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We study constant Q-curvature metrics conformal to the the round metric on the
sphere with finitely many point singularities. We show that the moduli space of
solutions with finitely many punctures in fixed positions, equipped with the
Gromov–Hausdorff topology, has the local structure of a real algebraic variety with
formal dimension equal to the number of the punctures. If a nondegeneracy
hypothesis holds, we show that a neighbourhood in the moduli spaces is actually a
smooth, real-analytic manifold of the expected dimension. We also construct a
geometrically natural set of parameters, construct a symplectic structure on this
parameter space and show that in the smooth case a small neighbourhood of the
moduli space embeds as a Lagrangian submanifold in the parameter space. We
remark that our construction of the symplectic structure is quite different from the
one in the scalar curvature setting, due to the fact that the associated partial
differential equation is fourth-order rather than second-order.
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1. Introduction

In this manuscript, we study a fourth-order analog of the singular Yamabe prob-
lem on finitely punctured spheres, as formulated by Schoen and Yau [13], Mazzeo,
Pollack, and Uhlenbeck [10] and others. Our main result characterizes the local
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structure of the moduli space of solutions in the case of the round metric on a
finitely punctured sphere.

In general, if (M, g) is a Riemannian manifold of dimension n ≥ 5 one defines
the Q-curvature of g as

Qg = − 1

2(n− 1)
∆gRg −

2

(n− 2)2
|Ricg |2 +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
R2

g, (1)

where Rg and Ricg are the scalar and Ricci curvatures and ∆g is the Laplace-

Beltrami operator. A short computation demonstrates that Q◦
g
=
n(n2 − 4)

8
, where

◦
g is the usual round metric on the sphere Sn . A longer computation shows that the

task of finding a conformal metric g̃ = U
4

n−4 g with Q-curvature equal to
n(n2 − 4)

8
is equivalent to solving the nonlinear partial differential equation

Hg(U) := Pg(U)− n(n− 4)(n2 − 4)

16
U

n+4
n−4 = 0, (2)

where

Pg(U) := (−∆g)
2(U) + div

(
4

n− 2
Ricg(∇U, ·)−

(n− 2)2 + 4

2(n− 1)(n− 2)
Rg∇U

)
+
n− 4

2
QgU, (3)

is the Paneitz-Branson operator. This operator is conformally covariant, in that

P
U

4
n−4 g

(φ) = U− n+4
n−4Pg(Uφ). (4)

Substituting φ=1 into (4) we obtain the transformation law for Q-curvature under
a conformal change of metric, which is

Q
U

4
n−4 g

=
2

n− 4
U− n+4

n−4Pg(U). (5)

In the case that the background metric is
◦
g the Paneitz operator factors as

P◦
g
=

(
−∆◦

g
+

(n− 4)(n+ 2)

4

)(
−∆◦

g
+
n(n− 2)

4

)
. (6)

This factorization in some sense simplifies the analysis of (2), making the study
of the space of solutions in this setting seem more approachable. However, the
conformal invariance of (4) combined with the noncompactness of the conformal
group of the round metric leads to the blow-up of sequences of solutions. For this
reason we study the following singular problem: given a closed subset Λ ⊂ Sn,

describe all the conformal metrics g = U
4

n−4
◦
g that are complete on Sn\Λ and
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Moduli of constant Q-curvature metrics 3

have Qg =
n(n2 − 4)

8
. We can reformulate this geometric problem as the following

infinite boundary value problem:

U : Sn\Λ → (0,∞), H◦
g
(U) = 0, lim inf

p→Λ
U(p) = ∞. (7)

We concentrate on the case that Λ = {p1, . . . , pk} is a finite set of points and
define the marked moduli space

MΛ =

{
g ∈ [

◦
g] : Qg =

n(n2 − 4)

8
and g is complete on Λ

}
and the unmarked moduli space

Mk =

{
g ∈ [

◦
g] : Qg =

n(n2 − 4)

8
, g is complete on Λ, #Λ = k

}
.

Here [
◦
g] is the set of all conformal metric to

◦
g. We equip both moduli spaces with the

Gromov–Hausdorff topology. The difference between the two is that in the marked
moduli space we fix the singular points, whereas in the unmarked moduli space we
allow them to vary, so long as they remain k distinct points.

Let Λ = {p1, . . . , pk} ⊂ Sn and let g ∈ MΛ. Then g admits a definite asymptotic
structure near each singular point pi, and is asymptotic to one of the Delaunay
metrics described below in § 2. These Delaunay metrics are, after an appropriate
change of variables, periodic and uniquely described by their necksizes ε ∈ (0, ε],
where the maximal necksize ε depends only on the dimension n, which allows one
to assign asymptotic data to g ∈ Mk, including the asymptotic necksize ɛi at the
singular point pi. We ask the following question: how well does this asymptotic
data determine a metric g ∈ MΛ? Our results below form a first step in answering
this question. More precisely, we show that under some conditions one can use
the asymptotic data to parameterize a small neighbourhood of moduli space near
g ∈ MΛ.

Our main theorem is the following result.

Theorem 1. For each finite subset Λ ⊂ Sn with #Λ = k ≥ 3 the moduli space
MΛ is locally a real analytic variety of formal dimension k.

Our proof follows the road map developed by Kusner, Mazzeo, Pollack and
Uhlenbeck in [8] and [10], combining the implicit function theorem and the
Lyaponov-Schmidt process. The key technical part of our analysis is a fine under-
standing the linearized operator Lg of the operator Hg defined in (2), which we
describe in detail in § 2.1.

As is usually the case, the analysis allows us to make a more precise statement
if Lg is injective or surjective when acting on an appropriate function space.

Definition 2. A metric g ∈ MΛ is nondegenerate if w ∈ L2 and Lg(w) = 0
implies w ≡ 0.

Theorem 3. If g ∈ MΛ is nondegenerate then there exists an open neighbourhood
U ⊂ MΛ of g that is a real analytic manifold of dimension k.
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As a part of proving these two local regularity theorems we construct a 2k -
dimensional parameter space Wg to parameterize all metrics MΛ nearby a given g.
Once we construct Wg and use it to understand the local regularity of the moduli
space, we construct a symplectic structure on the geometric parameter space and
show that, in the nondegenerate case, a small neighbourhood of g in MΛ embeds
in this parameter space Wg as a Lagrangian submanifold.

We remark here that our development of the symplectic form in § 6 is quite
different from the development of the symplectic form in Section 7 of [10], mostly
due to the fact that the associated PDE in our case is fourth-order and the PDE
associate to scalar curvature is second-order. In the scalar curvature case one sees
directly after integrating by parts twice that the integrand in the definition of
the symplectic structure is the Wronksian of a certain second order ODE. This
fact immediately implies the limit defining the symplectic structure exists and
that it defines a nondegenerate bilinear form. In our case we must analyze the
integrand more carefully to its connection to the Hamiltonian associated to the
Delaunay solutions (see the proof of Theorem 16 in § 6 below). We believe this
more direct connection between the symplectic form and the Hamiltonian of the
Delaunay solutions is of independent interest.

Our results form a natural progression of the current understanding of constant
Q-curvature metrics. Previously, C. S. Lin [9] showed that all smooth metrics with
constant Q-curvature in the conformal class of the round metric must be the image

of
◦
g under a Möbius transformation. In the language we established above, M0 =

SO(n+1, 1), which is the Möbius group of global conformal transformations of the
sphere. In the same paper Lin proved there are no solutions with a single puncture,
i.e. M1 = ∅ and that (after a conformal motion) any solution with two punctures
is rotationally invariant. Afterwards Frank and König [5] characterized all the two
ended solutions, showing M{p,q} ' (0, ε] for each p ≠ q, where ε is a finite, positive
number depending only on the dimension n. We describe these solutions in some
detail below. In general, explicit gluing constructions demonstrate that the moduli
spaceMk is nonempty, provided k ≥ 2. Baraket and Rebhi [4] constructed solutions
with an even number of punctures by gluing cylinders together, using small necks
as a bridge. Andrade, Wei and Ye [3] construct many examples in the conformal

class of the sphere and the authors of this paper together with Andrade and do Ò
[1] construct many other examples in the inhomogeneous setting, using a different

gluing technique. Together with Andrade and do Ò [2], the second author described
a geometric characterization of compact subsets of the moduli space. We remark
also that the question of compactness of the space of solutions is completely resolved
in the case that the background manifold is compact. If (M, g) is not conformally
equivalent to the round sphere, then the set of solutions is compact precisely if
n ≤ 24 [6] and is not compact if n ≥ 25 [15]. If the background metric is the round
sphere then the set of solutions is never compact, due to the noncompactness of
the group of Möbius transformations.

The rest of the paper proceeds as follows. In § 2 we discuss some analytic prelim-
inaries, such as the Delaunay solutions, the local asymptotics of a singular Yamabe
metric near a puncture and the appropriate functions spaces. In § 3 we analyze
the mapping properties of the linearized operator Lg in various weighted function
spaces and introduce the deficiency space Wg, a 2k -dimensional vector space that

https://doi.org/10.1017/prm.2025.10086 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10086


Moduli of constant Q-curvature metrics 5

will serve as a parameter space to describe the asymptotic geometry of nearby met-
rics in MΛ. We prove Theorem 3 in Theorem 1 in § 4 and complete the proof of
Theorem 1 in § 5. Finally, in Theorem 1 in § 6 we discuss a symplectic structure
on the natural parameter space of MΛ and prove that, near smooth points, the
moduli space MΛ is a Lagrangian submanifold of this parameter space.

2. Preliminaries

2.1. The choice of a gauge

The choice of a gauge in formulating the moduli problem is equivalent to choosing
the background metric in a conformal class.

While we have thus far phrased this problem in the sphere, it will often be useful
to rewrite in Euclidean space after stereographic projection and to transfer our
analysis between the two settings. Let Pr : Rn → Sn\{N} be (the inverse of)
stereographic projection mapping Euclidean space to the sphere minus a pole. It is
now a standard exercise to verify that

◦
g = u

4
n−4

sph δ, usph(x) =

(
1 + |x|2

2

) 4−n
2

,

where δ is the Euclidean metric. Using this transformation we can identify g =

U
4

n−4
◦
g with g = u

4
n−4 δ where u = Uusph. We also denote the preimage of the

singular set by Λ̃ = Pr−1(Λ). Without loss of generality we let the north pole N
be a smooth point of g, so that the conformal factor u decays at infinity. More
precisely,

lim sup
|x|→∞

|x|
n−4
2 u(x) <∞.

Remark 4. Hereafter we adopt the convention that capital letters will denote con-
formal factors relative the round metric and lower case letters will denote conformal
factors relative to the Euclidean metric. The two are always related as described
above, e.g. u = Uusph.

Furthermore, we can also rephrase the condition that a metric lies in the moduli

space MΛ in the language of PDEs. Recall that g ∈ [
◦
g] precisely when g = U

4
n−4

◦
g,

so that the condition Qg = n(n2−4)
8 becomes

H◦
g
(U) = P◦

g
(U)− n(n− 4)(n2 − 4)

16
U

n+4
n−4 = 0.

Thus

MΛ =

{
U : Sn\Λ → (0,∞) : H◦

g
(U) = 0 and lim inf

p→Λ
U(p) = ∞

}
.

In the spherical setting, the linearized operator has the form

Lg(v) =
d

dt

∣∣∣∣
t=0

H◦
g
(U + tv) = P◦

g
(v)− n(n+ 4)(n2 − 4)

16
U

8
n−4 v, (8)
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where the Paneitz operator P◦
g
can be factor as in (6).

The operators in question have an even simpler appearance in the Euclidean

setting. This time we use the fact that g = u
4

n−4 δ, so g ∈ Mg is now equivalent to
the PDE

Hδ(u) = (−∆0)
2u− n(n− 4)(n2 − 4)

16
u

n+4
n−4 = 0,

which in turn implies

MΛ =

{
u : Rn\Λ̃ → (0,∞) : Hδ(u) = 0, lim inf

x→Λ̃
u(x) = ∞ and

lim sup
|x|→∞

|x|
n−4
2 u(x) <∞

}
.

In the Euclidean setting the linearized operator has the form

Lg(v) = (−∆0)
2v − n(n+ 4)(n2 − 4)

16
u

8
n−4 v. (9)

In either setting, we refer to a function satisfying the PDE Lg(v) = 0 as a Jacobi
field.

2.2. Delaunay metrics

The Delaunay metrics are all the constant Q-curvature metrics on a twice-
punctured sphere and, as we will see later, play an important role in understanding
the behavior of singular constant Q-curvature metrics with isolated singularities.

Consider a metric g = U
4

n−4
◦
g on Sn\{p, q} where p and q are distinct. After

a rotation and a dilation, we can assume p=N is the north pole and q =S is
the south pole. As in the previous section, we transfer now Rn\{0} using stereo-
graphic projection and let u = Uusph. Using (4) we see that u : Rn\{0} → (0,∞)
satisfies

Hδ(u) = 0. (10)

Frank and König [5] classified all the solutions of (10), and we describe them
here. First we perform the Emden-Fowler change of coordinates, defining

F : C∞(Br(0)\{0}) → C∞((− log r,∞)× Sn−1), F(u)(t, θ) = e
4−n
2 tu(e−tθ).

(11)

We can of course invert F, obtaining

F−1(v)(x) = |x|
4−n
2 v(− log |x|, θ).

While the prefactor of e
4−n
2 t might look a little strange at first, a short computation

shows it is geometrically necessary. Letting

Υ : R× Sn−1 → Rn\{0}, Υ(t, θ) = e−tθ,
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we see

Υ∗(δ) = e−2tgcyl.

where gcyl = dt2 + dθ2 is the cylindrical metric. If we now consider a conformal

metric g = u
4

n−4 δ, we see that

Υ∗(g)(t, θ) = F(u)(t, θ)
4

n−4 gcyl.

After the Emden-Fowler change of coordinates, using (4), (10) becomes

Hcyl(v) = Pcyl(v)−
n(n− 4)(n2 − 4)

16
v

n+4
n−4 = 0, (12)

where v : R× Sn−1 → (0,∞) and

Pcyl = (−∆cyl)
2 − n(n− 4)

2
∆cyl − 4∂2t +

n2(n− 4)2

16
(13)

= ∂4t +∆2
Sn−1 + 2∆Sn−1∂2t − n(n− 4) + 8

2
∂2t − n(n− 4)

2
∆Sn−1

+
n2(n− 4)2

16

is the Paneitz operator of the cylindrical metric. Note that ∆cyl = ∂2t + ∆Sn−1 .
C. S. Lin [9] used a moving planes argument to prove that solutions of (10) are
rotationally invariant, reducing (12) to the ODE

....
v − n(n− 4) + 8

2
v̈ +

n2(n− 4)2

16
v − n(n− 4)(n2 − 4)

16
v

n+4
n−4 = 0. (14)

Notice that one can find a first integral for this ODE defined as

Hε = −v̇ε
...
v ε+

1

2
v̈2ε+

n(n− 4) + 8

4
v̇2ε−

n2(n− 4)2

32
v2ε+

(n− 4)2(n2 − 4)

32
v

2n
n−4
ε . (15)

We denote the nonzero constant solution of (14) by

ε =

(
n(n− 4)

n2 − 4

)n−4
8

.

Theorem 5 (Frank and König [5]). For each ε ∈ (0, ε] there exists a unique vε :
R → (0,∞) solving the ODE (14) attaining its minimal value of ɛ at t= 0. All
these solutions are periodic. Furthermore, let v : R × Sn−1 → (0,∞) be a smooth

solution of the PDE (12). Then either v(t, θ) = (cosh(t+ T ))
4−n
2 for some T ∈ R

or there exist ε ∈ (0, ε] and T ∈ R such that v(t, θ) = vε(t+ T ).

Later in this paper we will use the fact that the set of Delaunay solutions is
ordered by the Hamiltonian energy H. In other words, H is a strictly decreasing
function of the necksize ɛ.
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8 R. Caju, J. Ratzkin and A. Silva Santos

We can now write the Delaunay metric in Euclidean coordinates by reversing the
coordinate transformation (11), letting

uε(x) = F−1(v)(x) = |x|
4−n
2 vε(− log |x|), gε = u

4
n−4
ε δ = v

4
n−4
ε gcyl. (16)

The geometric formulation of the Frank-König classification now reads: if g =

U
4

n−4
◦
g is a constant Q-curvature metric on Sn\{p, q} then, after a global conformal

transformation, either g extends to smoothly to the round metric or g is singular
at both p and q and is the image of a Delaunay metric gɛ after said conformal
transformation.

2.3. Local asymptotics

A metric g = U
4

n−4
◦
g ∈ Mk with constant Q-curvature and finitely many singular

points has a definite asymptotic structure near each singular point. Let pi ∈ Λ
be a singular point of g and choose stereographic coordinates x centered at pi.

With respect to these coordinates we have g = u
4

n−4 δ = (Uusph)
4

n−4 δ there exist
ε ∈ (0, ε], R> 0, a ∈ Rn and β > 1 so that

u(x) = R
n−4
2 uε(Rx) + |x|

4−n
2

(
〈x, a〉

(
n− 4

2
vε(− log(R|x|))− v̇ε(− log(R|x|))

)
+O(|x|β)

)
. (17)

This expansion combines the local asymptotic expansions in [7] and in [12]. As is
usually the case, the asymptotic expansion (17) is more tractable in Emden-Fowler
coordinates. The transformed function v = F(u) satisfies the equation (12) on the
half-infinite cylinder (T0,∞)× Sn−1 and the asymptotic expansion now reads

v(t, θ) = vε(t+ T ) + e−t〈a, θ〉
(
n− 4

2
vε(t+ T )− v̇ε(t+ T )

)
+O(e−βt), (18)

where T = − logR.
These asymptotic expansions (17) and (18) allow us to define an asymptotes

map

A : MΛ → (0, ε]k ×Rk, A(g) = (ε1, . . . , εk, T1, . . . , Tk), (19)

where g = u
4

n−4 δ and

u(x) ' F−1(vεi(− log |x− pi|+ Ti)) near pi. (20)

We will see later on, in the proofs of Theorems 1 and 3, that the asymptotes
maps provides us with local coordinates for the moduli space in the nondegenerate
setting.

2.4. Weighted function spaces

We perform most of our analysis below on weighted Sobolev spaces. We first define
these weighted spaces on a half-infinite cylinder, and then transfer the definition to
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a punctured ball (and thereafter to a finitely punctured sphere) using the Emden-
Fowler change of coordinates.

Definition 6. Let δ ∈ R and let v ∈ L2
loc((0,∞)×Sn−1). We say v ∈ L2

δ((0,∞)×
Sn−1) if

‖v‖2L2
δ
=

∫ ∞

0

∫
Sn−1

e−2δt|v(t, θ)|2dθdt <∞.

One can similarly define the Sobolev spaces W k,2
δ ((0,∞) × Sn−1) for any natural

number k.

Observe that if |v(t, θ)| ≤ Ceδ̃t for each δ̃ < δ and t > 0, then v ∈ L2
δ((0,∞) ×

Sn−1). Next we undo the Emden-Fowler change of coordinates, letting u = F−1(v)
to see

∫
Sn−1

∫ t2

t1

e−2δt|v(t, θ)|2dtdθ = −
∫
Sn−1

∫ e−t2

e−t1

r2δ+n−5|u(rθ)|2drdθ

=

∫
r2≤|x|≤r1

|x|2δ−4|u(x)|2dµ0(x),

where r1 = e−t1 and r2 = e−t2 . Here dµ0 is the Euclidean volume element. Thus
we have the following definition.

Definition 7. Let δ ∈ R, let r> 0 and let u ∈ L2
loc(Br(0)\{0}). We say u ∈

L2
δ(Br(0)\{0}) if

‖u‖2L2
δ
=

∫
Br(0)\{0}

|x|2δ−4|u(x)|2dµ0 <∞.

More generally we let Λ̃ ⊂ Rn be a finite set and u ∈ L2
loc(R

n\Λ̃). We say u ∈
L2
δ(R

n\Λ̃) if

‖u‖L2
δ
=

∫
Rn\Λ̃

(dist(x, Λ̃))2δ−4|u(x)|2dµ0 <∞.

Once again, we see that if |u(x)| ≤ C(dist(x, Λ̃))2−δ̃ near each singularity, for

each δ̃ < δ + n
2 , and |u(x)| ≤ C|x| 4−n

2 −λ for |x| sufficiently large and any λ > δ,

then u ∈ L2
δ(R

n\Λ̃).

3. Linear analysis

3.1. The linearization about a Delaunay solution

Here we study the linearized operator about a Delaunay solution, which we denote
as Lɛ, and some of its mapping properties.
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Following Section 5.2 of [1] we write

Lε = (−∆0)
2 − n(n+ 4)(n2 − 4)

16
u

8
n−4
ε

and promptly transform to Emden-Fowler coordinates using (11), obtaining the
operator Lε defined by

Lε(w)(t, θ) = e
4−n
2 tLε(F

−1(w)) ◦Υ(t, θ) = F(Lε(F
−1(w)))(t, θ). (21)

Some computation give us

Lε = Pcyl −
n(n+ 4)(n2 − 4)

16
v

8
n−4
ε

= ∂4t +∆2
Sn−1 + 2∆Sn−1∂2t − n(n− 4)

2
∆Sn−1

− n(n− 4) + 8

2
∂2t +

n2(n− 4)2

16
− n(n+ 4)(n2 − 4)

16
v

8
n−4
ε .

(22)

Here Pcyl is given by (13).
We isolate two specific Jacobi fields of a Delaunay solution: the Jacobi field

w+
0 (ε) generating translations along the axis and the Jacobi field w−

0 (ε) generating
changes to the necksize. In Emden-Fowler coordinates these are given by

w+
0 (ε) = v̇ε, w−

0 (ε) =
d

dε
vε. (23)

Differentating the relation vε(t+Tε) = vε(t) it is straight-forward to verify that w+
0

is bounded and periodic while w−
0 grows linearly. The formulation of w±

0 above is
well-formed in the case that ε < ε, but both Jacobi fields vanish in the cylindrical
case. If ε = ε we define

w+
0 = sin(

√
µt), w−

0 = cos(
√
µt), µ =

√
n4 − 64n+ 64− (n2 − 4n+ 8)

4
.

(24)

The analysis in Proposition 1 of [4] shows these two Jacobi fields play the role of
varying the necksize and translation parameter on the cylinder.

One can find the following results and their proofs in Section 3.6 of [12].
We first write a Jacobi field in Fourier series. Recall that the j th eigenvalue of

−∆Sn−1 is λj = j(n− 1 + j) and it has multiplicity

mj =

(
n− 1 + j

j

)
+

(
n− 3 + j

j − 2

)
,

and so we can expand w in Fourier series as

w(t, θ) =
∞∑
j=0

mj∑
l=1

wj,l(t)Ej,l(θ),
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where {Ej,1, . . . , Ej,mj
} is an orthonormal basis of the eigenspace of −∆Sn−1 with

eigenvalue λj. Thus the restriction of the operator Lε to the eigenspace

Span{Ej,1, . . . , Ej,mj
}

is the ordinary differential operator

Lε,j =
d4

dt4
− n(n− 4) + 8 + 4λj

2

d2

dt2
+
n2(n− 4)2

16
+
n(n− 4)

2
λj + λ2j

− n(n+ 4)(n2 − 4)

16
v

8
n−4
ε .

Lemma 8. For each j ≥ 1 we have 0 6∈ spec(Lε,j)

The two functions w±
0 (ε) described above both lie in the kernel of Lε,0, and so

0 ∈ spec(Lε,0) for each ε ∈ (0, ε].
For proof of the next proposition see [12, Proposition 28].

Proposition 9. There exists a discrete set of real numbers

Γε = {. . . ,−γ2(ε) < −γ1(ε) < 0 < γ1(ε) < γ2(ε), . . . }, (25)

with γj(ε) → ∞ as j → ∞ such that the operator

Lε :W
4,2
δ ((0,∞)× Sn−1) → L2

δ((0,∞)× Sn−1)

is Fredholm provided δ 6∈ Γε. In particular, for any δ ∈ (0, γ1(ε))

Lε :W
4,2
−δ ((0,∞)× Sn−1) → L2

−δ((0,∞)× Sn−1)

is injective and

Lε :W
4,2
δ ((0,∞)× Sn−1) → L2

δ((0,∞)× Sn−1)

is surjective.

One calls γj(ε) the j th indicial root of the Jacobi operator Lε and Γε the set of
indicial roots associated to the Delaunay solution vɛ.

Proposition 10. Let φ : (0,∞) × Sn−1 → R be a smooth, compactly sup-
ported function and let Lε(v) = φ. Then v satisfies the asymptotic expansion
v(t, θ) '

∑∞
j=0 vj(t, θ) as t → +∞ where each vj is a Jacobi field, i.e. Lε(vj) = 0,

and vj decays like a polynomial times e−γjt, where γj > 0 is the jth indicial
root.

Corollary 11. (Linear Decomposition Lemma I) Let δ ∈ (0, γ1(ε)), let v ∈
W 4,2

δ ((0,∞)×Sn−1) and let φ ∈ C∞((0,∞)×Sn−1)∩L2
−δ((0,∞)×Sn−1) be such that

Lε(v) = φ. Then there exist z ∈W 4,2
−δ ((0,∞)×Sn−1) and w ∈ Span(w+

0 (ε), w
−
0 (ε))

such that v = z + w.
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For reasons that will become apparent later in the paper, we call Wε =
Span(w+

0 (ε), w
−
0 (ε)) the deficiency space associated to the Delaunay metric with

necksize ɛ.

3.2. The linearization about a singular Yamabe metric

We transfer the mapping properties of the linearization about a Delaunay solution
to study the mapping properties of Lg, where g ∈ MΛ is a conformally flat, sin-
gular, constant Q-curvature metric with k prescribed singularities. We denote the
asymptotic necksize of the puncture pj by ɛj, and define the indicial set

Γg =
k⋃

i=1

Γεi .

It follows directly from Proposition 9 that

Lg :W 4,2
δ (Rn\Λ̃) → L2

δ−4(R
n\Λ̃)

is Fredholm if and only if δ 6∈ Γg.

Definition 12. Let g ∈ MΛ and choose r0 > 0 sufficiently small such that
B2r0(pi)∩B2r0(pj) = ∅ for each distinct pair of punctures. We define the deficiency
space Wg by

Wg = Span{χF−1(w+
0 (εi)), χF

−1(w−
0 (εi)) : i = 1, . . . , k},

where χ is a fixed cut-off function such that

χ(x) =

{
1 |x| < r0
0 |x| > 3r0/2

, ‖∇kχ‖C0 ≤ cr−k.

Proposition 13. (Linear decomposition lemma II) Let 0 < δ < min1≤i≤k γ1(εi)

and let u ∈ W 4,2
δ (Rn\Λ̃) and φ ∈ L2

−δ−4(R
n\Λ̃) satisfying Lg(u) = φ. Then there

exist w ∈ Wg and v ∈W 4,2
−δ (R

n\Λ̃) such that u = w + v.

We now define the bounded null space. Once again we fix a number δ such
that 0 < δ < min1≤i≤k γ1(εi). Each element of the bounded null space is, strictly
speaking, an equivalence class of functions, that is

Bg =
ker(Lg :W 4,2

δ →W 0,2
δ−4)

ker(Lg :W 4,2
−δ →W 0,2

−δ−4)
.

Using the Hilbert space structure of W k,2
δ we can identify

Bg ' {ker(Lg :W 4,2
δ →W 0,2

δ−4)} ∩ {ker(Lg :W 4,2
−δ →W 0,2

−δ−4)}
⊥.

Combining this characterization with the linear decomposition lemma we see that
one can identify any v = w+ φ for any v ∈ B, where w ∈ Wg and φ ∈W 4,2

−δ (S
n\Λ)

decays at each puncture.
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Applying Melrose’s relative-index calculus we show the following dimension
count.

Theorem 14. dim(Bg) = k.

The proof below is more or less the same as the proof of Theorem 4.24 in [10].

Proof. We compute the relative index of Lg acting on the appropriate weighted
function spaces. Recall that the index of

Lg :W 4,2
δ (Rn\Λ̃) →W 0,2

δ−4(R
n\Λ̃)

is

ind(δ) = dim(ker(Lg))− dim(coker(Lg)).

Integration by parts shows that the L2-adjoint of Lg acting on W 4,2
δ is Lg acting

on W 4,2
−δ , and so it follows

ind(−δ) = − ind(δ)

provided δ 6∈ Γg. (In this case, reversing the sign of the weight δ exchanges the
kernel and the cokernel.) Next recall that, provided δ1, δ2 6∈ Γg, the relative index
is defined as

rel-ind(δ1, δ2) = ind(δ1)− ind(δ2).

We use duality once more (i.e. the operator Lg is formally self-adjoint in L2) to see
so long as 0 < δ < min1≤i≤k γ1(εi) we have

rel-ind(δ,−δ) = ind(δ)− ind(−δ) = 2 ind(δ) (26)

= 2
(
dim(ker(Lg|W 4,2

δ
))− dim(ker(Lg|W 4,2

−δ
))
)
= 2dimBg.

Thus it suffices to show that rel-ind(δ,−δ) = 2k for an appropriate choice of δ. We
choose 0 < δ < min1≤i≤k γ1(εi).

We compute this relative index theorem using the Melrose’s relative index
theorem (see Theorem 6.5 of [11]). We first decompose

Sn\{p1, . . . , pk} = Ωc ∪

(
k⋃

i=1

Br(pi)\{pi}

)
.

We can now write Lg as the sum of restrictions

Lg = Lg|Ωc +
k∑

i=1

Lg|Br(pi)\{pi}

and compute the relative index of each restriction separately. It might appear that
we first have to take the boundary data of the restrictions into account, but since

∂Ωc =
k⋃

i=1

∂Br(pi),
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except for the opposite orientations, the boundary contributions in the relative
indices will cancel out. Thus it suffices to use the Dirichlet boundary data on the k
spheres {∂Br(pi)}.

The operator Lg is elliptic and has index zero on Ωc, so now we’re left with
computing the relative index of the restriction Lg|Br(pi)\{pi} for some i ∈ {1, . . . , k}.
Next we observe that, because the relative index is a topological invariant, we can
deform the metric of g to be exactly Delaunay in a small neighborhood of each
puncture pj. After transforming to cylindrical coordinates using the Emden-Fowler
change of coordinates F, we finally arrive at the problem of computing the relative
index of

Lεi :W
4,2
δ ((0,∞)× Sn−1) →W 0,2

δ ((0,∞)× Sn−1).

This is where we use Melrose’s machinery, as developed in Chapters 4,5 and 6 of
[11]. To do so we introduce the Fourier-Laplace transform

v̂(t, ζ, θ) = Fεi(v)(t, ζ, θ) =
∞∑

m=−∞
e−imζv(t+mTεi , θ) (27)

and the twisted operator

L̃εi :W
4,2(S1

Tεi
× Sn−1) →W 0,2(S1

Tεi
× Sn−1)

defined by

L̃εi(ζ)(v̂) = eiζFεi ◦ Lεi ◦ F−1
εi (e−iζ v̂). (28)

We make several observations before continuing. First observe that ζ ∈ C is a
parameter in the Fourier-Laplace transform, and the sum in (27) converges precisely

when ζ is in the half-space {ζ : Im(ζ) < −δTεi}. Next observe that L̃εi is now a
family of operators defined between the fixed function spaces W 4,2(S1

Tεi
× Sn−1)

and W 0,2(S1
Tεi

× Sn−1), that depends holomorphically on the complex parameter

ζ. This allows us to use the analytic Fredholm theorem (see Section 5.2 of [11]) to

conclude that L̃εi is Fredholm so long as ζ avoids a discrete set in the complex plan,

which in turn allows us to define a right-inverse G̃εi(ζ) for L̃εi . This right inverse

G̃εi has a meromorphic extenstion to C with poles at Γ̃εi . In fact, the indicial roots

Γεi are precisely the imaginary parts of the points in Γ̃εi .
Melrose’s relative index theorem states in this context that the relative index is

given by a contour integral of the resolvent (L̃εi−ζ)−1 about a contour surrounding
the pole corresponding to the weight 0, as described in the proof of Proposition 26
of [12] and the proof of Proposition 4.15 of [10]. This contour integral counts the
number of tempered, non-decaying Jacobi fields with subexponential growth on a
Delaunay end. However, we already know there are only two such Jacobi fields,
namely w+

0 (εi) and w
−
0 (εi). We conclude that
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2 dim(Bg) =
k∑

i=1

ind(Lεi :W
2,2
δ ((0,∞)× Sn−1) →W−2,2

δ ((0,∞)× Sn−1))

−
k∑

i=1

ind(Lεi :W
2,2
−δ ((0,∞)× Sn−1) →W−2,2

−δ ((0,∞)× Sn−1))

=
k∑

i=1

2 = 2k,

as we claimed. �

4. Local structure in the nondegenerate case

In this section, we prove local regularity of the moduli space near nondegenerate
points, as stated in Theorem 3. We first recall the statement of the theorem, namely
that if g ∈ MΛ is nondegenerate then there exists an open neighborhood U ⊂ MΛ

of g that is a smooth k -dimensional manifold.

Proof. We begin by prescribing the singular set Λ = {p1, p2, . . . , pk} and choosing a

nondegenerate metric g ∈ MΛ. Using the Euclidean gauge, we write g as g = u
4

n−4 δ,
where

u : Rn\Λ̃ → (0,∞), (−∆0)
2u =

n(n− 4)(n2 − 4)

16
u

n+4
n−4 , lim inf

x→Λ̃
u(x) = ∞.

Nondegeneracy of g states that the linearized operator

Lg = (−∆0)
2 − n(n+ 4)(n2 − 4)

16
u

8
n−4

acting on W 4,2(Rn\{Pr−1(p1), . . . ,Pr
−1(pk)}) has no kernel. By the linear decom-

position lemma, this is equivalent to the condition that

ker(Lg :W 4,2
−δ ⊕Wg →W 0,2

−δ ) = Bg, (29)

whenever δ > 0 is sufficiently small. The bounded null space Bg always lies in the
kernel of (29), but in the degenerate case the kernel will also contain a finite-
dimensional space of decaying Jacobi fields.

Intuitively, we would like to describe the metrics in MΛ near g as

U =

{
gv = (u+ v)

4
n−4 δ : Hδ(u+ v) = (−∆0)

2(u+ v)− n(n− 4)(n2 − 4)

16

× (u+ v)
n+4
n−4 = 0

}
,

where v is small with respect to an appropriate norm. If we only allow v to decay,
the linearized operator does not have any kernel by our hypothesis, and so it would
be an exercise in futility to construct a solution set this way. Furthermore, we
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should allow the nearby metrics to have slightly different asymptotic data, which
we cannot encode with a decaying perturbing function v. On the other hand, if we
allow perturbing functions v with any order of growth (or even non-decay), it is
difficult to analyze the zero-set of the operator H, and in particular it is impossible
to relate the kernel of the linearization to this zero-set. We remedy this problem
by deforming the asymptotic data according to an element of the deficiency space
Wg, as described below.

We denote the asymptotic necksize of g at the puncture pi by ɛi. Choose δ such
that

0 < δ < min
1≤i≤k

γ1(εi).

We can identify conformally-related, constant Q-curvature metrics in a neighbor-
hood of g with

Z = {(v, w) ∈ V1 ⊕ V2 ⊂W 4,2
−δ ⊕Wg : H(v, w) = 0}, (30)

where V1 and V2 are small neighborhoods of the origin. To make sense of this, we
should describe the mapping

H :W 4,2
−δ ⊕Wg →W 0,2

−δ (31)

in some detail. By the expansion (17) (or, equivalently (18)) there exist parameters
εi ∈ (0, ε), Ti ∈ R and a decaying function z ∈W 4,2

−δ (Br(0)) such that

u(x− pi) = F−1 (vεi(− log | · −pi|+ Ti)) + z(x− pi).

Now let v ∈W 4,2
−δ and let w ∈ Wg. By definition,

w =
k∑

i=1

(a+i w
+
0 (εi) + a−i w

−
0 (εi)),

where a±i ∈ R. We define the metric g̃ = ũ
4

n−4 δ, where

ũ(x) =



u(x) + v(x) |x− pi| > 2r0
v(x) + (1− χ(x))u(x)+

χ(x)(F−1(vεi+a−
i
(− log | · −pi|+ Ti + a+i )) r0 < |x− pi| < 2r0

+z(x− pi))

F−1(vεi+a−
i
(− log | · −pi|+ Ti + a+i ) 0 < |x− pi| < r0,

+z(x− pi) + v(x− pi)

(32)

where r0 and χ are as in Definition 12. Observe that the coefficients {a+i , a
−
i }

uniquely determine function w ∈ Wg, so the dependence of ũ on w is given in how

we deform the geometric asymptotic data of g = u
4

n−4 δ. The construction of g̃ is
well-defined so long as εi < ε, but we must adjust it slightly if εi = ε. In this case
we replace
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vεi+a−
i
(− log | · −pi|+ Ti + a+i )

with

ṽ(t, θ) = vε + a−i cos(
√
µ(t+ Ti + a+i ) +O(e−t),

as constructed in Proposition 1 of [4].
Finally, we identify

H(v, w) = Hg(ũ) = ũ
n+4
n−4

(
Pg̃(1)−

n(n− 4)(n2 − 4)

16

)
(33)

=
(n− 4)

2
ũ

n+4
n−4

(
Qg̃ −

n(n2 − 4)

8

)
.

We also observe that, by construction, H(0, 0) = 0.
With this definition, we see that the zero-set Z is exactly the set of constant

Q-curvature metrics whose asymptotic data are close to that of g. Observe that
we should not expect H(0, w) = 0 for any nonzero element of the deficiency space
Wg. This is because we construct elements of Wg using a cut-off function χ to
transfer deformations of the Delaunay asymptotes to the background metric g,
and so the Q-curvature is non-constant in the transition region, where ∇χ 6= 0.

However, the quantity Qg̃−
n(n2 − 4)

8
is small (assuming w is small) and compactly

supported. Thus we expect to be able correct the Q-curvature with a decaying
function v ∈ W 4,2

−δ , exactly as described above. Additionally, the linearization of

the operator Hg as applied to W 4,2
−δ ⊕Wg is

Lg :W 4,2
−δ ⊕Wg →W 0,2

−δ−4

and

ker
(
Lg :W 4,2

−δ ⊕Wg →W 0,2
−δ−4

)
= Bg ⊕ ker

(
Lg :W 4,2

−δ →W 0,2
−δ−4

)
. (34)

However, since g is nondegenerate the second summand on the right hand side
of (34) is just to 0 function. Thus the kernel of Lg is precisely Bg, which has
dimension k, which is also its minimal possible dimension. Thus dim(ker(Lg̃)) = k
on an open neighborhood of g in MΛ, and so by the implicit function theorem an
open neighborhood of Z containing g is a smooth, k -dimensional manifold. �

5. Local structure in the degenerate case

Our purpose is to discuss the local structure of the moduli space MΛ without
the hypothesis that the linearization has a trivial L2-nullspace. In this context, we
apply the Lyapunov-Schmidt argument as presented in [8]. The key idea goes back
to Simon’s proof of an infinite-dimensional version of the Łojasiewicz inequality,
see Theorem 3 of [14].
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Theorem 15. The space MΛ is locally a finite dimensional real analytic variety.

Proof. Once again, our problem can be reduced to the understanding of the zero
set of

H :W 4,2
−δ ⊕Wg →W 0,2

−δ ,

where H is defined in (32) and (33). This time, however, the kernel of the lineariza-

tion, which we denote as K ≡ ker
(
Lg :W 4,2

−δ →W 0,2
−δ−4

)
, is nontrivial inW 4,2

−δ , and

it can identify by duality with the cokernel of Lg :W 4,2
δ →W 0,2

δ−4.
Following [8] we define

H̃ :W 4,2
−δ ⊕Wg ⊕K →W 0,2

−δ , H̃(v, w, φ) = H(v, w) + φ,

so that

Z = {(v, w) ∈ V1 ⊕ V2 : H(v, w) = 0}

= {(v, w, φ) ∈ V1 ⊕ V2 ⊕ V3 : H̃(v, w, φ) = φ}.

where V1 ⊂ W 4,2
−δ , V2 ⊂ Wg and V3 ⊂ K are small neighborhoods of the origin in

each respective Banach space.
We now see that

Z ⊂ Z̃ = {(v, w, φ) ∈ V1 ⊕ V2 ⊕ V3 : H̃(v, w, φ) ∈ K} (35)

= {(v, w, φ) ∈ V1 ⊕ V2 ⊕ V3 : Π⊥(H̃(v, w, φ)) = 0} = ker(Π⊥ ◦ H̃),

where Π⊥ is the orthogonal projection of W 0,2
−δ onto K⊥. The linearization of this

operator is given by

Π⊥ ◦ Lg : K⊥ ⊕Wg ⊕K →W 0,2
−δ ,

which is now a surjective operator. Furthermore, we can characterize the kernel of
the linearization as

ker(Π⊥ ◦ Lg) = {(v, w, φ) ∈W 4,2
−δ ⊕Wg ⊕K : Lg(v + w) ∈ K} ' K ⊕ Bg.

Thus by the implicit function theorem, there is a real-analytic function

Ψ : K⊕Bg⊕K → (W 4,2
−δ ⊕Wg)/(K⊕Bg), Ψ(v, w, φ) = (ψ1(v, w, φ), ψ2(v, w, φ))

such that

Z̃ = {(ψ1(v, w, φ), ψ2(v, w, φ), φ) : (v, w, φ) ∈ K ⊕ Bg ⊕K}.

Unraveling these definitions we see

Z ' {(v, w, φ) ∈ K ⊕ Bg ⊕K : H(v + ψ1(v, w, φ), w + ψ2(v, w, φ)) = 0},
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which is indeed the zero set of an analytic function acting on a finite-dimensional
vector space. This proves a small neighborhood U ⊂ MΛ containing g is indeed a
real-analytic variety. �

6. Symplectic structure

Here we discuss the asymptotes mapping from the marked moduli space MΛ into a
fixed configuration space MΛ = (0, ε]k ×Rk, where each pair (εi, Ti) characterizes
the Delaunay asymptote at the puncture pi. We further show that if g ∈ MΛ is
nondegenerate, then this local mapping is a Lagrangian embedding with respect
to the standard symplectic structure. One can construct a similar asymptotes map
for the unmarked moduli space, and much of the properties we prove below carry
through, but in this latter case, the configuration spaces are larger and constructing
the mapping is more involved.

First we construct a symplectic form on MΛ. Let g = U
4

n−4
◦
g ∈ MΛ and transfer

g to Rn\Λ̃ using stereographic projection, rewriting g = u
4

n−4 δ with u = Uusph.
For any sufficiently small r > 0 we define

Ωr = Rn\

(
k⋃

i=1

Br(pi)

)

and

ω(v, w) = lim
r↘0

∫
Ωr

(vLg(w)− wLg(v))dµ0. (36)

Here dµ0 is the Euclidean volume element, v, w ∈ Wg lie in the deficiency space of
g (See Definition 12) and Lg is the Jacobi operator of g, which is defined in (9).

Theorem 16. The form ω defined in (36) is a symplectic form on the 2k-
dimensional vector space Wg.

Proof. Our first order of business is to show that ω is well-defined, i.e. that the
limit in (36) exists. By (9) observe that

vLg(w)− wLg(v) = v∆2
0w − w∆2

0v.

Next, we recall that the outer unit normal of Ωr is −∂r on each boundary sphere
∂Br(pi) and integrate by parts to see

∫
Ωr

v∆2
0wdµ0 =

∫
Ωr

(∆0v)(∆0w)dµ0 −
k∑

i=1

∫
∂Br(pi)

(v∂r∆0w − ∂rv∆0w)dσ0,

and so (36) becomes

ω(v, w) = lim
r↘0

k∑
i=1

∫
∂Br(pi)

(w∂r∆0v − v∂r∆0w + ∂rv∆0w − ∂rw∆0v)dσ0. (37)
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Next, we change variables using (11), letting ṽ = F(v) and w̃ = F(w). Under this
change of variables

∂rv = −e
n−2
2 t

(
∂tṽ +

n− 4

2
ṽ

)
, ∆0v = e

n
2 t

(
∂2t ṽ − 2∂tṽ −

n(n− 4)

4
ṽ +∆θṽ

)
,

(38)

and

∂r∆0v = −e
n+2
2 t

(
∂3t ṽ +

n− 4

2
∂2t ṽ −

n2

4
∂tṽ −

n2(n− 4)

8
ṽ +∆θ∂tṽ +

n

2
∆θṽ

)
.

(39)

Plugging (38) and (39) into (37) we obtain∫
∂Br(pi)

(w∂r∆0v − v∂r∆0w + ∂rv∆0w − ∂rw∆0v) dσ0

=

∫
Sn−1

(w∂r∆0v − v∆0w + ∂rv∆0w − ∂rw∆0v)(rθ)r
n−1dθ

=

∫
Sn−1

(
−w̃∂3t ṽ −

n− 4

2
w̃∂2t ṽ +

n2

4
w̃∂tṽ +

n2(n− 4)

8
w̃ṽ − w̃∆θ∂tṽ

− n

2
w̃∆θṽ

+ ṽ∂3t w̃ +
n− 4

2
ṽ∂2t w̃ − n2

4
ṽ∂tw̃ − n2(n− 4)

8
ṽw̃ + ṽ∆θ∂tw̃ +

n

2
ṽ∆θw̃

− ∂tṽ∂
2
t w̃ + 2∂tṽ∂tw̃ +

n(n− 4)

4
w̃∂tṽ − ∂tṽ∆θw̃ − n− 4

2
ṽ∂2t w̃

+ (n− 4)ṽ∂tw̃ +
n(n− 4)2

8
ṽw̃ − n− 4

2
ṽ∆θw̃

+ ∂tw̃∂
2
t ṽ − 2∂tw̃∂tṽ −

n(n− 4)

4
ṽ∂tw̃ + ∂tw̃∆θṽ +

n− 4

2
w̃∂2t ṽ

−(n− 4)w̃∂tṽ −
n(n− 4)2

8
w̃ṽ +

n− 4

2
w̃∆θṽ

)
dθ

=

∫
Sn−1

(
ṽ∂3t w̃ − w̃∂3t ṽ + ∂tw̃∂

2
t ṽ − ∂tv∂

2
t w̃ +

n(n− 4) + 8

2
(w̃∂tṽ − ṽ∂tw̃)

)
× dθ

Observe that each element of the deficiency space is asymptotically radial about
each puncture point, so that the expansions

F(v(· − pi))(t, θ) = v(t) +O(e−δt), F(w(· − pi))(t, θ) = w(t) +O(e−δt)

for each puncture pi. Thus each term in the expansion above involving derivatives
with respect to θ will vanish in the limit.

Next we use the fact that both v and w lie in the definciency space Wg (see
Definition 12). This means that near each puncture pi the functions v and w have
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asymptotic expansions of the form

ṽ = α+
i w

+
0 (εi) + α−

i w
−
0 (εi), w̃ = β+

i w
+
0 (εi) + β−

i w
−
0 (εi), (40)

for t sufficiently large.
At each end, using bilinearity and skew-symmetry, we see that ω(v, w) is the

limit as t→ ∞ of

(α+
i β

−
i − α−

i β
+
i )

∫
Sn−1

(
w+

0
...
w−

0 − w−
0
...
w+

0 + ẇ−
0 ẅ

+
0 − ẇ+

0 ẅ
−
0 (41)

+
n(n− 4) + 8

2
(w−

0 ẇ
+
0 − w+

0 ẇ
−
0 )

)
dθ

If Aɛ is the integrand in (41), then

d

dt
Aε = w+

0

(
....
w −

0 − n(n− 4) + 8

2
ẅ−

0

)
− w−

0

(
....
w +

0 − n(n− 4) + 8

2
ẅ+

0

)
=

(
n2(n− 4)2

16
− n(n+ 4)(n2 − 4)

16
v

8
n−4
ε

)(
w+

0 w
−
0 − w−

0 w
+
0

)
= 0.

Thus Aɛ does not depend on t. Here we have used the ODE for w±
0 , namely

....
w ±

0 − n(n− 4) + 8

2
ẅ±

0 +

(
n2(n− 4)2

16
− n(n+ 4)(n2 − 4)

16
v

8
n−4
ε

)
w±

0 = 0.

Let us find the value of the integrand in (41) at t =0 using the definitions of w±
0

in (23). First observe that w+
0 (ε) = v̇ε, so w

+
0 (0) = v̇ε(0) = 0, ẇ+

0 (0) = v̈ε(0) > 0,
ẅ+

0 (0) =
...
v ε(0) = 0 and by (14) we get

...
w+

0 (0) =
....
v ε(0) =

n(n− 4) + 8

2
v̈ε(0)−

n(n− 4)

16

(
n(n− 4)ε− (n2 − 4)ε

n+4
n−4

)
.

Furthermore, since w−
0 =

d

dε
vε and vɛ assumes its minimal value at t =0 we see

w−
0 (0) = 1. Therefore, at t =0 it holds

Aε(0) = − ...
w+

0 (0)− v̈ε(0)ẅ
−
0 +

n(n− 4) + 8

2
v̈+0 (0)

= −v̈ε(0)ẅ−
0 +

n(n− 4)

16

(
n(n− 4)ε− (n2 − 4)ε

n+4
n−4

)
By (15) we have

Hε =
1

2
v̈ε(0)

2 − n2(n− 4)2

32
ε2 +

(n− 4)2(n2 − 4)

32
ε

2n
n−4 . (42)
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As we remarked earlier, the energy is a decreasing function of ɛ, minimized by the
cylinder, which has the largest possible necksize, so differentiating (42) we see

0 >
d

dε
Hε = v̈ε(0)

d

dε
v̈ε(0)−

n2(n− 4)2

16
ε+

n(n− 4)(n2 − 4)

16
ε

n+4
n−4 (43)

= v̈ε(0)ẅ
−
0 (0)−

n(n− 4)

16
(n(n− 4)ε− (n2 − 4)ε

n+4
n−4 ).

This implies that

Aε(0) = − d

dε
Hε > 0,

and so ω is nondegenerate. �

Corollary 17. Let g ∈ MΛ be nondegenerate. Then there exists an open neigh-
borhood U of g in MΛ that embeds into Wg as a Lagrangian submanifold, with
respect to the symplectic form given by (36).

Proof. As in the proof of Theorem 3, we can identify the bounded null space Bg as
the tangent space TgMΛ. In particular, this identification shows Lg(v) = 0 for each
v ∈ Bg. On the other hand, the linear decomposition lemma allows us to identify
Bg as a k -dimensional subspace of Wg. The corollary now follows. �
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