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Abstract

Exchangeable partitions of the integers and their corresponding mass partitions on
P∞ = {s = (s1, s2, . . . ) : s1 ≥ s2 ≥ · · · ≥ 0 and

∑∞
k=1 sk = 1} play a vital role in com-

binatorial stochastic processes and their applications. In this work, we continue our
focus on the class of Gibbs partitions of the integers and the corresponding stable
Poisson–Kingman-distributed mass partitions generated by the normalized jumps of a
stable subordinator with an index α ∈ (0, 1), subject to further mixing. This remark-
able class of infinitely exchangeable random partitions is characterized by probabilities
that have Gibbs (product) form. These partitions have practical applications in combi-
natorial stochastic processes, random tree/graph growth models, and Bayesian statistics.
The most notable class consists of random partitions generated from the two-parameter
Poisson–Dirichlet distribution PD(α, θ ). While the utility of Gibbs partitions is recog-
nized, there is limited understanding of the broader class. Here, as a continuation of our
work, we address this gap by extending the dual coagulation/fragmentation results of
Pitman (1999), developed for the Poisson–Dirichlet family, to all Gibbs models and their
corresponding Poisson–Kingman mass partitions, creating nested families of Gibbs par-
titions and mass partitions. We focus primarily on fragmentation operations, identifying
which classes correspond to these operations and providing significant calculations for
the resulting Gibbs partitions. Furthermore, for completion, we provide definitive results
for dual coagulation operations using dependent processes. We demonstrate the appli-
cability of our results by establishing new findings for Brownian excursion partitions,
Mittag-Leffler, and size-biased generalized gamma models.
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1. Introduction

Infinitely exchangeable random partitions, denoted as �∞, of the integers N= {1, 2, . . .},
following Kingman, correspond to sampling from a discrete random distribution func-

tion representable as F(y) = ∑∞
k=1 Pk1{Uk≤y}, where (Uk)k≥1

iid∼ Uniform(0, 1) and are inde-
pendent of the random mass partitions (Pk)k≥1 ∈P∞ = {s = (s1, s2, . . . ) : s1 ≥ s2 ≥ · · · ≥
0 and

∑∞
k=1 sk = 1}, as described in [3, 32, 33]. These concepts play important roles in areas

such as Bayesian statistics, excursion theory, population genetics, species sampling mod-
els, statistical physics, and random graph theory, where combinatorial stochastic processes
frequently occur as fundamental components.

Specifically, let �n := {C1, . . . , CKn} denote partitions of the integers [n] := {1, . . . , n},
with Kn ≤ n representing the random number of blocks and block sizes nj = |Cj| such that∑Kn

j=1 nj = n. This defines the restriction of �∞ to �n. Following Kingman’s correspondence
[32, 33], if X1, . . . , Xn represents an independent and identically distributed (iid) sample

from F with unique values (Ũ1, . . . , Ũk)
iid∼ Uniform[0, 1] for Kn = k, each block of the par-

tition can be represented as Cj = {i : Xi = Ũj} for j = 1, . . . , k. The law of �n is expressed
as P(�n := {C1, . . . , Ck}) = p(n1, . . . , nk), where p is a symmetric function of the integers
depending solely on the sizes of the blocks (n1, . . . , nk), and hence not on the values Ũj,
known as exchangeable partition probability functions (EPPFs) of the corresponding infinite
partition �∞ of N. Furthermore, the EPPF specifying the distribution of �∞ is in bijection
to the distribution of a corresponding (Pk)k≥1 ∈P∞ and the frequencies |Cj|/n, j = 1, . . . , Kn,
arranged in ranked order converge almost surely to (Pk)k≥1 as n → ∞.

This work continues the research initiated in [20, 21], focusing on finer distributional
details of a large class of infinitely exchangeable random partitions known as Gibbs partitions
and corresponding stable Poisson–Kingman-distributed mass partitions. As established in [32,
Theorem 8] and subsequently in [15, 33], this large class has the distinguishing feature that the
EPPFs for �∞ have Gibbs or product form consistent with each restriction to �n. Furthermore,
these partitions correspond to sampling from F where (Pk)k≥1 ∼ PKα(γ ) denotes α-stable
Poisson–Kingman distributions with mixing (probability) measure γ on (0, ∞), constructed
from the normalization of the jumps of an α-stable subordinator, where α ∈ (0, 1).

Remark 1.1. As in [3], we may refer to F as a PKα(γ )-bridge, and the corresponding �n :=
{C1, . . . , CKn} as a PKα(γ ) partition of [n].

Let Tα be a positive α-stable random variable with Laplace transform E[e−λTα ] = e−λα
and

density fα . In addition, T−α
α ∼ ML(α, 0) denotes a variable with a Mittag-Leffler distribution

with corresponding density gα . We can set γ (dt)/dt = h(t)fα(t) for a non-negative function h(t),
for t ∈ (0, ∞), such that E[h(Tα)] = 1. Hence, we can write (Pk)k≥1 ∼ PKα(h · fα) in place of
PKα(γ ), emphasizing the change in distribution based on the choices of h(t). The case where
h(t) = 1, for t > 0, yields the Poisson–Dirichlet distribution PD(α, 0) := PKα( fα), which is the
canonical class based on a normalized stable subordinator. Sampling from the corresponding
F := Fα , a PD(α, 0)-bridge, yields the EPPF, say pα , of a PD(α, 0) (Gibbs) partition of [n]:

P(�n := {C1, . . . , Ck}) = pα(n1, . . . , nk) := αk−1�(k)

�(n)

k∏
j=1

(1 − α)nj−1,

where, for any non-negative integer x, (x)n = x(x + 1) · · · (x + n − 1) = �(x + n)/�(x)
denotes the Pochhammer symbol, with more details provided in Section 2. Furthermore,
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Pα,0(Kn = k) = P
(n)
α,0(k) is the corresponding distribution of the number of blocks Kn, where

P
(n)
α,0(k) = αk−1�(k)

�(n)
Sα(n, k), with Sα(n, k) = 1

αkk!
k∑

j=1

( − 1) j
(

k

j

)
(− jα)n

denoting the generalized Stirling number of the second kind. In general, as established in [15,
32, 33], the distribution of the PKα(h · fα) (Gibbs) partition of [n] is specified by the EPPF, say
p[γ ]
α , expressed as

P(�n := {C1, . . . , Ck}) = p[γ ]
α (n1, . . . , nk) = �

[α]
n,k × pα(n1, . . . , nk), (1.1)

where �
[α]
n,k =E[h(Tα) | Kn = k] evaluated under the PD(α, 0) distribution of Tα | Kn = k, as

described in [20, 21]. The most distinguished and utilized class of these partition models
is generated by (Pk)k≥1 ∼ PD(α, θ ) for 0 ≤ α < 1 and θ > −α, denoting the two-parameter
Poisson–Dirichlet distribution arising for h(t) = t−θ /E[T−θ

α ]. Tα,θ is the analogue of Tα

with density fα,θ (t) = t−θ fα(t)/E[T−θ
α ], and T−α

α,θ ∼ ML(α, θ ) are general Mittag-Leffler vari-

ables with parameters (α, θ ). The size-biased rearrangement of (Pk)k≥1, say
(
P̃k = (1 −

Rk)
∏k−1

j=1 Rj
)

k≥1 ∼ GEM(α, θ ), where GEM(α, θ ) is the two-parameter Griffiths–Engen–

McCloskey distribution, means that 1 − Rk
ind∼ Beta(1 − α, θ + kα) for k ≥ 1, and is widely

used in applications. The EPPFs corresponding to {C1, . . . , CKn} ∼ CRP(α, θ ) − [n], denot-
ing the distribution of a two-parameter Chinese restaurant process partition of [n], equivalently
a PD(α, θ ) partition of [n], is usually denoted as pα,θ (n1, . . . , nk) and has the form in (1.1)
with

�
[α]
n,k = E

[
T−θ

α | Kn = k
]

E
[
T−θ

α

] = �(n)�(θ/α + k)�(θ + 1)

�(k)�(θ/α + 1)�(θ + n)
, (1.2)

where E[T−θ
α | Kn = k] = �(n)�(θ/α + k)/[�(k)�(θ + n)]. Furthermore, the corresponding

F := Fα,θ are said to be Pitman–Yor processes, as coined in [22], or otherwise just PD(α, θ )-
bridges. See [3, 22, 30, 33, 37] for more details. These are extensions of results associated with
the classic one-parameter Poisson–Dirichlet distribution corresponding to PD(0, θ ), including
the Ewens sampling formula arising in population genetics; here F := F0,θ is a Dirichlet pro-
cess as in [13]. See [9] for a recent comprehensive overview. Also, see [15, Theorem 12] for
a precise description of the entire class of Gibbs partitions. Another popular choice is h(t) =
e−λteλα

, corresponding to generalized gamma processes. However, in general, interpretation
of distributions based on different choices of h(t) is lacking.

1.1. Outline

In this work, in part to obtain a better understanding of various choices of h(t), we tackle the
formidable challenge of extending the dual coagulation/fragmentation results of [31], devel-
oped for the two-parameter Poisson–Dirichlet family, to all Gibbs models, thereby creating
nested families of Gibbs partitions and mass partitions. In general, fragmentation refers to shat-
tering/splitting of mass partitions or blocks of integer partitions, whereas coagulation refers to
merging of such objects [3, 33]. Our primary focus is on fragmentation operations on P∞
and their corresponding actions on �∞. We identify which classes correspond to these oper-
ations and provide simplified calculations for the resulting Gibbs partitions, thus providing a
better indication of the distributional meaning of the resulting mixing measures. For complete-
ness, we also describe the dual coagulation, which, unlike the Poisson–Dirichlet case in [31],
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is based on dependent processes. See [3, 33] for more general accounts of coagulation and
fragmentation operations. Readers interested in applications in statistical mechanics may refer
to [3, Section 4.4.4] in relation to the Bolthausen–Sznitman coalescent [6], and the works of
[31] and others.

A more detailed outline is as follows. In Section 2, we provide more background details for
the PKα(h · fα) distributions and corresponding EPPFs. In Section 3, for 0 ≤ β < α we intro-
duce the fragmentation operator FRAGα,−β on P∞ and establish new results for its application
to PKβ (h · fβ ) mass partitions, where to be clear h(t) is chosen such that E[h(Tβ )] = 1. The
FRAGα,−β operation then induces a new measure based on a modification of h and the density
fα . In Section 4, we establish the dual coagulation operation based on dependent processes.
In Sections 5.1 and 5.2 we obtain remarkable calculations for Gibbs partitions and related
identities, derived from the FRAGα,−β operation, which are not obvious from our results in
Section 3. The remainder of our exposition focuses on applications of our results to obtain
new results for non-trivial special cases of interest. In Section 5.3, we focus on the application
of the fragmentation operator FRAGα,−1/2 to Brownian excursion partitions [32, 33]. Section
5.4 introduces new fragmentation results in relation to the Mittag-Leffler class [21]. Section 6
demonstrates how our dual coagulation and fragmentation operations can be used to identify
all the relevant laws and construct new duality results for generalized gamma models and their
size-biased extensions.

For nested models primarily related to the fragmentation operator, see [2, 10]. In addition,
[38] (see also [14]) applies the coagulation/fragmentation duality on the space of partitions of
[n] to ∞-gram natural language models. This represents an application in Bayesian statistical
machine learning involving the use of inverse clustering (via FRAGα,−β fragmentation) and
merging (via PD(β/α, θ/α) coagulation) on the space of partitions of [n]. Related to this, [26]
constructs (nested) hierarchical network/graph models using the coagulation/fragmentation
operations in [31], and also [12]. This suggests that our results can potentially be applied
in a similar manner to graphs constructed from generalized gamma models, which is a flex-
ible class highlighted in [7, Section 6.3]. For some other references on Gibbs partitions and
α-stable Poisson–Kingman models, see [1, 7, 11, 17, 20, 21, 28, 35]. See [18, 19] for other
occurrences of the coagulation/fragmentation operators in the PD(α, θ ) setting.

Remark 1.2. Pitman [31, Section 4] presents a proof of his duality result in Theorem 12,
expressed on the space of integer partitions �∞, by employing calculations involving the rel-
evant EPPFs. This establishes the corresponding results on the space of mass partitions P∞.
An attempt to extend his proof to more general Gibbs distributions on �∞ does not seem ten-
able. Instead, we focus on the space of mass partitions P∞, facilitated by constructions in [5]
that allow us to utilize the existing results of [31] more transparently and identify the resulting
mixing measures.

2. α-stable Poisson–Kingman distributions and Gibbs partitions

Letting (
k)k≥1, with 
1 > 
2 > · · · , denote the ranked jumps of an α-stable subordina-
tor, say Tα := (Tα(t) : t ≥ 0) of index α ∈ (0, 1), with Tα(0) = 0 and Tα(1) := Tα = ∑∞

k=1 
k

a positive stable random variable having Laplace transform E[e−λTα ] = e−λα
and density

denoted as fα(t). In addition, let (Lt : t ≥ 0) denote the inverse of Tα , which corresponds to
the local-time process of a strong Markov process starting at 0, for instance a Bessel process
of dimension 2 − 2α starting at zero. As in [36], we may use the notation L(t) in place of Lt for

notational convenience. The local time up to time 1 satisfies L(1) := L1
d= T−α ∼ ML(α, 0),
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having a Mittag-Leffler distribution with density denoted as gα . Hereafter, we will simply say
L(1) := L1 is the local time at 1. That is, Tα(s) = inf{t : Lt > s}, s ≥ 0, is the corresponding
inverse local-time process. We have the following important scaling identity (see [36]):

L1
d= Lt

tα
d= s

[Tα(s)]α
d= T−α

α . (2.1)

Then (Pk := 
k/Tα)k≥1 ∼ PD(α, 0) [37], a two-parameter (α, 0) Poisson–Dirichlet distribu-
tion, where as an example PD

( 1
2 , 0

)
corresponds to the distribution of the lengths of excursions

of a Brownian motion on [0,1]. Furthermore, F(u) := Fα(u)
d= Tα(u)/Tα(1) for u ∈ [0, 1].

Another important property, relevant to species sampling or species abundance models, is
that n−αKn converges almost surely to T−α

α , where in this context T−α
α is referred to as the

α-diversity of �∞, as in [32, 33].
To construct the larger class of distributions, let PD(α | t) denote the conditional distri-

bution of (Pk)k≥1 given Tα = t (or L1 = t−α) and, for a non-negative function h(t) satisfy-
ing E[h(Tα)] = 1, mix PD(α | t) over the probability measure γ (dt)/dt = h(t)fα(t) to obtain
(Pk)k≥1 ∼ PKα(h · fα), where

PKα(h · fα) =
∫ ∞

0
PD(α | t)h(t)fα(t) dt =

∫ ∞

0
PD

(
α | s−1/α

)
h
(
s−1/α

)
gα(s) ds.

It follows from [20, 21] that the conditional distribution of Tα | Kn = k equates to the distribu-
tion of the variable Y (n−kα)

α,kα , with density f (n−kα)
α,kα (t), such that (pointwise), as in [21, (2.13), p.

323],

Y (n−kα)
α,kα

d= Tα,kα

Bkα,n−kα
= Tα,n

B1/α

k,n/α−k

, (2.2)

where the variables in each ratio are independent, and throughout Ba,b denotes a Beta(a, b)
random variable. Hence, the EPPF of the general case is given in (1.1) with �

[α]
n,k expressed

as �
[α]
n,k =E[h(Tα) | Kn = k] =E

[
h
(
Y (n−kα)

α,kα

)]
. It is noteworthy that (2.2) indicates that Mittag-

Leffler variables play a role in the general α class of Gibbs partitions. We can also use this to
verify the recursion (see [15] and [21, Lemma 2.1])

�
[α]
n,k = kα

n
�

[α]
n+1,k+1 +

(
1 − kα

n

)
�

[α]
n+1,k.

Remarkably, for the number of blocks Kn having the probability mass function �
[α]
n,kP

(n)
α,0(k), it

follows from [32, Proposition 13] that as n → ∞, n−αKn converges almost surely to T−α ,
which is the α-diversity under PKα(h · fα) with density h(s−1/α)gα(s), regardless of how
complex �

[α]
n,k may appear.

3. Fragmentation operator FRAGα,−β

For 0 ≤ β < α, we define the PD(α, −β) fragmentation operator on P∞ (and also �∞)
as in [31], and more generally in [33, p. 108]. We refer to the operation on �∞ as the
CRP(α, −β) fragmentation operator. In both cases, we use FRAGα,−β to denote this operation
in the respective contexts.
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3.1. PD(α, −β) fragmentation on mass partitions

Let
(
Q̂(k)

j

)
j≥1 ∼ PD(α, −β)) for k = 1, 2, . . . denote a countably infinite collection of

independent elements in P∞, each having a PD(α, −β) distribution. Independent of
this, select V := (Vk)k≥1 ∈P∞. A PD(α, −β) fragmentation operation first shatters each
mass Vk by an independent mass partition

(
Q̂(k)

j

)
j≥1 ∼ PD(α, −β) such that Vk

(
Q̂(k)

j

)
j≥1 =(

VkQ̂(k)
1 , VkQ̂(k)

2 , . . .
)

for k = 1, 2, . . . The collection is then arranged in ranked order as an ele-
ment in P∞. The FRAGα,−β operator is defined as follows, with Rank denoting the operation
corresponding to the ranked rearrangement of masses:

FRAGα,−β (V) = Rank
(
VkQ̂(k)

j , j ≥ 1, k ≥ 1
) ∈P∞. (3.1)

3.2. CRP(α, −β) fragmentation on integer partitions

The corresponding (α, −β) fragmentation operation on the space of integer partitions �∞
for a given partition �n = {C1, . . . , CKn} is generated from the corresponding V. This oper-
ation shatters each block Cj by an independent CRP(α, −β) partition of the set Cj, with
EPPF pα,−β arising as a special case of pα,θ specified by (1.2). For given Cj, this results in
a CRP(α, −β) partition of Cj, denoted as

{
C̃1,j, . . . , C̃

K(j)
|Cj|,j

}
, where the number of unique

blocks K(j)
|Cj| ≤ |Cj| corresponds to that of a CRP(α, −β) partition of Cj. The FRAGα,−β oper-

ation on �n = {C1, . . . , CKn} results in a partition of [n] with
∑Kn

j=1 K(j)
|Cj| ≤ n distinct blocks

formed by the collection

{
C̃i,j, i = 1, . . . , K(j)

|Cj|, j = 1, . . . , Kn
}
, (3.2)

arranged according to the least element.
In the case where V ∼ PD(β, θ ), [31] shows that Ṽ = FRAGα,−β (V) ∼ PD(α, θ ).

Conversely, as in [31, 33], applying an independent PD(β/α, θ/α) coagulation operation to
the fragmented process Ṽ reverses this operation. The corresponding duality on integer par-
titions �∞ is described in more detail in [31, Theorem 12]. For a general treatment of these
notions, see [3].

3.3. PD(α, −β) fragmentation of PKβ (h · fβ ) mass partitions

We now address the question of the resulting distribution from the same independent
fragmentation operation, FRAGα,−β (V), when V := (Vk)k≥1 ∼ PKβ (h · fβ ), where for clar-
ity h(t) is chosen with respect to Tβ , having density fβ such that E[h(Tβ )] = 1. In order
to achieve our results, we work with independent stable subordinators Tα := (Tα(t), t ≥ 0)
and Tβ/α := (Tβ/α(t), t ≥ 0) generating independent elements of P∞, Vα ∼ PD(α, 0) and
Qβ/α ∼ PD(β/α, 0) respectively. The corresponding independent local-time processes start-
ing at zero are (Lα(t), t ≥ 0) and (Lβ/α(t), t ≥ 0), satisfying (2.1), with local times at 1, denoted

respectively as L1,α := Lα(1)
d= T−α

α and L1,β/α := Lβ/α(1)
d= T−β/α

β/α , playing the role of L1,
as we have described, and otherwise following the more detailed description in [5] as it
relates to the special case of the duality [31, Theorem 14 and Corollary 15]. The mass parti-
tion Vβ ∼ PD(β, 0) is formed by the independent coagulation Vβ = PD(β/α, 0) − COAG(Vα),
which, as in [3–5] (for more details see the description in [33, Lemma 5.18, p. 114–115] in
relation to the Bolthausen–Sznitman coalescent [6]), corresponds to the ranked normalized
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jumps formed by the composition of the processes.

(Fβ (u) = Fα(Fβ/α(u)), u ∈ [0, 1])
d=

(
Tα(Tβ/α(u))

Tα(Tβ/α(1))
, u ∈ [0, 1]

)
, (3.3)

and has local time starting at 0 up to time 1 L1,β := Lβ (1) = Lβ/α(L1,α)
d= T−β

β , with inverse
local time up to time 1 Tβ := Tβ (1) = Tα(Tβ/α(1)), with density fβ . Conversely, Vα =
FRAGα,−β (Vβ ) ∼ PD(α, 0).

Remark 3.1. We will write Fα ◦ Fβ/α to indicate the composition of functions Fα(Fβ/α(u)) for
u ∈ [0, 1].

Remark 3.2. There is the well-known distributional equivalence Tβ
d= Tα × T1/α

β/α

d= Tβ/α ×
Tα/β

α . However, in the case of interpretation of the PD(β/α, 0) coagulation, as in (3.3), the

order matters and thus we will only use Tβ
d= Tα × T1/α

β/α .

Applying the scaling property in (2.1), it follows that, for any s > 0, [Lβ/α(s−α)]−1/β d=
T1/α

β/αs, and also, using L1,α
d= T−α

α independent of the process (Lβ/α(t), t ≥ 0), we have

ω
(y)
β/α,β (s) := P

(
[Lβ/α(L1,α)]−1/β ∈ dy | L−1/α

1,α = s
)

P
(
L−1/β

1,β ∈ dy
) = αyα−1fβ/α((y/s)α)

sαfβ (y)
(3.4)

such that the conditional distribution of L1,α | L1,β may be expressed in terms of that of the

transformed variable L−1/α

1,α | L−1/β

1,β as

P

(
L−1/α

1,α ∈ ds | [Lβ/α(L1,α)]−1/β = y
)
/ds = ω

(y)
β/α,β (s)fα(s), (3.5)

which is equivalent to the conditional density of Tα given Tα × T1/α
β/α = y. We now state our

first result.

Theorem 3.1. Let V ∼ PKβ (h · fβ ) with local time at 1, say L1,V, having density h(x−1/β )gβ (x).
For any choice of 0 < β < α < 1, let FRAGα,−β ( · ) denote a PD(α, −β) fragmentation
operator independent of V, as defined in (3.1). Then:

(i) Ṽ := FRAGα,−β (V) ∼ PKα(h̃β/α · fα), where

h̃β/α(s) := Eβ/α

[
h
(
sT1/α

β/α

)] =
∫ ∞

0
h(sy1/α)fβ/α(y) dy.

That is, it has a local time at time 1, say L1,Ṽ, with density h̃β/α(z−1/α)gα(z).

(ii) The conditional distribution of Ṽ | L1,V = y−β is equivalent to the distribution of Vα |
L1,β = y−β , where Vα = FRAGα,−β (Vβ ) ∼ PD(α, 0), which is

PDα|β (α | y) :=
∫ ∞

0
PD(α | s)ω(y)

β/α,β (s)fα(s) ds = PKα

(
ω

(y)
β/α,β · fα

)
(3.6)

for ω
(y)
β/α,β (s) defined in (3.4).

(iii) For clarity, when Vβ (y) is equivalent in distribution to Vβ | Tβ = y ∼ PD(β | y), it
follows that FRAGα,−β (Vβ (y)) ∼ PDα|β (α | y) as in (3.6).
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Proof. Let Ê(β,0)
(α,−β) denote the expectation with respect to the joint law of (Vβ, ((Q̂(k))j≥1,

k ≥ 1)) where Vβ ∼ PD(β, 0) with local time at 1 L1,β = Lβ/α(L1,α), with density gβ (x), and,
independent of this, ((Q̂(k))j≥1, k ≥ 1) are iid PD(α, −β) mass partitions. Consider V ∼ PKβ (h ·
fβ ). The distribution of Ṽ = FRAGα,−β (V) is characterized, for a measurable function �, by

E[�(FRAGα,−β (V))] = Ê
(β,0)
(α,−β)

[
�(FRAGα,−β (Vβ ))h

(
L−1/β

1,β

)]
. (3.7)

But, from [5, 31], for Vα ∼ PD(α, 0) this is equivalent to

E

[
�(Vα)h([Lβ/α(L1,α)]−1/β )

]
. (3.8)

Now use (3.4) and (3.5) to write the joint density of L−1/α

1,α and [Lβ/α(L1,α)]−1/β for the respec-

tive arguments (s,y) as ω
(y)
β/α,β (s)fα(s)fβ (y). Then, conditioning on the joint event L−1/α

1,α = s and

[Lβ/α(L1,α)]−1/β = y, we can express (3.8) as∫ ∞

0

∫ ∞

0
E

[
�(Vα) | L−1/α

1,α = s, [Lβ/α(L1,α)]−1/β = y
]
h(y)ω(y)

β/α,β (s)fα(s)fβ (y) ds dy. (3.9)

It follows that, since (Lβ/α(t), t ≥ 0) is independent of Vα , Vα | L−1/α

1,α = s, [Lβ/α(L1,α)]−1/β =
y has distribution PD(α | s). Using this and (3.9), it follows that the expectation in (3.8) can be
expressed as ∫ ∞

0

[ ∫ ∞

0
E

[
�(Vα) | Tα = s

]
ω

(y)
β/α,β (s)fα(s) ds

]
h(y)fβ (y) dy. (3.10)

Alternatively, it can also be expressed as
∫ ∞

0 E[�(Vα) | Tα = s]h̃β/α(s)fα(s) ds for h̃β/α(s) :=
Eβ/α

[
h
(
sT1/α

β/α

)] = ∫ ∞
0 ω

(y)
β/α,β (s)h(y)fβ (y) dy, yielding the results in (i) and (ii). Now compar-

ing Ê
(β,0)
(α,−β)

[
�(FRAGα,−β (Vβ ))h

(
L−1/β

1,β

)]
in (3.7) with the equivalent expression in (3.10), it

follows that, for almost all y,

Ê
(β,0)
(α,−β)

[
�(FRAGα,−β (Vβ )) | Tβ = y

] =
∫ ∞

0
E[�(Vα) | Tα = s]ω(y)

β/α,β (s)fα(s) ds,

and, noting the independence of the FRAGα,−β operator relative to Vβ , this leads to the result
in (iii). �

4. Duality via dependent coagulation

We now describe how to construct dependent coagulations to complete the dual process
of recovering V ∼ PKβ (h · fβ ) from the coagulation of Ṽ = FRAGα,−β (V) ∼ PKα(h̃β/α · fα) by
some mass partition Q := (Q
)
≥1 ∈P∞. Our results show how specification of h(t) leads to a
prescription for identifying the laws of V, Ṽ, and Q without guesswork.

Recall that for the independent mass partitions (Vα, Qβ/α) described in (3.3), the process

of coagulation yields an inverse local time at 1 for Vβ to be Tβ (1) = Tα(Tβ/α(1))
d= Tα × T1/α

β/α .

For Ṽ as described above, we consider the dependent pair (Ṽ, Q) with joint law, say Pβ/α
α (h),

characterized by, for some generic measurable function �,

E[�(Ṽ, Q)] =E
(β/α,0)
(α,0)

[
�(Vα, Qβ/α)h(Tα(Tβ/α(1)))

]
, (4.1)
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with E[h(Tβ (1))] =E[h(Tα(Tβ/α(1)))] = 1, and the notation E
(β/α,0)
(α,0) referring to an expectation

evaluated under the joint law of the independent PD(α, 0) and PD(β/α, 0) distributions. We
use this for clarity, but will suppress it when it is clear we are referring to such variables.
Equivalently, by conditioning and scaling properties, the joint law of (Ṽ, Q) is given by

Pβ/α
α (h) :=

∫ ∞

0

∫ ∞

0
PD(α | s)PD(β/α | y)h(sy1/α)fβ/α(y)fα(s) dy ds. (4.2)

Remark 4.1. Throughout, let (TṼ, TQ) denote the generalization of (Tα, Tβ/α) for (Ṽ, Q).
Equation (4.2) indicates that their joint density is given by h(sy1/α)fβ/α(y)fα(s) and determines
the overall dependency of the processes.

In addition, for collections of iid Uniform[0, 1] variables ((Ũk), (U
)) independent of
(Ṽ, Q), define random distribution functions (exchangeable bridges), for y ∈ [0, 1],

FṼ(y) =
∞∑

k=1

Ṽk1{Ũk≤y}, FQ(y) =
∞∑


=1

Q
1{U
≤y}. (4.3)

Remark 4.2. It follows that when h(t) = t−θ /E
[
T−θ

β

]
for θ > −β, Ṽ ∼ PD(α, θ ) is indepen-

dent of Q ∼ PD(β/α, θ/α). Hence, FṼ
d= Fα,θ and FQ

d= Fβ/α,θ/α are independent.

Proposition 4.1. For 0 < β < α < 1, let (Ṽ, Q) have a joint distribution Pβ/α
α (h) specified by

(4.1), or equivalently (4.2), such that Ṽ ∼ PKα(h̃β/α · fα) and (FṼ, FQ) are bridges defined in
(4.3), and (TṼ, TQ) as in Remark 4.1. Let V ∈P∞ be the ranked masses of the bridge defined

by the composition FV := FṼ ◦ FQ. Then, V is equivalent to the coagulation of Ṽ by Q and
there are the following properties:

(i) V ∼ PKβ (h · fβ ).

(ii) The marginal distribution of Q ∼ PKβ/α(ĥα · fβ/α), where

ĥα(y) := Eα[h(Tαy1/α)] =
∫ ∞

0
h(sy1/α)fα(s) ds,

and the corresponding TQ has density ĥα(y)fβ/α(y).

(iii) The distribution of Ṽ | TQ = y is PKα(h(y)
α · fα), where h(y)

α (s) = h(sy1/α)/Eα[h(Tαy1/α)].

Proof. We first recall from (3.3) that under independent PD(α, 0) and PD(β/α, 0) laws,
the bridge Fβ := Fα ◦ Fβ/α follows the law of a PD(β, 0)-bridge with inverse local time at 1,
Tβ := Tβ (1) = Tα(Tβ/α(1)). Hence, under the joint law of (Ṽ, Q) specified by (4.1), it follows
that, for FV := FṼ ◦ FQ,

E[�(FṼ ◦ FQ)] =E
[
�(Fα ◦ Fβ/α)h(Tα(Tβ/α(1)))

] =E[�(Fβ )h(Tβ (1))],

showing that FV is a PKβ (h · fβ )-bridge and thus V ∼ PKβ (h · fβ ) in statement (i). Statements
(ii) and (iii) follow from straightforward usage of (4.2). �
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5. Gibbs partitions of [n] derived from FRAGα,−β

Recall from [32, 33] that when Vβ ∼ PD(β, 0), Vβ | L1,β = y−β is equivalent in distribution
to Vβ | Tβ = y ∼ PD(β | y) and has the associated Gibbs partition of [n] described by the PD(β |
y)-EPPF

pβ (n1, . . . , nk | y) := f (n−kβ)
β,kβ (y)

fβ (y)
pβ (n1, . . . , nk), (5.1)

where, as in [20, 21],

f (n−kβ)
β,kβ (y)

fβ (y)
=G

(n,k)
β (y)

β1−k�(n)

�(k)
,

with, from [15, 32, 33],

G
(n,k)
β (t) = βkt−n

�(n − kβ)fβ (t)

[ ∫ t

0
fβ (v)(t − v)n−kβ−1 dv

]
, (5.2)

and f (n−kβ)
β,kβ (y) being the conditional density of Tβ | K[β]

n = k corresponding to a random vari-

able denoted as Yn−kβ
β,kβ , as otherwise described in (2.2) with β in place of α. Note, furthermore,

as in [21], this means that Tβ := Tα(Tβ/α(1))
d= Y (n−K[β]

n β)

β,K[β]
n β

for K[β]
n ∼ P

(n)
β,0(k). We use these

facts to obtain interesting expressions for α-Gibbs partitions equivalent to those arising from
the FRAGα,−β operator. In particular, in Section 5.1 we provide a remarkable description of
the corresponding EPPF for mass partitions equivalent in distribution to

FRAGα,−β (Vβ (y)) ∼ PDα|β (α | y) = PKα

(
ω

(y)
β/α,β · fα

)
(5.3)

for Vβ (y) ∼ PD(β | y), as described in the result in Theorem 3.1(iii).

5.1. Gibbs partitions of [n] of Vα | L1,β , equivalently of FRAGα,−β (V) | L1,V

Recall from Theorem 3.1 that the distribution of Vα | L1,β = y−β is equivalent to that of

Ṽ = FRAGα,−β (V) | L1,V = y−β , with distribution denoted PDα|β (α | y) := PKα

(
ω

(y)
β/α,β · fα

)
as in (3.6), where ω

(y)
β/α,β (s) is a ratio of stable densities and hence does not have an explicit

form for general 0 < β < α < 1. We now present results for the EPPF of the PDα|β (α | y) Gibbs
partition of [n]. We first note that since Tα | K[α]

n = k is equivalent in distribution to Yn−kα
α,kα

with density f (n−kα)
α,kα , the EPPF can be expressed as

[ ∫ ∞
0 ω

(y)
β/α,β (s)f n−kα

α,kα (s) ds
]
pα(n1, . . . , nk),

where the first integral term is the density of Y (n−kα)
α,kα × T1/α

β/α divided by fβ (y), and does not
have an obvious recognizable form. However, we can use the approach in [20] to express
ω

(y)
β/α,β in terms of Fox-H functions [29], leading to the expression for the EPPF in terms of

Fox-H functions given in Appendix 10.
The next result provides a more revealing expression that is not obvious.

Theorem 5.1. The EPPF of the PDα|β (α | y) Gibbs partition of [n], corresponding to sampling
n times from mass partitions with distribution described in (5.3), can be expressed as

pα|β (n1, . . . , nk | y) :=
[

k∑
j=1

P
(k)
β/α,0(j)

f (n−jβ)
β,jβ (y)

fβ (y)

]
pα(n1, . . . , nk), (5.4)
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where P
(k)
β/α,0(j) = Pβ/α,0(Kk = j) is the distribution of the number of blocks in a PD(β/α, 0)

partition of [k], and
∑k

j=1 P
(k)
β/α,0(j)f (n−jβ)

β,jβ (y) is the conditional density of Tβ | K[α]
n = k for

the number of blocks K[α]
n in a PD(α, 0) partition of [n], with Tβ := Tα(Tβ/α(1))

d= Tα × T1/α
β/α

being equivalent to the inverse local time at 1 of Vβ ∼ PD(β, 0).

Proof. The expression for the EPPF is the conditional distribution of a PD(α, 0) partition of
[n] given Tβ = y. The joint distribution may be expressed as in (5.4) in terms of the marginal
EPPF pα(n1, . . . , nk) and the conditional density of Tβ | K[α]

n = k. It remains to show that
Tβ | K[α]

n = k agrees with the expression in (5.4) as indicated. Recall that L1,β = Lβ/α(L1,α)
and hence the corresponding inverse local time at 1 is Tβ := Tβ (1) = Tα(Tβ/α(1)), corre-
sponding to the coagulation operation dictated by Fβ = Fα ◦ Fβ/α , as expressed in (3.3).
Sampling from Fα ◦ Fβ/α , that is, according to variables

(
F−1

β/α(F−1
α (U′

i)), i ∈ [n]
)
, where F−1

denotes the quantile function, it follows that this procedure produces a PD(β, 0) partition of

[n] with K[β]
n

d= K[β/α]

K[α]
n

blocks, where the two components are independent. Furthermore, the

order matters, giving K[α]
n the interpretation as the number of blocks to be merged, accord-

ing to a PD(β/α, 0) partition of [k], for K[α]
n = k ≤ n. Now, from [21], Tβ

d= Yn−K[β]
n β

β,K[β]
n β

. Hence

Tβ | K[α]
n = k is equivalent to Y

(n−K[β/α]
k β)

β,K[β/α]
k β

, which, using (5.1), leads to the description of the

density of Tβ | K[α]
n = k appearing in (5.4). �

Remark 5.1. The previous result is equivalent to showing that Y
(n−K[β/α]

k β)

β,K[β/α]
k β

d= Y (n−kα)
α,kα) × T1/α

β/α ,

which can be deduced directly using the subordinator representation [21, Theorem 2.1 and
Proposition 2.1] and decompositions of beta variables.

5.2. EPPF of FRAGα,−β (V) ∼ PKα(h̃β/α · fα)

Recall from [15, 32] (see also [21]) that if V ∼ PKβ (h · fβ ) with E[h(Tβ )] = 1, then the

EPPF of its associated Gibbs partition of [n] is described as p[γ ]
β (n1, . . . , nk) = �

[β]
n,k ×

pβ (n1, . . . , nk), where �
[β]
n,k =Eβ

[
h(Tβ ) | K[β]

n = k
]

and, for clarity, K[β]
n is the number of

blocks of a PD(β, 0) partition of [n].
Theorem 5.1 leads to the EPPF corresponding to Ṽ = FRAGα,−β (V) ∼ PKα(h̃β/α · fα), or

any variable in P∞ having the same distribution.

Proposition 5.1. Suppose that, for 0 < β < α < 1, Ṽ ∼ PKα(h̃β/α · fα), where h̃β/α(v) :=
Eβ/α

[
h
(
vT1/α

β/α

)]
. Then, the PKα(h̃β/α · fα) EPPF of the associated Gibbs partition of [n] can

be expressed as [
k∑

j=1

P
(k)
β/α,0(j)�[β]

n,j

]
pα(n1, . . . , nk), (5.5)

and we have the identity, for Tβ := Tβ (1) = Tα(Tβ/α(1)),

Eα

[
h̃β/α(Tα) | K[α]

n = k
] =E

[
h(Tβ ) | K[α]

n = k
] =

k∑
j=1

P
(k)
β/α,0(j)�[β]

n,j .
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Proof. The EPPF is equivalent to
∫ ∞

0 pα|β (n1, . . . , nk | y)h(y)fβ (y) dy, and hence the result
follows from (5.4) in Theorem 5.1. �

Remark 5.2. The expression in (5.5) provides a description of any mass partition with distribu-
tion PKα(h̃β/α · fα) where h̃β/α(v) := Eβ/α

[
h
(
vT1/α

β/α

)]
, regardless of whether or not it actually

arises from a fragmentation operation.

As a check, in the case where Ṽ d= Vα ∼ PD(α, θ ) and hence V d= Vβ ∼ PD(β, θ ), (5.5) must
satisfy

k∑
j=1

P
(k)
β/α,0(j)

�(θ/β + j)

�(θ/β + 1)�(j)
= �(θ/α + k)

�(θ/α + 1)�(k)
.

However, this is satisfied since it agrees with [33, Exercise 3.2.9, p. 66], with k in place of n.
We have the following corollary in the case of β/α = 1

2 .

Corollary 5.1. Specializing Theorem 5.1 to the case of β/α = 1
2 , where V ∼ PKα/2(h · fα/2)

and �
[α/2]
n,j =Eα/2

[
h(Tα/2) | K[α/2]

n = j
]
, the PKα(h̃1/2 · fα) EPPF in (5.5) becomes

[
k∑

j=1

(
2k − j − 1

k − 1

)
2j+1−2k�

[α/2]
n,j

]
pα(n1, . . . , nk).

5.3. PD
(
α, − 1

2

)
fragmentation of a Brownian excursion partition conditioned on its local

time

Following [32, Section 8] and [33, Section 4.5, p. 90], let (P
,0)
≥1 ∼ PD
( 1

2 , 0
)

denote
the ranked excursion lengths of a standard Brownian motion B := (Bt : t ∈ [0, 1]), with corre-

sponding local time at 0 up to time 1 given by L̃1
d= (2T1/2)−1/2 d= |B1|. Then, it follows that

(P
,0)
≥1 | L̃1 = s has a PD
( 1

2 | 1
2 s−2

)
distribution. Furthermore, with respect to (P
(s))
≥1 ∼

PD
( 1

2 | 1
2 s−2

)
, we describe the special β = 1

2 explicit case of the Gibbs partitions (EPPF) of [n]
in terms of Hermite functions as derived in [32] (see also [33, Section 4.5]) as

p1/2
(
n1, . . . , nk | 1

2 s−2) = sk−1H̃k+1−2n(s)
�(n)

21−n�(k)
p 1

2
(n1, . . . , nk), (5.6)

where, for U(a,b,c) a confluent hypergeometric function of the second kind (see [27, p. 263]),

H̃−2q(s) = 2−qU

(
q,

1

2
,

s2

2

)
=

∞∑

=0

( − s)



!
�(q + 
/2)

2�(2q)
2q+
/2

is a Hermite function of index −2q. That is, in (5.2), G(n,k)
1/2

( 1
2 s−2

) = 2n−ksk−1H̃k+1−2n(s).

Proposition 5.2. Suppose that P1/2(s) := (P
(s))
≥1 ∼ PD
( 1

2 | 1
2 s−2

)
. Then, for α > 1

2 ,
Pα|1/2(s) := FRAGα,−1/2(P1/2(s)) ∼ PDα|1/2

(
α | 1

2 s−2
)
, with corresponding EPPF expressed

in terms of a mixture of Hermite functions,[
k∑

j=1

P
(k)
1/2α,0(j)2n−1sj−1H̃j+1−2n(s)

�(n)

�(j)

]
pα(n1, . . . , nk). (5.7)
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Proof. The result follows as a special case of Theorems 3.1 and 5.1, and otherwise using the
explicit form of the EPPF in (5.6). �

Remark 5.3. In order to obtain a partition of [n] corresponding to the EPPF in (5.7), we can
sample from (5.6) via the prediction rules indicated in [32, (111) and (112)], and then employ
the CRP

(
α, − 1

2

)
fragmentation scheme in (3.2).

5.4. FRAGα,−β for the Mittag-Leffler class

We now present results for an application of the FRAGα,−β operator to the most basic
case of the Mittag-Leffler class as described in [21] (see also [23]). Consider again Vβ ∼
PD(β, 0). Recall that for λ > 0, the Laplace transform of L1,β

d= T−β
β equates to the Mittag-

Leffler function (see, for instance, [16]), expressed as

Eβ,1( − λ) =E
[
e−λT−β

β
] =

∞∑

=0

( − λ)


�(β
 + 1)
.

Independent of Vβ , let (N(s), s ≥ 0) denote a standard Poisson process, where E[N(s)] = s, and
consider the mixed Poisson process (N(tL1,β ), t ≥ 0). Then, as shown in [21], Vβ | N(λL1,β ) =
0 has a PKβ (h · fβ ) distribution of the form∫ ∞

0
PD(β | t)

e−λt−β

Eβ,1( − λ)
fβ (t) dt, (5.8)

where h(t) = e−λt−β
/Eβ,1( − λ). Furthermore, from [21, Proposition 4.5] its corresponding

EPPF for a partition of [n] can be expressed as

E(k)
β,n( − λ)

Eβ,1( − λ)
pβ (n1, . . . , nk),

where, as in [21, Proposition 4.2],

E(k)
β,n( − λ) =

∞∑

=0

(− λ)



!
�(k + 
)�(n)

�(k)�(β
 + n)
.

We now describe properties of the fragmented process; additional details to verify the
calculations are provided within the statement of the result.

Proposition 5.3. Let V have distribution specified in (5.8), and otherwise consider the setting
in Theorem 3.1.

(i) Ṽ = FRAGα,−β (V) ∼ PKα(h̃β/α · fα), where

h̃β/α(s) = Eβ/α,1( − λs−β )

Eβ,1( − λ)
=

∫ ∞
0 e−λs−βy−β/α

fβ/α(y) dy

Eβ,1( − λ)
.

(ii) Its EPPF for a partition of [n] can be expressed as∑∞

=0

(−λ)


�(β
/α+1)
�(n)�(β
/α+k)
�(k)�(β
+n)

Eβ,1( − λ)
pα(n1, . . . , nk),

which follows from the use of E[T−β

α | Kn = k] in (1.2).
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(iii) From (5.5) in Proposition 5.1, we have the identity

k∑
j=1

P
(k)
β/α,0( j)E( j)

β,n( − λ) =
∞∑


=0

( − λ)


�(β
/α + 1)

�(n)�(β
/α + k)

�(k)�(β
 + n)
.

6. Coagulation and fragmentation of generalized gamma models

For any 0 < β < 1, let (τβ (s), s ≥ 0) denote a generalized gamma subordinator specified

by its Laplace transform: E[e−wτβ (s)] = e−s[(1+w)β−1]. The generalized gamma subordina-
tor, along with corresponding mass partitions and bridges defined by normalization, say
(τβ (ζu)/τβ (ζ ) : u ∈ [0, 1]) for ζ > 0, as described in [32], arises in numerous contexts.
However, for the purpose of this exposition, the reader may refer to its role in the construction
of PD(β, θ ) distributions for θ > 0, as described in [37, Proposition 21].

Based on notes provided by Jim Pitman [34], with relevance to species sampling and latent
feature models, we can relate this and a more general size-biased class to Vβ ∼ PD(β, 0)
as follows. Again, let (N(s) : s ≥ 0) denote a standard Poisson process independent of Vβ .
Then the distribution of Vβ | N(ζ 1/βTβ (1)) = m corresponds to the size-biased general gamma

V := (Vk)k≥1 ∼ P
[m]
β (ζ ) := PKβ

(
r[m]
β,ζ · fβ

)
, where r[m]

β,ζ (t) = tme−ζ 1/β t/E
[
Tm

β e−ζ 1/βTβ
]

for m =
0, 1, 2, . . ., as described in [21, 24, 25].

Remark 6.1. Note that, from [34], within a species sampling context, N(ζ 1/βTβ (1)) can be
interpreted as the number of animals trapped/sampled according to the process of sampling
from FVβ

up to time ζ 1/β .

The case of m = 0 corresponds to the well-known case of the distribution of the mass
partitions of (τβ (ζu)/τβ (ζ ) : u ∈ [0, 1]). The other cases are less studied but arise in various
contexts. Here, for brevity, we show how to use Proposition 4.1 to easily identify laws and
explicit constructions of (dependent) random measures leading to a coagulation/fragmentation
duality in the case of m = 1. That is, suppose that V ∼ P

[1]
β (ζ ) := PKβ

(
r[1]
β,ζ · fβ

)
, where

r[1]
β,ζ (t) = ζ 1/β−1te−ζ 1/β teζ /β.

The case of m = 1 also allows us to recover the Poisson–Dirichlet coagula-
tion/fragmentation duality results of [31] based on independent PD(α, θ ) and PD(β/α, θ/α)
distributions for the general case of θ > −β. The case of m = 0 is fairly straightforward but we
can recover the duality only for θ > 0 using [37, Proposition 21]. Results for general m using
Proposition 4.1 are also manageable but require too many additional details for the present
exposition.

Let
(
τ

(1)
β (ζv), v ∈ [0, 1]

)
denote the subordinator τβ run up to a length of ζ , and let

τ
(2)
β (G(1−β)/β )

d= G1−β denote its total mass over the disjoint interval of length G(1−β)/β , where

Ga ∼ Gamma(a, 1) for a > 0 (see [37, Proposition 21]. This implies that τβ (ζ + G(1−β)/β )
d=

τ
(1)
β (ζ ) + τ

(2)
β (G(1−β)/β ). Although not well known, it follows from [24] that the correspond-

ing random distribution function (bridge) in the case of V ∼ P
[1]
β (ζ ) has the representation, for

v ∈ [0, 1],

FV(v)
d= τβ (ζv + G(1−β)/β1{U1≤v})

τβ (ζ + G(1−β)/β )
, with TV

d= τβ (ζ + G(1−β)/β )

ζ 1/β
. (6.1)

In this representation, we consider U1 to be the first atom picked in a sample. This is the con-
comitant of the mass corresponding to the first size-biased pick, say P̃1,β (ζ ), from V appearing
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in the size-biased representation

FV(v) := (1 − P̃1,β (ζ ))
τ

(1)
β (ζv)

τ
(1)
β (ζ )

+ P̃1,β (ζ )1{U1≤v}, (6.2)

where P̃1,β (ζ ) := τ
(2)
β (G(1−β)/β )/τβ (ζ + G(1−β)/β ) and we use τβ (ζ + G(1−β)/β ) := τ

(1)
β (ζ ) +

τ
(2)
β (γ(1−β)/β ). Our purpose in the next result is to determine, given that V ∼ P

[1]
β (ζ ) :=

PKβ

(
r[1]
β,ζ · fβ

)
, explicit equality in distribution constructions of (FṼ, FQ) satisfying FV =

FṼ ◦ FQ, where Ṽ d= FRAGα,−β (V) and Q is the coagulating mass partition. Furthermore, we
show how these can be used to recover the duality in the Poisson–Dirichlet case of [31] for all
θ > −β.

Here, we apply Proposition 4.1, as well as distribution theory connected with these general-
ized gamma models and the Poisson–Dirichlet family, to identify all the relevant distributions
in the next result, which is new.

Proposition 6.1. Consider the variables V and (Ṽ, Q) forming the coagulation and frag-
mentation operations as described in Proposition 4.1, with FV = FṼ ◦ FQ and where V ∼
P

[1]
β (ζ ) := PKβ

(
r[1]
β,ζ · fβ

)
, and thus (Ṽ, Q) ∼ Pβ/α

α

(
r[1]
β,ζ

)
, with joint density of (TṼ, TQ) given

by r[1]
β,ζ (sy1/α)fα(s)fβ/α(y) with respective arguments (s,y). Then:

(i) Q ∼ P
[1]
β/α(ζ ) where, for G(α−β)/β = G(1−β/α)/(β/α) ∼ Gamma((1 − β/α)/(β/α), 1),

FQ(v)
d= τβ/α(ζv + G(α−β)/β1{U1≤v})

τβ/α(ζ + G(α−β)/β )
, with TQ

d= τβ/α(ζ + G(α−β)/β )

ζ α/β
, (6.3)

where TQ has density r[1]
β/α,ζ (y)fβ/α(y).

(ii) Ṽ | TQ = y ∼ P
[1]
α (ζ α/βy), hence Ṽ d= FRAGα,−β (V) ∼ P

[1]
α (τβ/α(ζ + G(α−β)/β )) :=∫ ∞

0 P
[1]
α (ζ α/βy)r[1]

β/α,ζ (y)fβ/α(y) dy and where, for G(α−β)/β independent of G(1−α)/α ,

FṼ(u)
d= τα

(
τβ/α(ζ + G(α−β)/β )u + G(1−α)/α1{Ũ1≤u}

)
τα

(
τβ/α(ζ + G(α−β)/β ) + G(1−α)/α

) ,

with TṼ
d= τα

(
τβ/α(ζ + G(α−β)/β ) + G(1−α)/α

)
[τβ/α(ζ + G(α−β)/β )]1/α

. (6.4)

(iii) V ∼ P
[1]
β (G(θ+β)/β ) = PD(β, θ ) for ζ

d= G(θ+β)/β , θ > −β. Hence

(iv) Ṽ ∼ P
[1]
α (τβ/α(G(θ+β)/β + G(α−β)/β )) = PD(α, θ ) independent of

Q ∼ P
[1]
β/α(G(θ+β)/β ) = PD(β/α, θ/α).

Proof. The results follow from an application of Proposition 4.1 using h(t) = r[1]
β,ζ (t), the

distributional representation of TQ, and the appropriate Gamma randomization to obtain inde-
pendent PD laws. As mentioned, the generalized gamma subordinator representation of TQ,
TV, and Poisson–Dirichlet distributional identities can be found in [21, 24, 25]. For more clar-
ity it is straightforward to show that r[1]

β/α,ζ (y) = ∫ ∞
0 r[1]

β,ζ (sy1/α)fα(s) ds. As further checks, in
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verifying (iii) and (iv) we have

E

[
r[1]
β,G(θ+β)/β

(t)
]
=

∫ ∞
0 r[1]

β,x(t)x((θ+β)/β)−1e−x dx

�(θ/β + 1)
= t−θ

E[T−θ
β ]

.

Set t = sy1/α to obtain the independence. �

Although FV(v) = FṼ(FQ(v)) is a condition of the result, we can directly check that the

composition of the subordinator representations in (6.3) and (6.4) results in a P
[1]
β (ζ ) :=

PKβ

(
r[1]
β,ζ · fβ

)
-bridge. A key point is that, by definition, as the concomitant of the first size-

biased pick, U1 = F−1
Q (Ũ1), where F−1

Q denotes the quantile function of FQ. This results in

τα

(
τβ/α(ζ + G(α−β)/β )FQ(v) + G(1−α)/α1{Ũ1≤FQ(v)}

)
, written as

τα

(
τβ/α

(
ζv + G(α−β)/β1{U1≤v}

) + G(1−α)/α1{U1≤v}
) d= τβ

(
ζv + G(1−β)/β1{U1≤v}

)
,

where the term on the right-hand side involves using the facts discussed around the construction

of (6.2) and (6.3), where we can take τβ/α(G(α−β)/β )
d= G(α−β)/α , τα(G(α−β)/α + G(1−α)/α)

d=
G1−β

d= τβ (G(1−β)/β ), and τα(τβ/α(ζv))
d= τβ (ζv). This leads to the representations in (6.1) and

(6.2).

Remark 6.2. If Vα ∼ PD(α, 0) independent of Qβ/α ∼ PD(β/α, 0), it is evident that

(Vα, Qβ/α) | N(ζ 1/βTα(Tβ/α(1))) = m ∼ Pβ/α
α

(
r[m]
β,ζ

)
.

Appendix A.

The EPPF of the PDα|β (α | y) Gibbs partition of [n] in Theorem 5.1 may be alternatively
expressed in terms of Fox-H functions [29] as

αH0,2
2,2

[
y
∣∣(1−1/β,1/β),(1−1/α−k,1/α)
(1−1/α,1/α),(−n,1)

]
H0,1

1,1

[
y
∣∣(1−1/β,1/β)
(0,1)

] �(n)

�(k)
pα(n1, . . . , nk).

This expression follows by noting the Fox-H representations for fβ/α and f (n−kα)
α,kα , followed by

applying [8, Theorem 4.1]. Otherwise the details are similar to the arguments in [20].
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