=

1
ℎ

〈 1
𝑛 𝑑, 𝑅 − 𝐿

〉
− 〈𝑒, 𝐵〉. �

Equation (6.1) is a simple consequence of the equations satisfied by the tiles, but it has important
implications. If 𝐿 = 𝑅, then

〈 1
𝑛 𝑑, 𝑅 − 𝐿

〉
= 0 and 𝑘 〈𝑒, 𝐿〉 is an integer. Thus, the average of the inner

product with 1
𝑛 𝑑 of the top labels is obtained from the average of the inner product with 1

𝑛 𝑑 of the
bottom labels by k rotations on the unit circle by a fixed angle:

〈 1
𝑛 𝑑, 𝑇〉 = 〈 1

𝑛 𝑑, 𝐵〉 − 𝑘 〈𝑒, 𝐵〉 (mod 1). (6.2)

If Ω𝑛 admits a periodic tiling, then there exists an ℎ × 𝑘 rectangular tiling of tiles from C𝑛 such
that 𝐿 = 𝑅 and 𝐵 = 𝑇 . From Equation (6.1), we get that 〈𝑒, 𝐿〉 = 〈𝑒, 𝐵〉. This equation means that the
frequency of rows with no junction tiles is equal to the frequency of columns with no junction tiles. This
holds if and only if h times the number of rows with no junction tile is equal to k times the number of
columns with no junction tiles. Copies of the ℎ × 𝑘 rectangular tiling can be used to tile periodically a
ℎ𝑘 × ℎ𝑘 square respecting all matching rules containing as many rows with no junction tile as columns
with no junction tile. But this is not sufficient to prove that no periodic tiling exist.

Kari’s [24] and Culik’s [11] equations allow to show in a few lines that their sets of Wang tiles admit
no periodic tiling. Proving the same for Ω𝑛 directly from the equations remains an open question.

7. Valid tilings obtained from floors of linear forms

In this section, we present a method to construct valid tilings in Ω𝑛. It is based on the integer-floor value
of three specific linear form over two variables.

Let 𝑛 ≥ 1 be an integer and let 𝛽 be the positive root of 𝑥2 − 𝑛𝑥 − 1. We denote the negative root by
𝛽∗ which satisfies 𝛽𝛽∗ = −1 and 𝛽 + 𝛽∗ = 𝑛. We consider the matrix

𝑀𝑛 =
��


0 1
𝛽−1 1
𝛽 1

���
and the map 𝜆𝑛 : R2 → R3 defined by

𝜆𝑛 (𝑥, 𝑦) = 𝑀𝑛 ·
(
{𝑥}
{𝑦}

)
+ ��


𝛽∗ + 1
𝛽∗ + 1
𝛽∗ + 1

���
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Figure 14. The preimage sets of the map (𝑥, 𝑦) ↦→ Λ𝑛 (𝑥, 𝑦) defines a partition of [0, 1)2 which is the
refinement of the three partitions on the left. The above images are when 𝑛 = 3.

where {𝑥} = 𝑥 − �𝑥
 is the fractional part of x. Since 𝜆𝑛 (𝑥, 𝑦) = 𝜆𝑛 (𝑥 + 1, 𝑦) = 𝜆𝑛 (𝑥, 𝑦 + 1), it is also
well-defined on the torus 𝜆𝑛 : T2 → R3. Then, we define a coding function Λ𝑛 as the coordinate-wise
floor of 𝜆𝑛 when restricted to the domain [0, 1)2. More precisely, we have

Λ𝑛 : [0, 1)2 → Z3

(𝑥, 𝑦) ↦→ ��

�𝑦 + 𝛽∗ + 1


�𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

�𝛽𝑥 + 𝑦 + 𝛽∗ + 1


���,
see Figure 14.

Recall that, for every integer 𝑛 ≥ 1, we have

𝑉𝑛 = {(𝑣0, 𝑣1, 𝑣2) ∈ Z3 : 0 ≤ 𝑣0 ≤ 𝑣1 ≤ 𝑣2 ≤ 𝑛 + 1 and 𝑣1 ≤ 1}.

Lemma 7.1. For every (𝑥, 𝑦) ∈ [0, 1)2, Λ𝑛 (𝑥, 𝑦) ∈ 𝑉𝑛.

Proof. Let (𝑥, 𝑦) ∈ [0, 1)2. Since 𝛽 > 1, we have

0 < 𝛽∗ + 1 ≤ 𝑦 + 𝛽∗ + 1 ≤ 𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1 ≤ 𝛽𝑥 + 𝑦 + 𝛽∗ + 1 < 𝛽 + 1 + 𝛽∗ + 1 = 𝑛 + 2.

Thus, taking the floor function, we obtain

0 ≤ �𝛽∗ + 1
 ≤ �𝑦 + 𝛽∗ + 1
 ≤ �𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1
 ≤ �𝛽𝑥 + 𝑦 + 𝛽∗ + 1
 < 𝑛 + 2.

Therefore, if (𝑣0, 𝑣1, 𝑣2) = Λ𝑛 (𝑥, 𝑦), we have 0 ≤ 𝑣0 ≤ 𝑣1 ≤ 𝑣2 ≤ 𝑛 + 1. Also

𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1 < 𝛽−1 + 1 + 𝛽∗ + 1 = 1 + 1 = 2.

Thus,

𝑣1 = �𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1
 ≤ 1.

We conclude Λ𝑛 (𝑥, 𝑦) = (𝑣0, 𝑣1, 𝑣2) ∈ 𝑉𝑛. �

The following lemma shows a relation between Λ𝑛 and the map 𝜃𝑛 defined in Equation (2.1).

Lemma 7.2. If 𝑥, 𝑦 ∈ [0, 1), then

Λ𝑛 (𝑥, 𝑦) = 𝜃𝑛
(
Λ𝑛 ({𝑥 + 𝛽∗}, 𝑦),Λ𝑛 ({𝑦 + 𝛽∗}, 𝑥)

)
.
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Proof. Let 𝑥, 𝑦 ∈ [0, 1). We want to show that if ℓ0, ℓ1, ℓ2, 𝑏0, 𝑏1, 𝑏2 ∈ Z are such that

Λ𝑛 ({𝑥 + 𝛽∗}, 𝑦) = ��

�𝑦 + 𝛽∗ + 1


�𝛽−1{𝑥 + 𝛽∗} + 𝑦 + 𝛽∗ + 1

�𝛽{𝑥 + 𝛽∗} + 𝑦 + 𝛽∗ + 1


��� =
��

ℓ0
ℓ1
ℓ2

���
and

Λ𝑛 ({𝑦 + 𝛽∗}, 𝑥) = ��

�𝑥 + 𝛽∗ + 1


�𝛽−1{𝑦 + 𝛽∗} + 𝑥 + 𝛽∗ + 1

�𝛽{𝑦 + 𝛽∗} + 𝑥 + 𝛽∗ + 1


��� =
��

𝑏0
𝑏1
𝑏2

���,
then Λ𝑛 (𝑥, 𝑦) = 𝜃𝑛 ((ℓ0, ℓ1, ℓ2), (𝑏0, 𝑏1, 𝑏2)). Let 𝑟0, 𝑟1, 𝑟2 ∈ Z be such that

Λ𝑛 (𝑥, 𝑦) =
��


�𝑦 + 𝛽∗ + 1

�𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

�𝛽𝑥 + 𝑦 + 𝛽∗ + 1


��� =
��

𝑟0
𝑟1
𝑟2

���.
We want to show that the variables satisfy the definition of the function 𝜃𝑛 given in Equation (2.1). We
have 𝑟0 = �𝑦 + 𝛽∗ + 1
 = ℓ0. Therefore, the first equation defining the map 𝜃𝑛 is satisfied.

Assume that ℓ0 = �𝑦 + 𝛽∗ + 1
 = 0. Then −𝛽−1 = 𝛽∗ ≤ 𝑦 + 𝛽∗ < 0. Also 0 ≤ 𝛽−1𝑥 < 𝛽−1. Thus,
−𝛽−1 ≤ 𝛽−1𝑥 + 𝑦 + 𝛽∗ < 𝛽−1. We have

𝑟1 = �𝛽−1𝑥 + 𝑦 + 𝛽∗
 + 1
= �𝛽(𝛽−1𝑥 + 𝑦 + 𝛽∗)
 + 1 (because −𝛽−1 ≤ 𝛽−1𝑥 + 𝑦 + 𝛽∗ < 𝛽−1)
= �𝛽(𝑦 + 𝛽∗) + 𝑥
 + 1
= �𝛽(𝑦 + 𝛽∗ + 1) + 𝑥 + 𝛽∗
 + 1 − 𝑛 (because 𝛽 + 𝛽∗ = 𝑛)
= �𝛽{𝑦 + 𝛽∗} + 𝑥 + 𝛽∗
 + 1 − 𝑛

= 𝑏2 − 𝑛

Assume that ℓ0 = �𝑦 + 𝛽∗ +1
 = 1. Then 0 ≤ 𝑦 + 𝛽∗ < 1. Also, we have 𝑦 < 1, so that 𝑦 + 𝛽∗ < 1+ 𝛽∗.
Moreover, 0 ≤ 𝛽−1𝑥 < 𝛽−1. Thus, 0 < 𝛽−1𝑥 + 𝑦 + 𝛽∗ < 𝛽−1 + 1 + 𝛽∗ = 1. We have

𝑟1 = �𝛽−1𝑥 + 𝑦 + 𝛽∗
 + 1 = 0 + 1 = ℓ0.

Therefore, the second equation defining the map 𝜃𝑛 is satisfied.
Assume that 𝑏0 = �𝑥 + 𝛽∗ + 1
 = 0. This implies that −1 ≤ 𝑥 + 𝛽∗ < 0, which implies 𝑥 < 𝛽−1.

Thus, 0 ≤ 𝛽𝑥 < 1. We need to consider the cases ℓ0 = 0 and ℓ0 = 1 separately. First, suppose that
ℓ0 = �𝑦 + 𝛽∗ + 1
 = 0. Then −1 ≤ 𝑦 + 𝛽∗ < 0. Thus, −1 ≤ 𝛽𝑥 + 𝑦 + 𝛽∗ < 1. We have

𝑟2 = �𝛽𝑥 + 𝑦 + 𝛽∗ + 1

= �𝛽−1 (𝛽𝑥 + 𝑦 + 𝛽∗)
 + 1 (because − 1 ≤ (𝛽𝑥 + 𝑦 + 𝛽∗) < 1)
= �𝛽−1 (𝛽𝑥 + 𝑦 + 𝛽∗) + 𝛽−1 + 𝛽∗
 + 1
= �𝛽−1 (1 + 𝑦 + 𝛽∗) + 𝑥 + 𝛽∗
 + 1
= �𝛽−1{𝑦 + 𝛽∗} + 𝑥 + 𝛽∗
 + 1
= 𝑏1 = 𝑏1 + 0 = 𝑏1 + ℓ0.

Secondly, suppose that ℓ0 = �𝑦 + 𝛽∗ + 1
 = 1. Then 0 ≤ 𝑦 + 𝛽∗ < 1, which implies {𝑦 + 𝛽∗} = 𝑦 + 𝛽∗.
Thus, 0 ≤ 𝛽𝑥 + 𝑦 + 𝛽∗ < 2.We have
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𝑟2 = �𝛽𝑥 + 𝑦 + 𝛽∗ + 1

= �𝛽𝑥 + 𝑦 + 𝛽∗ − 1
 + 2
= �𝛽−1 (𝛽𝑥 + 𝑦 + 𝛽∗ − 1)
 + 2 (because − 1 ≤ (𝛽𝑥 + 𝑦 + 𝛽∗ − 1) < 1)
= �𝛽−1 (𝑦 + 𝛽∗) + 𝑥 + 𝛽∗
 + 2
= �𝛽−1{𝑦 + 𝛽∗} + 𝑥 + 𝛽∗
 + 2
= 𝑏1 + 1 = 𝑏1 + ℓ0.

Assume that 𝑏0 = �𝑥 + 𝛽∗ +1
 = 1. This implies that 0 ≤ 𝑥 + 𝛽∗ < 1, which implies {𝑥 + 𝛽∗} = 𝑥 + 𝛽∗.
We have

𝑟2 = �𝛽𝑥 + 𝑦 + 𝛽∗ + 1

= �𝛽𝑥 + 𝛽𝛽∗ + 1 + 𝑦 + 𝛽∗ + 1
 (because 𝛽𝛽∗ = −1)
= �𝛽(𝑥 + 𝛽∗) + 𝑦 + 𝛽∗ + 1
 + 1
= �𝛽{𝑥 + 𝛽∗} + 𝑦 + 𝛽∗ + 1
 + 1
= ℓ2 + 1 = ℓ2 + 𝑏1.

Therefore, the third equation defining the map 𝜃𝑛 is satisfied. �

For every (𝑥, 𝑦) ∈ R2, let

Tile𝑛 (𝑥, 𝑦) = (Λ𝑛 ({𝑥}, {𝑦}),Λ𝑛 ({𝑦}, {𝑥}),Λ𝑛 ({𝑥 + 𝛽∗}, {𝑦}),Λ𝑛 ({𝑦 + 𝛽∗}, {𝑥}))

which can be interpreted geometrically as a Wang tile:

Tile𝑛 (𝑥, 𝑦) = Λ𝑛 ({𝑥}, {𝑦})

Λ𝑛 ({𝑦}, {𝑥})

Λ𝑛 ({𝑥 + 𝛽∗}, {𝑦})

Λ𝑛 ({𝑦 + 𝛽∗}, {𝑥})

Lemma 7.3. If (𝑥, 𝑦) ∈ R2, then

◦ %Tile𝑛 (𝑥, 𝑦) = Tile𝑛 (𝑦, 𝑥),
◦ Tile𝑛 (𝑥, 𝑦) ∈ (𝑉𝑛)4,
◦ Tile𝑛 (𝑥, 𝑦) ∈ C𝑛 is an instance of a 𝜃𝑛-chip tile.

Proof. We observe that Tile𝑛 (𝑥, 𝑦) is the image of Tile𝑛 (𝑦, 𝑥) under the tile reflection 𝑡 ↦→ 𝑡̂ by the
positive slope diagonal.

From Lemma 7.1, for every (𝑥, 𝑦) ∈ [0, 1)2, we have Λ𝑛 (𝑥, 𝑦) ∈ 𝑉𝑛. Therefore, for every (𝑥, 𝑦) ∈ R2,

Λ𝑛 ({𝑥}, {𝑦}), Λ𝑛 ({𝑦}, {𝑥}), Λ𝑛 ({𝑥 + 𝛽∗}, {𝑦}), Λ𝑛 ({𝑦 + 𝛽∗}, {𝑥}) ∈ 𝑉𝑛.

From Lemma 7.2, for every (𝑥, 𝑦) ∈ R2, we have

Λ𝑛 ({𝑥}, {𝑦}) = 𝜃𝑛
(
Λ𝑛 ({𝑥 + 𝛽∗}, {𝑦}),Λ𝑛 ({𝑦 + 𝛽∗}, {𝑥})

)
.

Also

Λ𝑛 ({𝑦}, {𝑥}) = 𝜃𝑛
(
Λ𝑛 ({𝑦 + 𝛽∗}, {𝑥}),Λ𝑛 ({𝑥 + 𝛽∗}, {𝑦})

)
.

Thus, Tile𝑛 (𝑥, 𝑦) ∈ C𝑛. �

Here is another characterization of the set of Wang tiles T𝑛.
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Proposition 7.4. The following holds:

T𝑛 =
{
Tile𝑛 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ [0, 1)2}.

Proof. First, recall from Proposition 5.1 that

C𝑛 = T ′
𝑛 = T𝑛 ∪ { 𝑗0,0,1,1

𝑛 , 𝑗1,1,0,0
𝑛 } ∪

{
𝑎𝑖𝑛, 𝑎

𝑖
𝑛 | 1 ≤ 𝑖 ≤ 𝑛

}
∪

{
𝑏𝑛𝑛, 𝑏̂

𝑛
𝑛

}
(7.1)

where

{ 𝑗0,0,1,1
𝑛 , 𝑗1,1,0,0

𝑛 } =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
000

011

01𝑛

00𝑛

011

000

00𝑛

01𝑛

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Let

𝑈𝑛 =
{
Tile𝑛 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ [0, 1)2}.

First we show that 𝑈𝑛 ⊆ T𝑛. It follows from Lemma 7.3 that 𝑈𝑛 ⊂ C𝑛. Thus, using Equation (7.1), the
goal is to show that

𝑈𝑛 ∩
(
{ 𝑗0,0,1,1
𝑛 , 𝑗1,1,0,0

𝑛 } ∪
{
𝑎𝑖𝑛, 𝑎

𝑖
𝑛 | 1 ≤ 𝑖 ≤ 𝑛

}
∪

{
𝑏𝑛𝑛, 𝑏̂

𝑛
𝑛

})
= ∅. (7.2)

Suppose that there exists (𝑥, 𝑦) ∈ [0, 1)2 such that Tile𝑛 (𝑥, 𝑦) = 𝑗0,0,1,1
𝑛 . Then Λ𝑛 (𝑥, 𝑦) = 000 and

Λ𝑛 (𝑦, 𝑥) = 011. More precisely, we have

Λ𝑛 (𝑥, 𝑦) =
��


�𝑦 + 𝛽∗ + 1

�𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

�𝛽𝑥 + 𝑦 + 𝛽∗ + 1


��� =
��


0
0
0

���,
Λ𝑛 (𝑦, 𝑥) =

��

�𝑥 + 𝛽∗ + 1


�𝛽−1𝑦 + 𝑥 + 𝛽∗ + 1

�𝛽𝑦 + 𝑥 + 𝛽∗ + 1


��� =
��


0
1
1

���.
In particular,

0 = �𝛽𝑥 + 𝑦 + 𝛽∗ + 1
 ≥ �𝛽−1𝑦 + 𝑥 + 𝛽∗ + 1
 = 1,

which is a contradiction. The same contradiction is obtained if Tile𝑛 (𝑥, 𝑦) = 𝑗1,1,0,0
𝑛 . Therefore, these

two junction tiles are not in 𝑈𝑛.
Suppose that there exists (𝑥, 𝑦) ∈ [0, 1)2 such that Tile𝑛 (𝑥, 𝑦) = 𝑎𝑖𝑛 for some integer i satisfying

1 ≤ 𝑖 ≤ 𝑛. Then Λ𝑛 (𝑥, 𝑦) = 00𝑖 and Λ𝑛 (𝑦, 𝑥) = 112. More precisely, we have

Λ𝑛 (𝑥, 𝑦) =
��


�𝑦 + 𝛽∗ + 1

�𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

�𝛽𝑥 + 𝑦 + 𝛽∗ + 1


��� =
��


0
0

𝑖 + 1

���,
Λ𝑛 (𝑦, 𝑥) =

��

�𝑥 + 𝛽∗ + 1


�𝛽−1𝑦 + 𝑥 + 𝛽∗ + 1

�𝛽𝑦 + 𝑥 + 𝛽∗ + 1


��� =
��


1
1
2

���.
https://doi.org/10.1017/fms.2025.10098 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10098


30 S. Labbé

In particular, �𝑦 + 𝛽∗ + 1
 = 0 implies that −𝛽−1 ≤ 𝑦 + 𝛽∗ < 0. Also 0 ≤ 𝛽−1𝑥 < 𝛽−1, so that
−𝛽−1 ≤ 𝛽−1𝑥 + 𝑦 + 𝛽∗ < 𝛽−1. Therefore,

0 = �𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1
 = �𝛽(𝛽−1𝑥 + 𝑦 + 𝛽∗)
 + 1 = �𝛽𝑦 + 𝑥 − 1
 + 1 = �𝛽𝑦 + 𝑥
 .

On the other hand, using �𝑎 + 𝑏
 ≤ �𝑎
 + �𝑏
 + 1 for every 𝑎, 𝑏 ∈ R, we obtain

2 = �𝛽𝑦 + 𝑥 + 𝛽∗ + 1
 ≤ �𝛽𝑦 + 𝑥
 + �𝛽∗ + 1
 + 1 = 0 + 0 + 1 = 1,

which is a contradiction. A similar contradiction is obtained if we suppose that such that Tile𝑛 (𝑥, 𝑦) =
𝑎𝑖𝑛. Therefore, there is no antigreen tile in 𝑈𝑛.

Suppose that there exists (𝑥, 𝑦) ∈ [0, 1)2 such that Tile𝑛 (𝑥, 𝑦) = 𝑏𝑛𝑛. Then Λ𝑛 (𝑥, 𝑦) = 00𝑛 and
Λ𝑛 (𝑦, 𝑥) = 111. More precisely, we have

Λ𝑛 (𝑥, 𝑦) =
��


�𝑦 + 𝛽∗ + 1

�𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

�𝛽𝑥 + 𝑦 + 𝛽∗ + 1


��� =
��


0
0

𝑛 + 1

���.
In particular, using 𝛽 = 𝑛 + 𝛽−1 and 𝑥 < 1, we obtain

𝑛 + 1 = �𝛽𝑥 + 𝑦 + 𝛽∗ + 1

= �(𝑛 + 𝛽−1)𝑥 + 𝑦 + 𝛽∗ + 1

≤ �𝑛 + 𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

= �𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1
 + 𝑛 = 0 + 𝑛 = 𝑛,

which is a contradiction. A similar contradiction is obtained if we suppose that such that Tile𝑛 (𝑥, 𝑦) =
𝑏̂𝑛𝑛. Therefore, the blue tiles 𝑏𝑛𝑛 and 𝑏̂𝑛𝑛 are not in 𝑈𝑛. This shows that Equation (7.2) holds. Thus,
𝑈𝑛 ⊆ T𝑛.

Now we show that T𝑛 ⊆ 𝑈𝑛. We have 𝐽𝑛 ⊂ 𝑈𝑛 since

𝑗0,0,0,0
𝑛 = Tile𝑛 (0, 0),

𝑗0,1,0,0
𝑛 = Tile𝑛

(
𝛽−2, 0

)
,

𝑗0,0,0,1
𝑛 = Tile𝑛

(
0, 𝛽−2

)
,

𝑗0,1,0,1
𝑛 = Tile𝑛

(
1

𝛽(𝛽 + 1) ,
1

𝛽(𝛽 + 1)

)
,

𝑗1,1,0,1
𝑛 = Tile𝑛 (𝑥, 𝑦), where (𝑥, 𝑦) is on the segment from (0, 𝛽−1) to ((𝛽 + 1)−1, (𝛽 + 1)−1),
𝑗0,1,1,1
𝑛 = Tile𝑛 (𝑥, 𝑦) where (𝑥, 𝑦) is on the segment from (𝛽−1, 0) to ((𝛽 + 1)−1, (𝛽 + 1)−1),

𝑗1,1,1,1
𝑛 = Tile𝑛

(
1

𝛽 + 1
,

1
𝛽 + 1

)
.

We have 𝐵𝑛 ⊂ 𝑈𝑛 since

𝑏0
𝑛 = Tile𝑛 (𝛽−1, 0),

𝑏𝑖𝑛 = Tile𝑛 (𝛽−2 + 𝛽−1𝑖, 0) for every integer 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 − 1.

We have 𝐺𝑛 ⊂ 𝑈𝑛 since

𝑔0
𝑛 = Tile𝑛 (𝛽−1, 𝛽−2 (𝛽 − 1))

𝑔𝑖𝑛 = Tile𝑛
(
𝑖
𝑛 , 𝛽

−1 (1 − 𝑖
𝑛 )

)
for every integer 𝑖 with 1 ≤ 𝑖 ≤ 𝑛.
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We have 𝑌𝑛 ⊂ 𝑈𝑛 since

𝑦1
𝑛 = Tile𝑛 (𝛽−1 + 𝜀, 𝛽−1 − 𝜀𝛽−1) for some small 𝜀 > 0,

𝑦𝑖𝑛 = Tile𝑛
(
𝑖−𝛽−2

𝑛 , 𝛽
−1

𝑛 (𝑛 − 𝑖 + 𝛽−1 − 𝛽−2)
)

for every integer 𝑖 with 2 ≤ 𝑖 ≤ 𝑛.

We have 𝑊𝑛 ⊂ 𝑈𝑛 since

𝑤1,1
𝑛 = Tile𝑛 (𝛽−1, 𝛽−1),

𝑤
1, 𝑗
𝑛 = Tile𝑛 (𝛽−1, 𝑗 𝛽−1 − 𝛽−2) for every integer 𝑗 with 2 ≤ 𝑗 ≤ 𝑛,

𝑤𝑖,1𝑛 = Tile𝑛 (𝑖𝛽−1 − 𝛽−2, 𝛽−1) for every integer 𝑖 with 2 ≤ 𝑖 ≤ 𝑛,

𝑤
𝑖, 𝑗
𝑛 = Tile𝑛

(
𝛽−1 + 1

𝑛

(
(𝑖 − 1) − ( 𝑗 − 1)𝛽−1) , 𝛽−1 + 1

𝑛

(
( 𝑗 − 1) − (𝑖 − 1)𝛽−1) )

for every integer 𝑖, 𝑗 with 2 ≤ 𝑖, 𝑗 ≤ 𝑛.

Therefore, 𝐽𝑛 ∪ 𝐵𝑛 ∪ 𝐺𝑛 ∪ 𝑌𝑛 ∪𝑊𝑛 ⊆ 𝑈𝑛. Since 𝑈𝑛 = 𝑈𝑛, we also have 𝐵𝑛 ∪ 𝐺𝑛 ∪ 𝑌𝑛 ⊆ 𝑈𝑛. We
conclude that T𝑛 ⊆ 𝑈𝑛 and T𝑛 = 𝑈𝑛. �

This allows to construct valid configurations Z2 → T𝑛 from any starting point (𝑥, 𝑦) on the torus.
See Figure 15.

Theorem C. For every integer 𝑛 ≥ 1 and every (𝑥, 𝑦) ∈ [0, 1)2, the configuration

𝑐 (𝑥,𝑦) : Z2 → T𝑛
(𝑖, 𝑗) ↦→ Tile𝑛

(
𝑥+𝑖𝛽−1, 𝑦+ 𝑗 𝛽−1)

is a valid tiling of the plane by the set of metallic mean Wang tiles T𝑛.

Figure 15. For every (𝑥, 𝑦) ∈ [0, 1)2 the map Z2 → T𝑛 defined by (𝑖, 𝑗) ↦→ Tile𝑛 (𝑥+ 𝑖𝛽 , 𝑦+
𝑗
𝛽 ) is a valid

tiling of the plane by the set of Wang tiles T𝑛.
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Proof. Let (𝑥, 𝑦) ∈ [0, 1)2 and (𝑖, 𝑗) ∈ Z2. We have 𝑐 (𝑥,𝑦) (𝑖, 𝑗) ∈ T𝑛 from Proposition 7.4. Also the
right color of the tile 𝑐 (𝑥,𝑦) (𝑖, 𝑗) is Λ𝑛 ({𝑥 + 𝑖𝛽−1}, {𝑦 + 𝑗 𝛽−1}) which is equal to the left color of the
tile 𝑐 (𝑥,𝑦) (𝑖 + 1, 𝑗). Finally, the top color of the tile 𝑐 (𝑥,𝑦) (𝑖, 𝑗) is Λ𝑛 ({𝑦 + 𝑗 𝛽−1}, {𝑥 + 𝑖𝛽−1}) which is
equal to the bottom color of the tile 𝑐 (𝑥,𝑦) (𝑖, 𝑗 + 1). Therefore, 𝑐 (𝑥,𝑦) is a valid configuration of Wang
tiles from the set T𝑛. �

The set {𝑐 (𝑥,𝑦) : (𝑥, 𝑦) ∈ [0, 1)2} is not a subshift because it is not topologically closed. Indeed, if
(𝑥0, 𝑦0) lies on the boundary of the partition, there is more than one configuration associated with it.
The configuration 𝑐 (𝑥0 ,𝑦0) is one of them, but lim(𝑥,𝑦)→(𝑥0 ,𝑦0) 𝑐 (𝑥,𝑦) might be a different configuration
if the limit is taken coming from another direction. The same issue happens with the representation of
numbers in base 10. For example, the number 1 has two base-10 representations, one being 1.000000 . . .
and the other 0.999999 . . . .

This implies that the set {𝑐 (𝑥,𝑦) : (𝑥, 𝑦) ∈ [0, 1)2} is not the set of all valid configurations of T𝑛.
In other terms, 𝑐 : (𝑥, 𝑦) ↦→ 𝑐 (𝑥,𝑦) is not surjective in the set Ω𝑛 of all valid configurations of T𝑛. One
way to solve this issue is to take the topological closure

𝐶 =
{
𝑐 (𝑥,𝑦) : (𝑥, 𝑦) ∈ [0, 1)2

}
which is a nonempty subshift satisfying 𝐶 ⊆ Ω𝑛. Since Ω𝑛 is minimal [37], we conclude the equality
𝐶 = Ω𝑛 must hold.

A standard approach is to create the subshift C as the symbolic extension of a dynamical system
defined on the 2-torus T2. This is what we do in the next two sections.

8. An explicit factor map

The goal of this section is to introduce a factor map Ω𝑛 → T2 explicitly defined from the average of
inner products of the labels of the Wang tiles in a configuration, see Equation (8.2). Then, we prove
Theorem D using this explicit factor map.

First, it is convenient to make some observation on the inner product with the vector 𝑑 = (0,−1, 1) of
the tile labels. In the statement below, we use the indicator function I𝐴 : R→ {0, 1} of a subset 𝐴 ⊂ R
defined as

I𝐴(𝑥) =
{

1 if 𝑥 ∈ 𝐴,

0 if 𝑥 ∉ 𝐴.

Lemma 8.1. Let 𝑛 ≥ 1 be an integer and 𝑑 = (0,−1, 1). If 𝑥, 𝑦 ∈ [0, 1), then

〈𝑑,Λ𝑛 (𝑥, 𝑦)〉 = �𝑛𝑥
 + I[1−{𝑛𝑥 },1) ({𝛿𝑥 + 𝑦})

where 𝛿𝑥 = 1 − 𝛽−1 (1 − 𝑥).
Proof. Let 𝑥, 𝑦 ∈ [0, 1). Observe that 𝛿𝑥 = 1 − 𝛽−1 (1 − 𝑥) = 𝛽−1𝑥 + 𝛽∗ + 1. We have

〈𝑑,Λ𝑛 (𝑥, 𝑦)〉 = �𝛽𝑥 + 𝑦 + 𝛽∗ + 1
 − �𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

= �(𝑛 + 𝛽−1)𝑥 + 𝑦 + 𝛽∗ + 1
 − �𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

= �𝑛𝑥 + 𝛿𝑥 + 𝑦
 − �𝛿𝑥 + 𝑦

= (�𝑛𝑥
 + �𝛿𝑥 + 𝑦
 + �{𝑛𝑥} + {𝛿𝑥 + 𝑦}
) − �𝛿𝑥 + 𝑦

= �𝑛𝑥
 + �{𝑛𝑥} + {𝛿𝑥 + 𝑦}


= �𝑛𝑥
 +
{

0 if {𝑛𝑥} + {𝛿𝑥 + 𝑦} < 1,
1 if {𝑛𝑥} + {𝛿𝑥 + 𝑦} ≥ 1.

The conclusion follows. �
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As illustrated in Figure 7 for a finite rectangular pattern, the average of the values of 〈 1
𝑛 𝑑, 𝑣〉 for

labels v appearing along an horizontal line can be considered for valid configurations 𝑤 : Z2 → T𝑛. For
some reason (in order to have the equality 𝜙𝑛 (𝑐 (𝑥,𝑦) ) = 𝑦 in Proposition 8.2), it is convenient to consider
the average of the top label of the tiles on the horizontal row passing through the origin. Assuming that
the limit exists for every configuration, this leads to a map from the Wang shift to the interval [0, 1]
defined as follows:

𝜙𝑛 : Ω𝑛 → [0, 1]

𝑤 ↦→ lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

〈 1
𝑛 𝑑,Top(𝑤𝑖,0)〉

(8.1)

where Top(𝑡) denotes the top label of the Wang tile t.
We show in the next proposition that 𝜙𝑛 is well-defined and that it recovers the parameter y of a

configuration 𝑐 (𝑥,𝑦) .

Proposition 8.2. For every integer 𝑛 ≥ 1, the following holds:

(i) for every (𝑥, 𝑦) ∈ [0, 1)2, 𝜙𝑛 (𝑐 (𝑥,𝑦) ) = 𝑦,
(ii) 𝜙𝑛 : Ω𝑛 → [0, 1] is continuous,

(iii) 𝜙𝑛 : Ω𝑛 → [0, 1] is onto,
(iv) if 𝛽 denotes the positive root of the polynomial 𝑥2 − 𝑛𝑥 − 1, then

𝜙𝑛 (𝜎𝒆1𝑤) = 𝜙𝑛 (𝑤),
𝜙𝑛 (𝜎𝒆2𝑤) = 𝜙𝑛 (𝑤) + 𝛽−1 (mod 1).

Proof. (i) Let 𝑅𝛼 (𝑥) = {𝑥 + 𝛼} be the rotation by angle 𝛼 on the interval [0, 1). If 𝛼 is irrational,
then for every 𝑥 ∈ [0, 1) the sequence (𝑅𝑖𝛼 (𝑥))𝑖∈Z is uniformly distributed modulo 1 [30, Exercise 2.5].
Therefore, using Weyl’s equidistribution theorem for Riemann-integrable functions [30, Corollary 1.1],
for every (𝑥, 𝑦) ∈ [0, 1)2, we have

𝜙𝑛 (𝑐 (𝑥,𝑦) ) = lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

〈 1
𝑛 𝑑,Top(𝑐 (𝑥,𝑦) (𝑖, 0))〉

= lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

〈 1
𝑛 𝑑,Top(Tile𝑛 (𝑥 + 𝑖𝛽−1, 𝑦))〉

= lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

〈 1
𝑛 𝑑,Λ𝑛 (𝑦, {𝑥 + 𝑖𝛽−1})〉

=
1
𝑛

lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

(
�𝑛𝑦
 + I[1−{𝑛𝑦 },1) ({𝛿𝑦 + {𝑥 + 𝑖𝛽−1}})

)
(Lemma 8.1)

=
1
𝑛

(
�𝑛𝑦
 + lim

𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘
I[1−{𝑛𝑦 },1) (𝑅𝑖𝛽−1 (𝛿𝑦 + 𝑥))

)
=

1
𝑛

(
�𝑛𝑦
 +

∫ 1

0
I[1−{𝑛𝑦 },1) (𝑡)𝑑𝑡

)
(Weyl’s equidistribution theorem)

=
1
𝑛
(�𝑛𝑦
 + {𝑛𝑦}) = 1

𝑛
(𝑛𝑦) = 𝑦.

(ii) Now we want to show that the rule 𝜙𝑛 defines a continuous map Ω𝑛 → T. Since Ω𝑛 is minimal
[37], we have that the orbit {𝑐 (0,0) }

𝜎
= {𝜎𝑘𝑐 (0,0) | 𝑘 ∈ Z2} = {𝑐𝛽−1𝑘 (mod Z2) | 𝑘 ∈ Z2} is a dense
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subset of Ω𝑛. Therefore, {𝑐 (𝑥,𝑦) | 𝑥, 𝑦 ∈ [0, 1)} is dense in Ω𝑛. Let 𝑤 ∈ Ω𝑛. There exists a sequence
(𝑥 (ℓ) , 𝑦 (ℓ) )𝑙∈N with 𝑥 (ℓ) , 𝑦 (ℓ) ∈ [0, 1) such that 𝑤 = limℓ→∞ 𝑐 (𝑥 (ℓ) ,𝑦 (ℓ) ) .

Notice that the limit (𝑥 (∞) , 𝑦 (∞) ) = limℓ→∞(𝑥 (ℓ) , 𝑦 (ℓ) ) ∈ [0, 1]2 exist. This essentially follows
from [33, Lemma 3.4] allowing to define another factor map, see Equation (9.2). Indeed, suppose
on the contrary that the sequence (𝑥 (ℓ) , 𝑦 (ℓ) )𝑙∈N has two distinct accumulation points (𝑝1, 𝑞1) and
(𝑝2, 𝑞2). Recall that {Interior

(
Tile−1

𝑛 (𝑡)
)
}𝑡 ∈T𝑛 is a topological partition of T2. Since the orbits under

the Z2-action 𝑅𝑛 are dense, there exists (𝑖, 𝑗) ∈ Z2 such that 𝑅
(𝑖, 𝑗)
𝑛 (𝑝1, 𝑞1) ∈ Interior

(
Tile−1

𝑛 (𝑡1)
)

and 𝑅
(𝑖, 𝑗)
𝑛 (𝑝2, 𝑞2) ∈ Interior

(
Tile−1

𝑛 (𝑡2)
)

where 𝑡1 and 𝑡2 are two distinct tiles in T𝑛. Therefore, for
sufficiently large ℓ ∈ N, we have

𝑤(𝑖, 𝑗) = 𝑐 (𝑥 (ℓ) ,𝑦 (ℓ) ) (𝑖, 𝑗) = Tile𝑛 (𝑅 (𝑖, 𝑗)
𝑛 (𝑝1, 𝑞1)) = 𝑡1,

𝑤(𝑖, 𝑗) = 𝑐 (𝑥 (ℓ) ,𝑦 (ℓ) ) (𝑖, 𝑗) = Tile𝑛 (𝑅 (𝑖, 𝑗)
𝑛 (𝑝2, 𝑞2)) = 𝑡2,

which is a contradiction.
We split the proof according to the behavior of limℓ→∞ 𝑛𝑦 (ℓ) , and more precisely if it converges to

an integer and if so from above or from below (the fact that it converges from above or from below
when it converges to an integer follows from the existence of the configuration w because the boundary
of the topological partition {Interior

(
Tile−1

𝑛 (𝑡)
)
}𝑡 ∈T𝑛 contains the vertical and horizontal lines passing

through integers points). We proceed as above using Weyl equidistribution theorem. We have

𝜙𝑛 (𝑤) = 𝜙𝑛

(
lim
ℓ→∞

𝑐 (𝑥 (ℓ) ,𝑦 (ℓ) )

)
= lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

lim
ℓ→∞

〈 1
𝑛 𝑑,Top(𝑐 (𝑥 (ℓ) ,𝑦 (ℓ) ) (𝑖, 0))〉

=
1
𝑛

lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

lim
ℓ→∞

(
�𝑛𝑦 (ℓ) 
 + I[1−{𝑛𝑦 (ℓ) },1) ({𝛿𝑦 (ℓ) + {𝑥 (ℓ) + 𝑖𝛽−1}})

)
=

1
𝑛

lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

lim
ℓ→∞

(
�𝑛𝑦 (ℓ) 
 + I[1−{𝑛𝑦 (ℓ) },1) (𝑅𝑖𝛽−1 (𝛿𝑦 (ℓ) + 𝑥 (ℓ) ))

)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
𝑛 lim𝑘→∞

1
2𝑘+1

∑𝑘
𝑖=−𝑘

(
�𝑛𝑦 (∞) 
 + I∅(𝑅𝑖𝛽−1 (𝛿𝑦 (∞) + 𝑥 (∞) ))

)
if {𝑛𝑦 (ℓ) } → 0,

1
𝑛 lim𝑘→∞

1
2𝑘+1

∑𝑘
𝑖=−𝑘

(
�𝑛𝑦 (∞) 
 − 1 + I(0,1) (𝑅𝑖𝛽−1 (𝛿𝑦 (∞) + 𝑥 (∞) ))

)
if {𝑛𝑦 (ℓ) } → 1,

1
𝑛 lim𝑘→∞

1
2𝑘+1

∑𝑘
𝑖=−𝑘

(
�𝑛𝑦 (∞) 
 + I[1−{𝑛𝑦 (∞) },1) (𝑅𝑖𝛽−1 (𝛿𝑦 (∞) + 𝑥 (∞) ))

)
if {𝑛𝑦 (ℓ) } �→ 0, 1,

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
𝑛

(
�𝑛𝑦 (∞) 
 +

∫ 1
0 I∅(𝑡)𝑑𝑡

)
if {𝑛𝑦 (ℓ) } → 0,

1
𝑛

(
�𝑛𝑦 (∞) 
 − 1 +

∫ 1
0 I(0,1) (𝑡)𝑑𝑡

)
if {𝑛𝑦 (ℓ) } → 1,

1
𝑛

(
�𝑛𝑦 (∞) 
 +

∫ 1
0 I[1−{𝑛𝑦 (∞) },1) (𝑡)𝑑𝑡

)
if {𝑛𝑦 (ℓ) } �→ 0, 1,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
𝑛 �𝑛𝑦

(∞) 
 + 0 if {𝑛𝑦 (ℓ) } → 0,
1
𝑛 �𝑛𝑦

(∞) 
 − 1 + 1 if {𝑛𝑦 (ℓ) } → 1,
1
𝑛

(
�𝑛𝑦 (∞) 
 + {𝑛𝑦 (∞) }

)
if {𝑛𝑦 (ℓ) } �→ 0, 1,

= 𝑦 (∞) = lim
ℓ→∞

𝑦 (ℓ) = lim
ℓ→∞

𝜙𝑛 (𝑐 (𝑥 (ℓ) ,𝑦 (ℓ) ) ).

This shows that the rule 𝜙𝑛 defines a map Ω𝑛 → [0, 1] and that this map is continuous.
(iii) If 𝑦 ∈ [0, 1), then 𝑦 = 𝜙𝑛 (𝑐 (0,𝑦) ). If 𝑦 = 1, then 𝑦 = 𝜙𝑛 (lim𝑦→1− 𝑐 (0,𝑦) ). Thus, the map 𝜙𝑛 is

onto.
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(iv) Since the map 𝜙𝑛 is continuous, we only need to show the equalities for a dense subset of Ω𝑛.
Let (𝑥, 𝑦) ∈ [0, 1)2. We have

𝜙𝑛 (𝜎𝒆1𝑐 (𝑥,𝑦) ) = 𝜙𝑛 (𝑐 ( {𝑥+𝛽−1 },𝑦) ) = 𝑦 = 𝜙𝑛 (𝑐 (𝑥,𝑦) ).

Moreover, we have

𝜙𝑛 (𝜎𝒆2𝑐 (𝑥,𝑦) ) = 𝜙𝑛 (𝑐 (𝑥, {𝑦+𝛽−1 }) ) = {𝑦 + 𝛽−1} = 𝜙𝑛 (𝑐 (𝑥,𝑦) ) + 𝛽−1 (mod 1). �

Since 𝜙𝑛 (𝜎𝒆1𝑤) = 𝜙𝑛 (𝑤) for every configuration 𝑤 ∈ Ω𝑛, the factor map 𝜙𝑛 is far from being
injective. We may improve this as follows. We use the symmetry of the tiles in T𝑛 to define an involution
on Ω𝑛. If 𝑤 ∈ Ω𝑛 is a configuration, then its image under a reflection by the positive diagonal is the
configuration 𝑤 ∈ Ω𝑛 defined as

𝑤 : Z2 → T𝑛
(𝑖, 𝑗) ↦→ 𝑤 𝑗 ,𝑖 .

This allows to define a map from the Wang shift to the 2-dimensional torus

Φ𝑛 : Ω𝑛 → T2

𝑤 ↦→ (𝜙𝑛 (𝑤), 𝜙𝑛 (𝑤)).
(8.2)

The first coordinate 𝜙𝑛 (𝑤) computes the average of the inner product with d of the right-hand labels of
the Wang tiles in the column containing the origin of the configuration w. We show in the next theorem
that Φ𝑛 is a factor map.

Theorem D. Let 𝑑 = (0,−1, 1), 𝑛 ≥ 1 be an integer and Ω𝑛 be the 𝑛𝑡ℎ metallic mean Wang shift. The
map

Φ𝑛 : Ω𝑛 → T2

𝑤 ↦→ lim
𝑘→∞

1
2𝑘 + 1

𝑘∑
𝑖=−𝑘

(
〈 1
𝑛 𝑑,Right(𝑤0,𝑖)〉
〈 1
𝑛 𝑑, Top(𝑤𝑖,0)〉

)
(8.3)

is a factor map, that is, it is continuous, onto and commutes the shift Z2 𝜎
� Ω𝑛 with the toral Z2-rotation

Z2 𝑅𝑛
� T2 by the equation Φ𝑛 ◦ 𝜎𝑘 = 𝑅𝑘𝑛 ◦Φ𝑛 for every 𝑘 ∈ Z2 where

𝑅𝑛 : Z2 × T2 → T2

(𝑘, 𝑥) ↦→ 𝑅𝑘𝑛 (𝑥) := 𝑥 + 𝛽𝑘

and 𝛽 = 𝑛+
√
𝑛2+4
2 is the 𝑛𝑡ℎ metallic mean, that is, the positive root of the polynomial 𝑥2 − 𝑛𝑥 − 1.

Proof. From Proposition 8.2, 𝜙𝑛 is continuous. Thus, Φ𝑛 is also continuous.
Let (𝑥, 𝑦) ∈ [0, 1)2. Using Lemma 7.3, for every (𝑖, 𝑗) ∈ Z2, we have

%𝑐 (𝑥,𝑦) (𝑖, 𝑗) = %Tile𝑛 (𝑥+ 𝑗 𝛽−1, 𝑦+𝑖𝛽−1) = Tile𝑛 (𝑦+𝑖𝛽−1, 𝑥+ 𝑗 𝛽−1) = 𝑐 (𝑦,𝑥) (𝑖, 𝑗).

Thus, the identity %𝑐 (𝑥,𝑦) = 𝑐 (𝑦,𝑥) holds. We obtain

(𝑥, 𝑦) = (𝜙𝑛 (𝑐 (𝑦,𝑥) ), 𝜙𝑛 (𝑐 (𝑥,𝑦) )) = (𝜙𝑛 ( %𝑐 (𝑥,𝑦) ), 𝜙𝑛 (𝑐 (𝑥,𝑦) )) = Φ𝑛 (𝑐 (𝑥,𝑦) ).

Therefore, Φ𝑛 is onto.
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Let 𝑤 ∈ Ω𝑛 be a configuration. Let 𝑘 = (𝑘1, 𝑘2) ∈ Z2. Using Proposition 8.2, we have

Φ𝑛 ◦ 𝜎𝑘 (𝑤) =
(
𝜙𝑛 (%𝜎𝑘𝑤), 𝜙𝑛 (𝜎𝑘𝑤))

=
(
𝜙𝑛 (𝜎 (𝑘2 ,𝑘1)𝑤), 𝜙𝑛 (𝜎 (𝑘1 ,𝑘2)𝑤)

)
=

(
𝜙𝑛 (𝑤) + 𝛽−1𝑘1, 𝜙𝑛 (𝑤) + 𝛽−1𝑘2

)
(mod Z2)

= (𝜙𝑛 (𝑤), 𝜙(𝑤)) + 𝛽−1 (𝑘1, 𝑘2) (mod Z2)
= Φ𝑛 (𝑤) + 𝛽−1𝑘 (mod Z2)
= 𝑅𝑘𝑛 ◦Φ𝑛 (𝑤). �

Corollary 8.3. For every 𝑛 ≥ 1, Ω𝑛 is aperiodic.

Proof. By contradiction, suppose that Ω𝑛 contains a periodic configuration w such that 𝜎𝑘 (𝑤) = 𝑤 for
some 𝑘 ∈ Z2 \ {(0, 0)}. The image Φ𝑛 (𝑤) ∈ T2 must be a periodic point for the Z2-action 𝑅𝑛 because,
using Theorem D, we have

Φ𝑛 (𝑤) = Φ𝑛 (𝜎𝑘 (𝑤)) = 𝑅𝑘𝑛 (Φ𝑛 (𝑤)) = 𝑅𝑘𝑛 (Φ𝑛 (𝑤)).

The Z2-action 𝑅𝑛 has no periodic point, since the metallic mean 𝛽 is an irrational number. Thus, we
must have 𝑘 = 0, which is a contradiction. The subshift Ω𝑛 is nonempty. Thus, Ω𝑛 is aperiodic. �

Remark 8.4. Note that Corollary 8.3 cannot be considered as a totally independent proof of aperiodicity
ofΩ𝑛. Recall that aperiodicity ofΩ𝑛 was proved in [37] from the self-similarity ofΩ𝑛. Indeed, Corollary
8.3 uses Theorem D which depends on Proposition 8.2. In the proof of Proposition 8.2, we use the
minimality of Ω𝑛 which was proved in [37] and deduced from its self-similarity.

In other words, the following question remains open.

Question 8.5. Can the aperiodicity of Ω𝑛 be proved independently of its self-similarity?

9. The factor map is an isomorphism (mod 0)

The goal of this section is to show more properties of the factor map Φ𝑛 : Ω𝑛 → T2 introduced in the
previous section. Based on the approach presented in [33], we prove Theorem E and Theorem F.

Let 𝑛 ≥ 1 be an integer. We consider the continuous Z2-action 𝑅𝑛 defined on T2 = R2/Z2 by

𝑅𝑛 : Z2 × T2 → T2

(𝒏, 𝒙) ↦→ 𝑅𝒏
𝑛 (𝒙) := 𝒙 + 𝛽𝒏

where 𝛽 = 𝑛+
√
𝑛2+4
2 is the positive root of the polynomial 𝑥2 − 𝑛𝑥 − 1. We say that 𝑅𝑛 is a toral Z2-

rotation and it defines a dynamical system that we denote Z2 𝑅𝑛
� T2. In this section, we encode this

dynamical system symbolically using a partition associated with the Wang tiles T𝑛.
Recall that

Λ𝑛 : [0, 1)2 → Z3

(𝑥, 𝑦) ↦→ ��

�𝑦 + 𝛽∗ + 1


�𝛽−1𝑥 + 𝑦 + 𝛽∗ + 1

�𝛽𝑥 + 𝑦 + 𝛽∗ + 1


���.
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Figure 16. The partitions North1, East1, South1 and West1.

From Lemma 7.1, we have in fact that Λ𝑛 is a map [0, 1)2 → 𝑉𝑛. Therefore,

East𝑛 = {Λ−1
𝑛 (𝑣) : 𝑣 ∈ 𝑉𝑛}

is a partition of [0, 1)2. Its symmetric image is

North𝑛 =
{
𝜂 ◦ Λ−1

𝑛 (𝑣) : 𝑣 ∈ 𝑉𝑛
}

which is another partition of [0, 1)2, where 𝜂 : (𝑥, 𝑦) ↦→ (𝑦, 𝑥). Also, we let

West𝑛 = 𝑅𝒆1
𝑛 (East𝑛),

South𝑛 = 𝑅𝒆2
𝑛 (North𝑛)

where 𝒆1 = (1, 0) and 𝒆2 = (0, 1). These partitions are illustrated for 𝑛 = 1, 2, 3, 4 in Figure 16,
Figure 17, Figure 18 and Figure 19. We may observe in these figures a nice property of the partitions:
East𝑛 ∧North𝑛 is the same partition (with different indices) as West𝑛 ∧ South𝑛 (this is related to the
fact that the set of Wang tiles T𝑛 is both NE-deterministic and SW-deterministic, see Theorem 5.3).

We now want to construct the refined partition East𝑛 ∧ North𝑛 ∧ West𝑛 ∧ South𝑛 whose atoms
are defined as follows. For each (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ (𝑉𝑛)4, we define the interior of the intersection

𝑃(𝑣1 ,𝑣2 ,𝑣3 ,𝑣4) = Interior
(
Λ−1
𝑛 (𝑣1) ∩ 𝜂 ◦ Λ−1

𝑛 (𝑣2) ∩ 𝑅𝒆1 (Λ−1
𝑛 (𝑣3)) ∩ 𝑅𝒆2 (𝜂 ◦ Λ−1

𝑛 (𝑣4))
)
.

It follows from Proposition 7.4 that the quadruples 𝜏 for which 𝑃𝜏 has nonempty interior define a set
which is equal to the set of Wang tiles T𝑛:

T𝑛 =
{
𝜏 ∈ (𝑉𝑛)4 | 𝑃𝜏 ≠ ∅

}
.
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Figure 17. The partitions North2, East2, South2 and West2.

Figure 18. The partitions North3, East3, South3 and West3.
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Figure 19. The partitions North4, East4, South4 and West4.

Recall that, for some finite set A, a topological partition of a compact metric space M is a finite
collection {𝑃𝑎}𝑎∈𝐴 of disjoint open sets 𝑃𝑎 ⊂ 𝑀 such that 𝑀 =

⋃
𝑎∈𝐴 𝑃𝑎. Naturally, the set T𝑛 defines

a topological partition

P𝑛 = {𝑃𝜏}𝜏∈T𝑛

of R2/Z2 which is the refinement of the four partitions East𝑛 (the right color), North𝑛 (the top color),
West𝑛 (the left color) and South𝑛 (the bottom color).

9.1. Symbolic dynamical system XP𝑛 ,𝑅𝑛

We now define the symbolic dynamical system associated with the toral Z2-rotation 𝑅𝑛 generated by
the partition P𝑛. We adapt [40] to the 2-dimensional setting as it was done in [20] and [33].

If 𝑆 ⊂ Z2 is a finite set, we say that a pattern 𝑤 ∈ A𝑆 is allowed for P𝑛, 𝑅𝑛 if⋂
𝒌∈𝑆

𝑅−𝒌
𝑛 (𝑃𝑤𝒌 ) ≠ ∅. (9.1)

Let LP𝑛 ,𝑅𝑛 be the collection of all allowed patterns for P𝑛, 𝑅𝑛. The set LP𝑛 ,𝑅𝑛 is the language of a
subshift XP𝑛 ,𝑅𝑛 ⊆ AZ2 defined as follows, see [20, Prop. 9.2.4],

XP𝑛 ,𝑅𝑛 = {𝑥 ∈ AZ2 | 𝜋𝑆 ◦ 𝜎𝒏 (𝑥) ∈ LP𝑛 ,𝑅𝑛 for every 𝒏 ∈ Z2 and finite subset 𝑆 ⊂ Z2}.

We say that XP𝑛 ,𝑅𝑛 is the symbolic dynamical system corresponding to P𝑛, 𝑅𝑛.
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For each 𝑤 ∈ XP𝑛 ,𝑅𝑛 ⊂ AZ2 and 𝑚 ≥ 0 there is a corresponding nonempty open set

𝐷𝑚(𝑤) =
⋂

‖𝒌 ‖≤𝑚
𝑅−𝒌
𝑛 (𝑃𝑤𝒌 ) ⊆ T2.

The closures 𝐷𝑚(𝑤) of these sets are compact and decrease with m, so that 𝐷0(𝑤) ⊇ 𝐷1(𝑤) ⊇
𝐷2(𝑤) ⊇ . . . . It follows that ∩∞

𝑚=0𝐷𝑚(𝑤) ≠ ∅. In order for points in XP𝑛 ,𝑅𝑛 to correspond to points in
T2, this intersection should contain only one point. This leads to the following definition. A topological
partition P𝑛 of T2 gives a symbolic representation of Z2 𝑅𝑛

� T2 if for every 𝑤 ∈ XP𝑛 ,𝑅𝑛 the intersection
∩∞
𝑚=0𝐷𝑚(𝑤) consists of exactly one point 𝒙 ∈ T2. We call w a symbolic representation of 𝒙.

Markov partitions were originally defined for one-dimensional dynamical systems Z 𝑇
� T2 and were

extended to Z𝑑-actions by automorphisms of compact Abelian group in [16]. Following [33, 34], we use
the same terminology and extend the definition proposed in [40, §6.5] for dynamical systems defined
by higher-dimensional actions by rotations.

Definition 9.1. A topological partition P of T2 is a Markov partition for Z2 𝑅
� T2 if

◦ P gives a symbolic representation of Z2 𝑅
� T2 and

◦ XP ,𝑅 is a shift of finite type (SFT).

9.2. Proofs of main results

First, we have the following result.

Lemma 9.2. The dynamical system Z2 𝜎
� XP𝑛 ,𝑅𝑛 is minimal and XP𝑛 ,𝑅𝑛 is aperiodic.

Proof. Since 𝑅𝒆1
𝑛 and 𝑅𝒆2

𝑛 are linearly independent irrational rotations on R2/Z2, we have that 𝑅𝑛 is a
free Z2-action. Thus, from [33, Lemma 5.2], XP𝑛 ,𝑅𝑛 is minimal and aperiodic. �

Each atom of the partition P𝑛 is invariant only under the trivial translation. Therefore, from [33,
Lemma 3.4], P𝑛 gives a symbolic representation of the dynamical system Z2 𝑅𝑛

� T2. Thus, we can define
the following function:

𝑓𝑛 : XP𝑛 ,𝑅𝑛 → T2 (9.2)

be such that 𝑓𝑛 (𝑤) is the unique point in the intersection ∩∞
𝑚=0𝐷𝑚(𝑤).

Proposition 9.3. Let 𝑛 ≥ 1 be an integer. The map 𝑓𝑛 : XP𝑛 ,𝑅𝑛 → T2 is a factor map satisfying

𝑓𝑛 ◦ 𝜎𝑘 = 𝑅𝑘𝑛 ◦ 𝑓𝑛

for every 𝑘 ∈ Z2.

Proof. The result is an application of Proposition 5.1 from [33]. �

From the minimality of the Wang shift Ω𝑛 proved separately in [37], we may now prove Theorem E
using the same method as in [33].

Theorem E. For every integer 𝑛 ≥ 1, the symbolic dynamical system XP𝑛 ,𝑅𝑛 corresponding to P𝑛, 𝑅𝑛
is equal to the metallic mean Wang shift Ω𝑛:

Ω𝑛 = XP𝑛 ,𝑅𝑛 .

In particular, P𝑛 is a Markov partition for the dynamical system Z2 𝑅𝑛
� T2.
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Proof. From Proposition 8.1 in [33], we have that XP𝑛 ,𝑅𝑛 ⊆ Ω𝑛 for every integer 𝑛 ≥ 1. It was proved
in [37] that the Wang shift Ω𝑛 is minimal for every integer 𝑛 ≥ 1. Thus, XP𝑛 ,𝑅𝑛 = Ω𝑛.

Each atom of the partition P𝑛 is invariant only under the trivial translation. Therefore, from [33,
Lemma 3.4], P𝑛 gives a symbolic representation of Z2 𝑅𝑛

� T2. Since XP𝑛 ,𝑅𝑛 = Ω𝑛 is a shift of finite
type, we conclude that the partition P𝑛 is a Markov partition for the dynamical system Z2 𝑅𝑛

� T2. �

In fact, we can show that the factor map 𝑓𝑛 is equal to the map Φ𝑛 explicitly defined in Section 8
from the average of the labels of Wang tiles on the row and column containing the origin. It follows
from the next lemma.

Lemma 9.4. For every (𝑥, 𝑦) ∈ [0, 1)2, we have 𝑓𝑛 (𝑐 (𝑥,𝑦) ) = (𝑥, 𝑦).

Proof. Let 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ 𝑉𝑛. Observe that

Tile−1
𝑛 (𝑣1, 𝑣2, 𝑣3, 𝑣4) ⊆ Λ−1

𝑛 (𝑣1) ∩ 𝜂 ◦ Λ−1
𝑛 (𝑣2) ∩ 𝑅𝒆1 (Λ−1

𝑛 (𝑣3)) ∩ 𝑅𝒆2 (𝜂 ◦ Λ−1
𝑛 (𝑣4))

⊂ Λ−1
𝑛 (𝑣1) ∩ 𝜂 ◦ Λ−1

𝑛 (𝑣2) ∩ 𝑅𝒆1 (Λ−1
𝑛 (𝑣3)) ∩ 𝑅𝒆2 (𝜂 ◦ Λ−1

𝑛 (𝑣4))
= 𝑃(𝑣1 ,𝑣2 ,𝑣3 ,𝑣4) .

For every 𝑘 ∈ Z2, we have

𝑐 (𝑥,𝑦) (𝑘) = Tile𝑛 ◦ 𝑅𝑘𝑛 (𝑥, 𝑦),

so that

(𝑥, 𝑦) ∈ 𝑅−𝑘
𝑛 ◦ Tile−1

𝑛 (𝑐 (𝑥,𝑦) (𝑘)) ⊂ 𝑅−𝑘
𝑛 (𝑃𝑐(𝑥,𝑦) (𝑘) ).

Therefore, for every 𝑚 ∈ N, we have

(𝑥, 𝑦) ∈
⋂

‖𝑘 ‖≤𝑚
𝑅−𝑘
𝑛 (𝑃𝑐(𝑥,𝑦) (𝑘) ) = 𝐷𝑚 (𝑐 (𝑥,𝑦) ).

Since P𝑛 gives a symbolic representation of the dynamical system Z2 𝑅𝑛
� T2, we have that

∩∞
𝑚=0𝐷𝑚(𝑐 (𝑥,𝑦) ) is a singleton and

∩∞
𝑚=0𝐷𝑚(𝑐 (𝑥,𝑦) ) = {(𝑥, 𝑦)}.

Therefore, 𝑓 (𝑐 (𝑥,𝑦) ) = (𝑥, 𝑦). �

Proposition 9.5. The factor map 𝑓𝑛 : Ω𝑛 → T2 is equal to the factor map Φ𝑛 : Ω𝑛 → T2 explicitly
defined in Equation (8.2):

𝑓𝑛 = Φ𝑛.

Proof. From Lemma 9.4, we have 𝑓𝑛 (𝑐 (0,0) ) = (0, 0). Also, observe that the configuration 𝑐 (0,0) is
symmetric: %𝑐 (0,0) = 𝑐 (0,0) . Thus, we have

Φ𝑛 (𝑐 (0,0) ) = (𝜙𝑛 (%𝑐 (0,0) ), 𝜙𝑛 (𝑐 (0,0) )) = (𝜙𝑛 (𝑐 (0,0) ), 𝜙𝑛 (𝑐 (0,0) )) = (0, 0).

Let 𝑤 ∈ Ω𝑛 be any configuration. Since Ω𝑛 is minimal [37], there exists a sequence (𝑘ℓ )ℓ∈N such that
𝑘ℓ ∈ Z2 such that 𝑤 = limℓ→∞ 𝜎𝑘ℓ (𝑐 (0,0) ). From Proposition 9.3 and Theorem D, 𝑓𝑛 and Φ𝑛 are factor
maps commuting the shift map with the Z2-action 𝑅𝑛 on the torus T2.Thus, we obtain
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Φ𝑛 (𝑤) = Φ𝑛

(
lim
ℓ→∞

𝜎𝑘ℓ (𝑐 (0,0) )
)

= lim
ℓ→∞

Φ𝑛 ◦ 𝜎𝑘ℓ (𝑐 (0,0) )

= lim
ℓ→∞

𝑅𝑘ℓ𝑛 ◦Φ𝑛 (𝑐 (0,0) )

= lim
ℓ→∞

𝑅𝑘ℓ𝑛 ((0, 0))

= lim
ℓ→∞

𝑅𝑘ℓ𝑛 ◦ 𝑓𝑛 (𝑐 (0,0) )

= lim
ℓ→∞

𝑓𝑛 ◦ 𝜎𝑘ℓ (𝑐 (0,0) )

= 𝑓𝑛

(
lim
ℓ→∞

𝜎𝑘ℓ (𝑐 (0,0) )
)
= 𝑓𝑛 (𝑤). �

The factor map Φ𝑛 between the dynamical system Z2 𝜎
� Ω𝑛 and the Z2-action 𝑅𝑛 on the torus T2

satisfies additional properties. In particular, Φ𝑛 is an isomorphism of measure-preserving dynamical
systems. Their proofs follow the structure of similar results proved in [33] for Jeandel–Rao tilings.

Theorem F. The Wang shift Ω𝑛 and the Z2-action 𝑅𝑛 have the following properties:

(i) Z2 𝑅𝑛
� T2 is the maximal equicontinuous factor of Z2 𝜎

� Ω𝑛,
(ii) the factor map Φ𝑛 : Ω𝑛 → T2 is almost one-to-one and its set of fiber cardinalities is {1, 2, 8},

(iii) the shift-action Z2 𝜎
� Ω𝑛 on the metallic mean Wang shift is uniquely ergodic,

(iv) the measure-preserving dynamical system (Ω𝑛,Z2, 𝜎, 𝜈) is isomorphic to (T2,Z2, 𝑅𝑛, 𝜆) where 𝜈
is the unique shift-invariant probability measure on Ω𝑛 and 𝜆 is the Haar measure on T2.

Proof. From Theorem E, we have XP𝑛 ,𝑅𝑛 = Ω𝑛.
(i) From Proposition 9.3, the factor map 𝑓𝑛 : XP𝑛 ,𝑅𝑛 → T2 commutes the actions Z2 𝜎

� XP𝑛 ,𝑅𝑛 and
Z2 𝑅𝑛
� T2. From [33, Proposition 5.1], 𝑓𝑛 is one-to-one on 𝑓 −1

𝑛 (T2 \ ΔP𝑛 ,𝑅𝑛 ) where

ΔP𝑛 ,𝑅𝑛 :=
⋃
𝒌∈Z2

𝑅𝒌
𝑛

( ⋃
𝜏∈T𝑛

𝜕𝑃𝜏

)
⊂ T2

is the set of points whose orbit under the Z2-action 𝑅𝑛 intersect the boundary of the topological partition
P𝑛 = {𝑃𝜏}𝜏∈T𝑛 . From [33, Corollary 5.3] (which is a consequence of [4, Lemma 3.11]), Z2 𝑅𝑛

� T2 is
the maximal equicontinuous factor of Z2 𝜎

� XP𝑛 ,𝑅𝑛 .
(ii) We have that {𝑦 ∈ T2 : card( 𝑓 −1

𝑛 (𝑦)) = 1} = T2 \ ΔP𝑛 ,𝑅𝑛 is a countable intersection of open
sets and is dense in T2. Thus, it is a 𝐺 𝛿-dense set in T2. Therefore, the factor map 𝑓𝑛 : XP𝑛 ,𝑅𝑛 → T2 is
almost one-to-one. From Proposition 9.5, we have 𝑓𝑛 = Φ𝑛.

Suppose that 𝒙 ∈ ΔP𝑛 ,𝑅𝑛 . We have card( 𝑓 −1
𝑛 (𝒙)) ≥ 2. If card( 𝑓 −1

𝑛 (𝒙)) > 2, then we may show
that there exists 𝒏 ∈ Z2 such that 𝒙 = 𝑅𝒏

𝑛 (0). If 𝒙 = 𝑅𝒏
𝑛 (0) for some 𝒏 ∈ Z2, then the set 𝑓 −1

𝑛 (𝒙)
contains 8 different configurations of the form lim𝜀→0 𝑐𝜀v for some v ∈ R2 \ ΘP𝑛 where ΘP𝑛 = R ·
{(1, 0), (0, 1), (1,−𝛽), (1, 𝛽∗)}. If 𝒙 ∈ ΔP𝑛 ,𝑅𝑛 but not in the orbit of 0 under 𝑅𝑛, then card( 𝑓 −1

𝑛 (𝒙)) = 2.
We conclude that {card( 𝑓 −1

𝑛 (𝒙)) | 𝒙 ∈ T2} = {1, 2, 8}.
(iii) The dynamical systemZ2 𝑅𝑛

� T2 is minimal. We have that 𝜆(𝜕𝑃) = 0 for each atom 𝑃 ∈ P𝑛 where
𝜆 is the Haar measure on T2. The partition P𝑛 gives a symbolic representation of the dynamical system
Z2 𝑅𝑛
� T2. Thus, from [33, Proposition 6.1], the dynamical system Z2 𝜎

� XP𝑛 ,𝑅𝑛 is uniquely ergodic.
(iv) Since the dynamical system Z2 𝜎

� XP𝑛 ,𝑅𝑛 is uniquely ergodic, it admits a unique shift-invariant
probability measure 𝜈 on Ω𝑛. From [33, Proposition 6.1], the measure-preserving dynamical system
(Ω𝑛,Z2, 𝜎, 𝜈) is isomorphic to (T2,Z2, 𝑅𝑛, 𝜆) where 𝜆 is the Haar measure on T2. �
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10. Renormalization and Rauzy induction of Z2-rotations

Another consequence of Theorem E is that the symbolic dynamical system XP𝑛 ,𝑅𝑛 is self-similar
because this was proved in [37] for the Wang shift Ω𝑛. The Rauzy induction of polygonal partitions and
of toral Z2-rotations defined in [34] can be used to compute the self-similarity of the symbolic dynamical
system XP𝑛 ,𝑅𝑛 . We illustrate below how this can be done for a fixed value of an integer 𝑛 ≥ 1.

For some postive integer 𝑛 ≥ 1, we define the positive root 𝛽 of the polynomial 𝑥2 − 𝑛𝑥 − 1.
Computations will be done in the number field generated by this root. We perform the computations
below with 𝑛 = 3, but it works with other integers. For instance, the computation of the self-similarity
for 𝑛 = 7 from the Rauzy induction is done in about 200 seconds on a recent laptop.

1sage: n = 3 # try with another integer
2sage: x = polygen(QQ, "x")
3sage: K.<beta> = NumberField(x^2 - n*x - 1, embedding=RR(n))
4sage: beta.n()
53.30277563773199

We define a function that computes the atoms Λ−1
𝑛 (𝑣) for every 𝑣 ∈ 𝑉𝑛. Note that in SageMath, an

entry equal to [-1,7,3,4] represents the inequality 7𝑥1 + 3𝑥2 + 4𝑥3 ≥ 1.

6sage: unit_square_ieqs = [[0, 1, 0], [0, 0, 1], [1, -1, 0], [1, 0, -1]]
7sage: def Lambda_inv(a,b,c):
8....: ieqs = list(unit_square_ieqs)
9....: ieqs.extend([[-1/beta+1-a, 0, 1], [a+1/beta, 0, -1]])
10....: ieqs.extend([[-1/beta+1-b, 1/beta, 1], [b+1/beta, -1/beta, -1]])
11....: ieqs.extend([[-1/beta+1-c, beta, 1], [c+1/beta, -beta, -1]])
12....: return Polyhedron(ieqs=ieqs)

We define the set 𝑉𝑛 and we check that the sum of the area of the polygons {Λ−1
𝑛 (𝑣)}𝑣 ∈𝑉𝑛 is 1.

13sage: Vn = [(a,b,c) for a in range(2) for b in range(2) for c in range(n+2) if a<=b<=c]
14sage: Vn
15[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1,

4), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4)]
16sage: assert sum(Lambda_inv(*v).volume() for v in Vn) == 1
17sage: Lambda_inv(0,0,n+1).volume() # one of the atom has empty interior
180

For readability reason, we define a map which concatenates the entries of a vector into a string.
19sage: def vector_to_str(v):
20....: return "".join(str(a) for a in v)
21sage: vector_to_str((0,1,4)) # for example
22014

We define the Z2-action 𝑅𝑛 onR2/Z2 as two polyhedron exchange transformations on the unit square.
23sage: lattice_base = identity_matrix(2)
24sage: from slabbe import PolyhedronExchangeTransformation as PET
25sage: Re1 = PET.toral_translation(lattice_base, vector((1/beta,0)))
26sage: Re2 = PET.toral_translation(lattice_base, vector((0,1/beta)))

We construct the East𝑛 partition (ignoring the atom with empty interior) and the three other partitions
from it.

27sage: from slabbe import PolyhedronPartition
28sage: EAST = PolyhedronPartition({vector_to_str(v):Lambda_inv(*v) for v in Vn
29....: if Lambda_inv(*v).volume() > 0})
30sage: M = matrix(K, 2, (0,1,1,0))
31sage: NORTH = EAST.apply_linear_map(M)
32sage: WEST = Re1(EAST)
33sage: SOUTH = Re2(NORTH)
34sage: G = graphics_array([EAST.plot(),NORTH.plot(), SOUTH.plot(),WEST.plot()])
35sage: G.show(figsize=10)
36None
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We compute the refinement of the East𝑛 and North𝑛 partitions and of the West𝑛 and South𝑛 partitions.

37sage: PEN,dEN = EAST.refinement(NORTH, certificate=True)
38sage: PWS,dWS = WEST.refinement(SOUTH, certificate=True)
39sage: G = graphics_array([PEN.plot(),PWS.plot()])
40sage: G.show(figsize=5)
41None

In general, we would need to compute the refinement of the two partitions. But here, since they are equal
up to relabeling, we may take one as the refinement and compute the bijection of the labels between them.

42sage: PWS.is_equal_up_to_relabeling(PEN)
43True
44sage: P = PEN # faster than P = PEN.refinement(PWS)
45sage: bijection = P.keys_permutation(PWS)
46sage: bijection[9] # for example
4716

We compute the set of Wang tiles defined by the refinement of the four partitions East𝑛, North𝑛,
West𝑛 and South𝑛:

48sage: from slabbe import WangTileSet
49sage: tiles = [dEN[i]+dWS[bijection[i]] for i in sorted(dEN)]
50sage: T3 = WangTileSet(tiles)
51sage: t = T3.tikz(ncolumns=10, scale=1.2)
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We perform the Rauzy induction on the square window [0, 𝛽−1] × [0, 𝛽−1] using the algorithms
induced_partition and induced_transformation defined in [34]. First, we perform the induction
on the domain restricted to the inequality 𝑥 ≤ 𝛽−1.

52sage: x_le_beta_inv = [1/beta,-1,0]
53sage: P1,s1 = Re1.induced_partition(x_le_beta_inv, P, substitution_type="row")
54sage: R1e1,_ = Re1.induced_transformation(x_le_beta_inv)
55sage: R1e2,_ = Re2.induced_transformation(x_le_beta_inv)

Secondly, we perform the induction on the domain restricted to the inequality 𝑦 ≤ 𝛽−1.

56sage: y_le_beta_inv = [1/beta,0,-1]
57sage: P2,s2 = Re2.induced_partition(y_le_beta_inv, P1, substitution_type="column")
58sage: R2e1,_ = R1e1.induced_transformation(y_le_beta_inv)
59sage: R2e2,_ = R1e2.induced_transformation(y_le_beta_inv)

We rescale the induced partition by the factor −𝛽 and translate it back to the unit square in the positive
quadrant. Then we apply each generator of the Z2-action once on the rescaled induced partition.

60sage: P2_scaled = (-beta * P2).translate((1,1))
61sage: P3 = Re2(Re1(P2_scaled))
62sage: G = graphics_array([P2_scaled.plot(), P3.plot()])
63sage: G.show(figsize=5)
64None

We check that the resulting partition is equal to the initial partition. We check that the induced action is
equal to the initial action.

65sage: P.is_equal_up_to_relabeling(P3)
66True
67sage: Re1 == (beta * R2e1).inverse()
68True
69sage: Re2 == (beta * R2e2).inverse()
70True

The self-similarity computed by this Rauzy induction is the product of the above 2-dimensional
substitutions by the bijection of the labels.

71sage: from slabbe import Substitution2d
72sage: s3 = Substitution2d.from_permutation(P.keys_permutation(P3))
73sage: s123 = s1*s2*s3
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The computed self-similarity s123 is:

The above self-similarity can be illustrated with the Wang tiles computed above as follows:

74sage: s123_tikz = s123.wang_tikz(domain_tiles=T3, codomain_tiles=T3, ncolumns=6, scale=1.2,
label_shift=.15)

We may observe that the self-similarity computed here from the Rauzy induction on polygonal
partition on P3 and toral Z2-action 𝑅3 is the same as the self-similarity proved for the Wang shift Ω3 in
[37].
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Figure 20. The Jeandel–Rao aperiodic set of 11 Wang tiles.

11. Open questions

For almost twenty years, the Kari and Culik sets of Wang tiles were the smallest known aperiodic sets
of Wang tiles. In 2015, Jeandel and Rao performed an exhaustive search on all sets of Wang tiles of
cardinality up to 11 [21] and proved that sets of Wang tiles of cardinality at most 10 either do not tile the
plane or tile the plane and one of the valid tilings is periodic. Moreover, they provided a list of 36 sets
of 11 Wang tiles considered to be candidates for being aperiodic. One of the candidates was intriguing
because Fibonacci numbers appeared in the structure of the transducers involved in the computation of
valid tilings. Jeandel and Rao focused on the intriguing candidate, shown in Figure 20, and they proved
it to be aperiodic. The set of valid configurations over these 11 tiles forms a subshift that we call the
Jeandel–Rao Wang shift.

In [33], it was proved that a minimal subshift within the Jeandel–Rao Wang shift is the coding of
a dynamical system defined by the following Z2-action 𝑅0 on the 2-dimensional torus R2/Γ0, where
Γ0 =

(
𝜑 1
0 𝜑+3

)
Z2 is a lattice in R2 involving the golden ratio 𝜑 = 1+

√
5

2 :

𝑅0 : Z2 × R2/Γ0 → R2/Γ0
(𝒌, 𝒙) ↦→ 𝒙 + 𝒌 .

The symbolic coding is obtained through a polygonal partition P0 of a fundamental domain of R2/Γ0.
The partition was proved to be a Markov partition for 𝑅0 after comparing the substitutive structure
computed from the Rauzy induction of 𝑅0 and P0 [34] with the substitutive structure of the associated
Wang shift [32, 35].

Intuitively, this means that the Jeandel–Rao Wang tiles shown in Figure 20 correspond to computing
the orbit of points in the plane R2 under the translations by +1 horizontally and +1 vertically modulo
the lattice Γ0. How this is possible is still a mystery. The link between the 11 Jeandel–Rao Wang tiles
themselves and the golden ratio or toral rotation 𝑅0 remains unclear. Unlike the Kari example, the values
0, 1, 2, 3, 4 of the labels of the Jeandel–Rao Wang tiles are five distinct symbols rather than arithmetic
values. They do not satisfy a known equation.

In general, the following questions can be raised.

Question 1. Let T be a set of Wang tiles such that the Wang shift ΩT is aperiodic.

◦ Is it multiplicative (Kari-Culik-like)? More precisely, can we replace the labels of the tiles in T by
arithmetic values in such a way that an equation similar to (1.1) is satisfied?

◦ Is it additive (metallic mean-like)? More precisely, can we replace the labels of the tiles in T by
integer vectors computed from floors of linear forms as in Proposition 7.4 and satisfying additive
equations as in Theorem B?

Does there exist an aperiodic set of Wang tiles which is neither multiplicative nor additive?

Solving Question 1 for Jeandel–Rao Wang tiles would improve our understanding of the Jeandel–
Rao Wang shift. Hopefully it would allow to generate more examples maybe not related to the golden
ratio and that are not self-similar. Remember that the computations made by Jeandel and Rao took one
year using 100 cpus to explore exhaustively the sets of 11 Wang tiles [21]. Finding new examples by
exploring all sets of 12, 13 or 14 Wang tiles becomes soon out of reach. We need to understand what is
happening in order to find other examples and characterize them.
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Question 2. If an aperiodic set of Wang tiles is additive (metallic mean-like) with labels given by
integer vectors satisfying equations, can we use the equations to directly prove that the Wang shift ΩT
is aperiodic following the short arithmetical argument for the nonperiodicity of Kari’s tile set?

Finding an answer to Question 2 for the Ammann set of 16 Wang tiles was the original motivation
of the author which led to the discovery of the family of metallic mean Wang tiles. As we discussed
in Section 6, Question 2 remains open even for the Ammann 16 Wang tiles and the family of metallic
mean Wang tiles.

In general, we may ask the following question.

Question 3. For which invertible matrix 𝑀 ∈ GL2(R) does there exist a set of Wang tiles T such that
the Wang shift ΩT is isomorphic, as a measure-preserving dynamical system, to the toral Z2-rotation
𝑅 : Z2 × T2 → T2 defined by 𝑅𝒌 (𝒙) = 𝒙 + 𝑀𝒌 on the 2-dimensional torus T2 = (R/Z)2?

The Markov partition associated with Jeandel–Rao tiles and action 𝑅0 on R2/Γ0 is related to the
golden ratio [33]. In this contribution, we describe a family of Z2-actions related to the metallic-mean
quadratic integers. Can we find examples related to other numbers?

Question 4. For which Z2-actions defined by rotations on a 2-dimensional torus does there exist a
Markov Partition? When is this partition smooth/polygonal?

As for toral hyperbolic automorphisms, we can expect that smooth Markov partitions are associated
with algebraic integers of degree 2 and that the partition is piecewise linear in this case [10]. Markov
partitions for typical toral hyperbolic automorphisms have fractal boundaries [8].

The relation with toral hyperbolic automorphisms does not come out of nowhere. Indeed, the self-
similarity of Ω𝑛 proved in [37] has an incidence matrix of size (𝑛 + 3)2 × (𝑛 + 3)2. Its eigenvalues are
all quadratic integers, 0 or ±1. This incidence matrix acts hyperbolically as a toral automorphism on a
subspace ofR(𝑛+3)2 thus admits a Markov partition with piecewise linear boundaries. A link between this
Markov partition and the partition P𝑛 can be expected, because this is what happens for 1-dimensional
sequences. Indeed, the Markov partition associated with the toral automorphism

( 1 1 1
1 0 0
0 1 0

)
is a suspension

of the Rauzy fractal [47] as nicely illustrated in a talk by Timo Jolivet [23].

Question 5. What is the relation between the Markov partition for the hyperbolic toral automorphism
defined from the incidence matrix of the self-similarity of Ω𝑛 and the Markov partition P𝑛 associated
with Z2 𝜎

� Ω𝑛?

The symmetric properties of Ω𝑛 and of the partition P𝑛 make them a good object of study to tackle
these questions in more generality.
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75sage: version()
76SageMath version 10.6.beta7, Release Date: 2025-02-21
77sage: import importlib.metadata
78sage: importlib.metadata.version("slabbe")
790.8.0

The fact that these software are open-source means that anyone is free to use, reproduce, verify, adapt for their
own needs all of the computations performed therein according to the GNU General Public License (version 2, 1991,
http://www.gnu.org/licenses/gpl.html).

The contents of all of the sageexample environments from the tex source are gathered in the file
demos/arXiv_2403_03197_doctest.sage autogenerated by SageTeX when running pdflatex. This file is included in the
slabbe package and available at https://gitlab.com/seblabbe/slabbe/. It allows to make sure that future releases of the package do
not break the code included in this article. It is possible to reproduce all computations present in this article and check that all out-
puts are correct, by doctesting this file, that is, by running the command sage -t demos/arXiv_2403_03197_doctest.sage.
It should output All tests passed! and [58 tests, 11.75s wall] (most probably with a different timing).
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