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Abstract
In this paper, we explore the optimal risk sharing problem in the context of peer-to-peer insurance. Using the
criterion of minimizing total variance, we find that the optimal risk sharing strategy should take a linear form.
Although linear risk sharing strategies have been examined in the literature, our study uncovers a significant finding:
to minimize total variance, the linear strategy should be applied to the residual risks rather than the original risks,
as commonly adopted in existing studies. By comparing with the existing models, we demonstrate the advantage
of the linear residual risk sharing model in variance reduction and robustness. Furthermore, we develop and study
a number of new models by incorporating some constraints, to reflect desirable properties required by the market.
With those constraints, the optimal strategies turn out to favor market development, such as incentivize participation
and guarantee fairness. A relevant model is considered at last, which establishes the connection among multiple
optimization problems and provides insights on how to extend the models into a more general setup.

1. Introduction
Risk sharing is a long-standing and continually evolving research topic in actuarial science. In traditional
centralized insurance model, risk sharing is relatively straightforward as it involves only two parties: the
insurer and the insured. In this framework, the optimal risk sharing problem is conventionally known
as optimal (re)insurance problem. Following the seminal work of Borch (1960) and Arrow (1963), this
topic has been extensively studied under various constraints from various perspectives. Readers are
referred to Cai and Chi (2020) for a comprehensive survey of recent developments.

Based on these works, more general problems on risk sharing among multiple (re)insurer has also
been considered. Asimit et al. (2013) and Cong and Tan (2016) addressed the optimal risk sharing among
multiple reinsurers based on some specific risk measures. After that, Boonen et al. (2016) studied the
optimal reinsurance in the presence of multiple reinsurers based on the general utility function. Asimit
and Boonen (2018) discussed the optimal insurance contract design following from bargaining among
multiple insurers. They discussed both risk sharing and premium allocation among insurers through
the game-theoretic approach which considers the heterogeneous risk measure for different insurers. Lin
et al. (2023) studied optimal reinsurance in the framework of stochastic game theory. They consider a
Stackelberg model to analyze the noncooperative game between one insurer and two reinsurers.

In recent years, nontraditional insurance markets, such as peer-to-peer insurance and distributed
insurance, have been growing rapidly. These developments stimulate novel insurance models where
risks are shared among multiple participants rather than just two in the traditional insurance models.
This feature presents a completely new framework and calls for more profound studies on the optimal
risk sharing strategies.
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Some pioneering studies have been carried out. Denuit and Dhaene (2012) propose the principle of
conditional mean risk sharing (CMRS). They show the advantage of CMRS principle in reducing risks
in the sense of convex order as well as establish its Pareto optimality. The application of the CMRS
principle is explored in the context of peer-to-peer insurance in Denuit (2020) and Denuit et al. (2021),
where a list of “conservation properties” and “improvement properties” are further established. The
desirability of CMRS principle is further studied by Jiao et al. (2022) from an axiomatic approach.
While the CMRS principle possesses many desirable properties, it has a relatively restrictive optimiza-
tion criterion (in the sense of convex order) and is difficult to calculate for some probability models.
To address these limitations, researchers start to focus on the linear risk sharing strategies, under which
the post-transfer risk of each participant is a linear combination of the pre-transfer risk in the pool. In
this context, researchers study the optimal sharing ratios under less restrictive criteria, such as min-
imizing total (weighted) variance in Feng et al. (2020), maximizing the “mutual-aid-efficiency” in
Abdikerimova and Feng (2022), and maximizing the weighted sum of the expectation less the weighted
sum of the second moments of the reserves for a multi-period problem in Abdikerimova et al. (2024).
For more discussion on linear risk sharing strategies, readers are referred to Liu et al. (2022) and Feng
(2023).

The assumption of linearity of the risk sharing strategies brings computational advantage. It reduces
the question of finding the optimal risk sharing strategy to finding the optimal sharing ratios, which can
be usually derived explicitly or calculated through numerical algorithm. However, the choice of linear
risk sharing strategy is yet to be theoretically justified. In other words, it remains unknown whether the
linear risk sharing strategy is optimal over all possible risk sharing strategies, linear and nonlinear. In
this paper, we aim to study the optimality of the linear risk sharing strategy in the context of peer-to-peer
insurance. Specifically, we prove that, if the optimization goal is set to minimizing the total variance,
the optimal strategy is to linearly share the residual risks. Although this result confirms the optimality
of the linear form, it does not provide direct justification for the linear risk sharing strategies that have
been studied in the literature. Specifically, the optimal linear risk sharing should be not based on the
original risks but on their residual versions, where the residual version of a risk refer to the risk net its
expected value. The emergence of the residual form is not surprising, as it is rooted from the demand to
maintain actuarial fairness. In addition to identifying the optimal risk sharing form, we also incorporate
some constraints in the formulation of optimization problems to reflect desirable properties required by
the market. With those constraints, the optimal strategies turn out to favor market development, such as
incentivize participation and guarantee fairness.

2. Problem formulation
Consider a peer-to-peer insurance model involving n participants. Let C1, . . . , Cn represent the potential
loss random variables. Suppose the losses have finite standard deviation σ1, . . . , σn. Without loss of
generality, assume 0 < σ1 < · · · < σn. In this paper, these standard deviations are sometimes written as
σ (C1), . . . , σ (Cn) to indicate the underlying random variable. These losses/risks, C1, . . . , Cn, referred to
as pre-transfer losses/risks, are to be pooled and redistributed to the participants. The losses/risks after
redistribution are referred to as post-transfer losses/risks and are denoted as L1, . . . , Ln. Furthermore,
denote the aggregate risk by S =∑n

i=1 Ci and its variance by σ 2
S .

In the existing studies, the post-transfer risks are assumed to take certain function form of the pre-
transfer risks. In this paper, to achieve flexibility to the largest extent, we do not impose any specific
functional form on L1, . . . , Ln except making two fundamental assumptions: self-retaining and actuarial
fairness, which are described below

A1: (Self retaining)
n∑

i=1

Li =
n∑

i=1

Ci.

A2: (Actuarial fairness) E[Li] = E[Ci] for i = 1, . . . , n.
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All risk sharing strategies satisfying A1 and A2 comprise the admissible strategy class, denoted as
C. Mathematically,

C =
{

(L1, . . . , Ln)

∣∣∣∣∣
n∑

i=1

Li =
n∑

i=1

Ci and E[Li] = E[Ci], ∀i = 1, . . . , n

}
.

Both assumptions are straightforward. Self-retaining indicates that the risks are to be digested within
the group, and actuarial fairness implies that a participant should not expect to lower the expected value
of the risk through the risk redistribution.

What a participant should expect is to lower his/her level of riskiness through the diversification effect
induced by pooling. While there are many measure to describe the level of riskiness, the most conven-
tional measure is the variance, as studied in the literature. Note that in the presence of the actuarial
fairness, minimizing variance is equivalent to minimizing the squared loss. Squared loss are frequently
used as penalty functions in other fields. For example, in parameter estimation, Makov (1995) demon-
strates that the Fisher-weighted squared-error loss function exhibits robustness in both risk and posterior
loss. In actuarial reserving, Mean Squared Prediction Error (MSEP) is commonly employed as the
loss function for prediction error. One can see Wuthrich and Merz (2008) for more details. In light
of these conventions, we continue to set the criterion to minimizing the total variance and formulate the
unconstrained risk sharing problem/model as follows:

min
(L1,...,Ln)∈C

n∑
i=1

Var[Li]. (2.1)

Feng et al. (2020) studies the optimal risk sharing problem among all linear strategies. To make a
comparison to Problem (2.1), we rephrase their main problem as follows:

min
(L1,...,Ln)∈C�

n∑
i=1

Var[Li]. (2.2)

where

C� =
{

(L1, . . . , Ln) ∈ C
∣∣∣∣∣Li =

n∑
j=1

αijCj, ∀ i = 1, . . . , n

}
.

Clearly, C� ⊂ C and thus Problem (2.1) is a direct generalization of Problem (2.2) in the sense that it
augments linear optimization space considered in Problem (2.2). This generalization proves to bring
improvements in the optimal risk sharing strategy. Details will be discussed in Section 4.

While the setting of Problem (2.1) is straightforward and intuitive, it is not sufficient to capture the
market demand in reality. One property to be expected from a desirable risk sharing principle is variance
reduction, described as follows: Pvr: (Variance reduction) Var[Li] ≤ Var[Ci] for i = 1, . . . , n.

This property indicates that the post-transfer loss is less risky than the pre-transfer loss, reflecting par-
ticipants’ demand to benefit from risk pooling. To incorporate this demand, we formulate the following
problem:

min
(L1,...,Ln)∈Cvr

n∑
i=1

Var[Li], (2.3)

where

Cvr = { (L1, . . . , Ln) ∈ C| Var[Li] ≤ Var[Ci], ∀ i = 1, . . . , n} .

The problem with the variance reduction constraint has been studied in the literature. For example,
Feng et al. (2020) sets up an algorithm to solve the variance minimization with “reduction in variance”
constraint numerically. Additionally, in Denuit et al. (2021), the variance reduction constraint is listed
as a necessary condition for Pareto optimality since it is easy to compute.
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In finding the optimal solution to Problem (2.3), one finds that the amount of risks retained by
participants after risk sharing may exhibit certain inconsistency. Specifically, the variance of the post-
transfer risk for a participant starting with a lower risk may end up higher than that for a participant
with a higher initial risk. For example, while Var[C1] ≤ Var[C2], their post-transfer risks may follow
Var[L1] > Var[L2]. Such an inconsistency would create certain unfairness and discourage the partici-
pance of those with low initial risks. To address this issue, we propose a set of retention consistency
conditions:

P0
rc: (0-retention consistency) Var[L1] ≤ . . . ≤ Var[Ln].

P1
rc: (1-retention consistency) Var[L1]

Var[C1]
≤ . . . ≤ Var[Ln]

Var[Cn]
.

Pγ

rc: (γ -retention consistency) Var[L1]
Var[C1]γ

≤ . . . ≤ Var[Ln]
Var[Cn]γ

.

The 0-retention consistency condition P0
rc indicates that the riskiness levels of the post-transfer losses,

L1, . . . , Ln, should exhibit the same order as those of the pre-transfer losses, C1, . . . , Cn. This is a natural
constraint to impose fairness among all participants. Another way to impose fairness is to require the
retention rations to follow the same order as the initial risks, which leads to 1-retention consistency
condition P1

rc. Note that the 1-retention consistency condition is more restrictive than the 0-retention
consistency condition since Var[Li]

Var[Ci]
≤ Var[Lj]

Var[Cj]
implies Var[Li] ≤ Var[Lj]. To bridge these two conditions and

present a more general condition, we introduce the γ -retention consistency conditions. As indicated by
the notations, P0

rc and P1
rc are special cases of Pγ

rc. The index γ can be interpreted as the “strength” of
consistency and can be used to reflect the level of fairness desired by participants.

Below, we combine the retention consistency condition and the variance reduction condition to
formulate the constraint risk sharing problem/model:

min
(L1,...,Ln)∈Cvr∩Cγ

rc

n∑
i=1

Var[Li], (2.4)

where

Cγ

rc =
{

(L1, . . . , Ln) ∈ C
∣∣∣∣ Var[L1]

Var[C1]γ
≤ . . . ≤ Var[Ln]

Var[Cn]γ

}
.

Two special cases of Problem (2.4) with γ = 0 and γ = 1 are of independent interest and are listed
as follows:

min
(L1,...,Ln)∈Cvr∩C0

rc

n∑
i=1

Var[Li], (2.5)

min
(L1,...,Ln)∈Cvr∩C1

rc

n∑
i=1

Var[Li], (2.6)

Another relevant problem of interest is

min
(L1,...,Ln)∈C1

rc

n∑
i=1

Var[Li]. (2.7)

Note that Problem (2.7) is analogous to Problem (2.3) in the sense that they are each modified from
Problems (2.5) and (2.6) by dropping one constraint, namely 0-retention consistency and variance
reduction.

The rest of the paper is organized as follows. In Section 3, we identify the optimal form of risk
sharing – linear residual risk sharing (defined in Section 3), and thus reduces solving the proposed
optimization problems to finding optimal linear sharing ratios. In Section 4, we solve the unconstrained
risk sharing problem (2.1) and compare with Problem (2.2). Problem (2.2) has been studied by Feng et al.
(2020), with a focus on linear strategies. We show that, by augmenting the admissible strategy class from
the linear space to a general functional space, the optimal strategies remain the linear form (with slight
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Figure 1. Relation among proposed problems.

modifications) and the total variance will be reduced under new optimal strategy. We also demonstrate
other advantages of optimal solutions to Problem (2.1) over that to (2.2). In Section 5, we focus on
solving Problem (2.4), constrained with variance reduction and retention consistency conditions, and
establish some desirable properties of the optimal solution.

In Section 6, we study Problems (2.5) and (2.6), as the special cases of (2.4) establish the equivalences
between Problems (2.5) and (2.3) and between Problems (2.6) and (2.7). At the end of Section 6, we
study the following problem:

min
(L1,...,Ln)∈Cvr

n∑
i=1

Var[Li]

Var[Ci]
γ /2 . (2.8)

While Problem (2.8) focuses on minimizing the total weighted post-transfer variances of all participants,
it proves to be equivalent to (2.4). This equivalence provides a new perspective of understanding Problem
(2.4) and enable us to make further extensions. The relationship among these problems is illustrated in
Figure 1.

At the end of the paper, we design two case studies to demonstrate the effectiveness of the residual
risk sharing strategy in Section 7 and provide some concluding remarks in Section 8.

3. Optimality of linear residual risk sharing
In this section, we prove that the optimal solutions to Problems (2.1), (2.3), (2.4), and (2.8) should be
all in the form of linear residual risk sharing.

Theorem 3.1. The optimal solution to Problem (2.1) (resp. (2.3), (2.4), and (2.8)), (L∗
1, . . . , L∗

n), admits
the form of linear residual risk sharing, that is, there exist a1, . . . , an ∈ [0, 1] such that

L∗
i = E[Ci] + ai

n∑
j=1

(Cj − E[Cj]) = E[Ci] + ai(S − E[S]), (3.1)

for i = 1, . . . , n.

Proof. We shall focus on Problem (2.4). The proof for the other problems are similar. It suffices
to show that for any risk sharing strategy (L1, . . . , Ln) ∈ Cvr ∩ Cγ

rc, there exists a strategy (̃L1, . . . , L̃n) ∈
Cvr ∩ Cγ

rc of form (3.1) that is superior to (L1, . . . , Ln) in the sense that it results in a lower total variance.
Construct (̃L1, . . . , L̃n) as follows:

L̃i = E[Ci] + σ (Li)
n∑

s=1

σ (Ls)
(S − E[S]). (3.2)
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Note that

σ (̃Li) = σ (Li)
n∑

s=1

σ (Ls)
σ

(
n∑

s=1

Ci

)
= σ (Li)

n∑
s=1

σ (Ls)
σ

(
n∑

s=1

Ls

)
≤ σ (Li), (3.3)

where the last inequality follows from the fact that σ (
n∑

s=1

Li) ≤
n∑

s=1

σ (Ls). This immediately implies that

(̃L1, . . . , L̃n) has a lower total variance than (L1, . . . , Ln) and is thus superior.
It remains to prove that (̃L1, . . . , L̃n) ∈ Cvr ∩ Cγ

rc for any (L1, . . . , Ln) ∈ Cvr ∩ Cγ
rc, which breaks down

into the following two steps.

(i) By (3.2), it is straightforward to verify that (̃L1, . . . , L̃n) satisfies the properties of self-retaining
and actuarial fairness, and thus belongs to C.

(ii) Since (L1, . . . , Ln) ∈ Cvr satisfies the variance reduction property, we have Var[Li] ≤ Var[Ci] and
thus Var[̃Li] ≤ Var[Li] ≤ Var[Ci] following (3.3). Therefore, (̃L1, . . . , L̃n) ∈ Cvr.

(iii) Since (L1, . . . , Ln) ∈ Cγ
rc satisfies the γ -retention consistency, it holds that for any i < j

Var[Li]

Var[Ci]γ
≤ Var[Lj]

Var[Cj]γ
. (3.4)

Recall from (3.3) that

σ (̃Li) = σ (Li)
n∑

s=1

σ (Ls)
σ

(
n∑

s=1

Ls

)
=

σ

(
n∑

s=1

Ls

)
n∑

s=1

σ (Ls)
× σ (Li).

Multiplying

⎛⎝ σ

(
n∑

s=1
Ls

)
n∑

s=1
σ (Ls)

⎞⎠2

to both sides of (3.4) yields

Var[̃Li]

Var[Ci]γ
≤ Var[̃Lj]

Var[Cj]γ
, for any i < j, (3.5)

which implies (̃L1, . . . , L̃n) ∈ Cγ
rc. �

Theorem 3.1 suggests that the optimal risk sharing should be conducted in two steps. First, each
participant takes the a baseline risk that is equal to the expected value of his/her pre-pooling risk. Then,
the remaining risk,

n∑
s=1

(Cs − E[Cs]), is allocated linearly among all participants. This strategy is referred

to as linear residual risk sharing because the sharing is based on the residual risks, {Cs − E[Cs], s =
1, . . . , n}. On the contrast, we shall refer to the strategy in C� as linear whole risk sharing as the sharing
is based on the whole risks, {C1, . . . , Cn}. It is worth noting that the linear residual risk sharing form
has been briefly mentioned in Denuit (2020) (referred to as linear risk sharing therein). The authors use
it as an illustrative comparison to the CMRS rule, without studying it in details.

It is not surprising to see that the linear residual risk sharing strategy is superior to the linear whole
risk sharing strategy. Intuitively, with the residualization treatment, the actuarial fairness condition is
automatically satisfied, which allows more freedom for the linear residual risk sharing strategy to achieve
a better result. Detailed comparison will be presented in Section 4.

The superiority of the linear residual risk sharing also lies in that it follows the aggregate risk sharing
rule, as proposed in Denuit et al. (2021), which guarantees that the realization of the risk allocation to
each participant is determined by only the realization of the aggregate risks but not the individual risks.
We refer the reader to Feng et al. (2020) more discussion on this property. This aggregate risk sharing
rule is also called the risk anonymity, which is discussed in Jiao et al. (2022) as a desiarble property to
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simplify market operation and reduce potential moral hazard or legal dispute. Readers are referred to
Jiao et al. (2022) for more detailed discussions.

With the optimal risk sharing form specified by Theorem 3.1, Problems (2.1) and (2.4) can be
significantly simplified. For notational convenience, define

A=
{

(a1, . . . , an) ∈ [0, 1]n

∣∣∣∣∣
n∑

i=1

ai = 1

}
, (3.6)

Avr =
{

(a1, . . . , an) ∈A
∣∣∣∣a2

i ≤ σ 2
i

σ 2
S

, i = 1, 2, ..., n

}
, (3.7)

Aγ

rc =
{

(a1, . . . , an) ∈A
∣∣∣∣ a2

1

σ
2γ

1

≤ · · · ≤ a2
n

σ
2γ
n

}
. (3.8)

By plugging the linear residual risk sharing form as specified by (3.1), Problems (2.1), (2.4), and
(2.8), respectively, reduce to

min
(a1,...,an)∈A

n∑
i=1

a2
i , (3.9)

min
(a1,...,an)∈Avr∩Aγ

rc

n∑
i=1

a2
i , (3.10)

min
(a1,...,an)∈Avr

n∑
i=1

a2
i

σ
γ

i

. (3.11)

In Sections 4 and 5, we shall respectively solve Problems (3.9) and (3.10) and establish desirable
properties of the optimal solutions. The solution to Problem (3.11) and its relation to Problem (3.10)
will be discussed in Section 6.

4. Unconstrained residual risk sharing
In this section, we shall solve Problem (3.9) (and thus Problem (2.1)) and then compare the solution
to Problem (2.2), which has been studied in Feng et al. (2020). The comparison will demonstrate that,
compared to the linear whole risk sharing, the linear residual risk sharing is more flexible, more effective
in reducing risk, and more robust.

Theorem 4.1. The optimal solution of Problem (2.1) is given by:

Li = E[Ci] + 1

n

n∑
s=1

(Cs − E[Cs]), i = 1, . . . , n. (4.1)

Proof. It immediately follows from the inequality:
n∑

i=1

a2
i ≥

(∑n
i=1 ai

)2

n
= 1

n
,

with equality obtained at a1 = · · · = an = 1
n
. �

Theorem 4.1 indicates that the optimal strategy to minimize the total post-transfer variance is for all
the participants to equally share the total residual risk

n∑
s=1

(Cs − E[Cs]). This is analogous to the uniform

risk sharing strategy (see Denuit et al. (2021)), except applying to the residual risks but not the whole
risks.
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Under this risk sharing strategy, post-transfer variances are given by:

Var[Li] = 1

n2
Var

[
n∑

i=1

Ci

]
, i = 1, . . . , n. (4.2)

Clearly, under this risk sharing arrangement, the total riskiness of the pool is significantly reduced in
the sense that

n∑
i=1

Var[Li] = 1

n
Var

[
n∑

i=1

Ci

]
≤

n∑
i=1

Var[Ci]. (4.3)

Furthermore, if the pre-transfer risks are sufficiently diversified in the sense that

1

n2
Var

[
n∑

i=1

Ci

]
≤ Var[C1] = min

1≤i≤n
Var[Ci],

then the diversification benefit will be extended to each participant so that his/her post-transfer variance
will be less than the pre-transfer variance. If the above diversification condition is not satisfied, then not
all participants will enjoy a reduced post-transfer variance. In that case, the variance reduction constraint
should be incorporated to yield a more reasonable risk sharing scheme. This problem will be studied in
Section 5.

In the rest of this section, we investigate the difference between the linear residual risk sharing prob-
lem (3.9) and the linear whole risk sharing problem (2.2). To this end, we first note that Problem (2.2)
has been studied in Feng et al. (2020). Below, we cite their solution to Problem (2.2).

Theorem 4.2. (Theorem 1 of Feng et al. (2020)). The solution to Problem (2.2) is

(P1, . . . , Pn)
T = A(C1, . . . , Cn)T ,

with A ∈R
n×n specified by:

A = 1

n
eeT + k(I − eeT)μμT�−1,

where I ∈R
n×n is the identity matrix, e = (1, . . . , 1)T ∈R

n×1, μ = (μ1, . . . , μn)T and � are, respectively,
the mean vector and covariance matrix of (C1, . . . , Cn), and k−1 = μT�μ.

Recalling that Problem (2.2) is a sub-problem of Problem (2.1) (and thus Problem (3.9)) in the sense
that the optimization domain of Problem (2.1) is a subset of that of Problem (2.1), it is anticipated
that the optimal solution to Problem (3.9) will result in a lower total post-transfer variance than the
optimal solution to Problem (2.2). In the following, we confirm this through a direct comparison between∑n

i=1 Var[Pi] and
∑n

i=1 Var[Li] and further uncover the relationship between these two problems.

Proposition 4.3. Let (L1, . . . , Ln) and (P1, . . . , Pn) be the solutions to Problems (2.1) and (2.2),
respectively. Then,

n∑
i=1

Var[Li] ≤
n∑

i=1

Var[Pi],

with the equality attained if and only if μ1 = · · · = μn.

Proof. Feng et al. (2020) obtain that

Var[Pi] = 1

n2
eT�e + kμ2

i − k

n2

(
n∑

i=1

μi

)2

.
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Thus,

n∑
i=1

Var[Pi] = 1

n
eT�e + k

n∑
i=1

μ2
i − k

n

(
n∑

i=1

μi

)2

.

According to (4.2),

n∑
i=1

Var[Li] = 1

n
Var

[
n∑

i=1

Ci

]
= 1

n
eT�e.

Therefore,

n∑
i=1

Var[Li] ≤
n∑

i=1

Var[Pi] ⇐⇒
(

n∑
i=1

μi

)2

≤ n
n∑

i=1

μ2
i ,

which holds true according to Cauchy–Schwarz inequality, with the equality attained if and only if
μ1 = · · · = μn. �

When μ1 = · · · = μn, it is easy to verify the following two facts:

(i) A = 1
n
eeT , and thus Pi = 1

n

∑n
s=1 Cs for each i = 1, . . . , n.

(ii) Li = E[Ci] + 1
n

n∑
s=1

(Cs − E[Cs]) = 1
n

∑n
s=1 Cs for each i = 1, . . . , n.

In other words, when μ1 = · · · = μn, the optimal linear whole risk sharing strategy coincides with
the optimal linear residual risk sharing strategy. This is the only scenario when the total post-transfer
variance obtained by former strategy reaches the same level as the latter strategy. For all other scenarios,
it is always strictly greater. This confirms that the augmentation of Problem (2.2) to Problem (2.1) is not
trivial.

In addition to reduction in the total post-transfer variance, the optimal linear residual risk sharing
strategy also possesses a few other advantages over the linear whole risk sharing strategy. First, as pointed
out in Section 3, the linear residual risk sharing strategy is risk anonymous, while the linear whole risk
sharing strategy is generally not. Second, the optimal sharing ratios in the residual risk sharing model,
namely 1

n
for each participant, do not rely on the distributional characteristics of the pre-transfer risks

and thus ensures robustness to model uncertainty or estimation error in practical implementation. Lastly,
the total post-transfer variance obtained by the optimal linear residual sharing strategy is more robust
to the covariance matrix of the pre-transfer risks in the sense that it is less sensitive to the change in the
covariance matrix, as demonstrated by the following proposition.

Proposition 4.4. Let
(
CH

1 , . . . , CH
n

)
and

(
CL

1 , . . . , CL
n

)
be two sets of pre-transfer losses with the same

mean vector and different covariance matrices �H and �L. Let (L∗
1, . . . , L∗

n) and (P∗
1, . . . , P∗

n), respec-
tively, represent the post-transfer risks of (C∗

1 , . . . , C∗
n), respectively, under the optimal linear residual

risk sharing strategy and the optimal linear whole risk sharing strategy, where ∗ indexes H and L. If
�H − �L is positive definite, then

n∑
s=1

Var[Li]
H −

n∑
s=1

Var[Li]
L ≤

n∑
s=1

Var[Pi]
H −

n∑
s=1

Var[Pi]
L. (4.4)

Proof. According to the proof of Proposition 4.3, we have

n∑
i=1

Var[Li] = 1

n
eT�e and Var[Pi] = 1

n2
eT�e + kμ2

i − k

n2

(
n∑

i=1

μi

)2

.
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Therefore,
n∑

s=1

Var[Li]
H −

n∑
s=1

Var[Li]
L = 1

n2
eT
(
�H − �L

)
e, (4.5)

n∑
s=1

Var[Pi]
H −

n∑
s=1

Var[Pi]
L = 1

n2
eT
(
�H − �L

)
e + (kH − kL

) ( n∑
i=1

μ2
i − nμ̄

)
. (4.6)

Thus, it suffices to show that kH − kL ≥ 0. Noting that k−1 = μT�μ, we have

kH − kL = kHkL

(
1

kL
− 1

kH

)
= kHkLμT

((
�L
)−1 − (�H

)−1
)
μ ≥ 0, (4.7)

where the last inequality follows from the fact that
(
�L
)−1 − (�H

)−1 is positive definite according to
Corollary 7.7.4 of Johnson and Horn (2012). �

5. Constrained residual risk sharing
While the unconstrained residual risk sharing model (2.1) as well as its solution, as studied in Section 4,
possesses many desirable properties, it is not without problem. As mentioned in the comments following
Theorem 4.1, if the pre-transfer risks are not sufficiently diversified, then some participants may end up
a post-transfer variance that is higher than the pre-transfer variance. This limitation thus motivates the
addition of the variance reduction constraint Pvr.

Furthermore, Theorem 4.1 indicates that, in the unconstrained setup, the optimal linear residual risk
sharing strategy leads to equal post-transfer variances for all participants. Recalling that the pre-transfer
variances are ordered as Var[C1] ≤ · · · ≤ Var[Cn], we have Var[Li]

Var[Ci]
≥ Var[Lj]

Var[Cj]
for any i < j. This means, a

low-risk participant will enjoy a lower risk mitigation efficiency (measured by the ration of the post-
transfer and pre-transfer variances) by joining the risk sharing scheme. This somehow discourage the
participation of the participants with low pre-transfer variances, which is typically regarded as high-
qualify clients. To address this limitation, the retention consistent constraint Pγ

rc is imposed.
The addition of the constraints of Pvr and Pγ

rc leads to the study of Problem (2.4), or equivalently,
Problem (3.10). In this section, we shall derive the solution to this problem and discuss the desirable
properties of the optimal solution.

5.1. Optimal solution to Problem (3.10)
A preliminary investigation reveals that the optimal solution to Problem (3.10) relies on the dependence
structure among the pre-transfer risks C1, . . . , Cn. In order to better present the optimal solutions, we
introduce the following sets to characterize different dependence scenarios:

Define

U0 =
{

(C1, . . . , Cn)
∣∣∣σS ≤ nσ1

}
Un =

{
(C1, . . . , Cn)

∣∣∣σS =
n∑

i=1

σi

}
.

Noting that (C1, . . . , Cn) ∈ Un if and only if C1, . . . , Cn are perfectly linearly correlated, that is, the cor-
relation coefficients of (Ci, Cj), ρij, is equal to 1 for any i �= j. In this sense, Un represents the strongest
possible dependence scenario. On the contrary, U1 represents the spectrum of dependence strength on
the lower end. Note that in the discussion following Theorem (4.1), the term “sufficiently diversified”
described by (4.3) corresponds to (C1, . . . , Cn) ∈ U0 with γ = 0. In order to partition the spectrum of
dependence strength between U0 and Un, assume γ ∈ [0, 1] and define

Uk = {(C1, . . . , Cn) |dk ≤ σS < dk+1} ,

with dk = σ
1−γ

k ·
n∑

i=k

σ
γ

i +
k−1∑
i=1

σi for k = 1, . . . , n − 1.
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σ1

σ2

σ3

σn

1 1 1 1

(a)

γ = 0

1

σ1 σ2 σ3 σn

(b)

γ = 1

Figure 2. “Step-shaped water tank” graphical interpretation.

Note that dk+1 − dk = (σ 1−γ

k+1 − σ
1−γ

k

)∑n
i=k+1 σ

γ

i ≥ 0 only when γ ∈ [0, 1]. However, for the case of
γ > 1, a similar partition can be defined by switching ak+1 and ak, and the study of the solution to
Problem (3.10) can be conducted in a similar manner. Throughout the paper, we shall focus on the case
of γ ∈ [0, 1] unless otherwise indicated.

To obtain an intuitive image of the sets U0, U1, . . . , Un and better understand the main results in this
section, we develop the following “filling a stepped water tank” graphical interpretation for the case
γ = 0. Suppose there are n two-dimensional rectangle tanks, as shown in Figure 2(a). These tanks are
capped from above at the heights of σ1, . . . , σn, respectively. The rectangle tanks are connected on the
sides and form a big stepped tank. Let the “volume” of the water in the tank represents the quantity
σS = σ

(∑n
i=1 Ci

)
. When the (highest) water line reaches the level of σn, the volume of the water equals

to
∑n

i=1 σi, corresponding to the category Un. When the water line is below or at the level of σ1, it corre-
sponds to the category U0. When the water line moves between the level of σ1 and σn, it will respectively
resemble the categories of U1, . . . , Un−1. For the general case of γ ∈ (0, 1], the filling-tank interpretation
still works by adjust the dimensions of rectangular tanks. Specifically, set the base and height of each
individual tank to be σ

γ

i and σ
1−γ

i , respectively, so that the capacity of each tank remains at the level of
σi. Notably, when γ = 1, the big tank becomes a regular rectangle, as shown in Figure 2(b).

Clearly, the categorization of (C1, . . . , Cn) is determined by the values of σ1, . . . , σn and the cor-
relation coefficients {ρij, 1 ≤ i < j ≤ n}. We assume that all correlation coefficients are nonnegative
throughout the paper. Furthermore, denote

ρl = min{ρij, 1 ≤ i < j ≤ n}, ρu = max{ρij, 1 ≤ i < j ≤ n}. (5.1)

The following proposition provides a sufficient conditions for the categorization of (C1, . . . , Cn) under
the scenario γ = 0.

Proposition 5.1 Consider the case of γ = 0.

(i) (C1, . . . , Cn) ∈ ∪k
i=0Ui, i.e, σS <

∑k
i=1 σi + (n − k)σk+1, if

σ 2
k+1 >

(
ρu + 1 − ρu

n − k

)
σ 2

n . (5.2)

(ii) (C1, . . . , Cn) ∈ ∪n
i=k+1Ui, that is, σS ≥∑k

i=1 σi + (n − k)σk+1, if one of the following conditions
is satisfied (

ρl + 1 − ρl

n − k − 1

)
σ 2

k+2 ≥
(

ρl + (1 − ρl)
n2 − k − 1

(n − k − 1)2

)
σ 2

k+1, (5.3)

σk+2 ≥ n/
√

ρl − k − 1

n − k − 1
σk+1. (5.4)

Proof. See Appendix A.1 in the supplementary document. �
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(5.2) and (5.3) give sufficient conditions for (C1, . . . , Cn) to fall in the lower k + 1 categories and the
upper n − k categories, respectively. Combining these two conditions yields a sufficient condition for
(C1, . . . , Cn) ∈ Uk. (5.2) indicates that, for (C1, . . . , Cn) to fall in the lower k + 1 categories, the riskiness
levels, namely, σk+1, . . . , σn, of the n − k largest risks should stay relatively close to each other, avoid-
ing significant dispersion. This condition is relatively easy to be satisfied when the overall dependence
strength (characterized by ρu) is low and n is large. On the other hand, (5.3) implies that the riskiness
levels of (n − k) largest risks and those of the other k risks should be apart enough for (C1, . . . , Cn) to
fall in the upper n − k categories. The condition becomes less restrictive when the overall dependence
strength, as measured by ρl, increases. This is more clearly illustrated by Condition (5.4).

For the cases with general γ ∈ [0, 1], it is easy to verify the following statements.

Proposition 5.2. Consider the general case of γ ∈ [0, 1].

(i) If σ1 = · · · = σn, then (C1, . . . , Cn) ∈ U0.
(ii) If ρij = 1 for any 1 ≤ i < j ≤ n, then (C1, . . . , Cn) ∈ Un.
(iii) If ρij = 0 for any 1 ≤ i < j ≤ n and σ 2

n ≤ (n + 1)σ 2
1 , then (C1, . . . , Cn) ∈ U0.

Proposition 5.2(ii) and (iii) confirm the intuition that the categorization of (C1, . . . , Cn) is closely
related to the dependence strength. Specifically, as the dependence strength increases, it is more likely
for (C1, . . . , Cn) to fall into upper categories. Another factor that affects the categorization is the degree
of the dispersion of the riskiness level. As suggested by Proposition 5.2(i), when the riskiness levels
become equal1, (C1, . . . , Cn) will always stay in the lowest category U0.

Theorem 5.3. Assume γ ∈ [0, 1] and (C1, . . . , Cn) ∈ Uk for k ∈ {0, 1, . . . , n}, the optimal sharing ratios,
{a1, . . . , an}, that solve Problem (3.10) are given by:

ai =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σi

σS

, for i = 1, . . . , k;

σS −∑k
j=1 σj

σS

× σ
γ

i∑n
j=k+1 σ

γ

j

, for i = k + 1, . . . , n,

(5.5)

with the convention of
∑0

j=1 xj = 0. Under the optimal risk sharing strategy, the post-transfer standard
deviations are specified by:

σ (Li) =

⎧⎪⎨⎪⎩
σi, for i = 1, . . . , k;(
σS −∑k

j=1 σj

)
× σ

γ

i∑n
j=k+1 σ

γ

j

, for i = k + 1, . . . , n.
(5.6)

Proof. See Appendix A.2 in the supplementary document. �
For the case γ = 1, the structure of the optimal solution can be significantly simplified.

Proposition 5.4. When γ = 1, the optimal sharing ratios that solve Problem (3.10) are given by:

ai = σi∑n
j=1 σj

, i = 1, . . . , n. (5.7)

Proof. Note that when γ = 1, d1 = · · · = dn =∑n
i=1 σi. Thus, U1, . . . , Un−1 all degenerate to ∅, and

U0 =
{

(C1, . . . , Cn)

∣∣∣∣∣σS <

n∑
i=1

σi

}
, and Un =

{
(C1, . . . , Cn)

∣∣∣∣∣σS =
n∑

i=1

σi

}
.

1The assumption of σ1 < · · · < σn was made to simplify the discussions and is not a strict requirement.
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σ
1−γ
1

σ
1−γ
2

σ
1−γ
3

σ
1−γ
n

σγ
1 σγ

2 σγ
3 σγ

4

σ(L1) σ(L2) σ(L3) σ(L4)

Figure 3. Visualization of Theorem 5.3.

Following (5.5), we have

(i) When (C1, . . . , Cn) ∈ U0,

ai =
σS −∑0

j=1 σj

σS

× σi∑n
j=1 σj

= σi∑n
j=1 σj

, for i = 1, . . . , n. (5.8)

(ii) When (C1, . . . , Cn) ∈ Un, σS =∑n
j=1 σi, and

ai = σi

σS

= σi∑n
j=1 σj

, for i = 1, . . . , n. (5.9)
�

Below we develop graphical interpretations of Theorem 5.3 and Proposition 5.4. Construct n
rectangular tanks with the base-height dimension of

{(
σ

γ

1 , σ 1−γ

1

)
, . . . ,

(
σ γ

n , σ 1−γ
n

)}
, respectively. The

capacities of the tanks serve as an visualization of the pre-transfer standard deviations, namely,
σ1, . . . , σn. Due to the assumption of variance reduction, we naturally use a portion of each tank’s capac-
ity to represent the post-transfer standard deviation σ (Li), as visualized by the shaded rectangular area
in Figure 3. With this setup, the γ -retention consistency

σ (L1)

σ
γ

1

≤ · · · ≤ σ (Ln)

σ
γ
n

, (5.10)

can be interpreted as the heights of shaded rectangles should be in an ascending order, as shown in
Figure 3.

Recall that the goal is to minimize
∑n

i=1 [σ (Li)]2, while
∑n

i=1 [σ (Li)] = σS due to the linearity among
L1, . . . , Ln proved in Theorem 3.1. In order to attain the minimum, (σ (L1), . . . , σ (Ln)) should be least
majorized (Theorem 1.12 in Khan et al. (2019)), meaning that the values of σ (L1), . . . , σ (Ln) should
stay as close as possible. Note that the heights and bases of shaded rectangles are both ascending ordered
and the bases are fixed. The requirement of least majorization forces to the heights to stay at the same
level whenever possible.

Suppose all rectangle tanks are connected on the sides and form a step-shaped tank. Consider the
experiment of filling water into this big tank. The volume of the water represents the standard deviation,
σS, of the aggregate risk. Note that as the water flows in (σS increases), the waterline in each rectangle
tank stays the same, until it reaches the individual caps, σ1, . . . , σn. In this sense, this “filling water”
process properly simulates the minimization problem with the constraints of variance reduction and
γ -retention consistency. Therefore, the volume of water that ends up in each rectangle tank gives the
optimal post-transfer standard deviation.

Specifically, when (C1, . . . , Cn) ∈ U0, that is, σS < σ
1−γ

1

n∑
i=1

σ
γ

i , the waterline would not touch the low-

est cap σ1 and stays at the same level for all rectangle tanks. Thus, each rectangle tank receives water of
volume proportional to its base, leading to σ (Li) = σ

γ
i

σ
γ
k+1+···+σ

γ
n

× σS or equivalently, ai = σ
γ
i

σ
γ
k+1+···+σ

γ
n

for all
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i = 1, . . . , n. When (C1, . . . , Cn) ∈ Uk, the total volume of water σS satisfies

σ
1−γ

k

n∑
s=k

σ γ

s +
k−1∑
s=1

σs ≤ σS < σ
1−γ

k+1

n∑
s=k+1

σ γ

s +
k∑

s=1

σs.

Thus, the first k − 1 rectangle tanks will be fully filled, and the rest rectangle tanks share the remainder
volume proportional to their bases. This leads to formula (5.5).

For the case of γ = 1, the bases of the rectangular tanks become σ1, . . . , σn and their heights all equals
to 1. Thus, the combined tank degenerates to a big rectangular tank without the stepped shape. Therefore,
the filling water process becomes relatively straightforward: all individual tanks always proportionally
share the total volume.

5.2. Properties of the optimal solution
In this subsection, we establish some properties of the optimal solution to Problem (2.4), including the
behaviors of both the optimal sharing ratios and post-transfer risks. These results further demonstrate
the desirability of the residual risk sharing model.

Proposition 5.5 The optimal post-transfer variances satisfy the following properties:

(a) Low risk, low sharing ratio: For any i < j, ai ≤ aj.
(b) Pre-/post-riskiness consistency:

For any i < j, Li has less variability than Lj in the following senses:
(i) |Li − E[Li]| ≤a.s. |Lj − E[Lj]|
(ii) |Li − E[Li]| ≤cx |Lj − E[Lj]|

(c) High risk, high reduction: σi − σ (Li) ≤ σj − σ (Lj) for any i < j.
(d) Monotonicity in pre-transfer standard deviation: σ (Li) increases as σi increases.

Proof. Suppose (C1, . . . , Cn) ∈ Uk, which implies σS ≥ dk = σ
1−γ

k

∑n
s=k σ γ

s +∑k−1
s=1 σs.

(a) For any i < j ≤ k, ai = σi
σS

≤ σj

σS
= aj.

For any k + 1 ≤ i < j, it holds that

ai = σS − (σ1 + · · · + σk)

σS

× σ
γ

i

σ
γ

k+1 + · · · + σ
γ
n

≤ σS − (σ1 + · · · + σk)

σS

× σ
γ

j

σ
γ

k+1 + · · · + σ
γ
n

= aj.

For any i ≤ k and j ≥ k + 1, noting that ai ≤ ak and aj ≥ ak+1, it suffices to prove that ak ≤ ak+1, or
equivalently

σk

σS

≤ σS − (σ1 + · · · + σk)

σS

× σ
γ

k+1

σ
γ

k+1 + · · · + σ
γ
n

, (5.11)

which holds true due to the assumption of (C1, . . . , Cn) ∈ Uk.

(b) Recall from (3.1) that Li − E[Li] = ai(S − E[S]). b(i) immediately follows from (a) and b(ii)
follows from Theorem 3.A.18 of Shaked and Shanthikumar (2007).

(c) For any i ≤ k, σ (Li) = σi, and thus σi − σ (Li) = 0 ≤ σj − σ (Lj) for any j > i.

For any i > k, note that

σi − σ (Li) = σ
γ

i ×
(

σ
1−γ

i − σS − (σ1 + · · · + σk)

σ
γ

k+1 + · · · + σ
γ
n

)
. (5.12)
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Since both factors on the right-hand side are nonnegative and increasing in i, the conclusion of (b)
immediately follows.

(d) For any i ≤ k, σ (Li) = σi and is thus clearly increasing in σi.

For i > k, σ (Li) = (σS − (σ1 + · · · + σk)) × σ
γ
i

σ
γ
k+1+···+σ

γ
n

. Since all the correlation coefficients are
assumed to be nonnegative, it is easy to conclude that σS increases as any σi increases. Therefore, both
factors of σ (Li) are increasing in σi, which implies that σ (Li) is increasing in σi. �

Although Property b(i) and b(ii) follow from Property (a), they have different focus. While Property
(a) describes the behavior of the optimal sharing ratios, Property (b) compares the riskiness level of
the post-transfer risks. Specifically, it indicates that participant with a lower pre-transfer risk will end
up with a lower post-transfer risk. The post-transfer risks are ordered not only in term of variance (as
implied by b(i)) but also in much more strong senses as described in b(i) and b(ii). Property b(ii) is also
referred to as Li is less than Lj in dilation order, which compares the variability of random variables.
More discussions of this order can be found in Shaked and Shanthikumar (2007). Note that Property
b(i) and b(ii) do not imply each other.

Properties (a) and (c) in Proposition 5.5 bear straightforward interpretations through Figure 3.
Specifically, σ (Li) and σi − σ (Li) are, respectively, represented by the shaded area and unshaded area in
the ith rectangle tank. For two tanks sharing the same waterline, the one with the wider base naturally has
a larger shaded area and a larger unshaded area. When one or both tanks are fully filled, the comparison
is also clearly demonstrated by Figure 3.

The properties established in Proposition 5.5 confirm the desirability of the residual risk sharing
model in favoring practice. Specifically, Properties (a) and (b) serve as the riskiness fairness, that is,
the participant with a lower pre-transfer risk will end up with a lower risk sharing ratio and a lower
post-transfer risk (in multiples senses). Meanwhile, Property (c) encourages the participation of agents
with high riskiness levels, because they will enjoy a larger reduction in riskiness. Property (d) ensures
that no one would benefit by intentionally increasing the level of riskiness (the pre-transfer variance)
and thus prevents moral hazard to certain extent.

In practice, a valid concern is whether a risk sharing program is sustainable. Specifically, whether the
mechanism discourages existing participants from staying or new participants from joining. The ratio-
nale for an existing participant to remain in the program is ensured by the variance reduction condition.
Below, we investigate the motivation for a new participant to join.

Let Cn+1 be the risk to be added to the original risk pool, namely, {C1, . . . , Cn}. Denote by σn+1 the
standard deviation of Cn+1 and by {ρi n+1} the correlation coefficient between Cn+1 and Ci for i = 1, . . . , n.
Furthermore, define

ρ̂h = max
1≤i≤n

ρi n+1. (5.13)

Denote S =∑n
i=1 Ci and Ŝ =∑n+1

i=1 Ci. Let L1, . . . , Ln and L̂1, . . . , L̂n, L̂n+1 represent the post-transfer
risks, respectively, for the original risk pool and augmented risk pool (with the addition of Cn+1) under
the optimal strategy.

Proposition 5.6. The addition of Cn+1 benefits every existing participant in the sense that Var[̂Li] ≤
Var[Li] for i = 1, . . . , n, if

σn+1 ≤ 2

(
1 − n (ρ̂h − ρl)

1 − ρl

) ∑n
j=1 σi

n − 1
. (5.14)

Proof. See Appendix A.3 in the supplementary document. �
Proposition 5.6 provides a sufficient condition, (5.14), for it is sensible to enlarge the size of the

risk pool, and thus makes the risk sharing program sustainable. This condition is referred to as sus-
tainability condition. It indicates that, for a new risk to be added, its riskiness level, σn+1, should not
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exceed the threshold 2
(

1 − n(ρ̂h−ρl)
1−ρl

) ∑n
j=1 σi

n−1
, which can be regarded the baseline 2

∑n
j=1 σi

n−1
adjusted by a

factor reflecting the dependence structure. The baseline is slightly above two times the average riskiness
of the existing pool, which serves as a reasonable upper bound. The adjustment factor, n(ρ̂h−ρl)

1−ρl
, reflects

the competitive impacts of the dependence strength among the existing risks, characterized by ρl, and
the dependence strength between the new risks and the existing risks, characterized by ρ̂h. In particular,
the adjustment factor is negative if ρ̂h > ρl, indicating a more restrictive sustainability condition. This
is because the addition of Cn+1 introduces a highly dependent risk and thus weakens the diversification
effect among the existing risks.

6. Other relevant models
In this section, we study a few problems relevant to Problem (2.4). Through uncovering the connections
among these problems, we gain insights on how to formulate the risk sharing problems in a more general
setup.

To this end, we recall Problems (2.3) and (2.7) below:

min
(L1,...,Ln)∈Cvr

n∑
i=1

Var[Li],

min
(L1,...,Ln)∈C1

rc

n∑
i=1

Var[Li].

Clearly, Problems (2.3) and Problem (2.7) are a modification of Problem (2.5) and Problem (2.6)
(which are two special cases of Problem (2.4)), respectively. Each modification lies in the omission
of one constraint, namely the constraint of (L1, . . . , Ln) ∈ C0

rc for Problem (2.3) and the constraint of
(L1, . . . , Ln) ∈ Cvr for Problem (2.7). Interestingly, such an omission does not alter the optimal solu-
tion. In other words, Problems (2.3) and (2.5) are equivalent, and so are Problems (2.7) and (2.6), as
demonstrated by the following propositions.

Proposition 6.1. Problem (2.3) and Problem (2.5) are equivalent.

Proof. See Appendix B.1 in the supplementary document. �
Compared to Problem (2.3), Problem (2.5) has an additional constraint: 0-retention consistency. The

equivalence between these two problems indicates that this constraint is redundant. As demonstrated by
the proof, the solution to (2.3) inherently satisfies the constraint of 0-retention consistency, even without
imposing this condition. This can be intuitively explained by the water-filling model. By the nature of
water-filling, the waterline will start with the same level across individual tanks until it reaches the caps,
from low to high, respectively. This guarantees that the volume of water in a tank with a lower cap
would never exceed that in tank with a higher caps, which is exactly the requirement of the 0-retention
consistency.

Similarly, we have the equivalence between Problem (2.7) and Problem (2.6).

Proposition 6.2. Problem (2.7) and Problem (2.6) are equivalent.

Proof. See Appendix B.2 in the supplementary document. �
The equivalence between Problems (2.6) and (2.7) indicates the redundancy of the variance reduction

condition in the presence of the constraint of 1-retention consistency. Indeed, when 1-retention consis-
tency is considered, the water-filling process is simplified because the step-shaped tank degenerates to a
regular rectangle, as shown in Figure 2(b). When the total volume of water, σS, reaches its highest pos-
sible value,

∑n
i=1 σi, the water volume in individual tanks simultaneously reach the levels of σ1, . . . , σn,

respectively, leading to an inherent fulfillment of the variance reduction constraint.
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Proposition 6.3. Problems (2.4) and (2.8) are equivalent.

Proof. See Appendix B.3 in the supplementary document. �
The constraint of γ -retention consistency in Problem (2.4) reflects the degree of discrepancy in risk

attitudes among the participants. Specifically, a larger value γ signifies a greater discrepancy in the
maximum riskiness levels that different participants can tolerate, in the sense that Var[Li]

Var[Lj]
≤ σ

γ
i

σ
γ
j

for any
i < j. The equivalence between Problems (2.4) and (2.8) suggests that the constraint on the discrepancy
of risk attitudes can be inherently incorporated by reshape the objective function, into a weighted average
format. This equivalence provides a new perspective for understanding Problem (2.4) and offers insights
for formulating and solving more general problems. For instance, when considering risk measures other
than variance, the discrepancy in risk attitudes based on the new measures may be challenging to study
in the format of γ -retention consistency. However, it might be more manageable when incorporated into
a weighted average objective function. This is subject to further investigation.

7. Case studies
In this section, we present two case studies to demonstrate the effectiveness of the residual risk sharing
strategy. We also analyze the behavior of post-sharing risks within these scenarios and discuss potential
avenues for future research inspired by these observed behaviors.

7.1. The two-agent model
In this subsection, we illustrate the effectiveness of the residual risk sharing model in variance reduction
using a toy model with only two agents and examine how the effects of variance reduction vary across
different models under varying constraints.

Let C1 and C2, respectively, denote the pre-transfer risks from Participant 1 and Participant 2. Their
standard deviations are, respectively, denoted as σ1 and σ2. Assume the correlation coefficient between
C1 and C2 is ρ.

Suppose the goal is to minimize the total post-transfer variance, without imposing any additional
constraints, that is to solve the unconstrained risks sharing problem (2.1). According to Theorem 4.1,
the optimal risk sharing strategy is given by:

Li = E[Ci] + 1

2
(C1 + C2 − E[C1] − E[C2]), for i = 1, 2.

The total variance of the post-transfer risks is given by:

Var[L1] + Var[L2] = 1

2
Var[C1 + C2] = 1

2

(
σ 2

1 + σ 2
2 + 2ρσ1σ2

)
.

It is easy to verify that the total variance of the post-transfer risks is lower than that of the pre-transfer
risks, which is expected as variance reduction is the primary goal of the risk sharing. To quantify the
effect of variance reduction, we use the concept of variance reduction ratio as discussed in Feng et al.
(2020). Specifically, the variance reduction ratio is calculated as:

1 − Var[L1] + Var[L2]

Var[C1] + Var[C2]
= 1

2
− ρ ·

(
σ2

σ1

+ σ1

σ2

)−1

. (7.1)

(7.1) indicates that the variance reduction ratio is determined solely by the correlation coefficient and
the ratio of the two standard deviations. This relationship allows us to make several observations.

First, for a fixed ratio of σ2/σ1, the variance reduction ratio decreases as the correlation coefficient
ρ increases. This aligns with the intuition that lower correlation leads to greater diversification. In par-
ticular, if ρ = −1, the variance reduction ratio reaches it maximum possible value 1 when σ1 = σ2, as
the two risks would perfectly hedge each other and result in a zero total post-transfer variance. On the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2024.37
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.53, on 04 Nov 2025 at 03:40:41, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/asb.2024.37
https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2024.37
https://www.cambridge.org/core


ASTIN Bulletin 531

ρ = −0.5

σ1

σ 2

0.5 0.7 0.9

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ρ = −0.25

σ1

σ 2

0.5 0.7 0.9

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ρ = 0.25

σ1

σ 2

0.5 0.7 0.9
1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ρ = 0.5

σ1

σ 2

0.5 0.7 0.9

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Figure 4. Percentage variance reduction for unconstrained residual risk sharing.

contrary, if ρ = 1, the variance reduction ratio reaches its minimum value 0 when σ1 = σ2, as the two
risks would be perfectly correlated, completely eliminating the diversification effect.

Second, when the correlation coefficient is positive, the variance reduction ratio attains its minimum
when σ2/σ1 = 1 and increases as this ratio moves away from 1 in either direction. This observation sug-
gests that the residual risk sharing mechanism favors risk pools with a greater disparity in risk levels.
In other words, the larger the difference between σ1 and σ2, the greater the potential variance reduction
achieved through residual risk sharing. This somehow contrasts with the traditional insurance preference
for pooling homogeneous risks over heterogeneous ones. Indeed, a closer examination reveals that when
σ2/σ1 is large, the unconstrained optimal risk sharing strategy may not be fair. The significant reduc-
tion in total variance is achieved by transferring variance from the larger risk C2 to the smaller risk C1,
potentially resulting in the smaller risk having a post-transfer variance that exceeds its pre-transfer vari-
ance. This situation is clearly undesirable and motivates the constrained risk sharing models discussed
in Section 2, which will be demonstrated in the upcoming case studies.

The above observations are illustrated in the contour plots of the variance reduction ratio as a function
of σ1 and σ2, as shown in Figure 4. The four contour plots correspond to different levels of the correlation
coefficient ρ. Each contour is labeled with a value indicating the variance reduction ratio. Notably, each
contour is a straight line, confirming that for a fixed ρ, the variance reduction ratio depends solely on the
ratio σ2/σ1. The relations of the variance reduction ratio to ρ and to σ2/σ1 are, respectively, demonstrated
by the comparison across different plots and the examination of contour values within each plot.

In the following, we use the two-agent model to demonstrate the solution to Problem (2.5), the optimal
risk sharing problem with the constraints of variance reduction and 0-retention consistency. As seen in
(7.1), the variance reduction ratio is a function of σ2/σ1. To closely study the behavior of this function
in the constrained model, we denote r = σ2/σ1 and assume r ≥ 1.

Following Theorem 5.3, the post-transfer variances of the two agents under the optimal risk sharing
strategy are specified as follows:

(i) If σ (C1 + C2) < 2σ1, or equivalently, 2ρr + r2 < 3,

Var[L1] = Var[L2] = 1

4

(
σ 2

1 + σ 2
2 + 2ρσ1σ2

)= 1

4
σ 2

1

(
1 + 2ρr + r2

)
.
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Figure 5. Percentage total variance reduction for residual risk sharing satisfying variance reduction
and 0-retention consistency.

(ii) If σ (C1 + C2) ≥ 2σ1, or equivalently, 2ρr + r2 ≥ 3,

Var[L1] = σ 2
1 and Var[L2] = (σ (C1 + C2) − σ1)2 = σ 2

1

(√
1 + 2ρr + r2 − 1

)
.

The total variance reduction ratio can be expressed as:

1 − Var[L1] + Var[L2]

Var[C1] + Var[C2]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
− ρr

1 + r2
if 2ρr + r2 < 3

2
(√

1 + 2ρr + r2 − 1 − ρr
)

1 + r2
if 2ρr + r2 ≥ 3

. (7.2)

The behavior of the variance reduction ratio as a function of ρ is similar to that in the unconstrained
model, as discussed earlier in this section. However, its behavior as a function of r = σ2/σ1 differs sig-
nificantly. Specifically, in the unconstrained model with a positive correlation coefficient, the variance
reduction ratio increases with r ∈ [1, ∞), reaching its maximum as r → ∞, which, as previously noted,
raises fairness concerns. In the constrained model, however, this is no longer the case; it is evident that
the variance reduction ratio falls to zero as r approaches infinity. A numerical analysis shows that the
optimal variance reduction ratio of 0.265 is achieved at r = 1.603 when ρ = 0.5, which aligns more
closely with our intuition.

The behavior of the variance reduction ratio is illustrated by the contour plots in Figure 5. In the plots
for ρ = 0.25 and ρ = 0.5, note that the two contour lines in the lower right corner have repeating values,
indicating a maximum is reached between them. This contrasts with the consistent trend observed in
Figure 4, reflecting the different behavior of the variance reduction ratio as a function of σ2/σ1 discussed
above.
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7.2. Application to flood insurance
In this subsection, we apply the residual risk sharing strategy to a flood risk pool, which is studied in
Feng et al. (2020). We shall investigate the effectiveness of the residual risk sharing strategy and compare
it to the study in Feng et al. (2020). Through this case study, we shall also illustrate the impact of the
constraint of γ -retention consistency at different levels of γ , which reflect the degree of discrepancy in
risk attitude.

The data for this study is sourced from the US National Flood Insurance Program (NFIP), as docu-
mented in FEMA (2020). This dataset includes millions of publicly available records spanning decades
of issued flood insurance policies. To make our study comparable to that of Feng et al. (2020), we focus
on claims filed within the United States between 2000 and 2019. We further narrow the dataset to claims
related to single-floor properties, which allow for direct comparison without additional normalization
for property size or type.

Each state is treated as one participant of the peer-to-peer insurance program. Using the prepared
dataset, the total payment amount for flood claims in each quarter for each state is calculated and used
as a data point of the state’s flood risk. In this way, a sample of 40 data points for each state is created,
so is a joint sample representing the risk vector formed by the combined risks of all 50 states. From this
sample, we estimate the standard deviations of each individual state’s risk and of the aggregate risk.
We then apply the optimal residual risk sharing strategies under the unconstrained model (2.1) and the
constrained model (2.4) with γ = 0 and γ = 1, respectively, and evaluate both the overall and individual
variance reduction ratios for each state according to the formulas in Theorems 4.1 and 5.3. The results
are summarized in Tables 1 and 2.

Table 1 presents the variance reduction ratios (in the column of “Residual risk”) under the optimal
strategy for the unconstrained model. The results from Feng et al. (2020) are also listed (in the column
of “Whole risk”) for the purpose of comparison.

The results indicate that residual risk sharing strategy reduces the the total post-transfer variance by
92.54%, surpassing the ratio of 88.03% achieved by the whole risk sharing strategy. This aligns with the
findings discussed in Proposition 4.3. In addition, while Feng et al. (2020) observed that high-exposure
states, particularly along the Gulf Coast – such as Florida, Louisiana, and Texas, experienced the lowest
individual variance reduction, our model shows improved variance reduction for these states. This is
because residual risk sharing tends to provide better variance reduction effect to those with higher pre-
transfer variance. Furthermore, residual risk sharing yields substantial risk reduction for states with
unexpected flood events. For example, North Dakota experiences a 99% reduction in pre-transfer risk,
which is attributed to its high pre-transfer variance caused by the unexpected flooding of the Souris
River in 2011.

Table 2 presents the variance reduction ratios under the optimal strategies for the constrained model,
respectively, with γ = 0 and γ = 1. It is interesting to note that, when γ = 0, the variance reduction
ratios are the same as those achieved by the unconstrained model, as shown in Table 1. This finding is
unexpected, as it implies that our dataset falls within U0 as defined at the start of Section 5.1, that is, σS ≤
nσ1, where σS represents the total flood risk standard deviation across the United States, and σ1 denotes
the smallest pre-transfer standard deviation among the states. This is not a coincidence but rather it is
well justified by Theorem 5.3. Specifically, the flood risks from different states fall into category U0, that
means, the dependence strength among risks is low enough such that equally sharing the residual risks
will provide sufficient diversification, leading to a minimum total post-transfer variance. For the model
with γ = 1, all the individual variance reduction ratios are equal. This is because the optimal strategy is
for each participant to share the residual risks proportionally to his own pre-transfer standard deviation,
according to Proposition 5.4. It is also worth noting that, with γ = 1, the total variance reduction ratio
is only reduced by 2% compared to the model with γ = 0.

In both case studies, the findings about the behavior of the variance reduction ratio naturally raises
a key question: how would the optimal risk sharing strategy adapt in response to changes in parame-
ters such as ρ, σi, and γ ? Furthermore, how would these parameter shifts impact the optimal total and
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Table 1. Standard deviation of claims paid is in units of thousands and variance reduction between
pre- and post-pooling.

State Reduction (%) Reduction (%) State Reduction (%) Reduction (%)
abbreviation whole risk residual risk abbreviation whole risk residual risk
Total 88.03 92.54
Coastal:
AL 92.96 89.52 CA 82.76 94.88
FL 76.03 90.78 HI 89.75 95.97
LA 76.64 91.66 TX 79.13 91.53
Other:
AK 95.99 94.88 AR 86.81 89.86
AZ 87.43 93.69 CO 90.76 83.02
CT 87.74 80.00 DE 82.15 77.32
GA 79.47 79.27 IA 93.67 96.78
ID 89.84 82.28 IL 79.05 63.74
IN 79.20 75.28 KS 92.53 91.20
KY 84.71 75.67 UT 83.55 90.93
MA 91.11 84.97 MD 84.95 85.67
ME 86.02 81.90 MI 87.00 80.76
MN 85.94 89.24 MO 86.24 88.49
MS 79.88 93.48 MT 82.40 86.95
NC 80.17 73.89 ND 96.62 99.71
NE 93.77 94.96 NH 86.70 89.29
NJ 89.01 74.62 NM 77.73 86.51
NV 85.55 95.82 NY 84.72 82.60
OH 88.39 74.45 OK 87.49 93.70
OR 85.75 97.10 PA 89.57 76.09
RI 91.72 94.85 SC 85.39 93.43
SD 92.84 95.42 TN 86.62 80.64
VA 80.57 75.97 VT 93.90 83.93
WA 94.68 89.48 WI 94.20 95.59
WV 85.68 70.59 WY 89.37 90.63

individual post-transfer variance reduction ratios? Addressing these questions could provide insights in
developing more efficient and adaptable risk sharing frameworks. This is subject to future research.

8. Conclusion
In this paper, we examine the optimal risk sharing problem in peer-to-peer insurance. By expanding
the class of admissible strategies to a more general functional space, our study extends beyond the
existing models that are limited to linear strategies. We demonstrate that, even with this expansion of
the admissible strategy class, the optimal risk sharing strategy remains linear in form, though it is based
on the residual risks rather than the original risks. The linear residual risk sharing strategy offers several
advantages. First, it indeed improves the objective function (total post transfer variance) compared to
the linear strategies applied to the original risks. Second, its simple structure allows an explicit optimal
solution without requiring numerical procedures, favoring its implementation in practice. Third, the
optimal sharing strategy risk anonymity in the sense that the allocated loss to each participant does not
rely on the realization of individual losses but only the aggregate loss.
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Table 2. Optimal residual risk sharing under 0 and 1 retention consistency

State Reduction (%) Reduction (%) State Reduction (%) Reduction (%)
abbreviation γ = 0 γ = 1 abbreviation γ = 0 γ = 1
Total 92.54 90.39
Costal:
AL 92.96 90.39 CA 82.76 90.39
FL 76.03 90.39 HI 89.75 90.39
LA 76.64 90.39 TX 79.13 90.39
Other:
AK 95.99 90.39 AR 86.81 90.39
AZ 87.43 90.39 CO 90.76 90.39
CT 87.74 90.39 DE 82.15 90.39
GA 79.47 90.39 IA 93.67 90.39
ID 89.84 90.39 IL 79.05 90.39
IN 79.20 90.39 KS 92.53 90.39
KY 84.71 90.39 UT 83.55 90.39
MA 91.11 90.39 MD 84.95 90.39
ME 86.02 90.39 MI 87.00 90.39
MN 85.94 90.39 MO 86.24 90.39
MS 79.88 90.39 MT 82.40 90.39
NC 80.17 90.39 ND 96.62 90.39
NE 93.77 90.39 NH 86.70 90.39
NJ 89.01 90.39 NM 77.73 90.39
NV 85.55 90.39 NY 84.72 90.39
OH 88.39 90.39 OK 87.49 90.39
OR 85.75 90.39 PA 89.57 90.39
RI 91.72 90.39 SC 85.39 90.39
SD 92.84 90.39 TN 86.62 90.39
VA 80.57 90.39 VT 93.90 90.39
WA 94.68 90.39 WI 94.20 90.39
WV 85.68 90.39 WY 89.37 90.39

When no constraint is imposed, the optimal strategy is to equally share the aggregate residual risk
S − E[S] among all participants. To promote market development, we introduce the constraints of vari-
ance reduction and γ -retention consistency. With these constraints in place, the optimal strategy still
follows the form of linear residual risk sharing. For participants with “high” riskiness, the optimal
risk sharing ratios remain uniform, while for those with “low” riskiness, the ratios are restricted by
the constraints. The categorization of “high” and “low” riskiness depends on the comparison between
the aggregate riskiness σS and the individual riskiness levels {σ1, . . . , σn}. We provide sufficient condi-
tions and simplify the characterization into a more direct comparison between the overall dependence
strength, as measured by the smallest and largest correlation coefficients, and the degree of dispersion
in the individual riskiness levels.

In addition to deriving explicit solutions, we establish several desirable properties that enhance prac-
tical implementation and promote market development. Specifically, we demonstrate the robustness of
the optimal solutions against model uncertainty and estimation errors. We also ensure the consistency of
the solutions to promote fair practices. Furthermore, we provide sufficient conditions for sustainability
to support healthy market expansion.

Admittedly, the linearity of the optimal risk sharing strategy largely depends on the choice of risk
measures. While the risk measure variance is adopted and investigated in this paper, it remains an open

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2024.37
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.53, on 04 Nov 2025 at 03:40:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2024.37
https://www.cambridge.org/core


536 Jiajie Yang and Wei Wei

question which other risk measures also favor the optimality of the linear residual risk sharing. A natural
follow-up question is, beyond these risk measures, what form the optimal risk sharing strategy should
take and how to find explicit solutions. These questions are undoubtedly challenging to answer, but the
study in this paper provides some valuable insights. First, the intuitive water-filling model we developed
effectively explains the main results throughout the paper in a coherent manner. Second, by studying risk
sharing problems under different combinations of constraints, we establish a clear relationship between
the problems as well as constraints. These two findings enhance our understanding of the nature of the
problem, the constraint, and the risk measure and thus provide insights for future generalizations.
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