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Abstract

We consider a new family (7,),,>1 of aperiodic sets of Wang tiles and we describe the dynamical properties of the set
Q,, of valid configurations Z> — 7,. The tiles can be defined as the different instances of a square-shaped computer
chip whose inputs and outputs are 3-dimensional integer vectors. The family include the Ammann aperiodic set of
16 Wang tiles and gathers the hallmarks of other small aperiodic sets of Wang tiles. Notably, the tiles satisfy additive
versions of equations verified by the Kari—Culik aperiodic sets of 14 and 13 Wang tiles. Also configurations in €2,
are the codings of a Z2-action on a 2-dimensional torus like the Jeandel-Rao aperiodic set of 11 Wang tiles. The
family broadens the relation between quadratic integers and aperiodic tilings beyond the omnipresent golden ratio
as the dynamics of €, involves the positive root 8 of the polynomial x2 — nx — 1, also known as the n-th metallic
mean. We show the existence of an almost one-to-one factor map €, — T2 which commutes the shift action on
Q,, with horizontal and vertical translations by 5 on T2. The factor map can be explicitly defined by the average of
the top labels from the same row of tiles as in Kari and Culik examples. The proofs are based on the minimality of
Q,, (proved in a previous article) and a polygonal partition of T2 which we show is a Markov partition for the toral
7Z2-action. The partition and the sets of Wang tiles are symmetric which makes them, like Penrose tilings, worthy

of investigation.
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1. Introduction

Turing machines can be encoded into a finite set of Wang tiles (unit squares with labeled edges) in such
a way that the Turing machine does not halt if and only if there exists a tiling of the plane by translated
copies of the tiles respecting the condition that the common edge of adjacent tiles have the same label
[7]1, see also [49, 43, 22]. As a consequence, the existence of a valid tiling of the plane with a given
finite set of Wang tiles (called the domino problem) cannot be decided by an algorithm. Indeed, if the
domino problem were decidable, we could use the algorithm solving the domino problem to solve the
halting problem, which is a contradiction [60].

Therefore, we can think of Wang tiles as if their tilings are computing something. As observed by
Wang, the undecidability of the domino problem implies the existence of aperiodic sets of Wang tiles
[62]. Shortly after, Berger proved the undecidability of the domino problem and constructed the first
known aperiodic set of Wang tiles [7]. Since then, aperiodic tilings has developed into an active subject
of study with applications to the theory of quasicrystals [19, 53, 5, 6]. Thus, sets of Wang tiles (and their
computations) can be classified into three cases:

o Finite: the Wang tiles do not tile the plane,
o Periodic: the Wang tiles tile the plane and one of the valid tiling is periodic,
o Aperiodic: the Wang tiles tile the plane and none of the valid tilings are periodic.

The finite cases can be associated with computations that halt. The periodic cases can be associated
with computations that do not halt and fall into an infinite loop. The aperiodic cases can be associated
with computations that do not halt and never repeat.

For applications, computations that halt are usually preferred over computations that loop forever.
Among computations that halt, the description of those “busy beavers” [9, 1] running for the maximum
number of steps before halting is an open question even for Turing machines made of only 6 rules [42]
(it was recently solved for 5 rules'). In this article, we are interested in the description of computations
that do not halt and never repeat. We focus on those that happen to be performed by small aperiodic sets
of Wang tiles. We aim to reveal their links with dynamical systems and the coding of their orbits.

The Kari—Culik outliers

The smallest sets of aperiodic Wang tiles until 2015 were discovered by Kari and Culik in 1996. Kari
[24] proved that a well-chosen set of 14 Wang tiles admits tilings of the plane, and that none of them is
periodic. The proof that they are not periodic is cleverly short. It is based on an arithmetic interpretation
of the edge labels of the Wang tiles. The tiles have labels r, ¢, £, b € Q satisfying an equation

t

¢ r gt+{=b+r (1.1)

thttps://github.com/ccz181078/Coq-BB5
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Figure 1. Averages of horizontal labels in a tiling with Kari’s 14 tiles are orbits under the map g on the
interval [%, 2]; see [14, 27].

for some g € Q. We may interpret the Wang tile as a computation (the multiplication by g) with value ¢
as an input and b as an output. The value ¢ is a carry input on the left and r is a carry output on the right.
Kari [24] proposed a set of four tiles satisfying (1.1) with ¢ = 2 and ten tiles with g = % The proof of
the nonexistence of a periodic tiling with those 14 tiles uses the fact that the equation 23" = 1 has only
one solution over the integers (m = n = 0), see Figure 1. Based on the same idea, Culik [11] proposed a
smaller aperiodic set of 13 tiles (four tiles satisfying (1.1) with ¢ = 3 and nine tiles with g = %). Note
that generalizations of Kari—Culik tilings exist [15] and that further results were obtained about their
entropy [14] and on a minimal subsystem [54].

Among aperiodic tilings of the plane by Wang tiles, Kari and Culik sets seem like outliers. The
aperiodicity of Penrose tiles [44], Berger tiles [7], Robinson tiles [49], Knuth tiles [29], Ammann tiles
[19, 3] can be explained by the hierarchical decomposition of their tilings. Often, aperiodic tilings
have a self-similar structure [58, 59, 46, 45, 2] and this is the case for recently discovered aperiodic
geometrical tiles [57, 55, 56]. However, Kari and Culik tilings have positive entropy. Thus, they are not
self-similar and do not possess a hierarchical decomposition [14]. Note that the absence of hierarchical
decomposition also follows from a cylindricity argument proposed by Thierry Monteil and explained in
[14, §4.2]. Moreover, except some extensions of Kari and Culik sets [15, §6], no other known aperiodic
sets of tiles satisfy equations explaining their nonperiodicity.

The metallic mean family of aperiodic Wang tiles

The current article is the second article about a new family of aperiodic Wang tiles related to the metallic
mean. Recall that the metallic mean £ is the positive root of the polynomial x> — nx — 1 where n > 1 is
an integer [13], that is,

n+— —_
Metallic means were also called silver means in [52] and noble means in [5].

Let us recall the main results proved in the first article of the series. For every integer n > 1, the n'"
metallic mean Wang shift Q,, is defined from a set 7,, of (n + 3)?> Wang tiles. An illustration of the set
73 is shown in Figure 2. The labels of the Wang tiles are vectors in N3. In Figure 2, we represent vectors
as words for economy of space reasons. For instance, the vector (1, 1,4) is represented as 114. A finite
rectangular valid tiling is shown in Figure 3 for the set 73. More images of valid tilings with metallic
mean Wang tiles are available in [37].

It was shown in the previous article that the metallic mean Wang shift Q,, is self-similar, aperiodic
and minimal. We gather in the next theorem the main results already proved about €,,.
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Figure 3. A valid 15 x 15 pattern with Wang tile set Ts.
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Theorem 1.1 [37]. For every integer n > 1,

(i) the metallic mean Wang shift Q,, is self-similar, aperiodic and minimal,
(ii) the inflation factor of the self-similarity of Q,, is the n-th metallic mean, that is, the positive root of
x*—nx - 1.
Also, when n = 1, Q is equivalent to the Wang shift defined from the 16 Ammann Wang tiles [ 19, p.595,
Figure 11.1.13].

In order to describe the substitutive structure of the Wang shift Q,, generated from the set 7, it
was needed in [37] to introduce a larger set 7,; satistying 7,, C 7,/. It was shown that the set 7,/ is in
bijection with the set of possible return blocks allowing to decompose uniquely the configurations of
Q,,. The return blocks are rectangular blocks of tiles with a unique junction tile (a tile where horizontal
and vertical color stripes intersect) at the lower left corner. Also, it was proved in [37] that in a valid
configuration of Q;, only the tiles from 7, appear. From this observation follows the self-similarity
of Q,,.

This article

In this article, we demonstrate that Kari and Culik tilings are not a complete oddity within aperiodic
sets of tiles. In particular, we show for the first time that substitutive aperiodic sets of Wang tiles can
also satisfy equations and even be defined by them, see Figure 4. This article is devoted to a family of
aperiodic Wang tiles associated with the metallic mean numbers, the positive roots of the polynomials
x> —nx — 1 where n > 1 is a positive integer. When n = 1, the family recovers the Ammann set of 16
Wang tiles [19].

The labels of the Wang tiles are not numbers like in Kari and Culik sets, but rather integer vectors.
Note that integers vectors were already used as labels of Wang tiles in [25, 26], see also [27]. The
equations satisfied by the tiles are derived from a function that expresses a relation between the labels
of the Wang tiles. The function provides an independent definition of the family of metallic mean
Wang tiles as the instances of an aperiodic computer chip. The family (£,),> of metallic mean Wang
shifts was introduced separately in [37] where it was shown to be aperiodic as a consequence of its
self-similarity.

Here, in this second article on the metallic mean Wang tiles, we prove that €, is aperiodic for another
reason. Namely, we show that the 72 shift action on €, is an almost 1-to-1 extension of a minimal

Aperiodic sets of Wang tiles

® and their extensions Wang tiles o Jeandel_Rao

Positive entropy Substitutive
AR EEEE Rl , ® Berger
® Kari E this is non-empty! v Knu{h
o Culik ' o Metalli : ® Robinson
: etallic mean ' o Ammann
1 1
1 1

L Matching rules satisfy arithmetic equations Q

Figure 4. A Venn diagram of aperiodic sets of Wang tiles. Aperiodicity of Kari [24] and Culik [11] sets
of tiles and their extensions [15] follows from the arithmetic equations satisfied by their matching rules.
In this article, we show that the dashed region in the Venn diagram is nonempty, that is, there exists a
family of substitutive (self-similar) aperiodic sets of Wang tiles whose matching rules satisfy arithmetic
equations.
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7Z?*-action by rotations on T2. This reminds of a result proved for Penrose tilings [48] and the two reasons
for them to be aperiodic. Aperiodicity of Penrose tilings follows from its self-similarity [44] and from
their being a cut-and-project scheme [12, 5].

For every integer n > 1, we show that valid configurations in €, are computing the orbits of a
dynamical system defined by a Z?-action R, on the 2-dimensional torus T2. The dynamical system

Rn
Z? /A T? is defined by horizontal and vertical translation on T? by the n-th metallic mean modulo 1. As
for the Jeandel-Rao Wang shift [33], the proof is based on a polygonal partition of T which we prove
is a Markov partition for the toral Z2-action. We also prove the existence of an almost one-to-one factor

map Q, — T2 commuting the shift 72 A Q,, with the toral Z2-rotation Z2 % T2. Since R, is a free
action, this provides a second reason for the Wang shift Q,, to be aperiodic.

The factor map can be defined by taking averages of the dot product involving the top labels of the
Wang tiles in the biinfinite row of tiles passing through the origin in a configuration. The existence of
the factor map proves that the average changes from row to row by an irrational rotation by the n-th
metallic mean number. This can be seen as an additive version of a multiplicative phenomenon known
for Kari—Culik tilings. Recall that the average of top label values along a row is at the heart of Kari and
Culik’s construction of aperiodic tilings where the average change by a rational multiplication from row
to row [14, Theorem 6].

The polygonal partition used to encode the toral Z>-action is symmetric and is much more simple
to define compared to the Markov partition associated with the Jeandel-Rao Wang shift. Moreover, the
label of the polygonal atoms of the partition have a meaning in the sense that they define the linear
inequalities describing their boundaries. The symmetry and simplicity of the partition was helpful to
extend the family beyond the golden ratio. The results proved here for the metallic mean Wang tiles
should serve as an inspiration to replace the labels of the Jeandel-Rao tiles by integer vectors satisfying
equations. Understanding the matching rules of Jeandel-Rao tiles by means of arithmetic would open
the door for discovering a vast family of aperiodic sets of Wang tiles beyond the family of metallic mean
Wang tiles. See Section 11 for more open questions.

Structure of the article

In Section 2, we state the main results proved in this article. In Section 3, we present preliminary notions
on dynamical systems, subshifts and Wang shifts. In Section 4, we recall the definition of the family
of metallic mean Wang tiles. In Section 5, we show that instances of the 6,,-chip are the metallic mean
Wang tiles. This proves Theorem A. In Section 6, we prove Theorem B and we present more equations
satisfied by the metallic mean tiles and their tilings. In Section 7, we use the floor function on linear forms
to construct valid tilings with the metallic mean Wang tiles and we prove Theorem C. In Section 8, we
define an explicit factor map ©,, — T2 and we prove Theorem D. In Section 9, we define the partition P,
forevery integer n > 1 and we show that the metallic mean Wang shift is equal to the symbolic dynamical
system defined by the coding of a toral Z2-action by this partition. This shows that Q,, is isomorphic
as measure-preserving dynamical systems to a toral Z>-action. We prove Theorem E and Theorem F in
this section. In Section 10, we compute the renormalization of the partition P, and Z>-action R,, using
computations performed in SageMath when n = 3. We illustrate how the Rauzy induction of Z>-actions
and of polygonal partitions can be used to show the self-similarity of the symbolic dynamical system
Xp, r,-In Section 11, we discuss some open questions raised by the current work.

2. Statements of the main results
An aperiodic computer chip

For every integer n > 1, we define a finite subset V,, ¢ N° of vectors

Vnz{(vo,vl,vz)EN3:OSVOSV1 <landv; <vy <n+1}
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with nondecreasing entries where the middle entry is at most 1. We introduce a function
On Vi XV, - 73
(uo, ur,u2), (vo,vi,v2) & (ro,71,72),
taking two vectors as input and returning one vector. Its image is defined by the rule
ro = uo,
vy—n ifug=0,

1 ifug=1, 2.1)
vi+uy ifvyg=0,

ry =

rp =
uy +1 if vog = 1.

Notice that (rg, r1, r2) does not depend on u . For every integer n > 1, we construct a symmetric 6,,-chip,
that is, a computer chip taking as inputs u € V,, on the left and v € V,, on the bottom and producing as
outputs 6, (u, v) on the right and 6,,(v, u) on the top (see Figure 5).

If 6,,(u, v) and 6,,(v, u) are in V,,, then one can use multiple copies of the 6,-chip and connect them
to each other horizontally and vertically into an arbitrarily large rectangular cluster of 6,,-chips (see
Figure 6).

We prove in this work the existence of arbitrarily large rectangular clusters of the 6,,-chip all of them
performing correct computations. Also we show that no rectangular cluster of the 6,,-chip performs a
periodic computation. Thus, we say that the 6,,-chip is an aperiodic computer chip. Perhaps we can
say it is an aperiodic monochip, but we cannot say it is an aperiodic monotile as in [55, 56] because the
same chip with different inputs has to be considered a distinct Wang tile.

Figure 5. The 0,-chip is a computer chip computing 6, (u,v) and 6, (v,u) from the left input u and
bottom input v.
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Figure 6. A rectangular cluster of copies of the 6,-chip.
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Instances of the chip are metallic mean Wang tiles

If we consider all possible values of inputs « and v in V,, and if we restrict the outputs to be in the set
V.., then we obtain a finite set of Wang tiles

0,(v,u)

Ch=1 u D 0, (u,v) | >V € Vn such that 6, (u,v), 0n(v,u) € Vy (2.2)

1%

which is the finite set of all possible instances of the 6,,-chip.

Theorem A. For every integer n > 1, the Wang shift Qc, defined by the 0,-chip is the n'" metallic
mean Wang shift Q,,.

Something unexpected and surprising happens in the proof of Theorem A. The set C, of instances
of the 6,-chip is exactly equal to the extended set 7,/ of metallic mean Wang tiles introduced in [37] in
order to prove the self-similarity of Q,,, see Proposition 5.1.

Tile labels satisfy Equations

The next result states that every tile in C,, satisfy a system of equations. While the equations associated
with Kari’s [24] and Culik’s [1 1] aperiodic set of Wang tiles are multiplicative, the ones associated with
C,, are additive.

Theorem B. Let n > 1 be an integer, d = (0,-1,1) and e = (1,0,0). The set of Wang tiles defined by
the 6,,-chip satisfy the following system of equations:

t

(Ld,t+6)—(e.0) = (1d,b+r)—(e,b)
ChCy ¢ D r €EVa XV, xV,xV, (e, ) = (e,r)
(e,b) = (e, 1)
b

where (_, _) denotes the canonical inner product of 73.

Equivalently, if we let £ = (£, €1,6), b = (b, b1, b2), r = (ro,r1,72) and t = (tg,11,12), the
equations in the theorem say that tiles in C,, satisfy £y = rg, by = to and
th—t1 +6 - _bz—b1+r2—}"1

_fo
n n

— by 2.3)

which reminds of Equation (1.1).

Like Kari’s and Culik’s tiles, these equations behave well with tilings and more equations can be
deduced for valid tilings of a rectangle, see Section 6. In particular, Equation (6.2) says that in a tiling
of a cylinder of height k, the average of the inner product with %d of the top labels of the cylinder
is obtained from the average of the inner product with %d of the bottom labels of the cylinder by k
rotations on the unit circle by a fixed angle. The angle is equal to the frequency of columns in the
cylinder containing junction tiles and vertical strip colored tiles, which is a rational number. Therefore,
the existence of a cyclic rectangle is not directly forbidden from these equations. Note that we know
from the self-similarity of Q, that the frequency of columns containing junction tile in every valid
configuration in Q,, is equal to 8~!, which is an irrational number [37].
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It remains an open problem to deduce the aperiodicity of the Wang shift Q, from the equations
satisfied by the labels of 6,,-chip as this is nicely done for Kari and Culik sets of tiles. See Section 11
for related open questions.

Existence of valid tilings

Valid configurations in €, can be constructed using the floor function on linear forms. Let A, :
[0,1)?> — Z3 be defined as

ly-B7"+1]
An(x,y)=| 1B x+y-pt+1] |
[Bx+y-B'+1]

where 3 is the n'* metallic mean, that is, the positive root of the polynomial x> — nx — 1. For every
(x,y) € RZ, let

An({y}, {x})
Tiwe,(x,y) = A, ({x-8"11, O} An({x}, {¥})
An({y-B7"'} {x})

be a Wang tile where {x} = x — | x] is the fractional part of a number x € R.

Theorem C. For every integer n > 1 and every (x,y) € [0, 1)?, the configuration

C(x,y): ZZ b 7;1
(i,J) = Tk, (x+if~ y+jp7")

is a valid tiling of the plane by the set of metallic mean Wang tiles T,.

This construction reminds of the proof of existence of tilings with Kari and Culik tiles based on
the balanced representation of real numbers and first difference of Beatty sequences [24, 11], see also
[15, 54].

A factor map defined from averages of tile labels

In Kari—Culik tilings [24, 11], there is a well-defined notion of average [ 14] of the top tile labels along a
bi-infinite horizontal row. The change of value from one row to the next row is described by a piecewise
rationally multiplicative map. In this context, metallic mean Wang shifts also behave like Kari—Culik
tilings. It involves the consideration of the average of specific inner products and irrational rotations
instead of multiplications, see Figure 7 which can be compared with Figure 1.

We show that the average of the dot products of the vector ﬁd = %(O, —1, 1) with the top labels of a
given row in a valid configuration Z> — 7, in Q,, is well-defined and takes a value in the interval [0, 1]
(see Equation (8.1)). By symmetry of the set 7,,, the same holds for the right labels of a given column.
By considering the row and column going through the origin of a configuration, the two averages define
amap ®, : Q, — T2 (see Equation (8.2)). We prove that this map is a factor map from the Wang shift
to the 2-torus.

https://doi.org/10.1017/fms.2025.10098 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10098

10 S. Labbé

13
Sz | 112 | o012 | 112 | 113 | 012 | 112 | 113 | 002 | 112 | 30 3
S EE ZE SIS EE ZlReE|E SIE E|BEIE S| )ty (mod 1)
111 111 011 111 112 001 111 112 001 111 4
Ll b 111 011l 111 | 112_[ 2001 _[ 111_{_112_{001_| 111 30 3 41
S S8 2 €8 32 ZE €8 2 Bl €E 8 +15 (mod 1)
113 114 013 114 114 013 114 114 013 113 25
113 | 114 | 013 | 114 | 114 | 013 | 114 | 114 | 013 | 113 | 30 3
S 1N = <] o ] = <1 [ S = S = a +ig (mod 1)
112 113 012 113 113 012 113 113 002 112 16
112 113 012 113 113 012 113 113 002 112 30 3
= = | = == = | = =] = | = = | = = = [l —
B 5o FIE o Ble. 5le BlEAEIE BlE S| HerE|E = +15 (mod 1)
111 112 011 112 112 001 112 112 001 111 7
Sl | o112 011 | 112 | 112 [ 2001 | 112 {112 {2001_] 111_| 30 3 41
S22 212 BB SR 2IEEIB SR S @RS )t (modl)
114 114 014 114 114 014 114 114 013 113 28

30

Figure 7. A 10X 5 valid rectangular tiling with the set T,, with n = 3. The numbers indicated in the right
margin are the average of the inner products (rlld, V) over the vectors v appearing as top (or bottom)
labels of a horizontal row of tiles and where d = (0, —1, 1). We observe that these numbers increase by
13—0 (mod 1) from row to row. The number 13—0 is equal to the frequency of columns containing junction
tiles (a junction tile is a tile whose labels all start with 0). Observe that this is a cylindrical tiling (left
and right outer labels of the rectangle match) which simplifies the equations involved because the left
and right carries cancel.

Theorem D. Let d = (0,-1,1), n > 1 be an integer and Q,, be the n'" metallic mean Wang shift. The

map
®,:Q, - T?
. 1 Zk: <%d,RIGHT(W0’i)> 2.4
k—oo 2k + 1 £\ (Ld, Tor(w;))

is a factor map, that is, it is continuous, onto and commutes the shift 72 A Q,, with the toral Z2-rotation
Rn .
Z* A T? by the equation ®, o % = RX o @, for every k € Z? where

R, : 72 xT? — T2
(k,x) + RK(x) :=x+pk

74 . . . . .
and 8 = w is the n'" metallic mean, that is, the positive root of the polynomial x* — nx — 1.

As a consequence of Theorem D, we deduce that Q,, is aperiodic because g is irrational and R, is a
free Z>-action, see Corollary 8.3. Note that since 8 — 87! = n, we have 8 = 87! (mod 1).

Theorem D is an analogue of a result known for Kari and Culik aperiodic Wang tilings which
satisfy equations involving balanced representations of real numbers and orbits of piecewise rationally
multiplicative maps, see also Theorem 16 in [15] and Proposition 3 in [54]. Here the result applies to
all of the configurations in the Wang shift €,,.

A symbolic dynamical system and a Markov partition

The Wang shift Q,, can be independently described as a symbolic representation of the dynamical

Ry L. . . . . .- .
system Z? ~ T2 by encoding its orbits with an appropriate topological partition of T2. The partition of
T? naturally emerges from the set of preimages of the map TiLE,, and from Theorem C.

Since A,, is defined as the floor of linear forms, for every tile ¢ € 7,,, the set

P, = Interior(TILE;1 (t))

is a polygonal open region in the unit square. It satisfies that P,, = {P; | t € T, } is a topological partition
of T2 made of (n + 3)? atoms. The polygonal partition P, is the refinement of two polygonal partitions
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EasTts NorTtH3 P53 = EasT3 A NORTH3

1 1 o 1

114 114
013

012

11 002
11 112 3 12

011 14 P 11

012

013 001

001 111

0 002 03 00
0 i : 0 0

0 Ch 1 0 g 1 0 51 I

Figure 8. The partition Easts and its image NorTH3 under a symmetry with the positive diagonal. Their
refinement is ‘P3 which is a partition of the unit square into 36 polygonal atoms. Here [ is the third
metallic mean, that is, the positive root of x2-3x-1.

East, = {A;;'(v): v € V,,;} and NorTH,,, the second one being the image of the first under a symmetry
by the positive diagonal. The partition EasT,, can be constructed by drawing the following geodesics on
the torus T?:

two closed geodesics of slope 0 and co going through the origin (0, 0),

a closed geodesic of slope 0 going through the point (0, 871),

a geodesic of slope —8~! from (0, 87!) to (1,0),

a geodesic of slope —f from (0, 87!) to (1, 0) wrapping around the unit square fundamental domain
n times.

O O O O

See an illustration of P,, when n = 3 in Figure 8. Every open region defined by the complement of
the geodesics can be identified with a pair of vectors in V,, and a unique tile in 7,, with such top and
right labels. As opposed to the four topological polygonal partitions associated with Jeandel-Rao tilings
[33], P, can be computed only from East,, and NorTH, without considering the SoutH,, and WEsT,
partitions. This is because the set 7, of tiles is NE-deterministic, see Theorem 5.3.

The encoding of Z2-orbits under R,, by the topological partition P, are 2-dimensional configurations
whose topological closure is the symbolic dynamical system X'p, g, . We prove that Xp, g, = Q,, and
since €2, is a subshift of finite type by definition, we have the following theorem.

Theorem E. For every integer n > 1, the symbolic dynamical system Xp, g, corresponding to Py, R,
is equal to the metallic mean Wang shift Q,,:

Qn = Xplllel'

Ry
In particular, P, is a Markov partition for the dynamical system Z?> ~ T>.

Markov partitions were originally defined for one-dimensional dynamical systems Z r?» T? and were
extended to Z<-actions by automorphisms of compact Abelian group in [16]. Following [33, 34], we use
the same terminology and extend the definition proposed in [40, §6.5] for dynamical systems defined
by higher-dimensional actions by rotations, see Definition 9.1.

The maximal equicontinuous factor and an isomorphism

Using Theorem E and applying the results already proved for Jeandel-Rao Wang shift [33], we have the
following additional topological and measurable properties for the factor map. We refer the reader to the
preliminary Section 3 for the notions and vocabulary on topological and measure-preserving dynamical
systems that are used in the statement. A similar result holds for Penrose tilings [48].
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Theorem F. The Wang shift Q,, and the Z*-action R,, have the following properties:

OW4 ﬁg T2 is the maximal equicontinuous factor of Z* AQ,,
(i) the factor map ®,, : Q, — T? is almost one-to-one and its set of fiber cardinalities is {1,2, 8},
(ili) the shift-action 7? A~ Q,, on the metallic mean Wang shift is uniquely ergodic,
(iv) the measure-preserving dynamical system (L, 7%, 0,v) is isomorphic to (T2,72,R,,, 1) where v
is the unique shift-invariant probability measure on Q, and A is the Haar measure on T>.

3. Preliminaries on dynamical systems, subshifts and Wang shifts

This section follows the preliminary section of the chapter [36] and article [33].

3.1. Topological dynamical systems

Most of the notions introduced here can be found in [61]. A dynamical system is a triple (X,G,T),
where X is a topological space, G is a topological group and T is a continuous function G X X — X
defining a left action of G on X: if x € X, e is the identity element of G and g, & € G, then using additive
notation for the operation in G we have T'(e,x) = x and T(g + h,x) = T(g,T(h,x)). In other words, if
one denotes the transformation x — T(g,x) by 7%, then T8*h = T8T" 1In this work, we consider the
Abelian group G =Z X Z.

IfY c X, let Y denote the topological closure of ¥ and let Y o= UgegT#(Y) denote the T-closure

of Y. A subset Y C X is T-invariant if Y = Y. A dynamical system (X, G, T) is called minimal if X
does not contain any nonempty, proper, closed T-invariant subset. The left action of G on X is free if
g = e whenever there exists x € X such that T8 (x) = x.

Let (X,G,T) and (Y, G, S) be two dynamical systems with the same topological group G. A homo-
morphism 0 : (X,G,T) — (Y,G,S) is a continuous function 6 : X — Y satisfying the commuting
property that S8 o 8 = 0 o T8 for every g € G. A homomorphism 6 : (X,G,T) — (Y,G,S) is called
an embedding if it is one-to-one, a factor map if it is onto, and a topological conjugacy if it is both
one-to-one and onto and its inverse map is continuous. If 8 : (X,G,T) — (¥, G,S) is a factor map,
then (Y, G, S) is called a factor of (X,G,T) and (X, G,T) is called an extension of (Y, G, S). Two
dynamical systems are topologically conjugate if there is a topological conjugacy between them.

A measure-preserving dynamical system is defined as a system (X,G,T, u, B), where u is a
probability measure defined on the Borel o--algebra 5 of subsets of X, and 78 : X — X is a measurable
map which preserves the measure u for all g € G, that is, u(7¢(B)) = u(B) for all B € B. The measure
u is said to be T-invariant. In what follows, when it is clear from the context, we omit the Borel
o-algebra 3 of subsets of X and write (X, G, T, i) to denote a measure-preserving dynamical system.

The set of all T-invariant probability measures of a dynamical system (X,G,T) is denoted by
MT (X). A T-invariant probability measure on X is called ergodic if for every set B € B such that
T8(B) = B for all g € G, we have that B has either zero or full measure. A dynamical system (X, G,T)
is uniquely ergodic if it has only one invariant probability measure, that is, |[M7 (X)| = 1. One can
prove that a uniquely ergodic dynamical system is ergodic. A dynamical system (X, G, T) is said strictly
ergodic if it is uniquely ergodic and minimal.

Let (X,G, S, u, A) and (Y,G, T, v, B) be two measure-preserving dynamical systems. We say that
the two systems are isomorphic (mod 0) if there exist measurable sets Xo € X and Yy C Y of full
measure (i.e., u(Xo) = 1 and v(¥p) = 1) with S8(Xy) C Xy, T8(Yp) C Y, for all g € G and there exists
a bi-measurable bijection ¢ : Xo — Yo,

o which is measure-preserving, that is, u(¢51 (B)) = v(B) for all measurable sets B C Yy,
o satisfying ¢g o S8(x) = T8 o ¢p(x) forall x € Xy and g € G.

The role of the set Xy is to make precise the fact that the properties of the isomorphism need to hold
only on a set of full measure. In this case, we call ¢ an isomorphism (mod 0) with respect to ¢ and v.
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We also refer to an everywhere defined measurable map ¢ : X — Y as an isomorphism (mod 0) with
respect to u and v if ¢(x) = @o(x) withx € X for some ¢ and X as above. When ¢ is also a factor map,
some authors say that ¢ is a topo-isomorphism in order to express both its topological and measurable
nature [18].

3.2. Maximal equicontinuous factor

A metrizable dynamical system (X, G, T) is called equicontinuous if the family of homeomorphisms
{T#}¢cc is equicontinuous, that is, if for all £ > 0 there exists 6 > 0 such that

dist(T8 (x), T8 (y))<e

forall g € G and all x, y € X with dist(x, y) < 8. According to a well-known theorem [4, Theorem 3.2],
equicontinuous minimal systems defined by the action of an Abelian group are rotations on groups.

Wesaythat6 : (X,G,T) — (Y, G, S) is an equicontinuous factor if 6 is a factor map and (Y, G, S) is
equicontinuous. We say that (Xpax, G, Tmax) is the maximal equicontinuous factor of (X, G, T) if there
exists an equicontinuous factor mnax : (X, G,T) — (Xmax> G, Tmax)» such that for any equicontinuous
factor 0 : (X,G,T) — (Y, G, S), there exists a unique factor map ¢ : (Xmax, G, Tmax) — (¥, G, S) with
¥ o mmax = 6. The maximal equicontinuous factor exists and is unique (up to topological conjugacy),
see [4, Theorem 3.8] and [31, Theorem 2.44].

Let 6 : (X,G,T) — (Y,G,S) be a factor map. We call the preimage set ~!(y) of a point y € ¥
the fiber of 6 over y. The cardinality of the fiber = (y) for some y € Y has an important role and is
related to the definition of other notions, see [4]. In particular, the factor map 6 is almost one-to-one if
{y €Y :card(#~'(y)) = 1} is a G 5-dense set in Y (that is a countable intersection of open sets which
is dense in Y). In that case, (X, G,T) is an almost one-to-one extension of (Y, G, S). The set of fiber
cardinalities of a factor map 6 : (X,G,T) — (Y, G, S) is the set {card(#~'(y)) : y € Y} ¢ NU {0},
see [17]. The set of fiber cardinalities of the maximal equicontinuous factor of a minimal dynamical
system is invariant under topological conjugacy, see for instance [33, Lemma 2.2].

3.3. Subshifts and shifts of finite type

In this section, we introduce multidimensional subshifts, a particular type of dynamical systems [40,
§13.10], [51, 39, 20]. Let A be a finite set, d > 1, and let AZ? be the set of all maps x : Z¢ — A,
equipped with the compact product topology. An element x € A% s called configuration and we write
itasx = (Xm) = (X : m € Z4), where x,, € A denotes the value of x at m. The topology on AZ s
compatible with the metric defined for all configurations x, x” € A% by dist(x,x") =2~ min{ | xu %, }
where ||n|| = |n1|+- - -+|ng|. The shift action o : n — o™ of the additive group Z¢ on AZ is defined by

(0" (X))m = Xmen (3.1)

for every x = (x;,) € AZ and n € Z4.1f X ¢ AZ’, let X denote the topological closure of X and let
X7 = {o™(x) | x € X,n € Z¢} denote the shift-closure of X. A subset X C AZ is shift-invariant
if X“ = X. A closed, shift-invariant subset X c AZ" is a subshift. If X c AZ’ is a subshift we write
o = X for the restriction of the shift action (3.1) to X. When X is a subshift, the triple (X, 74, o)isa
dynamical system and the notions presented in the previous section hold.

A configuration x € X is periodic if there is a nonzero vector n € Z¢ \ {0} such that x = ™" (x) and
otherwise it is nonperiodic. We say that a nonempty subshift X is aperiodic if the shift action o on X
is free.

For any subset S ¢ Z9 let 7y : AZY 5 AS denote the projection map which restricts every x € A
to S. A pattern is a function p € AS for somefinite subset S ¢ Z¢. To every pattern p € AS corresponds
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a subset 7r§1 (p) c A% called cylinder. A nonempty set X C AZ" is a subshift if and only if there
exists a set F of forbidden patterns such that

X={xe A | 75 0 0™ (x) ¢ F forevery n € Z¢ and S c 74}, (3.2)

see [20, Prop. 9.2.4]. A subshift X C AZ" is a subshift of finite type (SFT) if there exists a finite set F
such that (3.2) holds. In this article, we consider shifts of finite type on Z X Z, that is, the case d = 2.

3.4. Wang shifts

A Wang tile is a tuple of four colors (a, b, c,d) € I x J x I x J where [ is a finite set of vertical colors
and J is a finite set of horizontal colors, see [62, 49]. A Wang tile is represented as a unit square with
colored edges:

d

For each Wang tile T = (a, b, ¢, d), let Rigut(7) = a, Tor(7) = b, LEFT(7) = ¢, BorTOM(7) = d denote
respectively the colors of the right, top, left and bottom edges of 7.

Let 7 = {to,...,tm—1} be a set of Wang tiles such as the one shown in Figure 9. A configuration
x 17> = {0,...,m— 1} is valid with respect to 7 if it assigns a tile in 7 to each position of Z? so that
contiguous edges of adjacent tiles have the same color, that is,

RIGHT(tx(n)) = LEFT(tx(n+e,)) 3.3)
Top(tx(n)) = BoTTOM(tx (11 4¢5)) 3.4)

for every n € Z* where e = (1,0) and e, = (0, 1). A finite pattern which is valid with respect to I/ is
shown in Figure 10.

C D) D
AOB|B1C||[C2A
D C D)

Figure 9. The set of 3 Wang tiles introduced in [62] using letters {A, B, C, D, E} instead of numbers
from the set {1,2,3,4,5} for labeling the edges. Each tile is identified uniquely by an index from the set
{0, 1,2} written at the center each tile.

D C E
C2A/A0B|B1C

E D C

201 E D C
120|—— |B1C|C2A|AO0B

012 C E D

C E D
AOB|B1C|C2A

D C E

Figure 10. A finite 3 X 3 pattern on the left is valid with respect to the Wang tiles since it respects
Equations (3.3) and (3.4). Validity can be verified on the tiling shown on the right.
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Let Qr c {0,...,m — 1}Zz denote the set of all valid configurations with respect to 7. Together
with the shift action o of Z?, Q is a subshift that we call a Wang shift. Furthermore, Q7 is a subshift
of finite type (SFT) of the form (3.2) since Q7 is the subshift defined from the finite set of forbidden
patterns made of all horizontal and vertical dominoes of two tiles that do not share an edge of the
same color. Reciprocally, every subshift of finite type can be encoded into a Wang shift following a
well-known construction (see [41, p. 141-142]).

To a configuration x € Q7 corresponds a tiling of the plane R? by the tiles 7~ where the unit square
Wang tile () is placed at position n for every n € 72, as in Figure 10. In this article, we consider tilings
from the symbolic point of view. In particular, we represent tilings of plane by Wang tiles symbolically
by configurations Z> — 7.

A configuration x € Q7 is periodic if there exists n € Z? \ {0} such that x = o™ (x). A set of
Wang tiles 7 is periodic if there exists a periodic configuration x € Q7. Originally, Wang thought that
every set of Wang tiles 7 is periodic as soon as Q7 is nonempty [62]. This statement is equivalent to
the existence of an algorithm solving the domino problem, that is, taking as input a set of Wang tiles
and returning yes or no whether there exists a valid configuration with these tiles. Berger, a student of
Wang, later proved that the domino problem is undecidable and he also provided a first example of an
aperiodic set of Wang tiles [7]. A set of Wang tiles 7 is aperiodic if the Wang shift Q7+ is a nonempty
aperiodic subshift. This means that in general one cannot decide the emptiness of a Wang shift Q.

4. The family of metallic mean Wang tiles

In this section, we recall from [37] the definition of the set 7, of metallic mean Wang tiles and the
extended set 7,] which satisfies 7, € 7,. The extended set 7,/ was used to prove the self-similarity of
the Wang shift Q,, defined over 7;,.

For every integer n € Z, we write n to denote n + 1 and n to denote n — 1:

n+1,
n-—1.

= 3
i

For every Wang tile T = (a, b, ¢, d), we define its symmetric image under a symmetry by the positive
diagonal as T = (b, a, d, ¢):

ift= ¢ a > then T=d b .

4.1. The tiles

For every integer n > 1, let
VnZ{(V(),Vl,Vz)€Z3IOSV0SV1 <landv; <vy <n+1}.

be a set of vectors having nondecreasing entries with an upper bound of 1 on the middle entry and
an upper bound of n + 1 on the last entry. The label of the edges of the Wang tiles considered in this
article are vectors in V,,. To lighten the figures and the presentation of the Wang tiles, it is convenient to
denote the vector (vg, v, vp) € V,, more compactly as a word vovv,. For instance the vector (1,1, 1) is
represented as 111.

To help the reading of the tiles and tilings, we assign a color to the vectors according to the following
rule: a vector v € OON is drawn in blue, a vector v € 01N is drawn in yellow and a vector v € 11N is
drawn in white. Overlap between blue and yellow regions will be shown in green.
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For every integer n > 1 and for every i, j € N such that 0 < i < nand 0 < j < n, we have the
following white tiles:

white tiles
115
i,j _
Wn' = 11 117
115

For every i,n € N such that 0 < i < n, we have the following blue, yellow, green and antigreen tiles:

horizontal tiles vertical tiles
111 00i
blue tiles b, = 00i E 00 | bh = 11n I 111
11n 00i
112 017
yellow tiles Yn= 0l 0li | Yn= lm 112
11n 01i
111 01i
green overlap tiles g = o0i E oii | &= 1m | | 111
117 00i
112 007
antigreen no overlap tiles | a!, = 1; E 007 ah = 1in m 112
11n 01i

Foreveryn e Nand k, ¢, r,s € {0, 1} such that k < € and r < s, we have the following junction tiles
(the gray region will be drawn in a blue or yellow color depending on the specific values of &, ¢, r, s
according to the same rule as above):

junction tiles
0,r,s)
k,l,r,s _
Jn = (0,s,r+n) (0,k,¢)
(0,¢, k +n)

Junction tiles play a similar role as junction tiles in [41].

4.2. The extended set T, of metallic mean Wang tiles

In this section, we give the definition of the family of extended sets of Wang tiles (7,));>1.
From the above, we define the following sets of tiles:

W, = {wi{j [1<i<ml<j< n} (n* white tiles),

B, ={b,10<i<n} (n + 1 horizontal blue tiles),
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(n horizontal yellow tiles),

(n + 1 horizontal green tiles),

(n horizontal antigreen tiles).

J/:{-O,O,O,O .0,0,0,1 .0,0,1,1 .0,1,0,0 .0,1,0,1 .0,1,1,1 -.1,1,0,0 .1,1,0,1 -.1,1,1,1
n Jn s Jn sJn sJn sJn sJn s Jn sJn s Jn
000 001 011 , 5 7
_ 7 7 7 ,/ ,/ ,,
= A A _ A x 81 000 8 001 27 lon
00n |7 Oln| > 017 L L R
‘ ‘ 00n 0ln 0ln
000 001 011
WEOH ommou ozl on
0ln o017 017
000 001 011
' . . .
=1\ 00n 001 0ln 001 017 001 (9 junction tiles).
0ln 0ln 0ln
000 001 011
[ 4
00n 000 0ln 000 017 000
l | /|
00n 00n 00n

We may observe that W, = W, and f,’, = J; are closed under reflection. Also, EZ are n+1 vertical blue

tiles, f;l are n vertical yellow tiles, 6:, are n + 1 vertical green tiles and ;1; are n vertical antigreen tiles.
The extended set of metallic mean Wang tiles 7,/ can be described in terms of the white, yellow,

green, blue, antigreen and junction tiles seen before.

Definition 4.1 (Extended set of metallic mean Wang tiles [37]). Let

T/ =W,UY,UY,UG,UG,UB,UB,UA,UA, UJ..

The set 7, defines the extended metallic mean Wang shift Q) = Q7.

The set 7,/ contains n® +2(n+1+n+n+1+n)+9 = n*> + 8n + 13 Wang tiles. The set of Wang tiles

T, for n = 4 is shown in Figure 11.

4.3. The family T, of (n +3)*> Wang tiles

In this section, we give the definition of the family of sets of Wang tiles (7,,),>1. The set 7T, is a subset

of 7,/ defined as follows. Let

B, = B; \ {b::}
To = I\ {00, 01y
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_005_

s

004
_005_ || _015_|| 004 || _015_ || 115 || _115_|[ 115 || _115_
= =[] = »: — = || = == == == == =

014 || "o~ || 003 || T014” || T1147 || P14 || <1147 || F1147
004_|[ o14_|[ 1008 |[ o014 |[ _11a_|[_11a_]|[ _11a_][ _114_

e e e e I =

0137 || 003" || "002~ || “0137 || T1137 || 1137 || “1137 || F118”
003_|[ o13_|[ 1002 |[ o013_|[_113_|[_113_][_113_][_113_

—= i I e L =
(S}

0127 || %002 || "oor || “0127 || T1127 || 112 || “112™ || F112”
002_|[ o12_|[ 601 _|[ otz [ _112_|[_t1z_|[_riz_|[_112_

e e e e I i A L R

o011 || “oo1™ || 000 || To11™ || "1 || 111 || <111 || P11
0 o1 |[00r_ |[ on1_ | [ crae |[ oz ][ ot [ otz

e I S = =y = I [y

015~ || “000" || To15~ || “o15~ || T1157 || 1157 | [ <1157 || T
Jooo_|[ Joo1_] [ on1_J[ i [ ][ o ][

T
T
TIT
L
T

VIT
4!
(4!

49!
4!
1T
1
i7AN 1
T
¢IT

T
T
T
TIT
I
T

(=)
S

700
X
TT0
T
T
T
T

0
100
T
0
0
0
0
0
0
<00
0
0
0
0
0

S10

g O T V07 | e 0 | e i i e | s W o | s P | e B
Jooo_ [ Joor_[ 1] (o] o] oo ] ettt

= — — —

0010 | 1 0 | e S A i 1o | e S s | e S | W
on_J[ _ina ][ ine ][ 112 ][ 112

—~XS||l~ — —_ =

0047 | T1147 ][ P14 | a4

0
0
V10
0
0
110
100
<00
€00

70!

¢00
€00
700
S00

Figure 11. Extended metallic mean Wang tile sets T,] for n = 4. The junction tiles j2’0 L and j,l,’l’o’o

are shown with a X-mark in their center.

Definition 4.2 (Metallic mean Wang tiles[37]). For every positive integer n, we construct the set of
Wang tiles

T =W,UY,UY, UG, UG, UB,UB, UJ,.

The set of tiles defines the Metallic mean Wang shift Q, = Q.

The subset 7, contains n> +2(n+n+ 1 +n) +7 = (n+ 3)> Wang tiles. They are shown in Figure 12
forn=1,2,3,4,5.

5. The 6,,-chip and metallic mean Wang tiles

In this section, we relate the 6,-chip with metallic mean Wang tiles. The proposition below provides
an independent characterization of the extended set 7, of metallic mean Wang tiles as instances of the
0,,-chip, see Equation 2.2.

Proposition 5.1. For every n > 1, the set of instances of the computer chip is equal to the extended set
of metallic mean Wang tiles, that is, C,, = T,,.

0, (v,u)

Proof. () Lett = 0, (u,v) be a Wang tile such that u = (uq, uy, uz) € Vi, v = (vo, vy, v2) €
n ’

u

v
Vi, 0n(u,v) € V,, and 0,,(v, u) € V,,. We proceed case by case:
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014 |[ 003 ][ o14 |[ 114 ][ 114 ][ 114
014 1) 008 .\, 014 1), 114\, 1141} 114,
ey | o | fesit o =t | T oc) | LR
003 || “02 " | | T013”) | T113V] | P13 | 13
013 |[ 1002 |[ or3 | 113 |[ 113 | [ o013 [[ 002 |[ o013 |[ 113 |[ 113 [[ 113
e | hestiad i o | IR | E R ey | it | fesit o =t R | FCRoc) | LR
002 001 012 112 112 002 001 012 112 112 112
o012 |[ 001 |[ o1z | iz | | 012 |[BOL [ o12 |[ iz [ 12 | [ 012 |[B0E|[ 12| 112 |[_niz | 12
e jasiad [l o | I © e | festi [ o | I ey | fovitd | i
001" | | oo || Y0117 | T111 001 || 00 || Soar® || 10 || Pras® 001 || 000" || Zoar® | 10 | F1ae® 1™
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Figure 12. Metallic mean Wang tile sets T, forn =1,2,3,4,5.

Ifup=1andvy=1,thenl =u; <ur,1 =v; <vyand

0, (u,v)
0,(v,u)

(uo, Lupg +1) = (1, Lug + 1) € V,,
(vo, Lva+1)=(1,1,va+ 1) € V,.

Thus,0 < upy <nand 0 < vy, < pand T € W, is a white tile.
If ug = 0 and vg = 1, then

On(u,v)
0, (v,u) = (vo, Lug +vo) = (1, Luy + 1) € V,,,

(uo,va —nyup +1) = (0,va —n,up + 1) €V,

where 0 < up < n,n < vy <n+1and0 < u; < 1. There are four possibilities according to the

= s =

values of vy € {n,n + 1} and u; € {0, 1} that we consider case by case:
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(1,1,1)
—Ifvo=nandu; =0, then v = (0,0,u) (0,0,up+1) = b2 € B, U {b"} is a blue
(1,1,n)
horizontal stripe tile with 0 < uy < n.
(17 172)
—Ifvy =nandu; = 1,thent = (0,1,u3) (0,0,up +1) = a;? € A, is an antigreen
(1,1,n)
horizontal tile with 1 < uy < n.
(L1, 1)
—Ifvy=n+landu; =0, thent = (0,0,u) (0,LLuo+1) = gi* € G, is a green
(1,1,n+1)
horizontal overlap tile with 0 < u, < n.
(1,1,2)
—Ifvy=n+landu; = 1,then v = (0,1,uy) (0,Lup +1) =y € Y, is a yellow
(I, I,n+1)

horizontal stripe tile with 1 < up < n.
o If up = 1 and vo = 0, the possibilities are the symmetric image of the previous case. Thus, 7 €

B, U{bll}UA, UG, UY, is a blue, antigreen, green or yellow vertical tile.
o Ifug = 0and vy =0, then

0, (u,v) = (ug,va —n,vi +ug) = (0,vy —n,vy) € Vy,

On(v,u) = (vo,us —n,ur +vo) = (0,ur —n,uy) € Vp,

where 0 < up —n < uy < land 0 < vy —n < vy < 1. In particular, (vy — n,vy), (up —
(0,u —n,uy)

n,uy) € {(0,0),(0,1),(1,1)}. In all cases, we have 7 = (0, uy,u2) 0,vy —n,vy) €

(0,v1,v2)

J, U {jﬁ’o"",j,‘;l’o’“} is a junction tile.

(2) Proving C, 2 7T,/ is not necessary to conclude the proof, since C,, € 7,/ and 7,/ is a finite set.
Indeed, the set 7,/ contains #7,/ = n> + 8n + 13 elements. Also, in the proof that C, C 7,’ made above,
we exhibited n” white tiles, 2(n + 1) blue tiles, 2 antigreen tiles, 2(n + 1) green tiles, 2n yellow tiles
and 9 junction tiles in C,,. Therefore, C,, contains n> +2(n+1+n+n+1+n)+9 = n> +8n+ 13 elements.
We conclude that C,, = 7,/.

t

Alternatively, C,, 2 7, can be proved directly. One may check that for every v = ¢ r €T,

we have {r,t,£,b} C V,,r =6,({,b) and t = 0,,(b, ). Thus, T € C,,. O
We may now prove the first main result.
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Theorem A. For every integer n > 1, the Wang shift Qc, defined by the 6,-chip is the n'" metallic
mean Wang shift Q,,.

Proof. From Proposition 5.1, we have C, = 7,/. It was shown in [37] that the tiles in the difference set
T,/ \ T, do not appear in valid configurations of Q7-, so that Q7+ = Q- . Thus, we conclude the equalities

Qc, = Q7 =Qr, = Q,.

O
Now, we show that the computation performed by 6,, is invertible. Let
[/ VXV, - 73
(ro,r1,12), (to, t1,12) = (Lo, €1, 62),
be the function defined by
to =ro,
th—ty ifro=0,
{ =
1 ifro=1, 5.
t1+n  iftg=0,
O =
rp—1 iftg=1.

The following proposition states that the south and west colors of tiles in C,, can be deduced from the
right and top colors using the map ¢,,.

Proposition 5.2. We have

Cpn=1 ¥n(r.1) r\r,t €V, suchthat yr,(r,t),yn(t,7) € Vi t. (5.2)

Yn(t,7)

Proof. Let £,b € V,, and suppose that r = (rg,r1,r2) = 0,(¢,b) and t = (g, 1, t2) = 0,,(b, ). From
Equation (2.1), we have

ro = o, to = bo,
br,—n iffy =0, ; 6 —n ifby=0,
r = =
' iflo=1, and ' if by =1, (5.3)
b+t ifby=0, . 6 +by ifly=0,
r = =
T+l ifb =1, YT b+l ifly =L
The above holds if and only if
to = ro, by = 1o,
th—ty ifrg=0, rp—rg iftg=0,
6 = b =
1 ifro=1, and 1 ifro = 1,
t1+n  iftg =0, ri+n ifrg=0,
O = by =
rn-1 ifry=1, th—1 ifro=1.
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if and only if £ = (€, €1, €2) = ¥, (r,t) and b = (by, by, by) = Y, (¢,r). Thus, from Equation (2.2), we
have

0,(b,€)

Ch=19 ¢ 0,(¢,b) |, b €V, such that 6,(¢, D), 0,(b,{) €V,

=1 Ya(r,1) r|r,t €V, suchthat y, (r, 1), ¥, (t,r) € V, ¢.

l»[/n(t9r) [m|

As a consequence of Proposition 5.2, there is a bijection between the south-west and the north-east
colors for the tiles in C,. Using the vocabulary of [28], we may state the following result. A set 7 of
Wang tiles is called SW-deterministic if there do not exist two different tiles in 7 that would have same
colors on their bottom and left edges, respectively. In other words, for all colors C; and C; there exists
at most one tile in 7 whose bottom and left edges have colors C; and C», respectively. NW-, NE- and
SE-deterministic sets of Wang tiles are defined analogously. Thus, we obtain a conceptual proof for a
result already obtained in [37].

Theorem 5.3 [37, Lemma 4.3]. For every integer n > 1, the set of Wang tiles C,, is NE-deterministic
and SW-deterministic.

Proof. The set of Wang tile C,, is SW-deterministic by definition and NE-deterministic from Proposition
5.2. m]

6. Equations satisfied by the Wang tiles and their tilings

In this section, we show that the set C,, of Wang tiles satisfy a system of equations. Moreover, we show
that the rectangular tilings (of sizes 1 X 1, co X 1 and A X k) generated by them satisfy equations. While
the equations associated with Kari’s [24] and Culik’s [ 1 1] aperiodic sets of Wang tiles are multiplicative,
the ones associated with C,, are additive.

In the next theorem, we show that tiles in C,, satisfy €y = r¢, by = o and the equation

th—t1+6 — ‘ by—bi+r,—r
- < @ ===
n n

— by

which reminds of Equation (1.1).

Theorem B. Let n > 1 be an integer, d = (0,-1,1) and e = (1,0, 0). The set of Wang tiles defined by
the 6, -chip satisfy the following system of equations:

t

(Ld,t+0)— (e, ) = (1d,b+7r)— (e, b)
ChCq ¢ D r €VuxV,xV, xV, (e,l) = {e,r)
(e,b) = (e, t)
b

where {_, _) denotes the canonical inner product of 73,
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Proof. Let ¢ = (fo,f],fz), b= (bo, by, bz), r = (7‘0,7’1,7’2) and r = (t(),l‘l,tz). We always have ro = €
and ty = bg. Thus, (e, ) =y =ro = (e, r) and {e, b) = by = ty = (e, t). Moreover,

(d,b) = by — by,
d, 0y =010

The proof of the remaining equality is split in four cases. We use Equation (5.3) in the computations
below.

o If (by, ty) = (0,0), then

dt+0)y=(—11)+(L—O)={li+bo) —(La—n)+(L—6) =bo+n=n
d,r+b)y=(ra—r)+(ba—b1) = (b1 +4) —(bo—n)+(by—b1)=ly+n=n
n{e,{ —b) =n(fy — by) =0

o If (bg,€y) = (0,1), then £; = 1 and

(dit+l)y=(-t))+ (=) =(b2+1) = (L —n)+ (L~ 1) =by+n
(d,r+b)=(r2—r1)+ (ba = b1) = (b1 + o) — (1) + (b2 = b1) = b
n{e,{ — by =n(ty—by) =n

o If (bg, ty) = (1,0), then by = 1 and

(dit+l)y=(-t))+ (=) =61 +bo) = (D) + (2 -6) =,
(d,r+by=(ra—r))+(ba—b))=(+1)—(by—n)+(by—b) =l +n
nie,{ — by =n(fy — by) = —n

o If (bo, £o) = (1, 1), then by = £; = 1 and

(dit+O)y=(r—t)+ (=) =(b2+ 1) - () + (L =C1) =ba+ -
(d,r+by=(r2—r))+(b2—b1)=(+1) = (1) +(ba—b1) =lr+ by — by
n{e,{ — by =n(fy —by) =0

In all the four cases, we have (d,t+€) = {(d,r + b) + n{e,{ — b). O

(0,0,3)

The two sets in the statement of Theorem B are not equal. For instance (1,1,5) (1,1,3)

(0,0,1)
satisfy the equations when n = 4, but it is not a tile in C,,.

Equation (1.1) behaves well with valid tiling of an horizontal strip by Wang tiles associated with the
same multiplication factor ¢ € Q. The same holds with tiles in C,, which are related to some addition of
a certain value modulo 1.

The equation satisfied by the tiles proved in Theorem B extends to an equation for / X k rectangular
valid tilings.

Lemma 6.1. Let n, h, k > 1 be integers and d = (0,-1,1) and e = (1,0,0). Let

{("(i’j)’ f(i’j), f(i’j), b(i’j))}l <i<h,1<j<k
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N (i,k)
__E ik
T h~1l
i=

(1K) +(2.K) +(3:K) (k)
(L0 (LR oK) 20| pGK) LGR| - [phk) p(hK)
p (1K) b(2.k) p(3.k) b (k)
(1,3) 1(2.3) 13.3) ¢ (h3)
k k
1 ; 1 .
L= EZ{(LJ) (13 ,13)|p23 23|63 63| - |3 3| R= EZV(M)
— j=1
p(1.3) »(2.3) »(3:3) p(h:3)
#(1.2) 1(2.2) +3.2) (h.2)
(1)) (1) [p22) ,Q2)[G2 G2 o |ph2) (h2)
»(1,2) »(2.2) »(3.2) p(h,2)
(LD 120 +3.1) (h.1)
(LD (LD p(21) (2D pB.1) (3.1 (1) (1)
p(L.1) p(2.1) (3.1 p(h.1)
1 h
. (@.1)
B= hZ;b
i

Figure 13. An h X k rectangular tiling of tiles from C,,.

be a family of tiles in C,, forming a valid tiling of a h X k rectangle, see Figure 13. Let
R=FSh, 00, T2 d SO0, Lo fSh e and B =3l o

be the average of the right, top, left and bottom labels of the rectangular tiling. Then the following
equation holds

1
%<%d’T_B> (e,L) = —< d,R—-L) e, B). (6.1)
Proof. From Theorem B, we have (e, £ = (e, r&1), (e, b)) = (e, 1)) and

(%d,t“’f) —bBDY — (e, £ED)Y = (%d,r(i’f) — Gy — (e, b)Y,

for every integers i and j such that 1 <i < hand 1 < j < k. We have

—< d,T — B) — (e, L)__< S VNS Y AL S O YA

k
e E g (1,7)
i,k i1 o
1 t( ) b( )> k <€,€ J >

j=1
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|
T[-

k
. . 1 -
< d, Zf_:l D) — Zf‘:l b(z,1)> -7 E (e, % Zfl:l £y
J=1

zl-
M-
M-

((%d’ 1Gd) — i)y <e’€(l\j)>)
1

J

((%d, Pld) — i) - <e, b(m‘)))

zl-
M-
M-

I
~.
I

1
h

. - 1 .
<rlld7 i r) =3, () - n Z(E’ % T b(l’j)>

i=1

< d, rd) — (1)) Z<€’b(i’l)>

i1
1 k P 1 k . | n )
< PN i) -7 Xjo1 5(1’1)>—<e,52i:1 (D)

:E(%d,R—L)—(e,B). o

Equation (6.1) is a simple consequence of the equations satisfied by the tiles, but it has important

implications. If L = R, then (%d, R - L> = 0 and k (e, L) is an integer. Thus, the average of the inner

product with %d of the top labels is obtained from the average of the inner product with %d of the
bottom labels by k rotations on the unit circle by a fixed angle:

~
I

1l
»
wl’_‘
.M»
=

»
wl’_‘
:I—
&M»

(1d,T) =(1d,B) —k(e,B) (mod 1). (6.2)

If Q, admits a periodic tiling, then there exists an 4 X k rectangular tiling of tiles from C, such
that L = R and B = T. From Equation (6.1), we get that (e, L) = (e, B). This equation means that the
frequency of rows with no junction tiles is equal to the frequency of columns with no junction tiles. This
holds if and only if & times the number of rows with no junction tile is equal to k times the number of
columns with no junction tiles. Copies of the & X k rectangular tiling can be used to tile periodically a
hk X hk square respecting all matching rules containing as many rows with no junction tile as columns
with no junction tile. But this is not sufficient to prove that no periodic tiling exist.

Kari’s [24] and Culik’s [11] equations allow to show in a few lines that their sets of Wang tiles admit
no periodic tiling. Proving the same for Q,, directly from the equations remains an open question.

7. Valid tilings obtained from floors of linear forms

In this section, we present a method to construct valid tilings in Q,,. It is based on the integer-floor value
of three specific linear form over two variables.

Let n > 1 be an integer and let 3 be the positive root of x> — nx — 1. We denote the negative root by
B* which satisfies 88* = —1 and 8 + 8* = n. We consider the matrix

01
M,=pg"1
B 1

and the map A,, : R?> — R? defined by

B +1
o )+ B+1

)
(. y) =M,,-(
{»} B+l
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ly+B°+1] LB x+y+B +1]  [Bx+y+p +1] An(x,y)
4 114
1
1
11 112 113
1 2 3 011 012 14
013
O 0 0 ] o 002 003

Figure 14. The preimage sets of the map (x,y) — An(x,y) defines a partition of [0, 1)* which is the
refinement of the three partitions on the left. The above images are when n = 3.

where {x} = x — | x] is the fractional part of x. Since A, (x,y) = A,(x + 1,y) = A,,(x,y + 1), it is also
well-defined on the torus A,, : T2 — R3. Then, we define a coding function A,, as the coordinate-wise
floor of A,, when restricted to the domain [0, 1)2. More precisely, we have

An:[0,1)? = 73
Ly +p8"+1]
1B x+y+B+1] |,
[Bx+y+ B +1]

(x,y) =

see Figure 14.
Recall that, for every integer n > 1, we have
Vo ={(vo,vi,v2) €Z>: 0<vo<vi <vy <n+1landv, <1}.

Lemma 7.1. For every (x,y) € [0,1)%, A,(x,y) € V,.
Proof. Let (x,y) € [0,1)2. Since 8 > 1, we have

O<B +1<y+B +1<Blax+y+B +1<Px+y+p +1<B+1+B8+1=n+2.
Thus, taking the floor function, we obtain
0< B +1] < |y+B +1]<|Bx+y+B +1] < |Bx+y+B +1] <n+2.
Therefore, if (vo, vi,v2) = Au(x,y), wehave 0 < vo < v| < vy <n+1.Also
Blx+y+f +1<Blel+p+1=1+1=2.
Thus,
vi= |8 x+y+B8 +1] < 1.
We conclude Ay, (x,y) = (v, vi,v2) € Vy. O

The following lemma shows a relation between A,, and the map 6,, defined in Equation (2.1).

Lemma 7.2. Ifx,y € [0, 1), then

An(x,y) = en(An({x +,8*}’ y)7An({y +ﬁ*},x))~
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Proof. Letx,y € [0, 1). We want to show that if £y, €1, >, bg, b1, by € Z are such that
ly+8"+1] o
A{x+B Ly =| LB Hx+B Y +y+p +1] [=[ &
[B{x+B}+y+p"+1] t
and
lx+ 8 +1] by
An({y+ﬁ*},X)=(Lﬂ_l{y+ﬁ*}+X+,3*+1J)=(b1 )
By+B+x+p"+1] by
then An(x, y) = Qn((f(), {1, 52), (bg, b1, bg)). Let rg, 71, 2 € Z be such that
ly+8"+1] ro
A, y) =| LB x+y+B +1] |=|ri |
[Bx+y+p"+1] 2

We want to show that the variables satisfy the definition of the function 6,, given in Equation (2.1). We
have ro = |y + B8 + 1] = £y. Therefore, the first equation defining the map 6,, is satisfied.

Assume that £y = |y + 8"+ 1] =0. Then -87! = g* < y+* < 0. Also 0 < f~'x < g1, Thus,
Bl <B'x+y+p* < B! We have

ry = Lﬂ_1x+y+,8*J+l

= BB 'x+y+B)]+1 (because - < lx+y+p <)
=B+ +x]+1

=By +B +)+x+B|+1—-n (because B+ B = n)
=Bl +F Hx+ B+ 1=

= bz —n

Assume that{p = |[y+B"+1] =1.Then0 < y+B* < 1. Also, we have y < 1, so that y+8* < 1+ 8",
Moreover, 0 < 8~'x < 871 Thus, 0 < B~ 'x + y+ 8" < B~ + 1 + 85 = 1. We have

=l x+y+p+1=0+1=4¢.

Therefore, the second equation defining the map 6, is satisfied.

Assume that by = [x + 8 + 1| = 0. This implies that —1 < x + 8* < 0, which implies x < g~
Thus, 0 < Bx < 1. We need to consider the cases {y = 0 and £y = 1 separately. First, suppose that
bh=ly+p " +1]=0.Then -1 < y+ " < 0. Thus, -1 < Sx +y+ " < 1. We have

ro=|Bx+y+p" +1]
=187 ' Bx+y+pB)] +1 (because — 1 < (Bx+y+p*) < 1)
=B Bx+y+B)+p +87] +1
=B A +y+p) +x+p ] +1

=18y + B +x+ ]+
=b1 Zb] +0=b1 +f().

Secondly, suppose that £y = [y + 8"+ 1] = 1. Then 0 < y + 8* < 1, which implies {y + 8"} = y + 8.
Thus, 0 < Bx + y + 8% < 2.We have
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ro=|Bx+y+p +1]
=[Bx+y+B —-1]+2
=18 ' Bx+y+p -1)]+2 (because — 1 < (Bx+y+8 —1) < 1)
=B+ +x+B]+2
=By +B  +x+B]+2

=b1+1=b1+50.
Assume that bg = | x+ 8%+ 1] = 1. This implies that 0 < x+8* < 1, which implies {x+ 8"} = x+ 5".
We have
r=1Bx+y+pB +1]
=|Bx+BB8 +1+y+p +1] (because BB* = —1)
=Bx+B)+y+B +1]+1
=B{x+B8t+y+B +1]+1
=06 +1=0+b;.
Therefore, the third equation defining the map 6, is satisfied. O

For every (x,y) € R?, let
Tie, (x,y) = (An({x}, 9D, An ({0}, (D) An({x + 871 D), An({y + 873 {x})
which can be interpreted geometrically as a Wang tile:
An({y}. {x})
TEn (6 3) = A, (fx + 871 () An({x}, {y})

An({y + 87} {x})

Lemma 7.3. If (x,y) € R?, then

o TiLey(x,y) = TiLen(y, x),
o Ties(x,y) € (V)4
o TiLe,(x,y) € Cy is an instance of a 6,-chip tile.

Proof. We observe that TiLE, (x, y) is the image of TiLE,(y, x) under the tile reflection # > 7 by the
positive slope diagonal.
From Lemma 7.1, for every (x, y) € [0, 1)%, we have A,,(x, y) € V,. Therefore, for every (x,y) € R?,

An({xh 0D, An(yhAxd), An{x+ 871 {0, An({y+ 87} {x}) € V.
From Lemma 7.2, for every (x, y) € R?, we have
An({xh AAyD) = Oa(An({x + 871 vD, An({y + 871 {x D).
Also

An({y}AxD) = Oa(An({y + 71 AxD, Au({x + 871, {0)).
Thus, TiLE, (x, y) € C,,. O

Here is another characterization of the set of Wang tiles 7,,.
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Proposition 7.4. The following holds:

T = {TiE,(x,y): (x,y) € [0, 1)*}.

Proof. First, recall from Proposition 5.1 that

Co =T =Tpu {jO01 1,]',“"’0’0}u{af1,@| 1 siSn}u{bﬁ,ﬁ} (7.1)
where
000
(jOOL1 j1.1.0.0y Olni
0ln
Let

U, = {TILEn(x, y): (x,y) € [0, 1)2}.

First we show that U,, C 7,,. It follows from Lemma 7.3 that U,, C C,. Thus, using Equation (7.1), the
goal is to show that

U, N ({]OO‘ 11100y {a;,EZ 1<i< n} U {bg,iﬁ}) - 0. (1.2)

Suppose that there exists (x,y) € [0, 1) such that TiLE, (x, y) = jﬂ"“’l. Then A, (x,y) = 000 and
A, (y,x) = 011. More precisely, we have

ly+p"+1]

A, y) =| 1B x+y+ B +1]
[Bx+y+ B +1]

lx+ 8" +1]

Ap(y,x)=| LBy +x+B"+1]
LBy +x+ 8" +1]

—_——_o O OO0

In particular,
= [Bx+y+B +1] > B ly+x+p8 +1] =1,

which is a contradiction. The same contradiction is obtained if TiLE, (x, y) = ]',1,’1’0’0. Therefore, these
two junction tiles are not in U,,.

Suppose that there exists (x,y) € [0, 1)? such that TiLE, (x,y) = a’, for some integer i satisfying
1 <i < n.Then A,(x,y) = 00i and A, (y,x) = 112. More precisely, we have

ly+B8*+1] 0
An(x,y) =[ 1B x+y+p +1]
[Bx+y+ B +1] i+1

[x+ 8% +1] 1
An(y.x) =[ 1By +x+p8 +1]
LBy +x+ "+ 1] 2

Il
o

Il
—_
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In particular, |y + 8 + 1] = 0 implies that —87! < y + 8" < 0. Also 0 < 87'x < B!, so that
-8~ < B 'x +y+B* < B7!. Therefore,
0= x+y+p +1]= BB x+y+ )] +1=By+x-1]+1=|By+x].
On the other hand, using |a + b] < |a] + | b] + 1 for every a, b € R, we obtain
2=|By+x+B +1] < |By+x]+ B +1]+1=0+0+1=1,

which is a contradiction. A similar contradiction is obtained if we suppose that such that TiLg, (x, y) =
ail. Therefore, there is no antigreen tile in U,,.

Suppose that there exists (x,y) € [0, 1)? such that TiLE,(x,y) = b". Then A,(x,y) = 007 and
Ay, (y,x) = 111. More precisely, we have

ly+B8*+1] 0
Ap(x,y) =| LB x+y+p +1] |=| 0
[Bx+y+pB" +1] n+1

In particular, using 8 = n+ 87! and x < 1, we obtain

n+l=Bx+y+p" +1]
=|(n+B Hx+y+p +1]
<+ 'x+y+p+1]
=8 x+y+p +1]+n=0+n=n,
which is a contradiction. A similar contradiction is obtained if we suppose that such that TiLE, (x,y) =
by,. Therefore, the blue tiles b}, and b}, are not in U,. This shows that Equation (7.2) holds. Thus,

U, CT,.
Now we show that 7,, C U,,. We have J,, C U, since

%0 = Tie, (0,0),
jg,l,o,o = TiwLg, (B_Q, O) ,

J'S’O»OJ = TILE, (0, ,8_2) s

S I
B(B+1) B(B+1)
j,ll’l’o’l = Twe,(x,y), where (x, y) is on the segment from (O,ﬁ_l) to ((B+ I B+ DY,

jg’l’l’l = TiLE, (x, y) where (x, y) is on the segment from (8~!,0) to ((8+ 1)~', (B+1)71),

1 1
j,i’l’l’l =TiLg,| ——, —— .
B+1 g+1
We have B,, C U, since

by = Tie, (871, 0),

b; = TiLe, (82 + B~ 'i,0) for every integer i with 1 <i <n— 1.
We have G,, C U,, since

& =T, (87, 2B~ 1))

gh =Tig, (£, B71(1 - L)) for every integeri with 1 <i < n.
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We have Y,, C U, since

y;l =Tie, (8 ' +&,87' —eB™") for some small & > 0,

i_T i—,B_zﬁ_'l . -1 _ p-2 f s / with 2 .
Vp =Tig, (= —.5-(n-i+p B7°) | for every integer i with 2 < i < n.

We have W,, ¢ U, since

wh! = Twe, (871, 871,

wi) = Tie, (87", jB~" = B~2) for every integer j with2 < j < n,

Wiil = TILEn(i,B_l —B_Q,,B_l) for every integer i with2 <i < n,

Wiz’j — TILEn(,B_l + %((l - -(- 1),3_1),,8_1 + %((J -1)-(i- 1),8_1))

for every integer i, j with2 < i, j < n.

Therefore, J,, UB, UG, UY, UW, C U,. Since (7; = U,, we also have T?; U 6; U la c U, We
conclude that 7, C U, and T,, = U,,. o

This allows to construct valid configurations Z> — 7,, from any starting point (x, y) on the torus.
See Figure 15.

Theorem C. For every integer n > 1 and every (x,y) € [0, 1)2, the configuration

C(x,y) 72 - T
(i, J) = Tk, (x+if~, y+jp7)

is a valid tiling of the plane by the set of metallic mean Wang tiles Tp,.

b
+
RO~
N
=
-

o
—_——
o=
+ +
N[ [
—_—

1 X
B
TiLg, (y+ % ) TiLE, (y+ % ) TiLE, (y+

=
+
=Tl
2=
=
.
o]

S
—_——
==
+ ¥
=TI
S ——

1 X
TiLE, (y '82) TIiLE, (y 1) TILE, (y

1 1 2
TiLE, (x B) TiLE, (x) TiLE, (X B) TiLg, (x 5)
y y y y
1 1 2
X—% X+ X+%
TiLE, [f TiLE, ( f 1 ) TiLg, [f TiLg, "f
Y=g Y—p5 Y=g Y=g

Figure 15. For every (x,y) € [0, 1)? the map Z*> — T,, defined by (i, j) — TiLE, (x+é, y+‘[%) is a valid
tiling of the plane by the set of Wang tiles T,,.
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Proof. Let (x,y) € [0,1)? and (i, j) € Z>. We have C(x,y) (i, J) € Ty from Proposition 7.4. Also the
right color of the tile ¢y y) (i, j) is A, ({x + iB'}, {y + jB~'}) which is equal to the left color of the
tile ¢(x,y) (i + 1, j). Finally, the top color of the tile ¢y, y) (i, j) is Ay ({y + jB~'}, {x +iB~"}) which is
equal to the bottom color of the tile ¢(y ) (i, j + 1). Therefore, c(y y) is a valid configuration of Wang
tiles from the set 7,. O

The set {c(x,y): (x,y) € [0, 1)2} is not a subshift because it is not topologically closed. Indeed, if
(x0, yo) lies on the boundary of the partition, there is more than one configuration associated with it.
The configuration ¢y, ) is one of them, but lim, ) (x,,y0) € (x,y) Might be a different configuration
if the limit is taken coming from another direction. The same issue happens with the representation of
numbers in base 10. For example, the number 1 has two base-10 representations, one being 1.000000. . .
and the other 0.999999. ...

This implies that the set {c(xy): (x,¥) € [0, 1)} is not the set of all valid configurations of 7.
In other terms, ¢ : (x,y) > c(x,y) is not surjective in the set Q,, of all valid configurations of 7,,. One
way to solve this issue is to take the topological closure

C= {C(x,y): ()C,y) € [0’ 1)2}

which is a nonempty subshift satisfying C C Q,,. Since €, is minimal [37], we conclude the equality
C = Q,, must hold.

A standard approach is to create the subshift C as the symbolic extension of a dynamical system
defined on the 2-torus T2. This is what we do in the next two sections.

8. An explicit factor map

The goal of this section is to introduce a factor map Q, — T2 explicitly defined from the average of
inner products of the labels of the Wang tiles in a configuration, see Equation (8.2). Then, we prove
Theorem D using this explicit factor map.

First, it is convenient to make some observation on the inner product with the vector d = (0, -1, 1) of
the tile labels. In the statement below, we use the indicator function I4: R — {0, 1} of a subset A C R

defined as
1 ifxeA,
I =
Al) {o ifx ¢ A

Lemma 8.1. Let n > 1 be an integer and d = (0,-1,1). If x,y € [0, 1), then
<d» An(x» y)) = |_I1XJ +I[[l—{nx},l)({5x +y})
where 6, = 1 — B~ (1 —x).
Proof. Letx,y € [0,1). Observe that 5, = 1 — 8~'(1 —x) = 87'x + 8" + 1. We have
(d,An(x,y))y = [Bx+y+B +1] = B x+y+p +1]
=ln+B Dx+y+B+1] - B x+y+p +1]
=|nx+6x+y] - [6x+y]

= (Lnx] + [6x +y] + [{nx} + {65 + y}]) = [6x + ]
= Lnx] + [{nx} + {65 + y}

{0 if {nx}+{6x+y} <1,
= |nx] + .
1 if{nx}+{6x+y}>1.

The conclusion follows. O
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As illustrated in Figure 7 for a finite rectangular pattern, the average of the values of (%d, v) for
labels v appearing along an horizontal line can be considered for valid configurations w : Z> — 7,,. For
some reason (in order to have the equality ¢, (c(x,y)) = y in Proposition 8.2), it is convenient to consider
the average of the top label of the tiles on the horizontal row passing through the origin. Assuming that
the limit exists for every configuration, this leads to a map from the Wang shift to the interval [0, 1]
defined as follows:

$n 2 Qn — [0,1]

Wi lim Z< d.Tor(wio))

8.1)

where Topr(¢) denotes the top label of the Wang tile 7.
We show in the next proposition that ¢,, is well-defined and that it recovers the parameter y of a
configuration ¢ x y).

Proposition 8.2. For every integer n > 1, the following holds:

(i) for every (x,y) € [0, 1)%, ¢n(c(xy) =,
(i) ¢n : Q, — [0, 1] is continuous,
(iii) ¢, : Q, — [0, 1] is onto,
(iv) if B denotes the positive root of the polynomial x> — nx — 1, then

¢n(0-elw) = ¢n(W)’

Pn(T?w) = pn(w) +ﬂ_l (mod 1).
Proof. (i) Let Ro(x) = {x + a} be the rotation by angle @ on the interval [0, 1). If @ is irrational,
then for every x € [0, 1) the sequence (R’,(x));cz is uniformly distributed modulo 1 [30, Exercise 2.5].

Therefore, using Weyl’s equidistribution theorem for Riemann-integrable functions [30, Corollary 1.1],
for every (x,y) € [0, 1)2, we have

On(C(ry) = Jim —— 1Z< d. Top(c ) (0,0)))

. 1 1 el
= klg]gom Z (5;d, Top(TiLE, (x +if™",y)))

= Jim 1Z< d. An(y. {x +iB7')
k
=_kh_m 2k+ Z(Lnyj+11[1_{,,y},1)({5y+{x+iﬁ—1}})) (Lemma 8.1)

k
1 1 ;
(LnyJ + lim o Z -y (R (5 +x)>)

1 1
- (l_nyj + / I {ny).1) (t)dt) (Weyl’s equidistribution theorem)
n 0

Lyl + {ny)) = Lny) =
n n

(i) Now we want to show that the rule ¢,, defines a continuous map ,, — T. Since Q,, is minimal
—0
[37], we have that the orbit {c(9,0)} = {o-kc(g,o) | k € 7%} = {cg1k moaz2) | Kk € Z?} is a dense
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subset of €,,. Therefore, {c(x,y) | X,y € [0,1)} is dense in Q,. Let w € Q,,. There exists a sequence
(x©, yOY, oy with x(©, y(© € [0, 1) such that w = lim/_e Cix(0) y©)-

Notice that the limit (x(®), y(®)) = lim/_,(x©, y©) € [0, 1]? exist. This essentially follows
from [33, Lemma 3.4] allowing to define another factor map, see Equation (9.2). Indeed, suppose
on the contrary that the sequence (x(©),y(©),cy has two distinct accumulation points (py,q;) and
(p2,q2). Recall that {Interior(TILE;l (1)) }teT;, is a topological partition of T2. Since the orbits under

the Z?-action R, are dense, there exists (i, j) € Z2 such that R,(,i’j ) (p1,q1) € Interior(TILE;'(tl))

and R (p2,92) € Interior(TiLE,! (12)) where #; and 1, are two distinct tiles in 7,,. Therefore, for
sufficiently large £ € N, we have

Wi, ) = ¢ (o yon (i ) = TiER (RS (p1, 1)) = 11,
Wi, ) = ¢ (o yoy (i ) = TILER (RS (p2, 42)) = 12,

which is a contradiction.

We split the proof according to the behavior of limy_, ny‘©), and more precisely if it converges to
an integer and if so from above or from below (the fact that it converges from above or from below
when it converges to an integer follows from the existence of the configuration w because the boundary
of the topological partition {Interior(TiLE,' (#))};c7;, contains the vertical and horizontal lines passing
through integers points). We proceed as above using Weyl equidistribution theorem. We have

dn(w) = ¢y, (fll_)ngo C(x<€>,y(f)))

k
1
= k]]_r)]go T Z }Lﬂ;(%d, TOP(C(X(w’y([))(l', 0)))
i=—k

k
1 1 . o
S Am o Z Jim Ly O] + Iy uyy.) ({80 + {x© +i l}}))

li

3 O] + 11y (Rl (B0 +2())

|
|
=
l
8
[\
»
+ P
-
~
15

= im0 57 SF (L) ] = 1+ L0, (RE (Oy (@ +x(°°)))) if {ny©} > 1,
i limisc gy By (Lny )] + T nyty,1) (R (o0 +x(°°)))) if {ny¥} £ 0,1,
Ly 1+ [ o) if {ny©} > 0,
[Se) 1 .
= (@) =1+ fTTon@ar) iy @) - 1,
[Se) 1 .
Ly 1+ [ sy (0de) i (ny O} 50,1,

%Lny(‘"’)J +0 if {ny¥} -0,
= %I_ny("")J -1+1 if {ny©} - 1,
F(Lny ]+ (ny ) if (ny @) £ 0,1,

= y(oo) = []j_)n(;loy([) = gh_,nolo ¢n(c(x(”,y(€>))'

(
(
Limy e 7 ZE (Lny<°°>J +1o(Ri, (8, +x<°°>))) if {ny©} — 0,
(
(

This shows that the rule ¢,, defines a map €, — [0, 1] and that this map is continuous.
(iii) If y € [0,1), then y = ¢,(c(0,y)). If y = 1, then y = ¢, (limy_,1- c(q,y)). Thus, the map ¢, is
onto.
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(iv) Since the map ¢, is continuous, we only need to show the equalities for a dense subset of Q,,.
Let (x,y) € [0,1)%. We have
(0 C(x,y) = Pu(C((xap1}y) =V = PnlCay))-

Moreover, we have
Gn(TC(xiy) = Gu(Cx iyap1y) ={y+ B} = bu(C(xy)) +B' (mod 1). O

Since ¢, (0¢'w) = ¢,(w) for every configuration w € Q,, the factor map ¢,, is far from being
injective. We may improve this as follows. We use the symmetry of the tiles in 7;, to define an involution
on Q,. If w € Q, is a configuration, then its image under a reflection by the positive diagonal is the
configuration w € €, defined as

w: 72 ST,
(i,]) — wj,.
This allows to define a map from the Wang shift to the 2-dimensional torus

®,:Q, — T2

w = (P (W), dn(w)). (8.2)

The first coordinate ¢,, (W) computes the average of the inner product with d of the right-hand labels of
the Wang tiles in the column containing the origin of the configuration w. We show in the next theorem
that @, is a factor map.

Theorem D. Let d = (0,-1,1), n > 1 be an integer and Q.,, be the n'" metallic mean Wang shift. The

map
d,:Q, » T2
o T ] z": (Ld, Ricrr(wo,)) (8.3)
k—eo 2k +1 &4\ (1d, Tor(w; o))

is a factor map, that is, it is continuous, onto and commutes the shift Z> ~ Q,, with the toral Z*-rotation

Ry .
7% A T? by the equation ®,, o o = Rﬁ o @, for every k € Z* where

Ry, :Z2xT2 - T2
(k,x) + RN(x):=x+pk

77 . . . .. .
and B = "*T”M is the n'" metallic mean, that is, the positive root of the polynomial x*> — nx — 1.

Proof. From Proposition 8.2, ¢, is continuous. Thus, ®,, is also continuous.
Let (x,y) € [0, 1)%. Using Lemma 7.3, for every (i, j) € Z*, we have

o) (s J) = TiLE, (x+jB7" y+iB™") = TiLe, (y+iB ™ x+jB7") = (3.0 (i, /).

Thus, the identity ¢(y,y) = ¢(y,x) holds. We obtain

(x,y) = (¢n(c(y,x))» ¢n(c(x,y))) = (¢n(®)’ ¢n(c(x,y))) = q)n(c(x,y))~

Therefore, ®,, is onto.
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Let w € Q,, be a configuration. Let k = (ky, k) € 72 Using Proposition 8.2, we have

0 0 (w) = (u(Ew), g (W)
= (@l R, g (e Rw) )
= (@u(®) + B™k1,9u(w) +F7 k) (mod 22)
= (n(W). ¢(w) + 7' (k1. k2) ~ (mod Z?)

=®,(w)+B 'k (mod Z?)
=Rk o @, (w). m

Corollary 8.3. For every n > 1, Q, is aperiodic.

Proof. By contradiction, suppose that Q,, contains a periodic configuration w such that o* (w) = w for
some k € Z2\ {(0,0)}. The image @, (w) € T? must be a periodic point for the Z>-action R, because,
using Theorem D, we have

@, (W) = @, (¥ (W) = RE(@,(W)) = RE(D,(W)).

The Z2-action R, has no periodic point, since the metallic mean g is an irrational number. Thus, we
must have k£ = 0, which is a contradiction. The subshift Q,, is nonempty. Thus, Q,, is aperiodic. O

Remark 8.4. Note that Corollary 8.3 cannot be considered as a totally independent proof of aperiodicity
of Q,,. Recall that aperiodicity of ,, was proved in [37] from the self-similarity of €2,,. Indeed, Corollary
8.3 uses Theorem D which depends on Proposition 8.2. In the proof of Proposition 8.2, we use the
minimality of Q,, which was proved in [37] and deduced from its self-similarity.

In other words, the following question remains open.

Question 8.5. Can the aperiodicity of €2, be proved independently of its self-similarity?

9. The factor map is an isomorphism (mod 0)

The goal of this section is to show more properties of the factor map ®@,, : Q, — T? introduced in the
previous section. Based on the approach presented in [33], we prove Theorem E and Theorem F.
Let n > 1 be an integer. We consider the continuous Z?-action R,, defined on T? = R?/Z? by

Ry : Z*XT? — T?
(n,x) +— R}x):=x+pfn

where 8 = ’”T"ZM is the positive root of the polynomial x> — nx — 1. We say that R,, is a toral Z>-

RH . . .
rotation and it defines a dynamical system that we denote Z> ~ TZ. In this section, we encode this
dynamical system symbolically using a partition associated with the Wang tiles 7,,.

Recall that

An i [0,1)? - 73
ly+B"+1]

(x,y) = | 1B x+y+B +1] |
|Bx+y+ B +1]
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NORTH| EAsT) NorTH| A EAST]
1 1 1
012
111 112
112
g1 Bt g1
011
001 011 012
111
000 000 001
0 0 : 0
0 Bt 1 0 B! 1 0 /1 1
SouTH| WEST] SoutH| A WEST]|
1 1 1
001 \ 011
111 112 111
000
111
371 g1 g1
011
012 011 012
112 001
001 011 001 000
111
0 0 0
0 Bt 1 0 gt 1 0 g1 1

Figure 16. The partitions NortH|, EAasty, SoutH| and WEsT).

From Lemma 7.1, we have in fact that A, is a map [0, 1)2 — V,,. Therefore,
EAsT, = {A,_ll(v): vevV,}
is a partition of [0, 1)2. Its symmetric image is
NORTH,, = {17 OA;l(v): v E Vn}
which is another partition of [0, 1)?, where 17 : (x,y) — (y,x). Also, we let

WEsT,, = RY! (EasTy,),
South,, = R%?(NoRrTH,,)
where e; = (1,0) and e; = (0, 1). These partitions are illustrated for n = 1,2,3,4 in Figure 16,
Figure 17, Figure 18 and Figure 19. We may observe in these figures a nice property of the partitions:
EasT;,, A NorTH,, is the same partition (with different indices) as WEsT,, A SouTH,, (this is related to the
fact that the set of Wang tiles 7}, is both NE-deterministic and SW-deterministic, see Theorem 5.3).

We now want to construct the refined partition East, A NorTH,, A WEST,, A SOUTH,, whose atoms
are defined as follows. For each (v, va,v3,v4) € (Vn)4, we define the interior of the intersection

Pl = Interior( A1 (v1) 00 A (v2) 1 R (A (v3)) 0 R (n 0 AL (1))

It follows from Proposition 7.4 that the quadruples 7 for which P, has nonempty interior define a set
which is equal to the set of Wang tiles 7,,:

To={re V)| P, 20}
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NoORTH, East) NorTHy A EAST)
1 1 1
013
113 113
012
002
o 111 112
g1 g1 g1
o11 011 013
001 012
111 001
000 000 002
0 0 ; 0
0 g1 1 0 g1 1 0 g1 1
SouTH, WEST, SoutHy A WEST)
1 1 1
0 012
112 113 112
011
001
111 111
000 112
g1 gt Bt
013 013 011 \ 012
113 012
012 . 001 0!
002 12 002 000
0 0 0
0 B-1 1 0 51 1 0 g1 1
Figure 17. The partitions NorTH>, EAstT), SoutHy and WEST).
NoORTH;3 Easts NorTtH3 A EAST3
1 Y 1 1
114 114
013
0 113
012
002 " 1 112 113
a—-1 -1 a1
B 1 B 01 o 14 B
001 013
t oot 002
0 00 0 0 : 03 0
0 Bt 1 0 g1 1 0 Bt 1
SouTHj3 WEST3 SoutH3; A WEST3
L 011 1 L
012 113 114 113
002
112
11
001
111 113 111 112
-1 Po0 5-1 -1
‘3 014 5 14 01 13 B
012
114 013
o 03 1 g 5 ) oot 002 3
0 0+ 0
0 Bt 1 0 Bt 1 0 g1 1

Figure 18. The partitions NorTH3, EAsT3, SoutH3 and WEsTs.
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NORTH4 EAsty NorTH4 A EASTy
1 . 1 1
014 115 115
0 114
013
003 113
012
002 12 111\ 112 113 114
Bt B! g1
0 1 ! 012\ 013 N ‘
00 11 001 002 e 014
(RS o ‘ u 0
0 g1 1 0 g1 1 0 /1 1
SouTHy WESTy SouTHy A WESTy
1 1 1 1
013 114 115 114
003 113
012
002 112
1
001 .
111 114 111 112 113
_ 0 _ a—
g 15 B ! 1 1 012 013 i 3 !
115 014 h
014 | 114 > 001\ 02 e "
040 0% = : 0
0 gl 1 0 gt 1 0 gt 1

Figure 19. The partitions NorTHy, EAsTy, SoutHy and WESTy.

Recall that, for some finite set A, a topological partition of a compact metric space M is a finite
collection {P, },ea of disjoint open sets P, C M such that M = | J,c4 P4 Naturally, the set 7,, defines
a topological partition

Pn = {PT}‘reTn

of R?/Z?* which is the refinement of the four partitions East,, (the right color), NorTH, (the top color),
WEsT,, (the left color) and SoutH,, (the bottom color).

9.1. Symbolic dynamical system Xp, R,

We now define the symbolic dynamical system associated with the toral Z2-rotation R,, generated by
the partition P,,. We adapt [40] to the 2-dimensional setting as it was done in [20] and [33].
If S ¢ Z? is a finite set, we say that a pattern w € AS is allowed for P,, R,, if

ﬂ R*(Py,) # ©. ©.1)

keS

Let Lp, r, be the collection of all allowed patterns for P,, R,. The set Lp, g, is the language of a
subshift Xp_ g, C .AZ2 defined as follows, see [20, Prop. 9.2.4],

Xp, R, ={x€ A | ns 0 0" (x) € Lp, R, forevery n € 72 and finite subset § C Z?}.
We say that X'p, g, is the symbolic dynamical system corresponding to Py, R,,.
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2 . .
For each w € Xp, g, C A% and m > O there is a corresponding nonempty open set

Dy (w) = ﬂ R;k(Pwk) c T

llk || <m

The closures D, (w) of these sets are compact and decrease with m, so that Do(w) 2 Di(w) 2
Da(w) 2 ... . Itfollows that N>_ D, (w) # @. In order for points in Xp, g, to correspond to points in
T2, this intersection should contain only one point. This leads to the following definition. A topological

Rn . . .
partition P, of T? gives a symbolic representation of Z> ~ T2 if forevery w € X'p, g, the intersection

N _yDm(w) consists of exactly one point x € T2. We call w a symbolic representation of x.

Markov partitions were originally defined for one-dimensional dynamical systems Z rT» T? and were
extended to Z4-actions by automorphisms of compact Abelian group in [16]. Following [33, 34], we use
the same terminology and extend the definition proposed in [40, §6.5] for dynamical systems defined
by higher-dimensional actions by rotations.

Definition 9.1. A topological partition P of T2 is a Markov partition for Z> A T2 if

o P gives a symbolic representation of Z? rl'i T2 and
o Xp_ g is a shift of finite type (SFT).

9.2. Proofs of main results
First, we have the following result.
Lemma 9.2. The dynamical system Z* A~ Xp, R, is minimal and Xp, g, is aperiodic.

Proof. Since R:' and RS? are linearly independent irrational rotations on R?/Z?, we have that R, is a
free Z2-action. Thus, from [33, Lemma 5.2], Xp, r, is minimal and aperiodic. m]

Each atom of the partition P, is invariant only under the trivial translation. Therefore, from [33,

Lemma 3.4], P, gives a symbolic representation of the dynamical system Z> ﬁQ T2. Thus, we can define
the following function:

fo: Xp, R, = T 9.2)

be such that f;,(w) is the unique point in the intersection ﬂzzoﬁm(w).

Proposition 9.3. Let n > 1 be an integer. The map f, : Xp, r, — T2 is a factor map satisfying
fuoa* =Rk o f,

for every k € 77,

Proof. The result is an application of Proposition 5.1 from [33]. O

From the minimality of the Wang shift Q,, proved separately in [37], we may now prove Theorem E
using the same method as in [33].

Theorem E. For every integer n > 1, the symbolic dynamical system Xp, g, corresponding to Py, Ry,
is equal to the metallic mean Wang shift Q,,:

Q, =Xp, Rr,-
Ry
In particular, Py, is a Markov partition for the dynamical system Z* ~ T?.
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Proof. From Proposition 8.1 in [33], we have that Xp, g, C €, for every integer n > 1. It was proved
in [37] that the Wang shift €, is minimal for every integer n > 1. Thus, Xp, g, = Q.

Each atom of the partition P, is invariant only under the trivial translation. Therefore, from [33,

Lemma 3.4], P, gives a symbolic representation of 7?2 5{ T2. Since Xp, .r, = Q, is a shift of finite

Rn
type, we conclude that the partition 7, is a Markov partition for the dynamical system Z> ~ T2, O

In fact, we can show that the factor map f;, is equal to the map ®,, explicitly defined in Section 8
from the average of the labels of Wang tiles on the row and column containing the origin. It follows
from the next lemma.

Lemma 9.4. For every (x,y) € [0,1)%, we have f, (cx,y) = (x, ).

Proof. Letvy,vs,v3,vs € V. Observe that

Tice, ' (vi,v2,v3,v4) € AN (v) Npo AN (va) N REV(A, N (v3) N R (7o AN (vy)

C A () Npo AN (v2) N RET(ALN (v3)) N Re2 (17 0 Ayt (va))

= P(vv,v3,0)
For every k € Z?, we have
C(x.y) (K) = TILE, © Ry (x, y),
so that
(x,3) € Ry o TiLe, ! (¢ x,y) (k) € Ry (Per, y(0)-

Therefore, for every m € N, we have

y) € () R*Peryyt) = DnlCay)-

kll<m

Rn
Since P, gives a symbolic representation of the dynamical system Z?> ~ T2, we have that
N _oDm(c(x,y)) is a singleton and

mZz()ﬁm(c(x,y)) ={(x,y)}.
Therefore, f(c(x,y)) = (x,¥). O

Proposition 9.5. The factor map f, : Q, — T2 is equal to the factor map ®, : Q, — T2 explicitly
defined in Equation (8.2):

fn =Q,.

Proof. From Lemma 9.4, we have f,(c(,0)) = (0,0). Also, observe that the configuration c g, is
symmetric: ¢(o,0) = ¢(0,0)- Thus, we have

@, (c(0,0) = (¢n(C(0,0))> Pn(c(0,0)) = ($n(c(0,0))> Pn(c(0,0))) = (0,0).
Let w € Q,, be any configuration. Since €, is minimal [37], there exists a sequence (k¢)¢en such that

ke € Z2 such that w = limy_,e 0 (c(0,0)). From Proposition 9.3 and Theorem D, f,, and ®,, are factor
maps commuting the shift map with the Z2-action R,, on the torus T2.Thus, we obtain
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D, (w) =D, ([11_)120 O'k’(c(o,O)))
= (,11_{130 @, 0 7 (c(0,0))
= {)11_{1‘}0 REC o @, (c(0,0))
= lim R}/ ((0,0))
= Jim Ry © fu(c(0.0))

= }im faoo*(c0.0)

= fn(fll_{rc}o ka[(c(o,o))) = fu(w). O

The factor map ®,, between the dynamical system Z> ~ Q,, and the Z2-action R, on the torus T2
satisfies additional properties. In particular, @, is an isomorphism of measure-preserving dynamical
systems. Their proofs follow the structure of similar results proved in [33] for Jeandel-Rao tilings.

Theorem F. The Wang shift Q, and the Z*-action R,, have the following properties:

() 72 ﬁg T? is the maximal equicontinuous factor of Z* ~ Qp,
(ii) the factor map ®,, : Q, — T? is almost one-to-one and its set of fiber cardinalities is {1,2, 8},
(iii) the shift-action 7? A~ Q,, on the metallic mean Wang shift is uniquely ergodic,
(iv) the measure-preserving dynamical system (€, 7%, 0,v) is isomorphic to (T2,Z2,R,,, 1) where v
is the unique shift-invariant probability measure on Q,, and A is the Haar measure on T>.

Proof. From Theorem E, we have Xp, g, = Q.
(i) From Proposition 9.3, the factor map f,, : Xp, g, — T? commutes the actions Z> ~ Xp, r, and

Rn ., . . —
Z* A T2. From [33, Proposition 5.1, f;, is one-to-one on ;' (T2 \ Ap, r,) where

Amen = U Rﬁ( U 8PT) C Tz

kez? 7€y

is the set of points whose orbit under the Z?-action R,, intersect the boundary of the topological partition
Rn
P, = {Pr}reT,. From [33, Corollary 5.3] (which is a consequence of [4, Lemma 3.11]), Z?> ~ T? is

the maximal equicontinuous factor of Z> ~ Xp, R,

(ii) We have that {y € T? : card(f,'(y)) = 1} = T2\ Ap, r, is a countable intersection of open
sets and is dense in T2. Thus, it is a G s-dense set in T2. Therefore, the factor map f, : Xp, R, — T2 is
almost one-to-one. From Proposition 9.5, we have f,, = ®,,.

Suppose that x € Ap, r,. We have card(f,!(x)) > 2. If card(f;'(x)) > 2, then we may show
that there exists n € Z? such that x = R"(0). If x = R"(0) for some n € Z>, then the set f,'(x)
contains 8 different configurations of the form lim,_ ¢y for some v € R? \ ®”» where @ = R -
{(1,0), (0,1), (1,=p), (1, 8%)}.Ifx € Ap, g, butnot in the orbit of 0 under R,,, then card( £, ! (x)) = 2.
We conclude that {card(f;(x)) | x € T?} = {1,2,8}.

(iii) The dynamical system Z> & T2 is minimal. We have that A(0P) = 0 foreach atom P € P, where
A is the Haar measure on T2. The partition P, gives a symbolic representation of the dynamical system
72 B2, Thus, from [33, Proposition 6.1, the dynamical system Z2 A Xp, g, is uniquely ergodic.

(iv) Since the dynamical system Z> ~ Xp, R, is uniquely ergodic, it admits a unique shift-invariant
probability measure v on Q,. From [33, Proposition 6.1], the measure-preserving dynamical system
(Qy, 7%, o, v) is isomorphic to (T2, 72, R,., 1) where A is the Haar measure on T2, O

https://doi.org/10.1017/fms.2025.10098 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10098

Forum of Mathematics, Sigma 43

10. Renormalization and Rauzy induction of Z>-rotations

Another consequence of Theorem E is that the symbolic dynamical system Xp, g, is self-similar
because this was proved in [37] for the Wang shift 2,,. The Rauzy induction of polygonal partitions and
of toral Z2-rotations defined in [34] can be used to compute the self-similarity of the symbolic dynamical
system X'p, g,. We illustrate below how this can be done for a fixed value of an integer n > 1.

For some postive integer n > 1, we define the positive root 8 of the polynomial x> — nx — 1.
Computations will be done in the number field generated by this root. We perform the computations
below with n = 3, but it works with other integers. For instance, the computation of the self-similarity
for n = 7 from the Rauzy induction is done in about 200 seconds on a recent laptop.

sage: n = 3 # try with another integer

sage: x = polygen(QQ, "x")

sage: K.<beta> = NumberField(x*2 - n*x - 1, embedding=RR(n))
sage: beta.n()

3.30277563773199

We define a function that computes the atoms A (v) for every v € V,,. Note that in SageMath, an
entry equal to [-1,7,3,4] represents the inequality 7x; + 3x + 4x3 > 1.

sage: unit_square_ieqs = [[®, 1, 0], [®, O, 1], [1, -1, O], [1, O, -11]
sage: def Lambda_inv(a,b,c):

ceeat iegs = list(unit_square_ieqs)

eeeat ieqs.extend([[-1/beta+l-a, O, 1], [a+1l/beta, O, -111)

vl ieqs.extend([[-1/beta+1l-b, 1/beta, 1], [b+1/beta, -1/beta, -11]1)
ceeat iegs.extend([[-1/beta+l-c, beta, 1], [c+1/beta, -beta, -1]])
ceat return Polyhedron(ieqs=ieqs)

We define the set V,, and we check that the sum of the area of the polygons {A,,!(v)}, ey, is 1.

sage: Vn = [(a,b,c) for a in range(2) for b in range(2) for c in range(n+2) if a<=b<=c]

sage: Vn

[(o, 0, O, (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4, (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1,
49, (1,1, , Q, 1, 2, 1,1, 3, 4, 1, D]

sage: assert sum(Lambda_inv(*v).volume() for v in Vn) ==

sage: Lambda_inv(0,0,n+1).volume() # one of the atom has empty interior

0

For readability reason, we define a map which concatenates the entries of a vector into a string.

sage: def vector_to_str(v):

vt return "".join(str(a) for a in v)
sage: vector_to_str((0,1,4)) # for example
014

We define the Z2-action R,, on R?/Z? as two polyhedron exchange transformations on the unit square.

sage: lattice_base = identity_matrix(2)

sage: from slabbe import PolyhedronExchangeTransformation as PET
sage: Rel = PET.toral_translation(lattice_base, vector((l/beta,0)))
sage: Re2 = PET.toral_translation(lattice_base, vector((0,1/beta)))

‘We construct the EasT,, partition (ignoring the atom with empty interior) and the three other partitions
from it.

sage: from slabbe import PolyhedronPartition

sage: EAST = PolyhedronPartition({vector_to_str(v):Lambda_inv(*v) for v in Vn
e if Lambda_inv(*v).volume() > 0})

sage: M = matrix(XK, 2, (0,1,1,0))

sage: NORTH = EAST.apply_linear_map (M)

sage: WEST = Rel(EAST)

sage: SOUTH = Re2(NORTH)

sage: G = graphics_array([EAST.plot(),NORTH.plot(), SOUTH.plot(),WEST.plot()])
sage: G.show(figsize=10)
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1.0 1.0 I 1.0 T 1.0
114 114 012 113 114 113
0.8 1 0.8\ 013 0.8 4902 0.8 1
0 113 112
0.6 1 0.6 \om 0.6 1 n T 0.6 1
112 \ 11 002 112
044 111 3 0.4 112 0.4 111 044113\ | 111
T
0.2 012\ 013 027001 \| 0.2 114 | 027013 X
1 \oo> AR 4 0%t \oozogs

012 0‘.4 0?6 018 1.0 0?2 Oj4 016 018 1.0 012 of4 016 0t8 1.0 012 0‘.4 0?6 018 1.0

We compute the refinement of the EasT,, and NorTH,, partitions and of the WesT,, and SouTH,, partitions.

sage:
sage:
sage:
sage:
None

PEN,dEN = EAST.refinement (NORTH, certificate=True)
PWS,dWS = WEST.refinement (SOUTH, certificate=True)
G = graphics_array([PEN.plot(),PWS.plot()])

G.show(fig

size=5)

1.0

0.8
19\ 55

0.6

0.4

1.0
0.8
28 31

0.6

0.4

0.2

0.2

In general, we would need to compute the refinement of the two partitions. But here, since they are equal
up to relabeling, we may take one as the refinement and compute the bijection of the labels between them.

sage: PWS.is_equal_up_to_relabeling(PEN)

True

sage: P = PEN # faster than P = PEN.refinement (PWS)
sage: bijection = P.keys_permutation(PWS)

sage: bijection[9] # for example

16

We compute the set of Wang tiles defined by the refinement of the four partitions East,, NortH,,

WEST,, and SOUTH,,:

sage: from slabbe import WangTileSet

sage: tiles = [dEN[i]+dWS[bijection[i]] for i in sorted(dEN)]
sage: T3 = WangTileSet(tiles)

sage: t = T3.tikz(ncolumns=10, scale=1.2)

000_ [ 001 [ ooo_|[_oon_ ][ _or1_|[ Jtra_ | Zin1 ][ L1 ][ 001 ][ Jo1i_
2032188 £45|1858|268|878||1285)295
0037 || Z003~ || = Z0137 | 71137 || T1137 || T1137 || T0147 || To14
[ e [ | e | s ] (e, |[ oot ][ 002 |[ 003
102 || 22| |22 |2BE||Zuz||E152| |26 || 2175 || 2185 B 195
1147 || 17| | T1d” || TS || e || Ta | ST || Tooo™ || To01” || To02
oul_|[_ot2_|[_or3_][_o14_|[ o1z ][ _o13_ |[o14_|[ 112 |[ _t13_ ][ _114
220 || 2215 (2225|2235 | ST || 225 || D262 || S2r [ S28 5| | 5202
000~ || T001™ || T0027] | 003~ || To11™ || To127 || To13™ | Tin” | T2 || T3
2 |[ 113 ][ 14 |[ e ][ 113 | 114

2305 || 5315|5325 | 2332 || B3a 2 || B35

17 )| ToT | 7T T | T2 T
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We perform the Rauzy induction on the square window [0,87'] x [0,37!] using the algorithms

induced_partition and induced_transformation defined in [34]. First, we perform the induction

on the domain restricted to the inequality x < 7.

sage: x_le_beta_inv = [1/beta,-1,0]

sage: P1,sl = Rel.induced_partition(x_le_beta_inv, P, substitution_type="row")
sage: Rlel,_ = Rel.induced_transformation(x_le_beta_inv)
sage: Rle2,_ = Re2.induced_transformation(x_le_beta_inv)

Secondly, we perform the induction on the domain restricted to the inequality y < 7'.

sage: y_le_beta_inv = [1/beta,0,-1]

sage: P2,s2 = Re2.induced_partition(y_le_beta_inv, P1, substitution_type="column")
sage: R2el,_ = Rlel.induced_transformation(y_le_beta_inv)
sage: R2e2,_ = Rle2.induced_transformation(y_le_beta_inv)

We rescale the induced partition by the factor —f and translate it back to the unit square in the positive
quadrant. Then we apply each generator of the Z>-action once on the rescaled induced partition.

sage: P2_scaled = (-beta * P2).translate((1,1))
sage: P3 = Re2(Rel(P2_scaled))

sage: G = graphics_array([P2_scaled.plot(), P3.plot(1)

sage: G.show(figsize=5)
None

1.0

0.8

0.6

0.4

0.2

141 13

32

35

We check that the resulting partition is equal to the initial partition. We check that the induced action is

equal to the initial action.

sage: P.is_equal_up_to_relabeling(P3)

True
sage: Rel == (beta * R2el).inverse()
True
sage: Re2 == (beta * R2e2).inverse()
True

The self-similarity computed by this Rauzy induction is the product of the above 2-dimensional

substitutions by the bijection of the labels.

sage: from slabbe import Substitution2d

0.2 0.4 0.6 0.8 1.0

sage: s3 = Substitution2d.from_permutation(P.keys_permutation(P3))

sage: s123 = sl*s2*s3
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The computed self-similarity s123 is:

23293235 22293235 23293235 22293235 1929 32 35 263235

0 19 28 31 34 | 18 28 31 34 2 19 28 31 34 3 18 28 31 34 4 18 28 31 34 o 253134
18273033 |’ 17273033 |’ 18273033 | 17273033 |’ 17273033 |’ 243033 |
36 715 2.6 715 15613 05 613 05 613 4 613
26 3235 263235 22293235 19293235 26 3235 263235

6 253134 75 2228 31 8 18 28 31 34 9 18 28 31 34 10 > 253134 11 253134
212730 ) 182730 |’ 17273033 |’ 17273033 | 243033 |’ 212730
3 613 3 613 0567 0567 4.6 7 367
253235 263235 253235 232932 222932 222932 35

12 24 31 34 13 222831 4 212831 15 19 28 31 16 > 18 28 31 17 18283154
202730 | 182730 |’ 172730 | 182730 |’ 172730 | $1214 16 ’
2617 367 2617 367 267

22283235 222831 35
18273134 (,19+— (18273034 |,20— | 18283134 |,21 —
3111416 3 61316 81214 16 3111416

(S (B e
SR TS

192932 35
18273134 (,22+—| 18273034 |,23+— (18273033 |,
3 61316 36 715
253135 253134
243034, 29+—(243033],
41114 4 613
222832 222831
182731, 35+ 182730
31114 3 613

18273134 (,25+— (18273034 |,26— | 18273033 |,27+—|243134 |, 28—
11012 14 1 51114 1 5613 91214
253235 253135 253134 222932
2128 31 212731, 32212730 182831, 34+
81214 31114 3613 81214

, 3l , 33

|
)
i) =
i) =

The above self-similarity can be illustrated with the Wang tiles computed above as follows:

sage: sl123_tikz = sl123.wang_tikz(domain_tiles=T3, codomain_tiles=T3, ncolumns=6, scale=1.2,
label_shift=.15)

12
n2_|_112

303
000|117y
000|111 _|_1i1

20 Z|Z27 5
000
000,

0137

o011 T nw
001|112

We may observe that the self-similarity computed here from the Rauzy induction on polygonal
partition on 5 and toral Z2-action Rj is the same as the self-similarity proved for the Wang shift Q3 in
[37].
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e PR BN B XL R PR

Figure 20. The Jeandel-Rao aperiodic set of 11 Wang tiles.

11. Open questions

For almost twenty years, the Kari and Culik sets of Wang tiles were the smallest known aperiodic sets
of Wang tiles. In 2015, Jeandel and Rao performed an exhaustive search on all sets of Wang tiles of
cardinality up to 11 [21] and proved that sets of Wang tiles of cardinality at most 10 either do not tile the
plane or tile the plane and one of the valid tilings is periodic. Moreover, they provided a list of 36 sets
of 11 Wang tiles considered to be candidates for being aperiodic. One of the candidates was intriguing
because Fibonacci numbers appeared in the structure of the transducers involved in the computation of
valid tilings. Jeandel and Rao focused on the intriguing candidate, shown in Figure 20, and they proved
it to be aperiodic. The set of valid configurations over these 11 tiles forms a subshift that we call the
Jeandel-Rao Wang shift.
In [33], it was proved that a minimal subshift within the Jeandel-Rao Wang shift is the coding of
a dynamical system defined by the following Z?-action Ry on the 2-dimensional torus R?/T7), where
1+v5 .
7

Iy = ( ‘g ;3 )ZZ is a lattice in R? involving the golden ratio ¢ =

Ry : 7> xR?*/Ty — R?*/T
(k,x) > x+k.

The symbolic coding is obtained through a polygonal partition Py of a fundamental domain of R?/T.
The partition was proved to be a Markov partition for R after comparing the substitutive structure
computed from the Rauzy induction of Ry and Py [34] with the substitutive structure of the associated
Wang shift [32, 35].

Intuitively, this means that the Jeandel-Rao Wang tiles shown in Figure 20 correspond to computing
the orbit of points in the plane R? under the translations by +1 horizontally and +1 vertically modulo
the lattice I'g. How this is possible is still a mystery. The link between the 11 Jeandel-Rao Wang tiles
themselves and the golden ratio or toral rotation Ry remains unclear. Unlike the Kari example, the values
0, 1, 2, 3, 4 of the labels of the Jeandel-Rao Wang tiles are five distinct symbols rather than arithmetic
values. They do not satisfy a known equation.

In general, the following questions can be raised.

Question 1. Let 7 be a set of Wang tiles such that the Wang shift Q+ is aperiodic.

o Is it multiplicative (Kari-Culik-like)? More precisely, can we replace the labels of the tiles in 7 by
arithmetic values in such a way that an equation similar to (1.1) is satisfied?

o Is it additive (metallic mean-like)? More precisely, can we replace the labels of the tiles in 7 by
integer vectors computed from floors of linear forms as in Proposition 7.4 and satisfying additive
equations as in Theorem B?

Does there exist an aperiodic set of Wang tiles which is neither multiplicative nor additive?

Solving Question | for Jeandel-Rao Wang tiles would improve our understanding of the Jeandel-
Rao Wang shift. Hopefully it would allow to generate more examples maybe not related to the golden
ratio and that are not self-similar. Remember that the computations made by Jeandel and Rao took one
year using 100 cpus to explore exhaustively the sets of 11 Wang tiles [21]. Finding new examples by
exploring all sets of 12, 13 or 14 Wang tiles becomes soon out of reach. We need to understand what is
happening in order to find other examples and characterize them.
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Question 2. If an aperiodic set of Wang tiles is additive (metallic mean-like) with labels given by
integer vectors satisfying equations, can we use the equations to directly prove that the Wang shift Q-
is aperiodic following the short arithmetical argument for the nonperiodicity of Kari’s tile set?

Finding an answer to Question 2 for the Ammann set of 16 Wang tiles was the original motivation
of the author which led to the discovery of the family of metallic mean Wang tiles. As we discussed
in Section 6, Question 2 remains open even for the Ammann 16 Wang tiles and the family of metallic
mean Wang tiles.

In general, we may ask the following question.

Question 3. For which invertible matrix M € GL;(R) does there exist a set of Wang tiles 7 such that
the Wang shift Q7 is isomorphic, as a measure-preserving dynamical system, to the toral Z>-rotation
R : Z? x T? — T2 defined by R* (x) = x + Mk on the 2-dimensional torus T2 = (R/Z)>?

The Markov partition associated with Jeandel-Rao tiles and action Ry on R? /T is related to the
golden ratio [33]. In this contribution, we describe a family of Z>-actions related to the metallic-mean
quadratic integers. Can we find examples related to other numbers?

Question 4. For which Z?-actions defined by rotations on a 2-dimensional torus does there exist a
Markov Partition? When is this partition smooth/polygonal?

As for toral hyperbolic automorphisms, we can expect that smooth Markov partitions are associated
with algebraic integers of degree 2 and that the partition is piecewise linear in this case [10]. Markov
partitions for typical toral hyperbolic automorphisms have fractal boundaries [8].

The relation with toral hyperbolic automorphisms does not come out of nowhere. Indeed, the self-
similarity of Q,, proved in [37] has an incidence matrix of size (n + 3)? x (n + 3)2. Its eigenvalues are
all quadratic integers, 0 or +1. This incidence matrix acts hyperbolically as a toral automorphism on a
subspace of R("*3)” thus admits a Markov partition with piecewise linear boundaries. A link between this
Markov partition and the partition P,, can be expected, because this is what happens for 1-dimensional

sequences. Indeed, the Markov partition associated with the toral automorphism ( (1) (1) g)is a suspension
of the Rauzy fractal [47] as nicely illustrated in a talk by Timo Jolivet [23].

Question 5. What is the relation between the Markov partition for the hyperbolic toral automorphism
defined from the incidence matrix of the self-similarity of 2, and the Markov partition P,, associated

with 22 A Q,,?

The symmetric properties of €2, and of the partition P,, make them a good object of study to tackle
these questions in more generality.
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sage: version()

SageMath version 10.6.beta7, Release Date: 2025-02-21
sage: import importlib.metadata

sage: importlib.metadata.version("slabbe")

0.8.0

The fact that these software are open-source means that anyone is free to use, reproduce, verify, adapt for their
own needs all of the computations performed therein according to the GNU General Public License (version 2, 1991,
http://www.gnu.org/licenses/gpl.html).
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slabbe package and available at https://gitlab.com/seblabbe/slabbe/. It allows to make sure that future releases of the package do
not break the code included in this article. It is possible to reproduce all computations present in this article and check that all out-
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