
The Journal of Symbolic Logic, Page 1 of 29

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS

MARINA DORZHIEVA AND ELLEN HAMMATT

Abstract. We investigate the primitive recursive content of linear orders. We prove that the punctual
degrees of rigid linear orders, the order of the integers Z, and the order of the rationals Q embed the
diamond (preserving supremum and infimum). In the cases of rigid orders and the order Z, we further
extend the result to embed the atomless Boolean algebra; we leave the case of Q as an open problem. We
also show that our results for the rigid orders, in fact, work for orders having a computable infinite invariant
rigid sub-order.

§1. Introduction. In computable algebra, the main objects are computably
presented algebraic structures, such as groups, fields, Boolean algebras, and linear
orders. A computable presentation of a structure A is a coding of A by natural
numbers so that all relations and functions in the language of A become computable
on their respective indices.

Mal’cev [35] proposed that computable presentations of algebraic structures
should be studied up to computable isomorphism. The idea is that the maps used to
compare the objects of study should preserve all of the properties of these objects
that we wish to study. This approach is the suitable computable analogue of, e.g.,
comparing topological groups under topological group-isomorphism and identifying
differentiable manifolds up to diffeomorphism. Mal’cev defined a structure to be com-
putably categorical (or autostable) if it has a unique computable presentation up to
computable isomorphism. For example, any finitely generated group is computably
categorical, and so is the countable dense order of the rationals (folklore).

The study of the number of computable presentations up to computable
isomorphism (i.e., computable dimension) has accumulated many results and
techniques; we cite the books [2, 39, 40]. For example, there exist structures
having exactly two computable presentations up to computable isomorphism [20].
Computably categorical structures can be rather complicated in general; for instance,
their index set is Π1

1-complete [18]. However, non-trivial examples of computably
categorical structures or structures having finitely many computable presentations
have to be specifically constructed using intricate techniques. In contrast with these
results, in many standard classes, computably categorical structures are easy to
describe. For example, a linear order is computably categorical if and only if it

Received November 14, 2024.
2020 Mathematics Subject Classification. Primary 03C57, 03D45, 03D99.
Key words and phrases. computable structure, punctual structure, primitive recursion, linear orders,

lattice embeddings.
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/00/0000-0000
DOI:10.1017/jsl.2025.10106

1

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use,

https://orcid.org/0009-0000-2904-3619
https://creativecommons.org/licenses/by/4.0
www.doi.org/10.1017/jsl.2025.10106
https://crossmark.crossref.org/dialog?doi=10.1017/jsl.2025.10106&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

2 MARINA DORZHIEVA AND ELLEN HAMMATT

has only finitely many successive pairs [22, 41]. Similar descriptions of computable
categoricity are known for Boolean algebras [23, 33], broad classes of abelian groups
[21, 36, 44], trees of finite height [34], and ordered abelian groups [19]. In all these
cases, if a structure in the class is not computably categorical, then it has infinitely
many computable presentations up to computable isomorphism.

Thus, it seems that most algebraic structures encountered in mathematical practice
are not particularly interesting within the classical framework of computable
categoricity. Consequently, one may question the underlying reasons for this
phenomenon. One possible explanation is as follows: the approach discussed above
does not assume any time or resource restrictions on our algorithms.

The unbounded search is used so profoundly throughout the literature that most of
the algorithmic procedures developed within this framework appear to be completely
impractical. It is remarkable that, with some work, it can often be illustrated that
many computably presented algebraic structures possess polynomial-time presen-
tations. This is true, for instance, for linear orders, Boolean algebras, torsion-free
abelian groups, and for many other broad classes of structures; we cite [1, 7–11, 25].

As was observed in [29], almost all such proofs are focused on making algorithms
primitive recursive, and then with a bit more work, it can be shown that the bounds
are polynomial-time. On the other hand, to show a structure has no polynomial-time
presentation, it is often easiest to show that it does not have a primitive recursive
presentation by diagonalising against all primitive recursive presentations.

Motivated by these observations and beginning with [29], there has been a line of
investigation into the theory of primitive recursive processes in algebra and analysis.
We also cite the survey [5], which is, however, rapidly ageing. There have been many
recent results that appeared after the publication of [5], to name a few: [3, 4, 6,
13–17, 27, 28, 31, 38, 43]. The main definition in these investigations is as follows.

Definition 1.1 [29]. A structure with finite language is a punctual (formally,
fully primitive recursive) presentation if it has N as its domain and all functions and
relations in the language of A are primitive recursive on N.

Following the ideas of Mal’cev, we would like to compare punctual structures up
to primitive recursive isomorphism. Now the difference with general computable
structures becomes immediately apparent. Notice that the inverse of a primitive
recursive functionf : � → � may not be primitive recursive. This induces a natural
reduction on punctual presentations of a given structure.

Definition 1.2. Let PR(M) be the collection of punctual presentations of M.
For A,B ∈ PR(M), we say that A is punctually reducible to B, written A ≤pr B, if
there is a primitive recursive isomorphism p : A → B. We write A ∼=pr B and say
that A and B are punctually equivalent if A ≤pr B and B ≤pr A. Then the punctual
degrees of M, PR(M), are defined to be PR(M)/ ∼=pr .

We remark that A ∼=pr B does not necessarily imply that there is an isomorphism
f between the structures so that both f and f–1 are primitive recursive.

Some initial steps in the investigation of the punctual degrees of structures were
taken in [26]. Perhaps unsurprisingly, with some effort, pathological examples of
structures having unusual or unexpected punctual degrees can be manufactured;
e.g., [6, 38]. What is certainly unexpected is that the study of the punctual degrees of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 3

even the most familiar structures has proven to be a challenging task. In [37], it was
discovered that the punctual degrees of the dense linear order, the random graph,
and the universal countable abelian p-group are pairwise non-isomorphic; note all
three structures are homogeneous and computably categorical. In [30], it was shown
that any countable distributive lattice can be embedded into the punctual degrees of
the semi-ring of the natural numbers, as well as into the punctual degrees of any rigid
finitely generated (infinite) structure. In [13], it was established that the punctual
degrees of any computably almost rigid structure, including (�,<) and the linear
order (Z, <), are dense. Surprisingly, the punctual degrees of (Q, <) are not dense
[32]. It appears that primitive recursive procedures remain poorly understood, even
for the well-studied class of computably presentable linear orders.

We wish to further understand the punctual degrees of linear orders. In particular,
we are interested in whether any countable distributive lattice can be embedded
into the punctual degrees of a linear order L. Since the atomless Boolean
algebra is universal for distributive lattices, we aim to show this by embedding
the atomless Boolean algebra into the punctual degrees of L, preserving the
supremums and infimums. The first step towards this is to embed the diamond, which
consists of presentations A,B, C,D of L where A <pr B, C|prD, sup(C,D) = B and
inf(C,D) = A. Below is the first main result of the paper.

Theorem 1.1 (The Diamond). We can embed the diamond into the punctual
degrees of L for the following linear orders:

1. Linear orders of the form L = L–1 + L0 + L1 where L–1,L0,L1 are punctually
presentable linear orders and L0 is infinite and invariant in L (for example, rigid
linear orders including ordinals).

2. The order Z of the integers.
3. The dense linear order Q.

We note that a linear order is computably presentable if and only if it is punctually
presentable [29]. In this paper, we will use the term punctually presentable. We also
note that in (1) above, we prove a stronger result: there is an embedding of the
diamond between any presentations A <pr B such that A and B reveal elements
outside L0 at the same stage. It follows that for any punctual rigid linear order (e.g.,
any computable ordinal), we can embed the diamond between any pair of punctual
copies A <pr B. Given the density of PR(Z) ([13]), this stronger property likely
holds for Z as well, however, our proof does not show this. Given the non-density
of PR(Q) ([32]), this stronger result cannot possibly hold in the case of Q. In the
first two cases, using different arguments, we can extend the construction to embed
the atomless Boolean algebra. Below is the second main result of the paper.

Theorem 1.2. There is an embedding of the atomless Boolean algebra into the
punctual degrees of L for the following linear orders:

1. Linear orders of the form L = L–1 + L0 + L1 where L–1,L0,L1 are punctually
presentable linear orders and L0 is infinite and invariant in L.

2. The order Z of the integers.

As for the case of the diamond, in (1), we prove the stronger result: there is an
embedding of the atomless Boolean algebra between A and B for any presentations
A <pr B such that A and B reveal elements outside L0 at the same stage. Therefore,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

4 MARINA DORZHIEVA AND ELLEN HAMMATT

as in the diamond case, it follows that for any rigid linear order, we can embed the
diamond between any pair of punctual copies A <pr B. We leave open whether the
theorem above holds for Q. The reader will see that our embedding of the diamond
in the case of the rationals does not even seem to allow us to embed the 8-element
Boolean algebra, let alone the dense atomless one. The reader may find this blockage
both unusual and unexpected. However, given the unusually high combinatorial
complexity of the proof of the non-density of PR(Q) mentioned above ([32]), there
is perhaps no big surprise here.

In Section 2, we embed the diamond and the atomless Boolean algebra into the
punctual degrees of invariant linear orders (proving Theorems 1.1 and 1.2 in the
case of (1)). Following this, in Section 3, we embed the diamond into the punctual
degrees of the rationals (proving Theorem 1.1 in the case of (3)). Lastly, in Section 4,
we embed the diamond and the atomless Boolean algebra into the punctual degrees
of the integers (proving Theorems 1.1 and 1.2 in the case of (2)).

§2. Invariant linear orders. Our first main result is concerned with linear orders
L of the form L = L–1 + L0 + L1, where L–1 and L1 may be empty, and L0 is infinite
and invariant. We say that L0 is invariant in L if for any ϕ ∈ Aut(L), ϕ �L0 = idL0 .
Note that it follows from the definition thatL0 is rigid. Examples of linear orders that
contain an infinite invariant L0 include ordinals and, more generally, infinite rigid
linear orders. Of course, there are examples of such linear orders that are not rigid;
e.g., consider Q + N + N∗ + Q in which N + N∗ is clearly invariant. Conversely, the
existence of a rigid L0 is not sufficient. For example, each copy of N is rigid in N× Z
but there is no L0 in N× Z that is invariant. The idea is that L has an identifiable
infinite section that is rigid within the linear order, and we will use this section to
apply the construction.

Remark 2.1. We highlight that, in addition to requiring that L is punctually
presentable, we require L–1,L0,L1 to be punctually presentable as well; note that
this is automatically true if L0 is a (closed, open, or half-open) interval in L. While
this covers many linear orders which contain an invariant (convex) sub-order, it does
not cover all such linear orders. In [12], Coles, Downey, and Khoussainov proved
that there is a computable linear order L = A + �∗ such that A is not computably
presentable. For such linear orders, we do not yet know that there exist punctual
presentations B >pr A such that there is a primitive recursive p : A → B which is
the identity outside an infinite invariant interval. A new construction is required for
the case when L = A + �∗, where A has no computable presentation.

In this section, we prove the following theorem.

Theorem 2.2. Let L be a linear order such that there are L = L–1 + L0 + L1 with
the following properties

• L0 is infinite and invariant in L
• L–1, L0, and L1 are punctually presentable linear orders.

For any punctual presentations A,B of L such that A <pr B and A and B reveal
elements outside L0 at the same stage, there exist punctual presentations C,D such
that C,D are incomparable under ≤pr , A = inf(C,D), and B = sup(C,D).

As mentioned, we allow L–1 or L1 (or both) to be empty.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 5

The proof of Theorem 2.2 is delayed until Section 2.2. Before we prove the
theorem, we need to establish a preliminary result that is contained in the section
below. The result says that, under the assumptions of Theorem 1.1 (1), there exist
two punctual copies of L with the properties required to serve as the ‘top’ and
the ‘bottom’ of the diamond. Therefore, the combination of this result along with
Theorem 2.2 proves Theorem 1.1 (1).

2.1. Constructing presentations A,B, of L with B above A. Note that the theorem
below does not require the existence of an invariant (convex) sub-order. The result
is not difficult but it appears to be new. It will allow us to show that linear orders
in Theorem 1.1 (1) have punctual presentations A <pr B with the properties in
Theorem 2.2.

Theorem 2.3. If L is an infinite punctual linear order, then there exist punctual
presentations A,B of L such that A <pr B.

Proof. We build punctual presentations of L, A, and B along with a primitive
isomorphism p : A → B. We need to satisfy the following requirements:

Re : pe : B → A is not an isomorphism,

where (pe)e∈� is an effective enumeration of all primitive recursive functions. The
proof is non-uniform. Recall that a right (left) limit point in a linear order L is a
point l for which there exists a sequence 〈li〉i∈N such that for all i ∈ N, li > l (li < l),
the sequence is strictly decreasing (increasing), and for all a > l (a < l), there is i
such that a > li (a < li).

Since L is punctual, within primitive recursively bounded time t[s], we can decide
x <L y for all x, y ≤ s . We call the time period (t(s – 1), t(s)] stage s. L[s] denotes
the substructure of L obtained by computing <L on every pair of elements up to s.
For structures we are building (A and B), we consider C[s] to be the presentation we
have built so far at stage s. Throughout the construction we will add a new element
to C, this means we add the <N-least element x ∈ N that is not yet in C[s] and we
define <C as described in the construction. In this construction, we will ensure that
C is punctual by ensuring that by the end of stage s, we have added the element s
to C[s]. We ensure that isomorphisms are primitive recursive by ensuring that it is
defined on all elements in C[s] at stage s.

Case 1: L has a right limit point l. Fix some punctual presentation of L. Non-
uniformly fix the limit point l. Without loss of generality, we may assume that
in this presentation l = 0. We will build punctual presentations A and B that are
isomorphic to L such that A <pr B. The idea is that B will always copy A so that
it can naturally extend the definition of a primitive recursive p : A → B, except we
occasionally add an extra point in B which will ‘float’ just to the right of l while we
diagonalise. We call this the island technique, where this extra point acts as a floating
island an unknown distance away from the rest of the elements on the right of l.
While diagonalising, we will grow A towards l and B towards the extra point to the
right of l. We copy the other points in L after each diagonalisation.

In this construction, we will use the macro grow C towards y to mean, add a new
element to C so that it is the least element greater than y under <C .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

6 MARINA DORZHIEVA AND ELLEN HAMMATT

Construction. At stage 0, we introduce 0 into A and B which will be isomorphic to
the limit point l ∈ L. We will call this element l in all structures and define p(l) = l .
Go to the next stage and begin to work for requirement R0.

At stage s > 0, we are working for some requirement Re . The strategy for Re as
described below.

Strategy forRe . We start by adding the floating point x into B so that it is the least
element greater than l while we are working on this requirement. Wait for pe(x) to
converge at some stage t and then wait for pe(y) to converge for all y ∈ B[t]. While
we wait for this, continue to grow B towards x and grow A towards l. Once we have
seen pe(y) converge for all y ∈ B[t], add an element x̂, so that it is the least element
greater than l in A and define p(x̂) = x. Note that at this stage, A[s] and B[s] are
isomorphic. Go to recovery.

Recovery. Let l+L , l
+
A, and l+B be the least element greater than l in L[t],A[t],

and B[t] respectively, where t is the stage that we started to work for the current
requirement. We begin by adding elements to A and B so that they are isomorphic
to L outside [l, l+]. Then we wait for the interval [lL, l+L] to catch up. Let m be the size
of [lA, l+A] at stage s (the current stage). We wait for [lL, l+L] to contain m elements.
While we wait, we copy any elements outside the interval that appear into A and B.
Once we have seen m elements in [lL, l+L], A and B are both currently isomorphic to
L, so recovery has finished. Move to the next requirement on the list.

Verification. Notice that each R requirement is worked on for finitely many
stages because we only wait for a primitive recursive function to halt on finitely
many elements. During recovery, we wait for the presentation L to grow a finite
amount towards the limit point l. Since l is a right limit point in L, this must
eventually happen and hence we stay in recovery for finitely many stages after
each requirement. While we wait in recovery, A and B continue adding elements
corresponding to those outside the [l, l+] interval. This means that while we wait for
the interval inL to ‘catch up’,A andB stay punctual. ThereforeA andB are punctual
presentations of L.

We now prove that all R requirements are met. We are in recovery for finitely many
stages and diagonalisation ends afterpe halts on finitely many inputs, therefore every
requirement is eventually worked on. Fix a requirement Re , there is a stage s where
we begin to work on requirementRe . Once p(x) converges, we have two cases, either
pe(x) ≤ l or pe(x) > l .

If pe(x) ≤ l , then by our strategy, there are strictly more elements in B to the left
of x than there are in A to the left of pe(x), as shown in Figure 1.

Similarly, if pe(x) > l , there are strictly more elements in B to the right of x than
there are in A to the right of pe(x), as shown in Figure 2.

We show that in either case we meet the requirement. Let t be the stage where we
first see pe(x)↓ while we are working on requirement Re . Let z be the least element
greater than l at stage t. While we wait for pe(y) to converge for all y ∈ B[t], we only
add elements into A between l and z. Note that there are finitely many y ∈ B[t], so
eventually pe(y) converges for all y ∈ B[t]. At this stage, pe must have shown that
either it is not order-preserving or it is not injective. Therefore requirement Re is
eventually met.

Case 2: L has a left limit point. Act exactly as in case 1 but swap left and right.
Now grow C towards y means that we add the least element not yet in C[s] so that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 7

Figure 1. Solid elements are the old elements from before we started to work on
requirement Re , while hollow elements are new elements. The arrow represents
pe . The dashes show where we will continue to add points while we work on this
requirement.

Figure 2. Solid elements are the old elements from before we started to work
on requirement Re started, while hollow elements are new elements. The arrow
represents pe . The dashes show where we will continue to add points while we work
on this requirement.

it is the greatest element less than y. When we define l+ in recovery, it is now the
greatest element less than l.

Case 3: L has a sub-interval of order type N + N∗. Fix some punctual presentation
of L. Non-uniformly fix a, b in this presentation of L such that [a, b] ∼= N + N∗.
Without loss of generality we may assume that in this presentation a = 0 and b = 1.
For any element x we can primitive recursively decide if x belongs to the interval
[a, b] in L.

In this construction, we will build the interval [a, b] by building the sequences
ai and bi such that a0 = a, ai <C ai+1 <C b and b0 = b, bi >C bi+1 >C aj for any
j ∈ �. Eventually, the sequence ai will be isomorphic N and bi to N∗. We use the
macro grow N (N∗) in [a, b] in C to mean, add a new element to C to extend the initial
segment of ai (bi) that we have so far. Now we detail the formal construction.

Construction. At stage 0, add the elements a = 0 and b = 1 into A[0] and B[0].
Define p(0) = 0 and p(1) = 1. Go to the next stage and begin to work towards
meeting requirement R0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

8 MARINA DORZHIEVA AND ELLEN HAMMATT

At stage s > 0, we are working for some requirement Re . The strategy for Re is
described below.

Strategy for Re . At every stage, compute pe(x) on every x ∈ [a, b]B[s] and wait
for pe to show it is not an isomorphism. While we wait, grow N and N∗ in B and
grow N in A. Define p on all elements as they are added to A to the corresponding
elements added to B while growing N. Once pe shows it is not an isomorphism, add
corresponding elements to A that were added to N∗ in B during this strategy and
extend p. Note that at this stage, A[s] and B[s] are isomorphic and p is onto B[s].
Finally add necessary elements so that A[s] and B[s] are isomorphic to L[s] outside
[a, b] and extend p naturally. Go to the next stage and begin to work on the strategy
for Re+1.

Verification. It is clear that A and B are punctual because at every stage we add
at least one element. Now, let us show that pe is not an isomorphism. Compute pe
on the elements of B. Since A and B are not adding any elements outside [a, b],
eventually there is an element c in B that is part of N∗ mapped to an element in
A that is part of N (or we will see that pe is not injective). After this point, we
continue to add elements to the left of c in B however no elements are added to the
left of pe(c), therefore eventually pe will show that it is not order-preserving or not
injective. Then each requirement is met at some stage. By construction, the interval
[a, b] is isomorphic to N + N∗ and at every recovery, we ensure that A and B are
isomorphic to L outside [a, b]. Therefore A and B are punctual presentations of L
as desired.

Case 4: Not case 1, 2, or 3. If L has no greatest or least element, then we can
proceed as in case 1 or 2 with L ∪ {∞} or L ∪ {– ∞}, respectively. Otherwise, L is
of the form N + Z ·Q + N∗ [42]. In this case, in a similar way to case 3, we build A
and B in three sections, isomorphic to N,Z ·Q, and N∗, respectively. Let P be some
punctual presentation ofZ ·Q. As in case 3, while working towards meeting someRe
requirement we grow N and N∗ in B and we grow N in A until we see a disagreement
from pe . Once we see this we recover by making A[s] and B[s] isomorphic and
then add elements from P[s] to A[s] and B[s] in between the copies of N and N∗

that we are building. Then move to the next requirement. The verification of the
construction in case 3 applies in order to show that A and B are as desired. �

In Theorem 2.2, we consider A <pr B and A and B reveal elements outside L0 at
the same stage; the intuition is that it will allow us to restrict our strategies to the
invariant part of L. Note that in the case that L is rigid we can define L–1 and L1 to
be empty. In this case, any punctual presentations A,B of L such that A <pr B will
suffice. The following lemma shows that in the case that L is not rigid, A and B with
this property exist to prove Theorem 1.1 (1).

Lemma 2.4. Suppose L = L–1 + L0 + L1, where L0 is infinite and invariant, and
L–1,L0, and L1 are punctually presentable linear orders. Then there exist punctual
presentations A,B of L such that A <pr B and A and B reveal elements outside L0 at
the same stage.

Proof. Fix punctual presentations of L–1,L0, and L1, we will slightly abuse the
notation and denote these presentations by L–1,L0, and L1, respectively. Apply
Theorem 2.3 to L0 to obtain punctual presentations L0 <pr L̂0. LetN–1, N0, N1 be a
partition of N with |Ni | = |Li | and for each infiniteNi, there is an injective primitive

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 9

recursive ri : N → Ni with primitive recursive inverse. We will treat ri as a map on
Li . Now let A = r–1(L–1) + r0(L0) + r1(L1) and B = r–1(L–1) + r0(L̂0) + r1(L1).
Therefore, elements of L–1 ∪ L1 will appear in A at the same stage they appear in B.
Let p0 be a primitive recursive isomorphism from L0 to L̂0 given by Theorem 2.3,
and let p–1(x) = x and p1(x) = x. Define q : A → B as q(x) = pi(x) for x ∈ Ni .
This is a primitive recursive isomorphism. Suppose there is a primitive recursive
isomorphism r : B → A. Then r–1

0 ◦ r ◦ r0 is a primitive recursive isomorphism from
L̂0 to L0, which is a contradiction. So A <pr B and A and B reveal elements outside
L0 at the same stage as desired. �

2.2. Embedding the diamond. Now we prove Theorem 2.2 by construction.
We build structures C and D so that they meet the following requirements:

R0
e : pe : C → D is not an isomorphism,

R1
e : pe : D → C is not an isomorphism,

Pi,j,k : if pj : C → Pi , pk : D → Pi are p.r. isomorphisms, then B ≤pr Pi ,
Qi,j,k : if qj : Pi → C, qk : Pi → D are p.r. isomorphisms, then Pi ≤pr A,

where 〈pe〉e∈N and 〈Pi〉i∈N are effective enumerations of all primitive recursive
functions and punctual presentations, respectively. We also build primitive recursive
isomorphisms �C : C → B, �D : D → B, �C : A → C, �D : A → D. Let p be the
primitive recursive isomorphism that witnesses A <pr B.

We arrange an effective list of R requirements in order type � and meet them one
by one. While working towards an R requirement, we will copy B into one of our
structures, while the other copies A. B >pr A so B must infinitely often introduce
elements that do not show up in A for unbounded lengths of time. These elements
must lie within L0 since elements outside L0 appear at the same stage. Therefore
when pe converges on an element that is not yet in the range of p, pe cannot possibly
be an isomorphism and we can move to the next requirement. Notice that at any
stage, C and D differ only within L0, this fact helps us meet P and Q requirements.

For structures we are building (C and D), we consider E[s] to be the substructure
that we have built so far at stage s. Throughout the construction, we will add a
new element to E , this means we add the <N-least element x ∈ N that is not yet
in E[s] and we define �E(x) immediately and then we define x <E y by computing
�E(x) <B �C(y). Thus, as long as s ∈ E[s] by stage s, E is punctual.

We consider A[s] to be the structure obtained by computing <A on {i : i < s},
while we consider B[s] to be the structure obtained by computing <B on {i : i <
max{p(i) : i < s}}. Therefore we see that B contains all elements in A as well as
maybe some extra elements. Note that we may assume that at stage s, p(i)[s]↓ for
all i < s .

We note that the above conventions described are different from those in the other
sections because in this case we are following presentations A and B that we are not
in control of. Now we describe the formal construction.

2.2.1. Construction. Fix an effective list of all R requirements. At stage 0, begin
the strategy of the first requirement on the list. We now detail the strategies we enact

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

10 MARINA DORZHIEVA AND ELLEN HAMMATT

depending on which requirement we are working on. We continue this strategy at
every stage until the strategy tells us to go to the next requirement.

Strategy for R0
e . For stage s, while we are working on this requirement, we define

�C , �D, �C, and �D as follows. First, we copy A into C and D as follows. For each
x ∈ A[s] \ A[s – 1], do the following

• If �–1
E (p(x))[s]↑, then add a new element to E , y, and define �E (x) = y and

�E (y) = p(x) (where E ∈ {C,D}).
• If �–1

E (p(x))[s]↓, then define �E (x) = �–1
E (p(x)) (where E ∈ {C,D}).

Then we copyB into C as follows. For each y ∈ B[s] \ B[s – 1], if there is no i ∈ A[s]
such that p(i) = y, then add a new element x to C, and define �C(x) = y.

If there is x ∈ C[s] such that pe(x)[s]↓ and �–1
D (�C(x))[s]↑, move to the next

requirement, otherwise, go to the next stage and continue this strategy.
Strategy for R1

e . Do the same strategy but switch the roles of C and D.

2.2.2. Verification. We show that all requirements are met.

Lemma 2.5. �C : C → B and �D : D → B are primitive recursive isomorphisms.

Proof. We first show that �C is surjective. Let y ∈ B[s] \ B[s – 1]. If C is copying
B at stage s, then y is added to the range of �C . If C is not copying B at stage s, then
since p is an isomorphism from A → B, there is a stage t such that y enters the range
of p. At stage t, we add an element to C and include y to the range of �C . Therefore
�C is surjective. By construction, �C is injective, order-preserving and �C is defined
on x as soon as x enters C. Therefore, �C is a primitive recursive isomorphism.

The exact same argument can be used for D in regards to defining �D. �
Lemma 2.6. �C : A → C and �D : A → D are primitive recursive isomorphisms.

Proof. First, we show that �C is surjective. Let x ∈ C, we will show that x ∈
range(�C). The preimage of �C for all elements in C is defined immediately unless C
is copying B and B adds an element before A does. In this case, there exists i such
that p(i) = �C(x). At this stage, we will define �C(i) = x. Therefore �C is surjective.
By construction, �C is injective and order-preserving and �C is defined on x as soon
as x enters A. Therefore �C is a primitive recursive isomorphisms.

The exact same argument can be used for D in regards to defining �D. �
Lemma 2.7. For all e ∈ N, requirements R0

e and R1
e are met.

Proof. Suppose at stage t we started working for someR0
e requirement. While we

work on this requirement, C is currently copying B while D copies A. Suppose there
is no stage s > t such that for some x ∈ C, pe(x)[s]↓ and �–1

D (�C(x))[s]↑. Then for
all stages s > t, if pe(x)[s]↓ on x ∈ C[s] then �–1

D (�C(x))[s]↓. Then the computation
of pe gives a primitive recursive time bound on the computation of p–1(�C(x));
this is because D copies A during this stage. Therefore, p–1 is primitive recursive, a
contradiction. Hence there is a stage s such that pe(x)[s]↓ on some x ∈ C such that
�–1
D (�C(x))[s]↑. Fix such an x.

We now show that R0
e is met. Notice that x must be in L0 and �–1

D (�C) is an
isomorphism from C → D. Since L0 is invariant in L, pe cannot be an isomorphism.

For R1
e requirements, swap the roles of C and D (including the subscripts for �

and �). Then for all e, there is a stage where R0
e and R1

e are met. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 11

Lemma 2.8. For all i, j, k ∈ N requirement Pi,j,k is met.

Proof. Let Pi ≥pr C,D, we will show that Pi ≥pr B by defining a primitive
recursive isomorphism � : B → Pi . Note that by Lemma 2.5, B >pr C,D.

Since Pi ≥pr C,D, there are primitive recursive isomorphisms pj : C → Pi and
pk : D → Pi . At any stage, exactly one of C or D is copying B. Then for all stages s
and all x ∈ B[s], at least one of �–1

C (x)[s] or �–1
D (x)[s] is defined. If it is �–1

C (x), then
define �(x) = pj(�–1

C (x)). Otherwise, define �(x) = pk(�–1
D (x)).

Recall that elements outside L0 appear in A,B, C,D at the same stage. Then
�–1
C (x)[s]↓ for all x ∈ B[s] outside L0. By definition of �, �(x) = pj(�–1

C (x)) for such
x. For all x ∈ L0, pj(�–1

C (x)) = pk(�–1
D (x)) since L0 is invariant in L. Therefore � is

a primitive recursive isomorphism. �
Lemma 2.9. For all i, j, k ∈ N requirement Qi,j,k is met.

Proof. Let Pi ≤pr C,D, we will show that Pi ≤pr A by defining a primitive
recursive isomorphism � : Pi → A. Note that by Lemma 2.6, A <pr C,D.

SincePi ≤pr C,D, there are primitive recursive isomorphisms qj : Pi → C and qk :
Pi → D. Consider the least stage s such that qj(x)[s]↓ and qk(x)[s]↓. Define �(x) =
�–1
C (qj(x)). Since �–1

C is an isomorphism and qj is by assumption an isomorphism,
all that is left is to show that � is primitive recursive.

For all x such that qj(x)[s]↓ is outside L0, �–1
C (qj(x))[s]↓. Otherwise, since L0 is

invariant, �C(qj(x)) = �D(qk(x)). By construction, only one of C and D is currently
copying the new elements in B. Therefore it follows that once qj(x) and qk(x)
converge, the corresponding element must be in A. Then for each x at the least
stage s such that qj(x)[s]↓ and qk(x)[s]↓, �–1

C (qj(x))[s]↓. Therefore � is a primitive
recursive isomorphism. �

All requirements are met; functions �C , �D, �C, and �D are primitive recursive
isomorphisms by construction. Hence we have built C,D as desired.

Remark 2.10. Notice that p = �C ◦ �C = �D ◦ �D by construction, this will come
in useful in the next section.

2.3. Embedding the atomless Boolean algebra. Recall that we can embed the
diamond between any A <pr B that reveal elements outside L0 at the same stage.
By construction, A,B, C,D reveal elements outside of L0 at the same stage. This
means the diamond construction naturally iterates between A and C, C and B, etc.
By applying this process, we obtain generators for an embedding of the atomless
Boolean algebra between A and B. In this section, we work towards proving the
following theorem.

Theorem 2.11. Let L be a linear order such that there are L–1,L0, and L1 with the
following properties.

• L–1 + L0 + L1 = L.
• L0 is infinite and invariant in L.
• L–1, L0, and L1 are punctual linear orders.

Then for any punctual presentations A,B of L such that A <pr B and A and B reveal
elements outside L0 at the same stage, we can embed the atomless Boolean algebra
with B = 1 and A = 0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

12 MARINA DORZHIEVA AND ELLEN HAMMATT

A generator is a presentation that is built by some iteration of the diamond
construction. We define the complexity of a generator E to be the number of times
the diamond construction has been iterated in order to obtain E . For example, first
we obtain E0, E1 by iterating the diamond construction once between A and B, then
these presentations have complexity 1. We then iterate the diamond construction
again between E0 and A, between E0 and B, between E1 and A, and between E1 and
B; these presentations that we obtain have complexity 2. We consider the lattice
obtained by finite combinations of meets and joins of generators. We will prove later
that this indeed gives us a Boolean algebra with A = 0 and B = 1.

For this section, we use the following notation for the isomorphisms that are in
play. Our notation naturally extends the notation from the previous section. We use
�E : E → B, �E : A → E , while �E→G : E → G is used where neither E nor G are A or
B. Recall that p is the primitive recursive isomorphism from A to B.

Lemma 2.12. Let E be a generator. Then there are primitive recursive isomorphisms
�E : A → E and �E : E → B, moreover �E ◦ �E = p.

Proof. We prove this by induction on the complexity of the generator. The
base case is where E has complexity 1, then the lemma follows immediately from
Lemmas 2.5 and 2.6.

Now suppose the lemma holds for complexity n, we will prove for complexity
n + 1. E is a generator and has complexity n + 1, so E is constructed by iterating the
diamond construction between some G and H that have complexity at most n.
Without loss of generality, assume G >pr H. By induction there are primitive
recursive isomorphisms �G , �H, �G, and �H. By construction, �E→G and �H→E
are primitive recursive isomorphisms. Then it follows that �E = �G ◦ �E→G and
�E = �H→E ◦ �H are primitive recursive isomorphisms.

By induction, �G ◦ �G = p and �H ◦ �H = p. By construction, �E→G ◦ �H→E is a
primitive recursive isomorphism from H to G. Then it follows that p = �G ◦ �E→G ◦
�H→E ◦ �H = �E ◦ �E . �

Lemma 2.13. Let E ,F be presentations such that there are primitive recursive
isomorphisms �E , �E , �F , and �F , and �E ◦ �E = �F ◦ �F = p. Then there is a punctual
presentation G of L such that G = sup(E ,F) and there are primitive recursive
isomorphisms �G : A → G and �G : G → B, moreover �G ◦ �G = p.

Proof. We define a punctual presentation G that is exactly the elements that are
in either E or F . Below we give the formal definition, including the isomorphisms
�G , �G , �E→G, and �F→G .

Consider {�E(i) : i < s} ∪ {�F (i) : i < s} as a substructure of B. We will
denote this substructure as BE∪F [s]. We build a punctual presentation G so that
G ∼= BE∪F [s]. This means that at each stage for each x ∈ BE∪F [s + 1] \ BE∪F [s] we
consider the least y with �G(y)[s]↑ and define �G(y) = x. Define a <G b if and only if
�G(a) <B �G(b). E and F are punctual and �G is a primitive recursive isomorphism,
therefore G is punctual.

For x with �E(x)[s]↓, we define �E→G = �–1
G (�E(x)). For x with �F (x)[s]↓, we

define �F→G = �–1
G (�F (x)). These are primitive recursive isomorphisms because

at the stage that �F (x)[s]↓, �F (x) ∈ BE∪F [s] by definition, therefore at stage s,
�–1
G (�F)[s]↓. The same argument shows that �E→G is primitive recursive.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 13

It follows that �G(x) = �E→G(�E(x)) is a primitive recursive isomorphism. Since
�E ◦ �E = �F ◦ �F = p, it follows that �G ◦ �G = p.

Finally, it is left to prove that G = sup(E ,F). Suppose there is Pi ≥pr E ,F
witnessed by pj : E → Pi and pk : F → Pi . We define � : G → Pi as follows.
For each x, at the least stage s where �G(x)[s]↓, define �(x) = pj(�–1

E→G(x)) if
�–1
E→G(x)[s]↓, otherwise define �(x) = pk(�–1

F→G(x)).
By definition of G, at the least stage s where �G(x)[s]↓, at least one of �–1

E→G(x)[s]
or �–1

F→G(x)[s] is defined. Therefore � is primitive recursive.
Recall that for all x /∈ L0, x is added to all presentations at the same

stage. Therefore �(x) = pj(�–1
E→G(x)) for all such x. For x ∈ L0, pj(�–1

E→G(x)) =
pk(�–1

F→G(x)). Therefore � is an isomorphism since pj, pk, �E→G , �F→G are all
isomorphisms.

Therefore Pi ≥pr G. Hence G = sup(E ,F) as desired. �

Lemma 2.14. Let E ,F be punctual presentations such that there are primitive
recursive isomorphisms �E : A → E , �E : E → B, �F : A → F and �F : F → B, and
�E ◦ �E = �F ◦ �F = p. Then there is a punctual presentation H of L such that
H = inf(E ,F) and there are primitive recursive isomorphisms �H : A → H and
�H : H → B, moreover �H ◦ �H = p.

Proof. We define a punctual presentation H that is exactly the elements that are
in both E and F . Below we give the formal definition, including the isomorphisms
�H, �H, �H→E , and �H→F .

Consider {�E(i) : i < s} ∩ {�F (i) : i < s} as a substructure of B. We will denote
this substructure as BE∩F [s]. We build a punctual presentation H so that H ∼=
BE∩F [s]. This means that at each stage for each x ∈ BE∩F [s + 1] \ BE∩F [s] we
consider the least y with �H(y)[s]↑ and define �H(y) = x. Define a <H b if and only
if �H(a) <B �H(b).

Now we define �H(x). Let s be the least stage such that p(x)[s]↓. By stage s,
�–1
E (p(x))[s]↓, �–1

F (p(x))[s]↓ and by definition of H, an element y has been added
to H[s] such that �H(y) = p(x). Then at stage s, we define �H(x) = y. Hence, �H is
primitive recursive. It follows that H is punctual and �H ◦ �H = p by definition.

Define �H→E(x) = �–1
E (�H(x)) and �H→F (x) = �–1

F (�H(x)). These are iso-
morphisms by composition and are primitive recursive because at the stage
s that �H(x)[s]↓, �H(x) ∈ BE∩F [s] by definition, therefore �–1

E (�H(x))[s]↓ and
�–1
F (�H(x))[s]↓.

Now we show that H = inf(E ,F). Suppose there is Pi ≤pr E ,F witnessed by
qj : Pi → E and qk : Pi → F . We define � : Pi → H as follows. For each x, at the
least stage s such that qj(x)[s]↓ and qk(x)[s]↓, define �(x) = �–1

H→E(qj(x)). Now
we show that � is primitive recursive. Recall that elements outside L0 appear at
the same time in every structure. So for x outside L0, qj(x) is also outside L0

and so �–1
H→E(qj(x)) converges once qj(x) converges. For x in L0, �E(qj(x)) =

�F (qk(x)) ∈ BE∩F [s]. Therefore, the corresponding element must be in H[s] and so
�–1
H→E(qj(x))[s]↓. Thus � is a primitive recursive isomorphism.

Hence Pi ≤pr H and H = inf(E ,F) as desired. �

With the above lemmas, we are now ready to prove Theorem 2.11.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

14 MARINA DORZHIEVA AND ELLEN HAMMATT

Proof of Theorem 2.11. Apply Theorem 2.2 between A and B. Repeat the
application of Theorem 2.2 between every pair of presentations built so far with the
property that E <pr F . We call the presentations built in this way the generators.
We consider the structure obtained by taking finite combinations of meets and joins
of these generators. We show that this gives us the atomless Boolean algebra by
showing that complements, meets, and joins of generators exist as well as showing
that the lattice embedding is distributive.

Existence of meets and joins. Follows from Lemmas 2.12–2.14.
Existence of complements. If complements of the generators exist then it follows

that every element has a complement.
We use induction on the complexity of the generator. The base case is generators

of complexity 1. In this case, the complement of a generator G with complexity 1 is
the other generator created between A and B. Let G be a generator with complexity
n > 1. ThenG was built between some other generators E <pr F of lower complexity.
Let H be the other generator that was built between E and F . By induction, E and
F have complements, Ec and F c , respectively. Then we show that (H ∧ Ec) ∨ F c is
the complement of G.

To do this, we need to show that G ∨ (H ∧ Ec) ∨ F c ∼=pr B and G ∧ ((H ∧ Ec) ∨
F c) ∼=pr A. By construction, at any stage, generators are either copyingA or copying
B. Recall that in Lemmas 2.13 and 2.14, the join and meet of two generators C and
D exist. It follows that the join (meet) of two presentations copies A (B) only if
both presentations copy A (B) and otherwise copies B (A). Also notice that given
some presentation, the complement of this presentation has the property that, at
any stage, if one copies A, the other must be copying B.

First, we show that at any stage G ∧ ((H ∧ Ec) ∨ F c) copies A. Suppose G is
currently copying B, then we show that (H ∧ Ec) ∨ F c is copying A. Since G is
copying B and G <pr F , F also copies B and F c is copying A. E = G ∧ H and G
copies B, then E and H are either both copying A or both copying B. Therefore,
G ∧ ((H ∧ Ec) ∨ F c) copies A as desired.

Finally we show that at any stage G ∨ (H ∧ Ec) ∨ F c copies B. Suppose G and F c
are both copying A and we will prove that H ∧ Ec is copying B. Since F c is copying
A, F must be copying B. Notice if E is copying B, then G must be copying B as well,
which is a contradiction. So E is copying A and Ec is copying B. Since F = G ∨ H,
it must be that H is also copying B. Therefore, G ∨ (H ∧ Ec) ∨ F c copies B.

Hence (H ∧ Ec) ∨ F c is the complement of G and therefore all generators have a
complement.

Distributivity. To show a lattice is distributive, it is sufficient to show that it is
distributive as a join-semilattice [24]. Therefore, it is sufficient to show that for any
presentations E ,F , and G in our Boolean algebra, if G ≤pr sup(E ,F), there are E ′

and F ′ such that G = sup(E ′,F ′), E ′ ≤pr E and F ′ ≤pr F .
Let E ′ = inf(G, E) and F ′ = inf(G,F). We show that G = sup(E ′,F ′). Let K ≥pr

E ′,F ′. We will show that K ≥pr G by defining α : G → K. For convenience, let
sup(E ,F) = M.

At the least stage t such that �G→M(x)[t]↓, define α(x)[t] = �E′→K(�–1
E′→G(x)) if

�–1
E′→G(x)[t]↓, otherwise define α(x)[t] = �F ′→K(�–1

F ′→G(x)).
Recall that elements outside L0 appear at the same time in E ′,F ′,G, then

�–1
E′→G(x) and �–1

F ′→G(x) converge at stage t for elements outside L0. Therefore

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 15

α(x) = �E′→K(�–1
E′→G(x)) for all x /∈ L0. If x is in L0, then �E′→K(�–1

E′→G(x)) =
�F ′→K(�–1

F ′→G(x)). Therefore, α is an isomorphism.
Now we prove that at stage t, then either �–1

E′→G(x)[t]↓ or �–1
F ′→G(x)[t]↓ for

any x ∈ G[t]. Recall that if �G→M(x)[t]↓, then by definition of supremum,
�–1
E→M(�G→M(x))[t]↓ or �–1

F→M(�G→M(x))[t]↓. By definition of E ′ and F ′, it
follows that either �–1

E′→G(x)[t]↓ or �–1
F ′→G(x)[t]↓. �

§3. The dense linear order. In this section, we prove that we can embed the
diamond into the punctual degrees of the dense linear order.

3.1. Embedding the diamond.

Theorem 3.1 (Diamond in PR(Q)). There exist punctual presentations A, B, C,
and D of (Q, <) such that C and D are incomparable under ≤pr , B = sup(C,D), and
A = inf(C,D).

We build structures A,B, C, and D so that they meet the following requirements1:

R0
e : pe : C → D is not an isomorphism,

R1
e : pe : D → C is not an isomorphism,

Pi,j,k : if pj : C → Pi , pk : D → Pi are p.r. isomorphisms, then B ≤pr Pi ,
Qi,j,k : if qj : Pi → C, qk : Pi → D are p.r. isomorphisms, then Pi ≤pr A,

where 〈pe〉e∈N and 〈Pi〉i∈N are effective enumerations of all primitive recursive
functions and punctual presentations, respectively. We also build primitive recursive
isomorphisms �C : C → B, �D : D → B, �C : A → C, �D : A → D.

The idea for this construction is that C always grows to the right, while D always
grows to the left. B adds elements that are in C or D, while A adds elements only
once they are in both C and D. To meet P requirements, we build an isomorphism
from B to Pi by copying pj to the left and pk to the right. The switch between pj
and pk is simple when they line up. But in the case that they do not line up, which
is entirely possible in the case of the dense linear order, we use a special interval
[z, l] which will patch the gap between the isomorphisms pj and pk . In the case of
Q requirements, we can diagonalise to force qj and qk to line up. We highlight that
these special elements z and l are the same elements for all requirements.

3.2. Construction. Order all R,P, and Q requirements in an effective list of order
type �. At stage 0, let |A[0]| = |B[0]| = |C [0]| = |D[0]| = 2. Call these elements l
and z with l > z. These elements are special elements used for our construction.
Define �C(z) = �C(z) = �D(z) = �D(z) = z, similarly for l. This means that z and l

are the same elements in A,B, C, and D. For each stage s, let zs be the element such
that it is the greatest element z < l at stage s – 1. In the construction, A,B, C, and
D are the same in the interval [z, l], therefore zs is the same element in all structures.

1Note that these requirements are the same as in the invariant linear order case, they are restated here
for convenience.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

16 MARINA DORZHIEVA AND ELLEN HAMMATT

We note that the follow conventions are the same as used in Section 2.1 but
is restated here for convenience. For structures we are building (A,B, C,D), we
consider E[s] to be the presentation we have built so far at stage s. Throughout the
construction, we will add a new element to E , this means we add the<N-least element
x ∈ N that is not yet in E[s] and we define <E as described in the construction. In
this construction, we will determine the punctuality of E by adding the element s to
E[s] by the end of stage s. To ensure that the isomorphisms are primitive recursive,
we define them on all elements in E[s] at stage s.

We will use the macro grow L to the right (at stage s) to mean add one new element
x to L so that x > y for all y ∈ L[s]. Similarly, we will use the macro grow Lto the
left to mean add one new element x to L so that x < y for all y ∈ L[s]. We will use
grow the interval [zs , l] in L to mean, add |B[s – 1]| many new elements between zs
and l to L[s].

At stage 0, no requirement requires attention. R and Q requirements will require
attention at stage s as follows:

• Requirement R0
e requires attention at stage s if it has not been met and there is

some c ∈ C[s] such that pe(c) = z.
• Requirement R1

e requires attention at stage s if it has not been met and there is
some d ∈ D[s] such that pe(d) = l.

• Requirement Qi,j,k requires attention at stage s if it has not been considered yet
and there are a, b ∈ Pi [s] such that qj(a) = qk(b) = l.

Every requirement after being considered, never requires attention again. At stage
s wait until there is a requirement that requires attention, while we wait, grow the
interval [zs , l] in all structures. Note that P requirements never require attention;
we will show that they are met in the verification.

Requirement Qi,j,k . Let a, b be the witnesses of qj(a) = qk(b) = l. If a = b then
declare Qi,j,k good. Otherwise, grow only the interval (zt, l) in all structures. Wait
for a stage t where either Pi shows it is not a linear order, or either qj or qk shows it
is not an isomorphism. Declare that Qi,j,k no longer requires attention, then move
to the recovery stage.

RequirementR0
e . Let c be the witness of pe(c) = z. At every stage t while we work

on this requirement, grow C and B to the left and right, grow D and A to the right,
and grow the interval (zt, l) in all structures. Compute pe(x) for all x ∈ C to the left
of c. Eventually, there must be x, y ∈ C such that x <C y <C c and pe(x) �<D pe(y).
Declare that R0

e is met and no longer requires attention, then move to the recovery
stage.

Requirement R1
e . Let d be the witness of pe(d) = l. At every stage t while we

work on this requirement, grow D and B to the left and right, grow C and A to the
left, and grow the interval (zt, l) in all structures. Compute pe(x) for all x ∈ D to
the right of d. Eventually, there must be an x, y ∈ D such that d <D x <D y and
pe(x) �<C pe(y). Declare that R1

e no longer requires attention, then move to the
recovery stage.

Recovery stage. At a recovery stage s, we ensure that all of our structures have the
same number of elements. Ensure that �C , �D, �C , �D are all surjective by adding any
required elements. In all structures, first grow (zs , l), then add an element between
any two adjacent elements.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 17

Figure 3. A snapshot of a Q requirement that requires attention and is not declared
to be good. The dashed arrows are qk and solid arrows are qj .

3.2.1. Verification. Now we show that all requirements are met.

Lemma 3.2. For all e ∈ N, if requirement R0
e is given attention, then R0

e is met.

Proof. Let c be such that pe(c) = z. While we working on this requirement we
do not grow D to the left of z. Hence, there are only some finite number m elements
to the left of z in D. Since we grow C to the left, it must be that eventually we see
some x <C y <C c but pe(x) �<D pe(y), hence we have met R0

e . �

Lemma 3.3. For all e ∈ N, if requirement R1
e is given attention then R1

e is met.

Proof. Let d be such that pe(d) = l. While we are working on this requirement
we do not grow C to the right of l. Hence there are only some finite number elements
to the right of l in C. Since we grow D to the right, it must be that eventually we
see some x, y ∈ D such that d <D x <D y and pe(x) �<C pe(y), hence we have
met R1

e . �

Lemma 3.4. For all i, j, k ∈ N, if requirement Qi,j,k is given attention and not
declared to be good, then requirement Qi,j,k is met.

Proof. If at any stage Pi shows it is not a linear order, then the requirement is
met. So we suppose thatPi is a linear order. For this requirement to require attention,
there must be a, b ∈ Pi such that qj(a) = qk(b) = l. Since this requirement is not
declared good by assumption, we have a �= b. Either qj(b) < qj(a) or qk(a) <
qk(b), otherwise, either qj or qk would not be an isomorphism and the requirement
is met. Consider the former case. See Figure 3 for a diagram of this case. Wait for
qj(b) to converge at some stage r. Then qj(b) ≤ zr . From now on, while we are
working on this requirement, our structures grow only the interval [zr, l]. Suppose
that there are less than n elements in the structures that we build at stage r. Wait for
2n new elements to appear in Pi and for qj and qk to converge on them. If at least n
of these new elements are to the left of b, we will see a disagreement since there are
less than n elements to the left of qj(b). Otherwise, there are at least n new elements
to the right of b, and we will see a disagreement, since there are less than n elements
to the right of qk(b). Therefore, there must be a stage where qj or qk shows that it
is not an isomorphism, and at this stage, the requirement is met.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

18 MARINA DORZHIEVA AND ELLEN HAMMATT

In the case that qj(b) > qj(a), then qk(a) < qk(b). Then by the same argument
as above qk(a) ≤ zr and elements are only added between qk(a) and qj(a) while
diagonalising and there must be a stage where this requirement is met. �

Lemma 3.5. For all i, j, k ∈ N, if requirement Qi,j,k is declared to be good, then
requirement Qi,j,k is met.

Proof. Qi,j,k is met if qj or qk are not isomorphisms, so suppose qj and qk
are isomorphisms. Qi,j,k is good, so there is a ∈ Pi such that qj(a) = qk(a) = l.
Define 	 : Pi → A as follows: for x ≤ a define 	(x) = �–1

D (qk(x)) and for x > a
define 	(x) = �–1

C (qj(x)). 	 is an isomorphism because �–1
D (qk) and �–1

C ◦ qj are
isomorphisms by assumption and qj(a) = qk(a) = l.

We now prove that 	 is primitive recursive. First, compute x <Pi a, if true, then
compute qk(x). Now qk(x) ≤D l as qj(a) = qk(a) = l. Notice that by construction,
any element that appears in A on the left of l appears in D at the same time. Then
�–1
D (qk(x))[s]↓ where s is the least stage when x <Pi a and qk(x) are computed. In

the case that x ≤Pi a is false, then compute qj(x) and then the same argument
(swapping left to right) can be used to show why �–1

C (qj(x))[s]↓ at the stage s such
that these computations have converged. �

Lemma 3.6. For all e, i, j, k ∈ N requirements Qi,j,k, R0
e and R1

e are met.

Proof. If a requirement never requires attention, then pe, pj, or pk are not
surjective and therefore the requirement is met. Suppose that the requirement
requires attention at some stage s. By Lemmas 3.2–3.5, once a requirement is given
attention the requirement is met and never requires attention again. The action
of each requirement is finite and therefore we give attention to infinitely many
requirements. Hence the requirement is eventually given attention and met. �

Lemma 3.7. For all i, j, k ∈ N, requirement Pi,j,k is met.

Proof. If pj and pk are not isomorphisms then we have met the requirement, so
assume pj and pk are isomorphisms.

Suppose pj(�–1
C (b0)) = pk(�–1

D (b0)) for some b0 ∈ B. Non-uniformly fix b0, then
define �(b) = pj(�–1

C (b)) for b ≤ b0 and �(b) = pk(�–1
D (b)) for b > b0. By the

same argument as the proof in Lemma 3.5, � : B → Pi is a primitive recursive
isomorphism. Informally, this case is that because pj and pk ‘line up’ somewhere,
we can then use this to make a primitive recursive isomorphism by copying pj to
the left and pk to the right of the place where they line up.

Otherwise pj(�–1
C (b0)) �= pk(�–1

D (b0)) for all b0 ∈ B[s]. In particular there are c ∈
C, d ∈ D such that pj(c) = pk(z) and pk(d) = pj(z). Then c <C z or d <D z since
pj and pk are isomorphisms. See Figures 4 and 5 for a diagram of each case.

Suppose that c < z, as shown in Figure 4. We define a primitive recursive
isomorphism � : (�C(c), l) ⊆ B → (z, l) ⊆ D as follows.

Suppose t is the least stage such that pj(c)[t]↓ and pk(d)[t]↓. At stage t, we can
start defining �. Notice that at every stage s ≥ t, (�C(c), l) contains more elements
than (z, l) does. We define � so that at each stage s it maps some initial segment
of (�C(c), l) onto (z, l) and we will show that � will be defined on the rest of the
elements in (�C(c), l) at the next stage. Note that � is injective and order-preserving
by construction. At stage t, let (�C(c), x) be the initial segment in (�C(c), l)[t] of
size |(z, l)[t]|. Map (�C(c), x) onto (z, l)[t]. See Figure 6 for a diagram of �.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 19

Figure 4. A snapshot of a P requirement where c < z. The dashed arrows represent
pk and solid arrows represent pj .

Figure 5. A snapshot of a P requirement where d < z. The dashed arrows represent
pk and solid arrows represent pj .

Figure 6. A diagram showing � : (�C(c), l) ⊆ B → (z, l) ⊆ D at some stage s.

At stage s > t, we define � as follows. Let x ∈ (�C(c), l) be the greatest element
such that �(x)[s – 1] is defined. By construction of �, it is defined on all elements
in (�C(c), x] at stage s – 1 and therefore at the end of each stage � is as shown in
Figure 6.

If s is not a recovery stage, let (x, y) be the initial segment in (x, l)[s] of size
|(�(x), l)[s]|. Map (x, y) onto (�(x), l)[s].

If s is a recovery stage, then recall that the recovery stage has two steps, first we
grow (zs , l), then we add densifying elements (which means an element is added
between every pair of elements that are currently adjacent). As soon as we grow
(zs , l), let (x, y) be the initial segment in (x, l) of size |(�(x), l)|. Map (x, y) onto

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

20 MARINA DORZHIEVA AND ELLEN HAMMATT

Figure 7. A diagram showing � ′ : [z, l] ⊆ B → [d, l] ⊆ D at stage s.

(�(x), l). Now we add the densifying elements as follows. Let a be an element added
between some b0, b1 where �(b0) and �(b1) are defined. Then define � to map a to
the densifying element between �(b0) and �(b1).

Now we show that � is a primitive recursive isomorphism on domain (�C(c), l).
� is surjective because at each stage s, � maps an initial segment of (z, l), (z, y),
onto (z, l)[s]. Recall that at each stage we add |B[s – 1]| many elements between
zs and l in D. Since there are less than |B[s – 1]| many elements between z and zs
at stage s – 1 in B, y ≥ zs . Therefore, every element in (z, l) gets an image either
immediately or at the next stage. By construction, notice that the size of B[s] is
bounded by 4s+1 and hence the size of B[s] is bounded by a primitive recursive
function. Then it follows that � is defined on elements either immediately or at the
next stage. Therefore, � is primitive recursive on domain (�C(c), l).

Otherwise, d < z, as shown in Figure 5. We define a primitive recursive
isomorphism � ′ : (z, l) ⊆ B → (d, l) ⊆ D as follows.

Suppose t is the least stage such that pj(c)[t]↓ and pk(d)[t]↓. At stage t, we can
start defining �. Notice that at every stage s ≥ t, (z, l) contains fewer elements than
(d, l) does. Note that � is injective and order-preserving by construction. Let x be
such that (d, x) has size |(z, l)|. Then we define � ′ to map (z, l) onto (d, x). See
Figure 7.

At stage s > t, we define � ′ as follows. Let x = � ′(zs), i.e., the greatest value in
the image of � ′ defined at the previous stage. Notice that in this case, in contrast to
the previous case, we always map all elements in (z, l) immediately and at the end
of each stage � ′ is as shown in Figure 7.

To extend the definition of � ′ when we grow (zs , l), we do as follows. Let (x, y)
be the initial segment in (x, l) of size |(zs , l)|. Map (zs , l) onto (x, y). We define � ′

on densifying elements at recovery stages as in the previous case.
Notice that in this case, all elements in (z, l)[s] get defined immediately. Therefore,

� ′ is primitive recursive on domain (z, l). At every stage, elements are added between
zs and l, so every element in (d, l) eventually gets a preimage. Therefore, � ′ is a
primitive recursive isomorphism on domain (z, l).

Recall that for each element x ∈ B[s], at least one of �–1
C (x)[s] and �–1

D (x)[s]
converges. The important fact is that if there is a new element, x ∈ B[s], to the left
of all other elements so far, then by construction �–1

C (x)[s]↓. Similarly, if this new
element is to the right, then �–1

D (x)[s]↓. New elements added in the interval [z, l] are

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 21

added to all structures at the same stage, so for every element in this interval in B[s],
both �–1

C (x)[s] and �–1
D (x)[s] converge. Recall that �C(z) = z, �C(l) = l, �D(z) = z,

and �D(l) = l.
If c < z, define � : B → Pi as �(b) = pj(�–1

C (b)) for b ≤ �C(c), �(b) = pk(�–1
D (b))

for b ≥ l, and �(b) = pk(�(b)) for �C(c) < b < l. Then this is a primitive recursive
isomorphism from B to Pi as desired.

If d < z, define �′ : B → Pi as �′(b) = pj(�–1
C (b)) for b ≤ z, �′(b) = pk(�–1

D (b))
for b ≥ l, and �′(b) = pk(� ′(b)) for z < b < l. Then this is a primitive recursive
isomorphism from B to Pi as desired. �

Lemma 3.8. A ∼= B ∼= C ∼= D are punctual and isomorphic to Q.

Proof. By the previous lemmas, infinitely many requirements are worked on.
Before we start to work on a new requirement, we enter a recovery stage where we
ensure all structures are isomorphic and an element is added between every pair of
elements that are currently adjacent, hence the structure we get is dense. We have
infinitely many R requirements that we work on; hence, the structures have no end
points. Then it is the case that A ∼= B ∼= C ∼= D ∼= Q. �

§4. The integers. In this section, we prove Theorems 1.1 and 1.2 in the case of
the integers.

4.1. Embedding the diamond.

Theorem 4.1 (Diamond for Z). There exist punctual presentations A,B, C,D
of (Z, <) such that C and D are incomparable under ≤pr , B = sup(C,D) and
A = inf(C,D).

We build structures A,B, C, and D so that they meet the following requirements2:

R0
e : pe : C → D is not an isomorphism,

R1
e : pe : D → C is not an isomorphism,

Pi,j,k : if pj : C → Pi , pk : D → Pi are p.r. isomorphisms, then B ≤pr Pi ,
Qi,j,k : if qj : Pi → C, qk : Pi → D are p.r. isomorphisms, then Pi ≤pr A,

where 〈pe〉e∈N and 〈Pi〉i∈N are effective enumerations of all primitive recursive
functions and punctual presentations, respectively. We also build primitive recursive
isomorphisms �C : C → B, �D : D → B, �C : A → C, �D : A → D.

We meet R requirements using the island technique, as used in Section 2.1, where
we introduce an element x to the right of all elements. This element acts as a
floating island an unknown ‘distance’ away. We compute pe(x) and use this image
to diagonalise. We note that the macros used in this section were used in previous
section, but we restate them here for convenience and completeness.

We note that the following conventions are the same as used in Sections 2.1 and 3
but are restated here for convenience. For structures we are building (A,B, C,D), we
consider E[s] to be the presentation we have built so far at stage s. Throughout the

2Note that these requirements are the same as in the previous sections, they are restated here for
convenience.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

22 MARINA DORZHIEVA AND ELLEN HAMMATT

Figure 8. A diagram showing the extra element x in C and the way C and D grow
during this requirement. The hollow circles represent new elements added during
working on this requirement. The arrow represents pe .

construction, we will add a new element to E , this means we add the<N-least element
x ∈ N that is not yet in E[s] and we define <E as described in the construction. In
this construction, we will determine the punctuality of E by adding the element s to
E[s] by the end of stage s. To ensure that the isomorphisms are primitive recursive,
we define them on all elements in E[s] at stage s.

We will use the macro grow L to the right to mean, add one new element x to L so
that x > y for all y ∈ L[s]. We use grow L towards x for some element x to mean,
add one new element z to L so that z < x and z > y for all y ∈ L[s] such that y < x.
We now detail the formal construction.

4.1.1. Construction. We arrange all requirements in some effective list and meet
them one by one. All R and Q requirements require attention from stage 0. In
contrast, we say that Pi,j,k requires attention at stage s if there are c ∈ C[s] and
d ∈ D[s] such that pj(c)[s]↓= pk(d)[s]↓. At every stage, we define isomorphisms
�C : C → B, �D : D → B, �C : A → C, �D : A → D. We note that we will abuse
notation and say that c ≤ d for c ∈ C and d ∈ D, by this, we mean that �C(c) ≤B
�D(d).

At stage 0, begin working on the first requirement on the list. We now detail the
strategies for each requirement.

RequirementR0
e . Add an extra element, x, into B and C and declare that x is larger

than any element added so far. At every stage, while we work on this requirement,
grow C and B towards x, while A and D grow to the right. See Figure 8 for a diagram
of this. Compute pe on all elements enumerated into C. Eventually there must be
z ∈ C such that z <C x and pe(z) >D pe(x). Once we see this element, we have
met the requirement. Now add an element y to the right in A and D and define
�C(y) = x, �D(y) = y, �D(y) = x.

Requirement R1
e . Do the same as in the previous requirement but switch the roles

of C and D.
RequirementQi,j,k . If at any stage during this strategy qj or qk is seen to not be an

isomorphism, halt the stage and move to recovery. Wait for some l ∈ Pi to appear
and qj and qk to be computed on l such that qj(l) = c and qk(l) = d for some new
elements c ∈ C, d ∈ D, where a new element is an element that was added since we
began working on this requirement. While we wait, grow all the structures to the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 23

Figure 9. A diagram showing the sequence di . The hollow circles represent new
elements added during working on this requirement, as specified in the construction,
in the case of this diagram m = 4. The solid arrows represent pj and the dashed
arrows represent pk . Note that we do not represent C and D separately in this
diagram since they are isomorphic during this requirement and are identified with
each other using �C and �D.

right. Once we find l, if c = d then Qi,j,k is good, move to recovery. Otherwise, if
c < d then grow all structures towards d. In the case that d < c, grow all structures
towards c.

Requirement Pi,j,k . Recall that if we are working on Pi,j,k , this means it requires
attention, so there are c ∈ C and d ∈ D such that pj(c)↓= pk(d)↓. If at any stage
during this strategy pj or pk is seen to not be an isomorphism, halt the stage and
move to recovery. If c = d , then we say that Pi,j,k is good, halt the stage and move
to the next R or Q requirement on the list. Otherwise consider the following two
cases:

• c < d . Suppose there are n elements between c and d. We find a sequence
d0 = d, d1, ... , dm+1 such that pj(di) = pk(di+1) and m is such that dm is a
new element since the stage we started to work on this requirement, as can be
seen in Figure 9. While we work to define this sequence, grow all structures to
the right. Let i be the least such that m + 1 ≥ i > 0 and we have not yet found
di . If there is an x such that pk(x) = pj(di–1) then let x = di . If there is a stage
where there is z such that pk(z) > pj(di–1) and there is no x < z such that
pk(x) = pj(di–1), then move to the next requirement. If we have not moved on
from this requirement, then we have found the sequence d0, d1, ... , dm+1. Add
n + 1 elements between dm and dm+1.

• d < c. Do the same as in the previous case, swapping the roles of C and D as
well as pj and pk .

Halt the stage and move to the least requirement which requires attention and has
not yet been worked on.

Recovery. Add a new element on the left in each structure. Note that at the
end of this stage, the structures all have the same number of elements and
�C[s], �D[s], �C[s], �D[s] are all isomorphisms. Halt the stage, move to the least
requirement which requires attention and has not yet been worked on.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

24 MARINA DORZHIEVA AND ELLEN HAMMATT

4.1.2. Verification. Now we verify that all requirements are met.

Lemma 4.2. For all e ∈ N, if requirement R0
e is given attention then R0

e is met.

Proof. Compute pe(x). Suppose there are n elements on the left of pe(x) ∈ D
at this stage. Wait for n + 1 elements to appear on the left of x ∈ C. Compute pe on
these elements. Since we grow D only to the right, there are still n elements on the
left of pe(x), then pe will show it is not an isomorphism. �

Lemma 4.3. For all e ∈ N, if requirement R1
e is given attention then R1

e is met.

Proof. The proof is the same to the previous one with the C and D swapped. �
Lemma 4.4. For all i, j, k ∈ N, if requirement Qi,j,k is given attention then Qi,j,k

is met.

Proof. If qj and qk are not injective or order-preserving, then Qi,j,k is met.
Suppose qj and qk are injective and order-preserving.

First we prove that we eventually find l such that qj(l) = c and qk(l) = d for
some new elements c ∈ C, d ∈ D. Suppose not, then we show that qj or qk is not
injective. Indeed, suppose that there are n elements in each structure at the beginning
of the stage. When 2n + 1 new elements appear in Pi , compute qj and qk on them.
Suppose that at least n + 1 of these new elements were mapped into new elements
in C, then these elements were mapped into old elements in D. In this case, qk is not
injective. Now suppose that there were less than n + 1 elements mapped into new
ones in C, then at least n + 1 elements were mapped into old elements in C and qj is
not injective. Thus, we eventually find l such that qj(l) = c and qk(l) = d for some
new elements c ∈ C, d ∈ D.

If c = d and qj and qk are isomorphisms, then �–1
C (qj(l)) = �–1

D (qk(l)) for all
l ∈ Pi . Define an isomorphism 	(l) = �–1

C (qj(l)). This is an isomorphism since qj
and �–1

C are isomorphisms. 	 is primitive recursive because at the least stage that
both qj(l) and qk(l) converge, �–1

C (qj(l)) converges.
Consider the case c �= d . Let t be the stage when there is l ∈ Pi [t] such that

qj(l)[t] = c and qk(l)[t] = d for new elements c ∈ C[t], d ∈ D[t]. Let n be the
number of elements in C at stage t (note that all structures have the same size at
this stage). By construction, in this case, we grow the interval between c and d in all
structures while we wait for a disagreement. We show that this eventually happens.
Let x = min(c, d) and y = max(c, d). Notice that, while we wait there are no more
than n elements on the left of x and no more than n elements on the right of y.
Once 2n + 1 new elements to appear in Pi , we see disagreement because there must
be at least n + 1 new elements on the left or the right of l. In the former case,
there are not enough elements to the left of x, hence we will see that qj or qk is
not an isomorphism (depending whether x = c or d). In the latter case, there are
not enough elements to the right of y, hence we will see that qj or qk is not an
isomorphism, a contradiction. �

Lemma 4.5. For all i, j, k ∈ N, if requirement Pi,j,k is given attention then Pi,j,k is
met.

Proof. If pj and pk are not injective or order-preserving, then Pi,j,k is met.
Suppose pj and pk are injective and order-preserving.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 25

If Pi,j,k is good, then for all b ∈ B, pj(�–1
C (b)) = pk(�–1

D (b)). Define � : B → Pi as
follows. At the least stage s such that b ∈ B[s], define �(b) = pj(�–1

C (b)) if �–1
C (b)[s]↓,

otherwise define �(b) = pk(�–1
D (b)). By construction, at stage s at least one of �–1

D (b)
and �–1

C (b) is defined. Therefore � is a primitive recursive isomorphism as desired.
Now suppose Pi,j,k is not good. We show that it cannot be the case that both

pj and pk are isomorphisms. First, we notice that when we begin to work on any
requirement at some stage s, any interval of A[s – 1], B[s – 1], C[s – 1], and D[s – 1]
is fixed, i.e., no new elements will ever appear in any old interval. Therefore, in the
case that we were able to find the sequence d0, ··· , dm+1, the interval (pj(c), pj(d))
has n elements while the interval (pj(dm), pj(dm+1)) has n + 1 elements; hence pj
or pk is not an isomorphism. If it is the case that there was some i such that we could
not find di , then there is z such that pk(z) > pj(di–1). Since there is no di , there is
no x < z such that pk(x) = pj(di–1). Then pk is not surjective since we will never
add any elements between di–1 and z. Therefore, we have met requirement Pi,j,k . �

Lemma 4.6. For all e, i, j, k ∈ N, requirement R0
e , R

1
e , Qi,j,k and Pi,j,k is met.

Proof. By Lemmas 4.2–4.5, every requirement is eventually met if given
attention. By construction and these lemmas, it follows that the construction works
on each requirement for finitely many stages. Therefore, every requirement that
requires attention is eventually given attention. In the case of P requirements, if
Pi,j,k does not require attention, then it is met because pj or pk is not surjective.

Therefore, all requirements are met. �

Lemma 4.7. A,B, C, and D are presentations of (Z, <).

Proof. Notice that when we start working on a new strategy, we do not place
elements in between any old elements. When we do add elements between some new
elements we place only finitely many. Infinitely often we add an element to the left
and to the right. Therefore, A,B, C, and D are presentations of (Z, <). �

4.2. Embedding the atomless Boolean algebra. In this section, we prove the
integers case of Theorem 1.2. We use the strategies from the diamond for integers,
naturally extending the construction to the full atomless Boolean algebra.

Let
 denote the atomless Boolean algebra. We will detail how to extend the above
techniques to build a presentation Am of L for each m ∈
 . Let �
 be the partial
order defined as follows a �
 b if a ∧ b = a. We build the presentations Aa for each
a ∈
 so that they meet the following requirements.

Ra,be : if a �
 b, then pe : Aa → Ab is not an isomorphism,

Pa,bi,j,k : if pj : Aa → Pi , pk : Ab → Pi are p.r. isomorphisms, then Aa∨b ≤pr Pi ,

Qa,bi,j,k : if qj : Pi → Aa, qk : Pi → Ab are p.r. isomorphisms, then Pi ≤pr Aa∧b,

where 〈pe〉e∈N and 〈Pi〉i∈N are effective enumerations of all primitive recursive
functions and punctual presentations, respectively.

We also build primitive recursive isomorphisms �a,b : Aa → Ab for all a, b ∈

with a �
 b.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

26 MARINA DORZHIEVA AND ELLEN HAMMATT

4.2.1. Construction. We arrange all requirements in some effective list and meet
them one by one. At each stage, we are building finitely many presentations and we
will slowly introduce more presentations to build throughout the construction. Let
Es be the indices of presentations we have started building by stage s. Arrange all
elements of
 in some effective list; we will use this list to introduce new structures
throughout the construction.

The requirements require attention at stage s as follows:

• Ra,be requires attention at stage s if a, b ∈ Es .
• Qa,b

i,j,k
requires attention at stage s if a, b, c ∈ Es where c = a ∧ b.

• Pa,b
i,j,k

requires attention at stage s if a, b, c ∈ Es for c = a ∨ b and there are

x ∈ Aa [s] and y ∈ Ab[s] such that pj(x)[s]↓= pk(y)[s]↓.

At every stage, we define isomorphisms �a,b : Aa → Ab such that a �
 b for
a, b ∈ Es . As in the diamond, we will abuse notation and say that x = y for x ∈ Aa
and y ∈ Ab , this means that �a,c(x) = �b,c(y) for some c �
 a, b. We note that by
construction, if this is true for some c �
 a, b then it is actually true for all c �
 a, b.

At stage 0, let E0 = {a, b}, where a and b are the first elements on the list of
elements in
 . Begin working on the first requirement on the list that requires
attention.

At stage s > 0, enact the strategy of the current requirement we are working on,
if no requirement currently requires attention, then go to recovery. We now detail
the strategies for each requirement.

Requirement Ra,be . Do as in strategy for requirement R0
e from the diamond

construction, but replace C with Aa and D with Ab . All presentations Ac with
c �
 a and c ∈ Es , copy Aa . All other presentations in Es copy Ab . All �d,d ′ are
naturally extended.

Requirement Qa,bi,j,k . Do as in strategy Qi,j,k from the diamond construction,
replacing c, d with x, y, respectively, and replacing C,D with Aa,Ab, respectively.
As in the diamond construction, all structures grow in the same way during this
requirement, so Ad copies Aa for all d ∈ Es . All �d,d ′ are naturally extended.

Requirement Pa,bi,j,k . Do as in strategy Pi,j,k from the diamond construction,
replacing c, d with x, y, respectively, and replacing C,D with Aa,Ab, respectively.
As in the diamond construction, all structures grow in the same way during this
requirement, so Ad copies Aa for all d ∈ Es . All �d,d ′ are naturally extended.

Recovery. Add a new element on the left in each structure in Es . Note that at
the end of this stage, all established structures have the same number of elements,
and for all a �
 b, �a,b : Aa → Ab are all isomorphisms. Let c be the least element
on the list of elements of
 that has not yet been introduced. Build Ac so that it is
isomorphic to all Aa (a ∈ Es), define isomorphisms �c,b and �a,c for all a, b ∈ Es ,
a �
 c and c �
 b, and defineEs+1 = Es ∪ {c}. Halt the stage, move to the highest
priority requirement that requires attention.

4.2.2. Verification. Notice that at the start of working on a new requirement, all
structures are isomorphic (i.e., they have the same number of elements).

Lemma 4.8. For all a, b ∈
 with a �
 b, �a,b : Aa → Ab is a primitive recursive
isomorphism.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 27

Proof. While working on Q and P, all structures grow in the same way, hence
it is clear that during these stages �c,d are naturally extended for all c, d ∈
 with
c �
 d . During Ra,be requirements, we have the following cases for c, d ∈
 with
c �
 d :

• For any presentations Ac ,Ad with c, d �
 a, act as Aa and therefore grow the
same way, so �c,d are naturally extended.

• For any presentations Ac ,Ad with c, d ��
 a, act as Ab and therefore grow the
same way, so �c,d naturally extended.

• If we are not in any of the previous cases, then we have c ��
 a and d �
 a.
In this case, Ac acts as Ab and Ad acts as Aa . Then �c,d is naturally extended
while leaving only the special element out of its range. Note that this element
enters the range in recovery.

As above, by construction, at every stage s, we define �c,d immediately on every
element of Ac [s], hence �c,d is primitive recursive. When we start working on a new
requirement at stage s, �c,d is an isomorphism on domain Ac [s] onto Ad [s]. �

Lemma 4.9. For all a, b ∈
 and e, i, j, k ∈ N, requirements Ra,be , Qa,bi,j,k, and Pa,bi,j,k
are met.

Proof. This follows immediately from Lemmas 4.2 and 4.4–4.6 by swapping
roles of A,B, C,D to Aa∨b,Aa∧b,Aa,Ab, respectively. �

Therefore, all requirements are met and hence we have embedded the atomless
Boolean algebra into the punctual degrees of (Z, <).

Acknowledgements. The authors acknowledge TU Wien Bibliothek for financial
support through its Open Access Funding Programme.

REFERENCES

[1] P. E. Alaev, Existence and uniqueness of structures computable in polynomial time. Algebra and
Logic, vol. 55 (2016), no. 1, pp. 72–76.

[2] C. J. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Studies in
Logic and the Foundations of Mathematics, 144, North-Holland Publishing Co., Amsterdam, 2000.

[3] R. Bagaviev, I. I. Batyrshin, N. Bazhenov, D. Bushtets, M. Dorzhieva, and H. T. Koh, et al.,
Computably and punctually universal spaces. Annals of Pure and Applied Logic, vol. 176 (2025), no. 1,
p. 103491.

[4] N. A. Bazhenov and I. S. Kalimullin,Punctual categoricity spectra of computably categorical
structures. Algebra and Logic, vol. 60 (2021), no. 3, pp. 223–228, Cited by: 1.

[5] N. Bazhenov, R. Downey, I. Kalimullin, and A. G. Melnikov, Foundations of online structure
theory. The Bulletin of Symbolic Logic, vol. 25 (2019), no. 2, pp. 141–181.

[6] N. Bazhenov, I. Kalimullin, A. G. Melnikov, and K. M. Ng, Online presentations of finitely
generated structures. Theoretical Computer Science, vol. 844 (2020), pp. 195–216.

[7] D. Cenzer, R. G. Downey, J. B. Remmel, and Z. Uddin, Space complexity of abelian groups.
Archive for Mathematical Logic, vol. 48 (2009), no. 1, pp. 115–140.

[8] D. Cenzer and J. Remmel, Polynomial-time versus recursive models. Annals of Pure and Applied
Logic, vol. 54 (1991), no. 1, pp. 17–58.

[9] ———, Polynomial-time abelian groups. Annals of Pure and Applied Logic, vol. 56 (1992), no. 1,
pp. 313–363.

[10] ———, Feasibly Categorical Abelian Groups, Birkhäuser, Boston, MA, 1995, pp. 91–153.
[11] D. Cenzer and J. B. Remmel, Polynomial-Time Versus Computable Boolean Algebras, De Gruyter,

Berlin and Boston, 1999, pp. 15–54.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

28 MARINA DORZHIEVA AND ELLEN HAMMATT

[12] R. J. Coles, R. Downey, and B. Khoussainov, On initial segments of computable linear orders.
Order, vol. 14 (1997), no. 2, pp. 107–124.

[13] M. Dorzhieva, R. Downey, E. Hammatt, A. G. Melnikov, and K. M. Ng, Punctually presented
structures II: comparing presentations. Archive for Mathematical Logic, vol. 64 (2025), pp. 159–184.

[14] M. Dorzhieva and A. G. Melnikov, Punctually presented structures I: Closure theorems.
Computability, vol. 12 (2023), no. 4, pp. 323–337.

[15] R. Downey, N. Greenberg, A. G. Melnikov, K. M. Ng, and D. Turetsky, Punctual categoricity
and universality. The Journal of Symbolic Logic, vol. 85 (2020), no. 4, pp. 1427–1466.

[16] R. Downey, A. G. Melnikov, and K. M. Ng, Foundations of online structure theory II: The
operator approach. Logical Methods in Computer Science, vol. 17 (2021), no. 3, pp. 1–35.

[17] R. Downey, M. Harrison-Trainor, I. Kalimullin, A. G. Melnikov, and D. Turetsky,Graphs
are not universal for online computability. Journal of Computer and System Sciences, vol. 112 (2020), pp.
1–12.

[18] R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, and D. D.

Turetsky, The complexity of computable categoricity. Advances in Mathematics, vol. 268 (2015),
pp. 423–466.

[19] S. Goncharov, S. Lempp, and R. Solomon, The computable dimension of ordered abelian groups.
Advances in Mathematics, vol. 175 (2003), no. 1, pp. 102–143.

[20] S. S. Goncharov, The quantity of nonautoequivalent constructivizations. Algebra and Logic, vol.
16 (1977), no. 3, pp. 169–185.

[21] ———, Autostability of models and abelian groups. Algebra and Logic, vol. 19 (1980), no. 1,
pp. 13–27.

[22] S. S. Goncharov and V. D. Dzgoev, Autostability of models. Algebra and Logic, vol. 19 (1980),
no. 1, pp. 28–37.

[23] S. S. Goncharov, Countable Boolean Algebras and Decidability, Siberian School of Algebra and
Logic, Kluwer Academic/Plenum, New York, 1997.

[24] G. A. Gratzer, Lattice Theory: Foundation, Springer, Basel, 2011
[25] S. Grigorieff, Every recursive linear ordering has a copy in dtime-space(n, log(n)). The Journal

of Symbolic Logic, vol. 55 (1990), no. 1, pp. 260–276.
[26] I. S. Kalimullin, A. G. Melnikov, and K. M. Ng, The diversity of categoricity without delay.

Algebra and Logic, vol. 56 (2017), no. 2, pp. 171–177.
[27] I. S. Kalimullin, Constructing punctually categorical semigroups. Algebra and Logic, vol. 59

(2020), no. 5, pp. 408–411.
[28] I. Kalimullin, A. G. Melnikov, and A. Montalban, Punctual definability on structures. Annals

of Pure and Applied Logic, vol. 172 (2021), no. 8, Paper No. 102987. 18.
[29] I. Kalimullin, A. G. Melnikov, and K. M. Ng, Algebraic structures computable without delay.

Theoretical Computer Science, vol. 674 (2017), pp. 73–98.
[30] I. Kalimullin, A. G. Melnikov, and M. Zubkov, Punctual Degrees and Lattice Embeddings,

World Scientific, Singapore, 2023, pp. 315–334.
[31] D. Kalociński, L. S. Mauro, and M. WrocŁawski, Punctual presentability in certain classes

of algebraic structures, 49th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2024) (R. Královič and A. Kučera, editors), Leibniz International Proceedings in Informatics
(LIPIcs), 306, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, 2024, pp. 65:1–65:15.

[32] H. T. Koh, A. G. Melnikov, and K. M. Ng, A non-density aspect of the rationals, to appear,
2024.

[33] P. LaRoche, Recursively presented Boolean algebras. Notices AMS, vol. 24 (1977), pp. 552–553.
[34] S. Lempp, C. McCoy, R. Miller, and R. Solomon, Computable categoricity of trees of finite

height. The Journal of Symbolic Logic, vol. 70 (2005), no. 1, pp. 151–215.
[35] A. I. Mal’cev, Constructive algebras. I, The metamathematics of algebraic systems (A. Ivanovič

Mal’cev, editors), Studies in Logic and the Foundations of Mathematics, 66, Elsevier, Amsterdam,
Netherlands, 1971, pp. 148–214.

[36] A. G. Melnikov and K. M. Ng, Computable torsion abelian groups. Advances in Mathematics,
vol. 325 (2018), pp. 864–907.

[37] ———, The back-and-forth method and computability without delay. Israel Journal of Mathemat-
ics, vol. 234 (2019), no. 2, pp, 959–1000.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

LATTICE EMBEDDINGS AND PUNCTUAL LINEAR ORDERS 29

[38] ———, A structure of punctual dimension two. Proceedings of the American Mathematical Society,
vol. 148 (2020), no. 7, pp. 3113–3128.

[39] A. Montalbán, Computable Structure Theory: Beyond the Arithmetic, 2023, to appear.
[40] A. Montalbán, Computable Structure Theory: Within the Arithmetic, Cambridge University

Press, Cambridge, 2021.
[41] J. B. Remmel, Recursively categorical linear orderings. Proceedings of the American Mathematical

Society, vol. 83 (1981), no. 2, pp. 387–387.
[42] J. G. Rosenstein, Linear Orderings, Pure and Applied Mathematics, 98, Academic Press, Inc.,

[Harcourt Brace Jovanovich, Publishers], New York, NY, 1982.
[43] V. Selivanov and S. Selivanova, Primitive recursive ordered fields and some applications,

Computer Algebra in Scientific Computing (F. Boulier, M. England, T. M. Sadykov, and E. V. Vorozhtsov,
editors), Springer International Publishing, Cham, 2021, pp. 353–369.

[44] R. L. Smith, Two Theorems on Autostability in p-Groups, Springer, Berlin, 1981, pp. 302–311.

SCHOOL OF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITY OF WELLINGTON

WELLINGTON 6012
NEW ZEALAND

E-mail: dm-3004@inbox.ru

INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY,
TECHNISCHE UNIVERSITÄT WIEN

VIENNA 1040
AUSTRIA

E-mail: ellen.hammatt@tuwien.ac.at

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10106
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.165, on 09 Sep 2025 at 04:25:36, subject to the Cambridge Core terms of use, available at

mailto:dm-3004@inbox.ru
mailto:ellen.hammatt@tuwien.ac.at
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10106
https://www.cambridge.org/core

	1 Introduction
	2 Invariant linear orders
	2.1 Constructing presentations A,B, of L with B above A
	2.2 Embedding the diamond
	2.2.1 Construction.
	2.2.2 Verification.

	2.3 Embedding the atomless Boolean algebra

	3 The dense linear order
	3.1 Embedding the diamond
	3.2 Construction
	3.2.1 Verification.

	4 The integers
	4.1 Embedding the diamond
	4.1.1 Construction.
	4.1.2 Verification.

	4.2 Embedding the atomless Boolean algebra
	4.2.1 Construction.
	4.2.2 Verification.

