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Abstract
A multi-modal embodied robot framework was developed and evaluated to support English as a Second Language
(ESL) learning in preschoolers through physical interaction and adaptive engagement. The system integrates a
4-DOF OpenManipulator-X robot with a tablet-based educational application, forming a unified instructional plat-
form that delivers synchronized auditory, visual, and kinesthetic stimuli. Designed to improve lexical retention and
motivation in early learners, the framework enables task-based interaction through pick-and-place vocabulary rein-
forcement, collaborative drawing, and tablet-mediated language tasks, coupled with a real-time emotion recognition
module to adjust instructional cues.
An experimental design within the subject was used with 21 Korean preschool children (ages 4–8), compar-
ing robot-assisted language learning (RALL) with traditional teacher-led language learning (TLLL) in matched
tasks involving vocabulary learning, math reasoning, color categorization, and spelling recall. Each session was
conducted under controlled classroom conditions and analyzed using both quantitative and qualitative metrics,
including engagement frequency, task precision, and structured post-session surveys.
The results demonstrate significantly higher participation and task completion rates in the RALL condition, with
vocabulary acquisition outcomes comparable to TLLL (p > 0.05). Children exhibited increased motivation and
sustained interaction when guided by the robot and the application, suggesting that embodied adaptive systems can
effectively support early second language learning. The study contributes validated design principles for integrat-
ing physical embodiment, affective responsiveness, and multi-modal instructional delivery in educational robotics.
Implications are discussed for the scalable deployment of robot-assisted systems in preschool contexts, emphasizing
child-centered interaction and developmental appropriateness within RALL environments.

1. Introduction
Second language acquisition during early childhood is widely recognized as a critical contributor
to long-term cognitive development, academic success, and cross-cultural competence [1, 2]. The
preschool period is particularly significant, as heightened neuroplasticity during this developmental
window allows children to acquire linguistic structures with greater ease and long-term retention. In
non-English-speaking countries, such as South Korea, there is increasing emphasis on early English
instruction to equip children with foundational communicative skills. However, traditional teacher-led
English as a Second Language (ESL) instruction often lacks the flexibility, sensory engagement, and
adaptivity required to meet the cognitive and emotional needs of preschool learners [3, 4].

Recent advancements in human–robot interaction (HRI) and educational robotics have created new
opportunities to enrich early language learning through embodied, multi-modal, and socially interactive
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systems. Robot-assisted language learning (RALL) systems, in particular, have shown promise in fos-
tering vocabulary acquisition, pronunciation, and engagement through verbal and physical interaction
[5, 6]. Social robots enable real-time instruction through speech, gaze, gesture, and physical embodi-
ment, simulating aspects of human tutoring. Despite growing empirical support for their use in language
learning, most existing RALL systems are limited in adaptivity, rely on pre-scripted content, and lack
integration across modalities. Moreover, few have been validated through longitudinal or ecologically
valid classroom studies with preschool-aged children who have no prior English exposure [7, 8].

Multi-modal learning approaches grounded in dual coding theory and embodied cognition empha-
size the role of synchronized visual, verbal, and kinesthetic input in enhancing memory, comprehension,
and motivation [9, 10]. Pre-school learners, in particular, benefit from sensory-rich environments
where abstract linguistic concepts are reinforced through concrete interaction [12]. While some recent
studies have introduced robots capable of gesture-based instruction or emotion expression, the combi-
nation of embodied interaction, real-time affective responsiveness, and digital reinforcement remains
underexplored in real-world classroom environments.

To address this gap, the present study introduces and evaluates a multi-modal embodied robot frame-
work for ESL instruction in preschool-aged children. The system integrates a 4-DOF robotic manipulator
(OpenManipulator-X) with a tablet-based educational application, forming a synchronized instructional
platform that provides verbal guidance, physical manipulation, collaborative drawing, and adaptive
emotional feedback. Learning tasks were designed to reinforce vocabulary retention and cognitive
development through embodied interaction, including pick-and-place activities, color matching, shape
drawing, and spelling reconstruction games.

A within-subject experimental design was conducted in a Korean preschool setting with 21 children
aged 4–8. Participants engaged in both RALL and teacher-led language learning (TLLL) instructions
across two experimental rounds, allowing for comparative analysis of task performance, engagement
levels, and learner feedback. Quantitative and qualitative data were collected through task metrics,
structured surveys, and behavioral observations.

This work contributes to the field of educational robotics and child-robot interaction (CRI) by pre-
senting a validated, scalable, and developmentally appropriate framework for early language instruction.
By integrating affect-sensitive behavior, physical embodiment, and multi-modal instructional delivery,
the proposed system advances the pedagogical and technical state of RALL and offers insights into the
design of adaptive robotic tutors for preschool learners.

2. Related works
2.1. Early childhood second language acquisition
Second language acquisition (SLA) in early childhood is grounded in the critical period hypothesis,
which posits that language learning capacity is maximized during the first decade of life due to increased
neural plasticity [1]. Empirical studies confirm that preschool students acquire syntactic structures,
phonological distinctions, and vocabulary with greater ease and long-term retention when exposed early
to L2 environments [2, 3]. In particular, ESL instruction in non-English-speaking countries is often
introduced in early education settings to leverage this developmental advantage. However, TLLL in
preschools frequently fails to sustain attention or offer differentiated input tailored to individual learners’
cognitive states [4, 5].

Sociocultural learning theory emphasizes that linguistic development occurs most effectively in
socially mediated contexts where children co-construct meaning through guided interaction [6]. In
early childhood education, this suggests the need for responsive and interactive instruction that sup-
ports scaffolding and immediate feedback. Despite this, ESL instruction often lacks multi-modal input,
embodied experiences, and adaptivity – factors that are essential for young learners who rely heavily on
sensorimotor processing.
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2.2. Robot-assisted language learning
RALL has emerged as a promising approach for addressing the cognitive and attentional limitations of
conventional ESL teaching. Social robots leverage physical embodiment, gesture, and speech to engage
children in verbal and non-verbal interaction. Studies have shown that young learners exhibit increased
engagement, verbal output, and motivation when interacting with socially assistive robots compared
to screen-based applications [7, 8]. RALL systems also offer consistency and repeatability in content
delivery, an advantage over human instruction in environments where teacher resources are limited.

Multiple studies have demonstrated the potential of robots to reinforce vocabulary acquisition, assist
pronunciation, and support turn-taking behavior [9, 10]. However, most existing RALL systems are
characterized by limited adaptability. Interaction flows are typically pre-scripted, with little response to
real-time emotional states or levels of comprehension of learners [12]. Moreover, physical embodiment
is often underutilized: many platforms rely solely on verbal instruction or animated facial expressions
without integrating gesture, movement, or object manipulation [13]. In some systems, robots act merely
as animated storytellers or question prompts, rather than as embodied, task-oriented tutors.

Few studies have implemented RALL in authentic preschool environments with participants who
have no prior exposure to English. Most are carried out under laboratory conditions, with short inter-
vention periods and limited ecological validity [14]. Furthermore, system evaluation is often limited to
short-term vocabulary gains, rather than comprehensive measures of engagement, interaction quality,
or long-term retention.

2.3. Multi-modal interaction in language learning
Multi-modal interaction – defined as the integration of verbal, visual, and kinesthetic stimuli – has
long been identified as a critical factor in enhancing early language learning outcomes. Based on dual
coding theory [15] and supported by the principles of embodied cognition [16], multi-modal instruction
reinforces semantic encoding by associating spoken words with concrete sensory input. In the context
of preschool ESL learners, combining auditory instruction with visual imagery, touchable objects, and
physical actions improves attention, comprehension, and recall [16, 17].

Some RALL studies have attempted to introduce multi-modal elements through gesture recogni-
tion, visual displays, or tablet-based interfaces [12, 13]. However, few systems implement true sensory
integration, where verbal, visual, and kinesthetic feedback are synchronized in real time and tai-
lored to the learner’s affective state. Coordination across modalities is essential in preschool contexts,
where embodied interaction and concrete associations support early semantic development. The present
study addresses this gap by integrating physical pick-and-place tasks, robot-led drawing, and dynamic,
emotion-aware feedback into a unified multi-modal framework for ESL instruction.

2.4. Emotion-adaptive systems in educational robotics
Affective responsiveness, the ability of an educational system to interpret and respond to the emotional
states of learners, has become an increasingly important focus in CRI. Preschool learners are emotion-
ally reactive and require frequent validation and encouragement to maintain learning focus. Real-time
affective cues such as facial expressions, hesitation, or gaze aversion offer valuable indicators of readi-
ness or disengagement of the learner [18]. Educational robots that detect and adapt to these cues have
been shown to improve learning outcomes, user satisfaction, and session duration [19, 20].

Despite its relevance, few RALL systems incorporate real-time emotion recognition or affective
adaptation. Interaction scripts are often fixed and feedback is triggered by static event thresholds rather
than context-sensitive cues [18, 21]. Integration of emotion recognition in early ESL learning remains
underexplored in RALL research, especially in developmental settings like preschools.
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Figure 1. System architecture and interaction flow of the proposed RALL framework integrating robot
and tablet modalities.

2.5. Research gap and system positioning
Although prior research affirms the value of RALL in improving early language learning, several per-
sistent limitations remain. Most existing systems lack coordinated multi-modal integration and operate
without affective adaptivity. Their implementations are often short-term, decontextualized, and do not
reflect the complexity of real-world preschool settings. Few studies incorporate physical manipulation
of objects or robot-led motor tasks that link vocabulary to embodied experience. Furthermore, systems
are rarely evaluated using both quantitative and behavioral metrics under ecologically valid classroom
conditions.

The present study addresses these limitations by developing a multi-modal, embodied, emotion-
adaptive framework for ESL instruction in preschoolers. The proposed system integrates physical
manipulation, collaborative drawing, and adaptive verbal cues in a unified robot-tablet platform. It is
evaluated through an experimental design within the subject in an authentic Korean preschool setting,
offering new empirical insights into the design and deployment of scalable, developmentally appropriate
RALL systems.

3. System architecture and framework design
The developed RALL framework was designed to support early ESL acquisition in preschoolers through
a multi-modal, emotionally responsive system. Built on Robot Operating System (ROS) middleware, the
system integrates robot control, tablet-based instruction, emotion mirroring, and audiovisual feedback
in a child-centered, classroom-ready configuration. The architecture emphasizes safety, developmental
appropriateness, and real-time coordination between physical and digital modalities.

Figure 1 provides a visual overview of the system’s architecture and interaction flow. On the left,
the robot behavior modules include vocabulary-based pick-and-place tasks, shape drawing tasks to
reinforce concept learning, and facial expression recognition that mirrors a child’s emotion through
an animated face display. These modules are tightly integrated with the tablet-based EduApp, which
delivers four instructional tasks: English vocabulary learning, mathematics, color matching, and word
scramble games. The central module outlines the cognitive components – such as visual and auditory
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reinforcement, orthographic processing, and color-concept mapping – that bridge physical interaction
and digital engagement. The bidirectional arrows indicate the system’s synchronized communication
flow between robot and tablet, ensuring seamless transitions during task execution. Additionally, teacher
evaluations and real-time observations inform system calibration and session pacing. The bottom section
of the figure displays real-world deployment, including robot-assisted drawing, augmented reality-based
(AR-based) object recognition, and emotion detection via webcam input. Together, these elements illus-
trate the operational synergy between robotic embodiment and digital learning tools, forming a cohesive
and developmentally appropriate learning environment for young ESL learners [22–24].

3.1. Hardware configuration
The physical components of the system were assembled to balance expressive interaction with usabil-
ity and safety for children aged 4–8. The robotic arm used is the OpenManipulator-X (ROBOTIS)
[25], a 4-DOF platform mounted on a standard classroom table. Motor ID14, which is part of the
OpenManipulator-X arm, was equipped with a custom pen holder to enable the robot to draw prede-
fined shapes (e.g., heart, house, sun, circle, square, and others) on paper and whiteboard surfaces using
calculated Cartesian paths translated into joint-space trajectories. A U2D2 communication controller
enabled real-time motor commands.

The robotic arm was controlled using a desktop computer running Ubuntu 20.04 and ROS Noetic.
Communication between the robot and the computer was facilitated via the U2D2 interface, which
allowed for real-time execution of motion commands. The robot’s tasks – including both drawing and
pick-and-place actions – were implemented by running custom-developed Python and C++ scripts
based on the official OpenManipulator ROS packages.

For facial and emotional detection and expression, the system utilized a display with an integrated
camera on the top that visualized animated facial expressions in response to the child’s affective state. A
Logitech C920 USB camera, positioned at the child’s eye level in front of the table, captured facial data
in real time for emotion classification. The tablet interface, implemented on an iPad (3rd generation,
2021, 10.2-inch), served as the primary platform for educational games and digital feedback, enabling a
two-channel interaction environment: physical (robot) and digital (tablet). Two external speakers were
connected to the main computing unit to deliver clear auditory output. Together, these components
constituted a multi-modal configuration designed to facilitate socially engaging and developmentally
appropriate CRI.

3.2. Software architecture and module integration
The system architecture was designed with modularity and real-time responsiveness as core principles.
ROS was used to control robot actions and synchronize service calls between nodes responsible for draw-
ing, pick-and-place, and timed motion sequences. The SetDrawingTrajectory and goal_task_client()
services facilitated parameterized execution of drawing tasks, with inverse kinematics ensuring con-
sistent pen-surface contact (Figure 2) [25]. Moreover, the pick-and-place task was implemented through
the detection of AR markers using an Intel RealSense camera, enabling the robot to accurately identify
initial cube positions and relocate them to predefined target locations (Figure 2).

A Streamlit-based EduApp (Figure 3), launched on the iPad, offered four structured learning tasks:
vocabulary learning, math problems, color matching, and a word scramble game. The vocabulary content
used in the application was derived from the Cambridge English: Pre A1 Starters Word List Picture
Book to ensure age-appropriate and pedagogically aligned material [26]. The application was developed
independently from the ROS node, but manually synchronized during sessions to maintain a coherent
instructional flow.

OpenAI-generated Text-to-Speech (TTS) files [27] were generated for all vocabulary items, instruc-
tions, and motivational phrases. These were manually triggered by the operator in coordination with
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Figure 2. Robot-executed drawing and vocabulary-based pick-and-place tasks using OpenManipu-
lator-X to reinforce embodied ESL learning.

task progression during the interaction between child and robot for drawing and drawing tasks, allowing
adaptive pacing and tone modulation in real time.

3.3. Multi-modal interaction
Each learning session was divided into two sequential phases: robot-led physical interaction followed by
tablet-based digital reinforcement. During the first phase, the robot executed pick-and-place tasks using
AR-labeled vocabulary cubes or drew shapes symbolizing target words (e.g., “sun”, “cloud”) (Figure 2).
Children were prompted to repeat the words or describe the object being drawn, anchoring vocabulary
in sensorimotor experience.

In the second phase, children interacted with the tablet application, which offered tasks aligned with
the robot-led activities. These included visual-matching tasks, math exercises, color-word associations,
and scrambled word challenges (Figure 3) [29–32]. Each task featured animated feedback, embedded
videos, and narration through TTS audio. The sequence was manually timed by the instructor to ensure
smooth handoff between the physical and digital domains.

3.4. Emotional and facial expression and recognition
The system included a lightweight affective feedback loop based on facial expression recognition [34].
Using a webcam mounted at eye level, the system captured the real-time emotional state of children
and classified expressions into five categories: neutral, happy, sad, angry, or surprised (Figure 4). The
classification was implemented in Python using the DeepFace library [28], which internally supports
models for real-time facial expression analysis. These detected emotions were displayed on a separate
screen as an animated face that mimicked the child’s emotional state, providing intuitive and immediate
visual feedback.

Although the robot did not autonomously change behavior based on emotion input, the mirroring
effect encouraged self-awareness and allowed the instructor to adapt the pace or offer verbal rein-
forcement accordingly. This mechanism was particularly effective in maintaining engagement during
longer sessions and provided a foundation for future work on fully autonomous emotional adaptation.
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Figure 3. Tablet-based EduApp interface with vocabulary, math, color-matching, and scramble tasks
supporting robot-led instruction.

The system emphasized emotional transparency and safety over complexity, aligning with the develop-
mental needs of early childhood.

3.5. Design priorities and constrains
The framework was built around three guiding principles: developmental appropriateness, modular syn-
chrony, and scalability. Tasks were short, goal-oriented, and visually reinforced. Robot movement was
fine-tuned through pilot testing with adults and adjusted based on children’s observed engagement lev-
els. The use of manual synchronization (rather than full automation) was a deliberate choice to respect
natural instructional pacing and maintain operational control in a dynamic classroom environment.

Although the robot and tablet were not fully integrated via shared control architecture, their coor-
dinated deployment created a unified learning experience. The design demonstrated that meaningful
robot-assisted ESL learning is achievable without high computational complexity – provided that
interaction is structured, feedback is responsive, and engagement is multi-sensory.
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Figure 4. Emotion recognition process and real-time animated feedback display used to reflect the
child’s affective state.

Figure 5. Classroom-based instructional settings for TLLL (left) and RALL (right) conditions during
live sessions.

4. Experimental methodology
This section outlines the experimental setup employed to evaluate the effectiveness of the proposed
multi-modal RALL framework for preschool ESL learning. The study was designed to compare the per-
formance, engagement, and motivational responses of young learners under two instructional conditions:
TLLL and RALL. A crossover methodology within the subject was applied to control for inter-individual
variation while assessing learning outcomes in a real-world classroom context (Figure 5).

4.1. Participants
A total of 22 Korean preschool children, aged 4–8 years, were initially recruited for the study. Fourteen
children participated in Round 1 (9 sessions), and an additional eight were enrolled in Round 2 (4
sessions). However, one child from Round 2 was excluded from the final analysis due to insufficient
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participation (attendance below 80% of the sessions), resulting in a final sample of 21 children. None
of the children had received prior formal instruction in English.

To provide a clearer developmental profile, the final sample comprised 3 children aged 4 years, 8 chil-
dren aged 5 years, 4 children aged 6 years, 5 children aged 7 years, and 1 child aged 8 years, spanning the
transition from preschool to early primary education. Of the 21 children, 16 were boys and 5 were girls.
The participants were recruited from a daycare center affiliated with the Korea Institute of Science and
Technology (KIST), and all experimental procedures were approved by the Institutional Review Board
(IRB) of the institute (approval number KIST-202412-HR-001). Written informed consent was obtained
from the children’s guardians, and verbal assent was obtained from each child prior to participation. To
ensure instructional focus and minimize group-induced distractions, children were divided into small
sub-groups during sessions. Tasks were conducted in a dedicated CRI space, with alternating robot-led
and tablet-based activities designed to maintain engagement and reduce fatigue.

In the South Korean educational system, children between the ages of 4 and 7 typically attend kinder-
garten, while formal elementary school begins at age 8. Therefore, the selected age range of 4–8 years
represents the upper spectrum of early childhood education within this national context. This period is
particularly formative for language acquisition, cognitive flexibility, and socio-emotional development.
The RALL framework was intentionally designed to support learners across this transitional develop-
mental span through differentiated, scaffolded interactions and age-appropriate multi-modal engagement
strategies. By targeting this age group, the study aims to evaluate the framework’s adaptability and
instructional effectiveness during a critical window for early second language learning.

To ensure instructional focus and avoid group-induced distractions, children were divided into small
subgroups during sessions. Tasks were conducted in a dedicated CRI space, with alternating robot-led
and tablet-based activities designed to maintain engagement and reduce fatigue.

4.2. Experimental design
The study adopted a within-subject crossover design to enable direct comparison between the two
instructional modalities – TLLL and RALL – under equivalent task conditions (Figure 5). Each child
participated in both instructional modes over the course of multiple sessions, allowing matched data
collection across conditions.

The experiment consisted of two rounds:

• Round 1 involved 14 participants and consisted of 9 sessions: 4 TLLL sessions, 4 RALL sessions,
and 1 debrief and survey session (Figure 6).

• Round 2 involved 7 participants and included 4 sessions: 2 TLLL and 2 RALL. To control for
order effects, the instructional sequence was reversed in Round 2, with RALL delivered before
TLLL (Figure 7).

Each session lasted approximately 60–65 min, encompassing robot-assisted or teacher-led instruc-
tion, interactive tablet engagement, and observational or survey-based data collection. The instructional
content and complexity of the task were kept constant under all conditions to ensure a fair comparison.

All instructional content was based on beginner-level ESL vocabulary selected from the Cambridge
curriculum [26], adapted for preschool comprehension and engagement. Tasks were thematically aligned
across both instructional modalities. The RALL condition, however, uniquely incorporated robotic
embodiment through pick-and-place manipulation and drawing trajectories, in addition to synchronized
verbal and digital feedback.

The implemented tasks included:

• Vocabulary Learning: In both conditions, English vocabulary items were introduced per ses-
sion. In TLLL, the teacher explained each word verbally and used flashcards or printed visuals.
In RALL, the robot vocalized the target words using pre-recorded TTS audio, while the tablet

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725102646
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.154, on 31 Oct 2025 at 13:45:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725102646
https://www.cambridge.org/core


10 Anastasiya Rybakova and JongSuk Choi

Figure 6. Round 1 experimental sessions comparing TLLL (left) and RALL (right) modalities in real
classroom setting.

Figure 7. Round 2 instructional sequence: reversed order of RALL (left) and TLLL (right) conditions
for crossover validation.

displayed animated images of the objects. The children were encouraged to repeat each word
aloud in both conditions.

• Pick-and-place: To reinforce vocabulary through embodied action, the robot manipulated
labeled cubes or toy objects associated with the vocabulary items (e.g., “sun”, “apple”, “cloud”).
The robot identified the correct item using predefined AR marker IDs and performed a pick-
and-place movement to place it in a matching bin or zone. This task involved spatial reasoning,
object-word association, and joint attention.

• Drawing Task: Using a pen attached to the gripper of the OpenManipulator-X, the robot per-
formed shape-drawing tasks on A4 paper and later switched to the whiteboard fixed in the
workspace. Each shape corresponded to a target vocabulary word (e.g., heart, house, smiley,
sun). Drawings were executed using pre-programmed joint trajectories derived from 2D coordi-
nates and implemented via the SetDrawingTrajectory ROS service. The children were prompted
to identify the drawn object and verbally describe it.

• Math and Color-Matching Tasks: Children engaged in simple arithmetic and color-
categorization games. These were implemented as drag-and-drop activities in the tablet interface
during RALL, and as verbal or card-based games during TLLL. The robot narrated instructions
in RALL sessions using synchronized audio and visual cues.

• Word Scramble Game: To assess vocabulary retention and spelling recognition, the children
completed a scramble game in which they reconstructed target words from jumbled letters. The
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Figure 8. Structured post-session user experience survey conducted with children following TLLL and
RALL sessions.

RALL version used the tablet interface with input and submit functionality, while the TLLL
version involved teacher-facilitated oral guidance.

Each session in RALL began with robot-led physical interaction (drawing or pick-and-place), fol-
lowed by digital tablet-based engagement. In contrast, TLLL sessions followed a linear format with
verbal instruction, guided repetition, and teacher-directed activities. The tasks were intentionally short
and interactive, with break intervals to maintain attention.

4.3. Data collection and evaluation measures
To evaluate the effectiveness of the proposed framework, a mixed-methods data collection strategy was
used, which incorporated both quantitative and qualitative measures. The study focused on capturing
instructional outcomes across the two conditions – RALL and TLLL – by assessing learner performance,
engagement, emotional response, and subjective feedback.

Following the completion of each instructional condition, children participated in structured, one-
on-one oral surveys administered in English by a trained Korean research assistant (Figure 8). These
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surveys were designed to be developmentally appropriate for young learners and employed a simpli-
fied 5-point Likert-type scale, ranging from 1 (“not at all”) to 5 (“very much”). The assistant provided
consistent verbal scaffolding, supportive hand gestures, and visual cues to help children understand
each item and respond meaningfully. This support enabled reliable data collection across the full 4–8
age range. To ensure accessibility, responses were collected with the aid of consistent verbal prompts
and hand gestures. The survey assessed self-reported understanding, ease of learning, confidence, and
enjoyment across four task categories: vocabulary learning, mathematics, color matching, and scram-
bled word reconstruction. In the RALL condition, additional items probed children’s impressions of
robot behavior, ease of tablet interaction, and the perceived helpfulness of the integrated system.

All instructional tasks – including vocabulary learning, mathematics, color matching, and word
reconstruction – were conducted primarily in English, aligning with the ESL learning objectives of the
study. For tasks with less inherent linguistic content (e.g., color matching and mathematics), instructions
and prompts were delivered in simple English, accompanied by visual aids and occasional Korean clar-
ification to support comprehension. This hybrid linguistic strategy was intended to balance meaningful
English exposure with cognitive accessibility. Children were encouraged to respond in English when
possible, although Korean responses were accepted without penalty. This flexible approach fostered a
supportive, low-pressure environment conducive to language development and task engagement.

The mathematics task was structured as an interactive problem-solving activity in which children
were presented with simple visual number problems and prompted to input their answers using the
tablet interface. Instructions and questions were delivered in simple English (e.g., “What is 3 + 2?”),
accompanied by intuitive visual cues to support comprehension. Upon submission, children were shown
a short educational animation in English that explained the solution through gamified storytelling. This
format helped reinforce early arithmetic reasoning while simultaneously providing consistent exposure
to instructional English in an engaging, age-appropriate manner.

The color-matching task focused on supporting receptive and productive vocabulary skills through
guided multi-modal interaction. Each session began with a short English-language animated video intro-
ducing basic color names and associated objects (e.g., “red apple”, “blue sky”). Following the video,
children were shown an image and asked in English, “What color is it?” They were then required to
type the correct English color name (e.g., “yellow”, “green”) and submit their answer. Immediate feed-
back indicated whether their response was correct or incorrect, reinforcing both spelling and semantic
understanding. While the task was primarily conducted in English, minimal Korean support was offered
when necessary to ensure comprehension. This sequence enabled children to first internalize the vocab-
ulary and then apply it in a low-pressure, interactive setting, maintaining alignment with the study’s
ESL learning objectives.

In parallel, behavioral observations were recorded during each session using structured annotation
protocols. Observational data focused on attentional markers (e.g., gaze direction, verbal responsive-
ness), behavioral cues indicating cognitive effort or confusion, and spontaneous emotional expressions.
The observer also noted levels of physical engagement, including participation in robot-led drawing and
pick-and-place tasks.

In the RALL sessions, real-time affective data were captured using a webcam positioned at eye level
with the participant. The system classified facial expressions into five categories: neutral, happy, sad,
angry, and surprised – using a lightweight convolutional neural network (CNN)-based model trained on
child-appropriate datasets. The implementation was supported by OpenCV and TensorFlow libraries,
enabling efficient image capture and classification on the local system. Although the robot did not
autonomously adapt to emotional input, mirroring of facial expressions on an adjacent display served to
increase emotional awareness and indirectly supported session pacing. These emotional logs were used
as supplemental data to interpret overall engagement and response.

Quantitative analysis was conducted using paired-sample t-tests to examine differences between
instructional conditions for each task and survey item. Repeated measures ANOVA was used to assess
instructional effects between rounds and to assess whether instructional order influenced the outcomes.
This method is particularly suitable for within-subject designs, as it accounts for the correlation between
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repeated observations from the same individuals. By partitioning the variance into within- and between-
subject components, ANOVA provides a robust framework for examining changes over time or across
multiple interventions, while controlling for individual variability. Where appropriate, the effect sizes
were calculated using Cohen’s d and f to provide estimates of practical significance.

To complement the numerical results, open-ended responses from the surveys were thematically ana-
lyzed. Children frequently highlighted the robot voice, patient pacing, and visual gestures as helpful in
remembering words and completing tasks. Comments such as “the robot waits until I’m ready” or “it
helps me understand” reflected a high degree of perceived comfort with the system. These qualitative
findings reinforced quantitative trends and were consistent in both rounds of instruction, suggesting that
the positive reception of the robot was not simply a novelty effect but indicative of the alignment of the
framework with the cognitive and emotional needs of preschool learners.

4.4. Ethical and developmental considerations
The experiment was carried out according to the ethical guidelines for research with minors. IRB (KIST-
202412-HR-001) approval was secured, and informed consent was obtained from all legal guardians.
Sessions were designed to be playful, low-stress, and developmentally appropriate. All interaction cues
were delivered at a pace suitable for preschoolers, and robot movements were optimized for safety and
clarity. Facial data used for emotion recognition was processed in real time and not stored beyond session
classification logs, and all data were anonymized prior to analysis.

5. Results and analysis
This section presents the results of the comparative analysis between the traditional TLLL condition
and the RALL condition. The findings are organized into quantitative and qualitative analyses, fol-
lowed by comparative interpretations of learner outcomes. Statistical evaluations were conducted using
paired-sample t-tests and repeated measures ANOVA to assess the significance of differences in learner
performance, engagement, and reported motivation across both instructional modalities.

5.1. Task performance analysis
To evaluate the comparative impact of robot-assisted and teacher-led instruction on core learning
outcomes, a series of paired-sample t-tests was conducted across eight targeted educational indica-
tors, which include Vocabulary Understanding, Vocabulary Confidence, Mathematics Understanding,
Mathematics Confidence, Color Matching Understanding, Color Matching Confidence, Scramble Game
Understanding, and Scramble Game Confidence. Each of the 21 preschool-aged participants completed
all instructional tasks under both conditions, RALL and TLLL. The experimental procedure spanned
13 instructional sessions, divided into two distinct rounds of implementation.

Given the within-subjects design, the use of paired t-tests was methodologically appropriate. Each
child served as their own control, thus reducing inter-subject variability and enhancing the sensitivity
of the analysis to detect condition-specific effects. For each learning metric, the null hypothesis posited
no significant difference in mean scores between the two instructional conditions. Effect sizes were
calculated using Cohen’s d to interpret the practical significance of observed differences, supplementing
statistical significance with pedagogically meaningful insight.

The statistical approach employed in this study allows for a robust comparison of instructional
modalities, capturing both cognitive gains and the magnitude of learning improvements facilitated by
embodied robot interaction.

The test statistic was computed using the standard formula for dependent means:

D̄ = X̄rall − X̄tlll

n
(1)
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Figure 9. Statistical comparison of mean task scores under RALL and TLLL conditions across four
learning activities.

where:

• X̄ is the sample means for RALL and TLLL, respectively,
• n is the number of participants (n = 21).

For direct comparison between the two instructional modalities, paired-sample t-tests were used to
evaluate mean score differences. The test statistic is defined as:

t = D̄
SD√

n

(2)

where:

• t is the test statistic,
• D̄ is the mean difference,
• SD is the standard deviation of the difference scores,
• n is the number of participants (n = 21).

In addition, Cohen’s d was calculated:

d = D̄

SD
(3)

To interpret the magnitude of learning differences between instructional conditions, Cohen’s d was
calculated for each paired-sample t-test. As a guideline, effect sizes were categorized following conven-
tional thresholds: d = 0.2 (small), d = 0.5 (medium), and d ≥ 0.8 (large), thereby providing insight into
the educational relevance of each result.

In the Vocabulary Understanding task, children performed significantly better in the RALL condition
(M = 4.43, SD = 0.93) compared to the TLLL condition (M = 3.29, SD = 0.90), with t(20) = 3.68, p =
0.0015, and a large effect size of d = 0.80. These findings suggest that the integrated verbal, visual, and
interactive feedback provided by the robot and tablet interface supported superior vocabulary retention
and semantic processing (Figure 9). While Vocabulary Confidence also favored the RALL condition
(M = 4.33) over TLLL (M = 3.76), the difference approached but did not reach statistical significance
(p = 0.069), though the effect size was still moderate (d = 0.42). This indicates a promising trend in
learner self-efficacy that may benefit from further longitudinal studies.
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Table I. Task-based performance metrics (Paired t-test results).

Task M-TLLL SD-TLLL M-RALL SD-RALL t-value p-value Cohen’s d
Vocabulary

understanding
3.29 0.90 4.43 0.93 3.68 0.0015 0.80

Vocabulary
confidence

3.76 0.84 4.33 0.83 1.92 0.069 0.42

Math understanding 3.86 1.01 4.71 0.56 3.70 0.0014 0.81
Math confidence 4.14 0.78 4.76 0.53 3.22 0.0037 0.72
Color-matching

understanding
3.71 1.04 4.52 0.59 2.79 0.0112 0.61

Color-matching
confidence

3.81 1.01 4.43 0.63 2.17 0.0433 0.47

Scramble
understanding

3.81 1.40 4.57 0.51 3.01 0.0048 0.70

Scramble confidence 4.29 0.99 4.62 0.57 1.08 0.2935 0.24

A pronounced advantage for the RALL condition emerged in Math Understanding, where children
scored significantly higher (M = 4.71, SD = 0.56) than in TLLL (M = 3.86, SD = 1.01), with t(20) =
3.70, p = 0.0014, and a large effect size of d = 0.81. Similarly, Math Confidence improved significantly
in the RALL setting (M = 4.76, SD = 0.53) relative to TLLL (M = 4.14, SD = 0.78), with t(20) = 3.22,
p = 0.0037, and d = 0.72. These findings confirm the pedagogical value of robot-mediated instruc-
tion that provides children with personalized pacing, multisensory input, and responsive scaffolding
(Figure 9).

In the Color Matching Understanding task, children again performed better under RALL (M = 4.52,
SD = 0.59) than under TLLL (M = 3.71, SD = 1.04), with t(20) = 2.79, p = 0.0112, and a moderate-
to-large effect size of d = 0.61. These results suggest that the consistent delivery of the robot and
the engaging visual interface helped standardize task execution among learners, reducing performance
variability (Figure 9).

Finally, the Scramble Game Understanding task revealed a significant benefit for the robot-assisted
condition (M = 4.57, SD = 0.51) compared to TLLL (M = 3.81, SD = 1.40), with t(20) = 3.01,
p = 0.0048, and a large effect size of d = 0.70. The nature of this task – requiring sequence assem-
bly, phoneme-grapheme mapping, and letter recognition – likely benefited from the robot’s real-time
corrective cues and interactive control structure (Figure 9).

Together, these findings underscore the consistent advantage of RALL in multiple learning domains,
highlighting its ability to improve both cognitive outcomes and learner confidence in early language and
numeracy education (Table I).

5.2. Engagement and motivation metrics: t-test and ANOVA-based analysis
To rigorously evaluate the instructional impact of RALL in comparison to traditional TLLL, both
paired-sample t-tests and one-way ANOVA were applied to assess learner engagement, task comple-
tion confidence, and learning motivation. Effect sizes were calculated using Cohen’s d for t-tests and
Cohen’s f for ANOVA to determine both statistical and practical significance.

Given the within-subjects design, paired-sample t-tests provided direct comparison of performance
within individuals, reducing variability between participants. In parallel, one-way ANOVA offered a
variance-based assessment of instructional effects on group-level outcomes. The ANOVA test statistic
was computed as:

F = MSbetween

MSwithin
(4)
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Figure 10. Statistical comparison of learner engagement, task completion confidence, and learning
motivation between TLLL and RALL conditions using ANOVA analysis.

where:

• MSbetween is the mean square between groups,
• MSwithin is the mean square within groups,
• Degrees of freedom: dfbetween = k − 1 = 1, dfwithin = N − k = 20, with k = 2 groups and N = 21

participants.

Cohen’s f was calculated as:

f =
√

F

N − k
(5)

The following standard conventions were interpreted for the effect sizes of small ( f ≥ 0.10), medium
( f ≥ 0.25), and large ( f ≥ 0.40).

Engagement Level: ANOVA results indicated a significant difference in favor of RALL (M = 4.50,
SD = 0.52) over TLLL (M = 3.71, SD = 1.20), F(1, 20) = 5.03, p = 0.034, with a large effect size
f = 0.65 (Figure 10).

Task Completion Confidence: RALL yielded significantly higher confidence scores (M = 4.57,
SD = 0.51) than TLLL (M = 3.50, SD = 1.61), F(1, 20) = 5.66, p = 0.025, f = 0.69 (Figure 10).

Learning Motivation: Though RALL produced higher mean scores (M = 4.57, SD = 0.65) than
TLLL (M = 4.36, SD = 0.63), the difference was not statistically significant: F(1, 20) = 0.79, p = 0.384,
f = 0.26 (Figure 10).

These findings reinforce the value of RALL in enhancing engagement and learner confidence – two
critical factors for sustained academic success. Although learning motivation did not differ significantly,
the directional trend and the moderate size of the effect suggest that long-term exposure to robot-assisted
instruction may reveal greater emotional and motivational impacts (Table II).

The use of both t-tests and ANOVA offers a robust dual-method framework that increases internal
validity and accounts for individual- and group-level variance. The convergence of significant p-values
and large f -values across key metrics affirms that robot-assisted learning offers pedagogical advantages
in early childhood language education.
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Table II. Engagement and motivation metrics (ANOVA results).

Metric M-TLLL SD-TLLL M-RALL SD-RALL F(1,20) p-value Cohen’s f
Engagement level 3.71 1.20 4.50 0.52 5.03 0.034 0.65
Task completion

confidence
3.50 1.61 4.57 0.51 5.66 0.025 0.69

Learning
motivation

4.36 0.63 4.57 0.65 0.79 0.384 0.26

6. Conclusion and discussion
This study presents a comprehensive evaluation of a multi-modal RALL framework designed for
preschool ESL education. Drawing on both statistical and observational data, the findings substan-
tiate the pedagogical potential of embodied, interactive robotic systems in early childhood language
instruction. Children who participated in both learning modalities – RALL and TLLL – demonstrated
significantly better performance during the RALL sessions. Their achievements in vocabulary under-
standing, mathematical reasoning, color matching, and scramble game tasks were consistently superior
when guided by the robot-assisted system.

These enhancements were statistically validated, with moderate to large effect sizes observed across
key learning dimensions, underscoring the educational relevance of the improvements. In addition to
cognitive performance, the study also found that RALL encouraged greater behavioral participation
and confidence in task completion. The children showed better attentional focus, more autonomous
task execution, and increased affective involvement during robot-assisted sessions. Although learning
motivation did not reach statistical significance, the observed upward trend suggests the potential for
further improvement with extended use and deeper emotional adaptation.

Importantly, the current results align with findings from a prior pre-deployment study conducted with
adult learners [33], which confirmed the usability and perceived value of the same RALL framework in
supporting English language acquisition and engagement. The adult study provided crucial insights into
user interface design, content delivery, and multi-modal coordination, which were instrumental in shap-
ing the child-focused deployment. Together, these studies support the generalizability and scalability of
the framework across age groups, reinforcing its pedagogical and technological robustness.

From a technological perspective, the study confirms the feasibility of integrating real-time percep-
tion (AR marker recognition via RealSense camera), physical interaction (pick-and-place using labeled
cubes and drawing task), and expressive feedback (verbal cues, facial mirroring) into a unified and
responsive educational platform. The modular system architecture also allows for easy extension to
additional tasks, affirming its adaptability to diverse early learning scenarios.

The limitations of the study include a modest sample size and the short duration of experimental expo-
sure, which limits generalizability and insight into long-term effects. In addition, the system required
manual activation for speech delivery, restricting its autonomy. Future work should address these limita-
tions through larger, longitudinal deployments, enhanced automation, and inclusion of culturally diverse
cohorts to assess broader applicability.

In conclusion, this research provides strong empirical support for the integration of social robots into
early childhood language education. The RALL framework not only improves task performance and
learner engagement, but also offers a validated, scalable methodology to advance HRI in pedagogically
meaningful ways. These contributions represent a pivotal step toward aligning educational robotics with
the developmental and emotional needs of young second-language learners. Moreover, these findings
are consistent with our previous study conducted with adult learners [33], which demonstrated similar
improvements in engagement and learning outcomes, thus supporting the generalizability of RALL
principles across age groups and instructional settings.
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