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We study constant @-curvature metrics conformal to the the round metric on the
sphere with finitely many point singularities. We show that the moduli space of
solutions with finitely many punctures in fixed positions, equipped with the
Gromov—Hausdorff topology, has the local structure of a real algebraic variety with
formal dimension equal to the number of the punctures. If a nondegeneracy
hypothesis holds, we show that a neighbourhood in the moduli spaces is actually a
smooth, real-analytic manifold of the expected dimension. We also construct a
geometrically natural set of parameters, construct a symplectic structure on this
parameter space and show that in the smooth case a small neighbourhood of the
moduli space embeds as a Lagrangian submanifold in the parameter space. We
remark that our construction of the symplectic structure is quite different from the
one in the scalar curvature setting, due to the fact that the associated partial
differential equation is fourth-order rather than second-order.
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1. Introduction

In this manuscript, we study a fourth-order analog of the singular Yamabe prob-
lem on finitely punctured spheres, as formulated by Schoen and Yau [13], Mazzeo,
Pollack, and Uhlenbeck [10] and others. Our main result characterizes the local
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2 R. Caju, J. Ratzkin and A. Silva Santos

structure of the moduli space of solutions in the case of the round metric on a
finitely punctured sphere.

In general, if (M, g) is a Riemannian manifold of dimension n > 5 one defines
the @Q-curvature of g as

1 2 n3 —4n? + 16n — 16
=——A — —— | Ric, |? 2 1
R T e oL TP T ER A
where R, and Ric, are the scalar and Ricci curvatures and A, is the Laplace-
2
—4
Beltrami operator. A short computation demonstrates that Q; = %, where
53 is the usual round metric on the sphere S™. A longer computation shows that the
2
~ _a_ —4

task of finding a conformal metric g = U = g with @-curvature equal to %

is equivalent to solving the nonlinear partial differential equation

—4)(n* —4) »
Hy(U) = By() - "D @)
where
) 4 ) (n—2)2%+4
P, = (=A,)? div [ —— N -
w(U) == (=Ay)*(U) + div (n_QRlcg(VU’ ) 2(n—1)(n—2)RgVU
n—4

+ QqU, (3)

2
is the Paneitz-Branson operator. This operator is conformally covariant, in that

P i (¢)=U 7P, (U). (4)

Un—4g

Substituting ¢ =1 into (4) we obtain the transformation law for @-curvature under

a conformal change of metric, which is

2 ntd
n—4

4 =
Un—1g n—4

Py (U). (5)
In the case that the background metric is 5 the Paneitz operator factors as

Py = (‘A; + (n_4)4<n+2)> (‘As + n(n4_2)> ' (6)

This factorization in some sense simplifies the analysis of (2), making the study
of the space of solutions in this setting seem more approachable. However, the
conformal invariance of (4) combined with the noncompactness of the conformal
group of the round metric leads to the blow-up of sequences of solutions. For this
reason we study the following singular problem: given a closed subset A C S,
describe all the conformal metrics ¢ = Unsa ¢ that are complete on S™\A and
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2
—4
have Q4 = L) We can reformulate this geometric problem as the following
infinite boundary value problem:
U:S™\A — (0,00), Ho(U) =0, liminf U(p) = oc. (7)
g p—A
We concentrate on the case that A = {p1,...,pr} is a finite set of points and

define the marked moduli space

° 24
My = {g €lgl: Qg = % and g is complete on A}
and the unmarked moduli space
n(n? —4)

My, = {9 €lg):Qy= , g is complete on A, #A = k} .

8

Here [3] is the set of all conformal metric to 3 We equip both moduli spaces with the
Gromov—Hausdorff topology. The difference between the two is that in the marked
moduli space we fix the singular points, whereas in the unmarked moduli space we
allow them to vary, so long as they remain % distinct points.

Let A = {p1,...,pr} C S™ and let g € My. Then g admits a definite asymptotic
structure near each singular point p;, and is asymptotic to one of the Delaunay
metrics described below in § 2. These Delaunay metrics are, after an appropriate
change of variables, periodic and uniquely described by their necksizes € € (0, ],
where the maximal necksize € depends only on the dimension n, which allows one
to assign asymptotic data to g € My, including the asymptotic necksize ¢; at the
singular point p;. We ask the following question: how well does this asymptotic
data determine a metric g € M ? Our results below form a first step in answering
this question. More precisely, we show that under some conditions one can use
the asymptotic data to parameterize a small neighbourhood of moduli space near
g € Mjy.

Our main theorem is the following result.

THEOREM 1. For each finite subset A C S™ with #A = k > 3 the moduli space
My is locally a real analytic variety of formal dimension k.

Our proof follows the road map developed by Kusner, Mazzeo, Pollack and
Uhlenbeck in [8] and [10], combining the implicit function theorem and the
Lyaponov-Schmidt process. The key technical part of our analysis is a fine under-
standing the linearized operator L, of the operator H, defined in (2), which we
describe in detail in § 2.1.

As is usually the case, the analysis allows us to make a more precise statement
if Ly is injective or surjective when acting on an appropriate function space.

DEFINITION 2. A metric g € My is nondegenerate if w € L? and Ly(w) = 0
implies w = 0.

THEOREM 3. If g € My is nondegenerate then there exists an open neighbourhood
U C My of g that is a real analytic manifold of dimension k.
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As a part of proving these two local regularity theorems we construct a 2k-
dimensional parameter space W, to parameterize all metrics My nearby a given g.
Once we construct W, and use it to understand the local regularity of the moduli
space, we construct a symplectic structure on the geometric parameter space and
show that, in the nondegenerate case, a small neighbourhood of g in M, embeds
in this parameter space W, as a Lagrangian submanifold.

We remark here that our development of the symplectic form in § 6 is quite
different from the development of the symplectic form in Section 7 of [10], mostly
due to the fact that the associated PDE in our case is fourth-order and the PDE
associate to scalar curvature is second-order. In the scalar curvature case one sees
directly after integrating by parts twice that the integrand in the definition of
the symplectic structure is the Wronksian of a certain second order ODE. This
fact immediately implies the limit defining the symplectic structure exists and
that it defines a nondegenerate bilinear form. In our case we must analyze the
integrand more carefully to its connection to the Hamiltonian associated to the
Delaunay solutions (see the proof of Theorem 16 in § 6 below). We believe this
more direct connection between the symplectic form and the Hamiltonian of the
Delaunay solutions is of independent interest.

Our results form a natural progression of the current understanding of constant
@Q-curvature metrics. Previously, C. S. Lin [9] showed that all smooth metrics with
constant @)-curvature in the conformal class of the round metric must be the image
of 5 under a Mobius transformation. In the language we established above, M, =
SO(n+1,1), which is the Mobius group of global conformal transformations of the
sphere. In the same paper Lin proved there are no solutions with a single puncture,
i.e. My = @ and that (after a conformal motion) any solution with two punctures
is rotationally invariant. Afterwards Frank and Konig [5] characterized all the two
ended solutions, showing My, ;1 ~ (0,Z] for each p # ¢, where £ is a finite, positive
number depending only on the dimension n. We describe these solutions in some
detail below. In general, explicit gluing constructions demonstrate that the moduli
space My, is nonempty, provided k > 2. Baraket and Rebhi [4] constructed solutions
with an even number of punctures by gluing cylinders together, using small necks
as a bridge. Andrade, Wei and Ye [3] construct many examples in the conformal
class of the sphere and the authors of this paper together with Andrade and do 0
[1] construct many other examples in the inhomogeneous setting, using a different
gluing technique. Together with Andrade and do O [2], the second author described
a geometric characterization of compact subsets of the moduli space. We remark
also that the question of compactness of the space of solutions is completely resolved
in the case that the background manifold is compact. If (M, g) is not conformally
equivalent to the round sphere, then the set of solutions is compact precisely if
n < 24 [6] and is not compact if n > 25 [15]. If the background metric is the round
sphere then the set of solutions is never compact, due to the noncompactness of
the group of Mobius transformations.

The rest of the paper proceeds as follows. In § 2 we discuss some analytic prelim-
inaries, such as the Delaunay solutions, the local asymptotics of a singular Yamabe
metric near a puncture and the appropriate functions spaces. In § 3 we analyze
the mapping properties of the linearized operator L, in various weighted function
spaces and introduce the deficiency space W,, a 2k-dimensional vector space that
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will serve as a parameter space to describe the asymptotic geometry of nearby met-
rics in M. We prove Theorem 3 in Theorem 1 in § 4 and complete the proof of
Theorem 1 in § 5. Finally, in Theorem 1 in § 6 we discuss a symplectic structure
on the natural parameter space of M and prove that, near smooth points, the
moduli space M, is a Lagrangian submanifold of this parameter space.

2. Preliminaries

2.1. The choice of a gauge

The choice of a gauge in formulating the moduli problem is equivalent to choosing
the background metric in a conformal class.

While we have thus far phrased this problem in the sphere, it will often be useful
to rewrite in Euclidean space after stereographic projection and to transfer our
analysis between the two settings. Let Pr : R® — S™\{N} be (the inverse of)
stereographic projection mapping Euclidean space to the sphere minus a pole. It is
now a standard exercise to verify that

4—n
o "% 1+ $2 2
s = ()T

where 0 is the Euclidean metric. Using this transformation we can identify g =
Uﬁg with g = w718 where u = Uugpn. We also denote the preimage of the
singular set by A= Pr—*(A). Without loss of generality we let the north pole N
be a smooth point of g, so that the conformal factor v decays at infinity. More
precisely,

. n—4

limsup |z| 7 u(z) < .

|z|— 00
REMARK 4. Hereafter we adopt the convention that capital letters will denote con-
formal factors relative the round metric and lower case letters will denote conformal
factors relative to the Euclidean metric. The two are always related as described
above, e.g. u = Uugpp.

Furthermore, we can also rephrase the condition that a metric lies in the moduli
4
space M in the language of PDEs. Recall that g € [5} precisely when g = Un—4§,

2
so that the condition Q4 = % becomes

Thus
Mp = {U : S™\A — (0,00) : Ho(U) =0 and liminf U(p) = oo} .
g p—A

In the spherical setting, the linearized operator has the form

d
Lg(”) = it

Mo (U + to) = Py (o) - “0F W= ps ()

=0 16
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where the Paneitz operator sz can be factor as in (6).
The operators in question have an even simpler appearance in the Euclidean

setting. This time we use the fact that g = = 0, s0 g € M, is now equivalent to
the PDE

—4)(n?—4) =
i D0E )

Hs(u) = (—Do) u —

which in turn implies

My = {u : R™\A — (0,00) : Hs(u) = 0, liminf u(z) = oo and

z—A

limsup|x|%u(x) < oo} .

|z|— o0
In the Euclidean setting the linearized operator has the form

Lg(v) = (—A0)2U - n(n + 41)én2 — 4)u%v. (9)

In either setting, we refer to a function satisfying the PDE Ly(v) = 0 as a Jacobi
field.

2.2. Delaunay metrics

The Delaunay metrics are all the constant @-curvature metrics on a twice-
punctured sphere and, as we will see later, play an important role in understanding
the behavior of singular constant @-curvature metrics with isolated singularities.

Consider a metric g = Uﬁf} on S™\{p,q} where p and ¢ are distinct. After
a rotation and a dilation, we can assume p =N is the north pole and ¢=25 is
the south pole. As in the previous section, we transfer now R™\{0} using stereo-
graphic projection and let u = Uugpp. Using (4) we see that u : R"\{0} — (0, 00)
satisfies

Hs(u) =0. (10)

Frank and Konig [5] classified all the solutions of (10), and we describe them
here. First we perform the Emden-Fowler change of coordinates, defining

T :C>®(B,(0)\{0}) — C>=((—logr,00) x 8"71), F(u)(t,0) = e%tu(e_tﬁ).
(11)

We can of course invert §, obtaining
4—n
§1(0)(2) = |27 v(~log|x|,0).

While the prefactor of et might look a little strange at first, a short computation
shows it is geometrically necessary. Letting

T:RxS" ' = R™\{0}, Y(t,0) =e ',

https://doi.org/10.1017/prm.2025.10086 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10086

Moduli of constant Q-curvature metrics 7

we see
T*() = eithcyl.

where gey1 = dt? + d6? is the cylindrical metric. If we now consider a conformal
metric g = uia 6, we see that

* 4
T (g) (tv 9) = S(u) (t7 9) "= Geyl-
After the Emden-Fowler change of coordinates, using (4), (10) becomes

Hey1(v) = Poyi(v) — n(n—4)(n? —4) aes 0, (12)

where v : R x "1 — (0, 00) and

n(n —4 n?(n — 4)>2
Pcyl = (_Acyl)2 - ( 9 )Acyl - 46152 + ( 16 ) (13)
= azl + A§n71 + 2Asnflat2 - n(n 724) + 86? - n(n27 4) Asnfl
n?(n —4)?
16

is the Paneitz operator of the cylindrical metric. Note that Acy = 07 + Agn-1.
C. S. Lin [9] used a moving planes argument to prove that solutions of (10) are
rotationally invariant, reducing (12) to the ODE

e n(n—4)+8. n?(n—4)2 n(n—4)(n® —4) n+a
- = oo (14
v B T 16 v =0 (14)

Notice that one can find a first integral for this ODE defined as

e 1, nn—4)+8 ., n?(n—4)>2 n—4)2(n2 —4) 2»
ng—v5v8+§v§+( 4) 02— (32 )v§+( )3é )115"4.(15)

We denote the nonzero constant solution of (14) by

n—4
_ nn—4)\ %
e = <n2 = ) |
THEOREM 5 (Frank and Koénig [5]). For each € € (0,2] there exists a unique ve :
R — (0,00) solving the ODE (14) attaining its minimal value of € at t=0. All
these solutions are periodic. Furthermore, let v : R x S"~t — (0,00) be a smooth
4—n

solution of the PDE (12). Then either v(t,0) = (cosh(t +T)) = for some T € R
or there exist € € (0,€] and T € R such that v(t,0) = v.(t +T).

Later in this paper we will use the fact that the set of Delaunay solutions is
ordered by the Hamiltonian energy H. In other words, H is a strictly decreasing
function of the necksize e.
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We can now write the Delaunay metric in Euclidean coordinates by reversing the
coordinate transformation (11), letting

4 4

(@) = FH(0)(@) = o T v(—loglal), g =ul TG =0l Tgeu.  (16)

The geometric formulation of the Frank-Konig classification now reads: if g =
Ui 5 is a constant @)-curvature metric on S”\{p, ¢} then, after a global conformal
transformation, either g extends to smoothly to the round metric or ¢ is singular
at both p and ¢ and is the image of a Delaunay metric g. after said conformal
transformation.

2.3. Local asymptotics

A metric g = U A 5 € M, with constant @-curvature and finitely many singular
points has a definite asymptotic structure near each singular point. Let p; € A
be a singular point of ¢ and choose stereographic coordinates x centered at p;.
With respect to these coordinates we have g = uri = (Uusph)ﬁé there exist
e €(0,g], R>0,a € R" and 8> 1 so that

u(x) = R%us(Rx) + |x|% <<x,a> (n — 41)5(7 log(R|x])) — 0 (— 10g(Rx|))>

+O(|x|ﬁ)>. (17)

This expansion combines the local asymptotic expansions in [7] and in [12]. As is
usually the case, the asymptotic expansion (17) is more tractable in Emden-Fowler
coordinates. The transformed function v = F(u) satisfies the equation (12) on the
half-infinite cylinder (Tp, 00) x S™~! and the asymptotic expansion now reads

-4

v(t,0) =v-(t+T)+e *a,0) (n ve(t+T) — 0 (t + T)) + O(e‘ﬂt), (18)

where T'= —log R.
These asymptotic expansions (17) and (18) allow us to define an asymptotes
map
A: My — (0,8 xRF,  A(g) = (e1,- e Thy oo, Th), (19)

where g = w18 and
u(z) ~ 3_1(v6i (—log |z —pi| + T3)) near p;. (20)

We will see later on, in the proofs of Theorems 1 and 3, that the asymptotes
maps provides us with local coordinates for the moduli space in the nondegenerate
setting.

2.4. Weighted function spaces

We perform most of our analysis below on weighted Sobolev spaces. We first define
these weighted spaces on a half-infinite cylinder, and then transfer the definition to
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a punctured ball (and thereafter to a finitely punctured sphere) using the Emden-
Fowler change of coordinates.

DEFINITION 6. Let § € R and let v € L2 ((0,00) x S"™1). We say v € L3((0,00) x
Sn— 1) Zf

lvllZ —/ / e~ 2 u(t, 0)|2dodt < co.

One can similarly define the Sobolev spaces Wf’z(((), ) x 8" YY) for any natural
number k.

Observe that if |v(t,0)| < Ced for each 6 < § and t >0, then v € L5((O oo) X
S™~1). Next we undo the Emden-Fowler change of coordinates, letting u = §~ (v

to see
tz €7t2
/ / e 2 u(t,0)2dtdd = —/ / 720 =5 |y (r6) |2 drdd
sn-1Ji sn-1Je—t1

=u/ 12 u(2) Pdpao(x),
ro<|z|<ry

where r; = e~ and ry = e~ 2. Here dyg is the Euclidean volume element. Thus
we have the following definition.

DEFINITION 7. Let § € R, let >0 and let u € L _(B,(0)\{0}). We say u €
L3(B,(0)\{0}) if

Il = [ I <o

More generally we let ACR" bea finite set and u € LIOC(R”\K). We say u €
L3R™MA) if

lulley = [ (dist(a, D) u(o) Pdu < .
Rn\A
Once again, we see that if |u(x)| < C(dist(z, /NX))%E near each singularity, for

cach 6 < § + 5, and [u(x)| < C|x\42ﬂ
then u € LZ(R™\A).

~A for |z| sufficiently large and any A > 4,

3. Linear analysis

3.1. The linearization about a Delaunay solution

Here we study the linearized operator about a Delaunay solution, which we denote
as L., and some of its mapping properties.
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Following Section 5.2 of [1] we write

nn+4)(n? —4) &,

n—4

LE = (—Ao)Q — 16 Ue

and promptly transform to Emden-Fowler coordinates using (11), obtaining the
operator L. defined by

Le(w)(t,60) = 2" Lo(F7 () 0 Y (£, 0) = F(L(F (w)))(1,6). (21)
Some computation give us

n(n+4)(n® —4) &

Le= Pcyl - 16 ve'
4 2 s n(n—4)
= Of + Ados + 2880187 - T Agus (22)
nn—4)+8 ., n*(n—4)?% nn+4)(n*—-4) -5,
SRR T; 16 ve

Here P,y is given by (13).
We isolate two specific Jacobi fields of a Delaunay solution: the Jacobi field
wg (¢) generating translations along the axis and the Jacobi field wy (&) generating

changes to the necksize. In Emden-Fowler coordinates these are given by

d

= 2
P (23)

wy (€) =0e,  wp(e) =
Differentating the relation v, (t+7.) = v.(t) it is straight-forward to verify that wg
is bounded and periodic while w; grows linearly. The formulation of w(jf above is
well-formed in the case that ¢ < g, but both Jacobi fields vanish in the cylindrical
case. If ¢ = € we define

. _ nt —64n +64 — (n?2 —4n + 8
wi =sin(Vit),  wy = cos(Vit),  p= - ).

(24)

The analysis in Proposition 1 of [4] shows these two Jacobi fields play the role of
varying the necksize and translation parameter on the cylinder.

One can find the following results and their proofs in Section 3.6 of [12].

We first write a Jacobi field in Fourier series. Recall that the jth eigenvalue of
—Agn-1 is A\j = j(n — 1+ j) and it has multiplicity

n—1+j n—3+j

and so we can expand w in Fourier series as

co My

w(t,0) => > wii(t)E;(0),

=0 I=1
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where {Ej1,..., Ejm,} is an orthonormal basis of the eigenspace of —Agn-1 with
eigenvalue A;. Thus the restriction of the operator L. to the eigenspace

Span{Ej’l, ey Ej7mj}

is the ordinary differential operator

d* nn—4)+8+4); &> n*(n—4)? n(n-—4) 5
4 el N )2
Led = g 2 dt? T R
n(n+4)(n? —4) -
_ v
16

LEMMA 8. For each j > 1 we have 0 & spec(L. ;)
The two functions wi (¢) described above both lie in the kernel of £, g, and so
0 € spec(L. o) for each € € (0,2].
For proof of the next proposition see [12, Proposition 28].
PROPOSITION 9. There ezists a discrete set of real numbers
F.={...,—() < —(e) <0< m(e) < y2le),...}, (25)
with v;(e) = 00 as j — oo such that the operator
L. ng((O,oo) x 8" = L3((0,00) x 8™71)
is Fredholm provided 6 & T.. In particular, for any 6 € (0,71(¢))
L. Wf’(?((o, 00) x 8" 1) — L2 5((0,00) x 8" 1)
s injective and
L. W§’2((O,oo) x 8" 1) — L3((0,00) x 8™71)
18 surjective.

One calls ;(¢) the jth indicial root of the Jacobi operator £, and I'. the set of
indicial roots associated to the Delaunay solution .

PROPOSITION 10. Let ¢ : (0,00) x S*~! — R be a smooth, compactly sup-
ported function and let L.(v) = ¢. Then v satisfies the asymptotic expansion
v(t, d) ~ Z;io vj(t,0) ast — +oo where each vj is a Jacobi field, i.e. L.(v;) =0,
and vj decays like a polynomial times e~ 7", where ~; > 0 is the jth indicial
T00%.

COROLLARY 11. (Linear Decomposition Lemma I) Let § € (0,71(¢)), let v €
W2((0,00)xS™ 1) and let ¢ € C®((0,00)xS"1)NL2 5((0,00) xS 1) be such that
L.(v) = ¢. Then there exist z € W3((0,00) x S*~1) and w € Span(wg (€),wy (¢))
such that v = z 4+ w.
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For reasons that will become apparent later in the paper, we call W, =

Span(wg (), wy (€)) the deficiency space associated to the Delaunay metric with

necksize e.

3.2. The linearization about a singular Yamabe metric

We transfer the mapping properties of the linearization about a Delaunay solution
to study the mapping properties of Ly, where g € M, is a conformally flat, sin-
gular, constant @)-curvature metric with k prescribed singularities. We denote the
asymptotic necksize of the puncture p; by ¢;, and define the indicial set

k
r, = U I...
i=1
It follows directly from Proposition 9 that
Ly: Wi (R™MA) = Li_4(R™\A)
is Fredholm if and only if § ¢ I'y.

DEFINITION 12. Let g € My and choose rog > 0 sufficiently small such that
By, (pi)NBay, (pj) = @ for each distinct pair of punctures. We define the deficiency
space Wy by

W, = Span{xF *(wi (€:)), x& " (wq (i) i =1,..., Kk},

where x is a fived cut-off function such that

1 x| <o k k
T) = , V <er "
X( ) { 0 |{L‘| > 3T0/2 H XHCO

PROPOSITION 13. (Linear decomposition lemma II) Let 0 < § < minj<;<g 71(€s)
and let u € W;’z(R"\A) and ¢ € L? 5_,(R™\A) satisfying Ly(u) = ¢. Then there
exist w € Wy and v € Wff (R™\A) such that u = w + v.

We now define the bounded null space. Once again we fix a number § such

that 0 < § < minj<;<j 71(g;). Each element of the bounded null space is, strictly
speaking, an equivalence class of functions, that is

 ker(Lg : Wit = W)
T ker(Ly  WhE s W2 )

Using the Hilbert space structure of W;C 2 we can identify
4,2 0,2 4.2 0,2 1
By ~ {ker(Ly : Wg»* — W5 )} N{ker(Ly : W25 — W25 )}
Combining this characterization with the linear decomposition lemma we see that

one can identify any v = w + ¢ for any v € B, where w € W, and ¢ € Wff(S"\A)
decays at each puncture.
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Applying Melrose’s relative-index calculus we show the following dimension
count.

THEOREM 14. dim(By) = k.
The proof below is more or less the same as the proof of Theorem 4.24 in [10].

Proof. We compute the relative index of L, acting on the appropriate weighted
function spaces. Recall that the index of
Ly : W§’2(R”\K) - W§OL24(R"\K)
is
ind(0) = dim(ker(Ly)) — dim(coker(Ly)).
Integration by parts shows that the L2-adjoint of L, acting on W;LQ is Ly acting
4,2 .
on W25, and so it follows
ind(—d) = —ind(0)

provided 6 & I'y. (In this case, reversing the sign of the weight ¢ exchanges the
kernel and the cokernel.) Next recall that, provided 01,02 & I'y, the relative index
is defined as

rel—ind(51, 52) = 1nd(§1) — 1nd(52)

We use duality once more (i.e. the operator L, is formally self-adjoint in L?) to see
so long as 0 < ¢ < miny<;<x y1(¢;) we have

rel-ind (4, —0) = ind(d) — ind(—9) = 2ind(9) (26)

=2 (dim(ker(Lg|W§,2)) - dim(ker(Lg|Wf,ﬁz))) = 2dim B,.

Thus it suffices to show that rel-ind(d, —§) = 2k for an appropriate choice of §. We
choose 0 < 0 < ming<;<k y1(&:)-

We compute this relative index theorem using the Melrose’s relative index
theorem (see Theorem 6.5 of [11]). We first decompose

k
S"\{p1,...,px} =Q°U (U Br(ﬁi)\ﬁ%}) :

We can now write L, as the sum of restrictions

k
L,= Lg‘szc + Z L9|Br(pi)\{m}

=1

and compute the relative index of each restriction separately. It might appear that
we first have to take the boundary data of the restrictions into account, but since

k
0Q° = | ) 0B, (p),
i=1
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except for the opposite orientations, the boundary contributions in the relative
indices will cancel out. Thus it suffices to use the Dirichlet boundary data on the k
spheres {0B,(p;)}

The operator L, is elliptic and has index zero on 2, so now we're left with
computing the relative index of the restriction Lg|B7‘(p7‘,)\{pi} forsomei € {1,...,k}.
Next we observe that, because the relative index is a topological invariant, we can
deform the metric of g to be exactly Delaunay in a small neighborhood of each
puncture p;. After transforming to cylindrical coordinates using the Emden-Fowler
change of coordinates §, we finally arrive at the problem of computing the relative
index of

Lo, WE2((0,00) x S"71) = W2((0,00) x 8" 1),

This is where we use Melrose’s machinery, as developed in Chapters 4,5 and 6 of
[11]. To do so we introduce the Fourier-Laplace transform

o0

0(t,¢,0) = Fe,(0)(£,,0) = > e ™Cu(t+mTL,,0) (27)

m=—0oo

and the twisted operator
Lo, :WH2(SL x 8" 1) » WO(Sh x ")

defined by

Le,(Q)(@) = ' Fey 0 Lo, 0 F (e 0). (28)

We make several observations before continuing. First observe that ( € C is a
parameter in the Fourier-Laplace transform, and the sum in (27) converges precisely
when ¢ is in the half-space {¢ : Im(¢) < —d0T%,}. Next observe that L., is now a
family of operators defined between the fixed function spaces W4’2(SlTEL_ x §n1)
and Wo’z(S%pE‘ x 8"~1), that depends holomorphically on the complex parameter
¢. This allows us to use the analytic Fredholm theorem (see Section 5.2 of [11]) to
conclude that E: is Fredholm so long as ( avoids a discrete set in the complex plan,
which in turn allows us to define a right-inverse é:l (¢) for /3; This right inverse
,C'T;. has a meromorphic extenstion to C with poles at fs In fact, the indicial roots
I'c, are precisely the imaginary parts of the points in fs

Melrose’s relative index theorem states in this context that the relative index is
given by a contour integral of the resolvent (L., —()~! about a contour surrounding
the pole corresponding to the weight 0, as described in the proof of Proposition 26
of [12] and the proof of Proposition 4.15 of [10]. This contour integral counts the
number of tempered, non-decaying Jacobi fields with subexponential growth on a
Delaunay end. However, we already know there are only two such Jacobi fields,
namely wq (g;) and wy (g;). We conclude that
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k
2dim(By) = Y ind(L., : W((0,00) x 8"71) = W5 >?((0,00) x 8"71))
i=1

k
= ind(Le, : W2((0,00) x 8"71) = WZ2%((0,00) x 8"71))
=1
k
=Y 2=2k
=1
as we claimed. |

4. Local structure in the nondegenerate case

In this section, we prove local regularity of the moduli space near nondegenerate
points, as stated in Theorem 3. We first recall the statement of the theorem, namely
that if g € M, is nondegenerate then there exists an open neighborhood & C My
of g that is a smooth k-dimensional manifold.

Proof. We begin by prescribing the singular set A = {p1,p2, ..., pr} and choosing a

nondegenerate metric g € M. Using the Euclidean gauge, we write g as g = un=is ,
where

uw:RMA = (0,00), (—A¢)%u= ur—,  liminfu(x) = co.
1 z—A

Nondegeneracy of ¢ states that the linearized operator

ne A 4)
16

L = (_AO)2 _ n(

g =

acting on W42(R"\{Pr~*(p1),...,Pr ' (p)}) has no kernel. By the linear decom-
position lemma, this is equivalent to the condition that

ker(Ly : Wf’; W, — W) = By, (29)

whenever ¢ >0 is sufficiently small. The bounded null space B, always lies in the
kernel of (29), but in the degenerate case the kernel will also contain a finite-
dimensional space of decaying Jacobi fields.

Intuitively, we would like to describe the metrics in My near g as

n(n — 4)(n? — 4)
16

u= {gv = (u+v)ﬁ5 cHs(u4v) = (=A0) % (u +v) —
X (u+v)% = 0}7

where v is small with respect to an appropriate norm. If we only allow v to decay,
the linearized operator does not have any kernel by our hypothesis, and so it would
be an exercise in futility to construct a solution set this way. Furthermore, we
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should allow the nearby metrics to have slightly different asymptotic data, which
we cannot encode with a decaying perturbing function v. On the other hand, if we
allow perturbing functions v with any order of growth (or even non-decay), it is
difficult to analyze the zero-set of the operator H, and in particular it is impossible
to relate the kernel of the linearization to this zero-set. We remedy this problem
by deforming the asymptotic data according to an element of the deficiency space
Wy, as described below.

We denote the asymptotic necksize of g at the puncture p; by ;. Choose § such
that

0<d< mi ).
lglilgk%(sz)

We can identify conformally-related, constant @)-curvature metrics in a neighbor-
hood of g with

Z=A(v,w) eV d Vs C Wff & Wy : H(v,w) = 0}, (30)

where V; and Vs are small neighborhoods of the origin. To make sense of this, we
should describe the mapping

HW2 oW, » W (31)

in some detail. By the expansion (17) (or, equivalently (18)) there exist parameters
g; € (0,8), T; € R and a decaying function z € Wff(BT(O)) such that

w(—pi) =F " (ve, (= log |- —pi| + T)) + 2(z — p;).

Now let v € Wf’; and let w € W,. By definition,

where al:.'E € R. We define the metric g = g 6, where

u(z) + v(zx) | — pi| > 27
v(x) + (1 = x(x))u(r)+
() = X(x)(gfl(veﬁai_ (=log| - —pi| +T; + a;r)) ro < |z —pi| < 279 (32)
+2(z — pi))
§ (v, o (< log |- —pi + T3 + a) 0 <z —=pi| <o,

+2(z —pi) + vl —pi)

where 7o and y are as in Definition 12. Observe that the coefficients {a;",a; }
uniquely determine function w € W, so the dependence of u on w is given in how
we deform the geometric asymptotic data of g = w15, The construction of g is
well-defined so long as ¢; < g, but we must adjust it slightly if ; = €. In this case
we replace
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Verar (< log| - —pi| + T; + af)
with
0(t,0) = v=+a; cos(\/u(t+T;+a)+O(e™"),

as constructed in Proposition 1 of [4].
Finally, we identify

o) = @) = w5y - M=) 3

We also observe that, by construction, #(0,0) = 0.

With this definition, we see that the zero-set Z is exactly the set of constant
@-curvature metrics whose asymptotic data are close to that of g. Observe that
we should not expect H(0,w) = 0 for any nonzero element of the deficiency space
W,. This is because we construct elements of W, using a cut-off function x to
transfer deformations of the Delaunay asymptotes to the background metric g,

and so the @-curvature is non-constant in the transition region, where Vy # 0.

n(n? — 4)

However, the quantity Qg — is small (assuming w is small) and compactly

supported. Thus we expect to be able correct the @Q-curvature with a decaying
function v € Wf?, exactly as described above. Additionally, the linearization of
the operator H, as applied to Wf? OW, is

Ly W2 oW, - w%
and
4,2 0,2 4,2 0,2
ker (Ly s W27 @ W, = W7, ) = Byaker (Lo WA 5 WO7,) . (34)

However, since g is nondegenerate the second summand on the right hand side
of (34) is just to O function. Thus the kernel of L, is precisely By, which has
dimension k, which is also its minimal possible dimension. Thus dim(ker(Lz)) = k
on an open neighborhood of g in My, and so by the implicit function theorem an
open neighborhood of Z containing g is a smooth, k-dimensional manifold. O

5. Local structure in the degenerate case

Our purpose is to discuss the local structure of the moduli space M, without
the hypothesis that the linearization has a trivial L?>-nullspace. In this context, we
apply the Lyapunov-Schmidt argument as presented in [8]. The key idea goes back
to Simon’s proof of an infinite-dimensional version of the Lojasiewicz inequality,
see Theorem 3 of [14].
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THEOREM 15. The space My is locally a finite dimensional real analytic variety.

Proof. Once again, our problem can be reduced to the understanding of the zero
set of

HW2 oW, —» W,
where H is defined in (32) and (33). This time, however, the kernel of the lineariza-
tion, which we denote as K = ker (Lg : WE’(;Q — WE’(& 4>, is nontrivial in WE’EQ , and

it can identify by duality with the cokernel of L, : W; 2 W(?i.
Following [8] we define

H-W2oW, oK - W%, H(v,w,¢) = H(v,w) + ¢,

so that

Z={(v,w) €V1 &V : H(v,w) =0}
={(v,w, ) V1 V2 ® Vs : H(v,w, ) = ¢}

where V; C Wf’(?, Vo C Wy and V3 C K are small neighborhoods of the origin in
each respective Banach space.
We now see that

ZCZ={(v,w,0) EVi®V2® Vs : H(v,w,¢) € K} (35)

= {(v,w,d) € V1 ® Vo ® Vs : T (H(v,w, ¢)) = 0} = ker(IT+ o H),

where I+ is the orthogonal projection of ng onto K*. The linearization of this
operator is given by

oL, :KrewW, o K — W°;,

which is now a surjective operator. Furthermore, we can characterize the kernel of
the linearization as

ker(IT+ o Ly) = {(v,w,¢) e WP W, & K : Ly(v+w) € K} ~ K & B,.
Thus by the implicit function theorem, there is a real-analytic function
V:K0oB,oK — (WiZeW,)/(KeB,),  U(v,w,¢) = (¥1(v,w,),¢2(v,w, )
such that

Z = {(t1(v,w,0),¥2(v,0,8),9) : (v,w,¢) € K & B, & K}.

Unraveling these definitions we see

Z~{(v,w,¢) € K® By ® K : H(v+ Y1(v,w, 9), w + Y2(v,w, ¢)) = 0},
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which is indeed the zero set of an analytic function acting on a finite-dimensional
vector space. This proves a small neighborhood U/ C M containing ¢ is indeed a
real-analytic variety. O

6. Symplectic structure

Here we discuss the asymptotes mapping from the marked moduli space M, into a
fixed configuration space My = (0,2]* x R¥, where each pair (g;,T}) characterizes
the Delaunay asymptote at the puncture p;. We further show that if g € M, is
nondegenerate, then this local mapping is a Lagrangian embedding with respect
to the standard symplectic structure. One can construct a similar asymptotes map
for the unmarked moduli space, and much of the properties we prove below carry
through, but in this latter case, the configuration spaces are larger and constructing
the mapping is more involved.

First we construct a symplectic form on My. Let g = U ﬁ; € M and transfer
g to R"\K using stereographic projection, rewriting g = wii s with u = Uugph.
For any sufficiently small >0 we define

k
Q, =R"\ (U Br(pi)>

i=1
and

() =l [ (0L () = wLy(0))duo (36)

Here dug is the Euclidean volume element, v, w € W, lie in the deficiency space of
g (See Definition 12) and L, is the Jacobi operator of g, which is defined in (9).

THEOREM 16. The form w defined in (36) is a symplectic form on the 2k-
dimensional vector space Wj.

Proof. Our first order of business is to show that w is well-defined, i.e. that the
limit in (36) exists. By (9) observe that

vL,(w) —wLy(v) = vAZw — wA3v.

Next, we recall that the outer unit normal of €2, is —0,. on each boundary sphere
0B,-(p;) and integrate by parts to see

k
/ vA3wdpy = / (Agv)(Aqw)dug — Z/ (V0 Agw — drvAgw)doy,
Q. Q. — JoB.(p)
and so (36) becomes
k

w(v,w) = lim Z/ (WO Agv — VO Agw + O vAgw — dprwAgv)dog.  (37)
™0 i=1 6B’r~(iﬂi)
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Next, we change variables using (11), letting v = §(v) and w = F(w). Under this
change of variables

n—4._

v) . Agu=ebt <a§5— 2005 — M=)

dyv = —e" Tt (8{5+ v+ Aﬁ) ,
(38)
and

) . 2 200
By Agv = —e Tt (afm "743357 %&6— A5 A+ ZA@) .
(39)

Plugging (38) and (39) into (37) we obtain
/ (w0 Agv — VO Agw + OrvAgw — JprwAgv) dog
aBT(pi)

:/ (w0, Agv — vAgw + O vlAow — dpwAgv)(r0)r™1d
Sn—1

2(n —
L Gl P SN Y

—4 2~ . 2 —4
o VOFW — %v@tw— nn=4)

4 4
_ 002 + 20050 + "=V o5 — o5ngm - "

—42__ -4
n(n )vw—n2 vAgw

—4) __ e —4 5
%v@tw + OywAgv + "Twat%

T + TGO, + %mew

702w

+ O, WORT — 20, WOV —

—_4)2 _
(- )@, — %am n

4@Agﬁ) do

n(n—4)+38

= / (5@3@ — WO + WOV — OOt w + 5
Sn—l

(wov — E@t@))
x df

Observe that each element of the deficiency space is asymptotically radial about
each puncture point, so that the expansions

F(—p))(t.0) =T(t) +0(e™),  Flw(-—p))(t,0) =w(t) +Oe~*")

for each puncture p;. Thus each term in the expansion above involving derivatives
with respect to 6 will vanish in the limit.

Next we use the fact that both v and w lie in the definciency space W, (see
Definition 12). This means that near each puncture p; the functions v and w have
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asymptotic expansions of the form

iwo (e0), W= B w (&) + B wg (1), (40)

for t sufficiently large.
At each end, using bilinearity and skew-symmetry, we see that w(v,w) is the
limit as t — oo of

(@87 —ar ) [ iy i vapaf ;@)

—4)+38
Jn -4 +8

3 g i~ i) ) df

If A, is the integrand in (41), then

- (‘w'o—"(” st;) —wy (m‘g”(n )+ wg)

2
_ <n2(n_4)2 - n(n+4)én2 _4)Uns4) (i

— — ) —
qwy — wywg ) =0.

Thus A, does not depend on . Here we have used the ODE for wi, namely

—4)+8 . 2(n —4)? +4)(n? —4) =
woi_n(n 2) w()i+<n (n16 ) n(n 1)én )%M)woi:o

Let us find the value of the integrand in (41) at t =0 using the definitions of wi
in (23). First observe that wg (¢) = 9., so wg (0) = v.(0) = 0, W (0) = #.(0) > 0,
g (0) = v"2(0) = 0 and by (14) we get

—4)+8 —4 n
’11)8_(0) _ ’UE(O) — %’UE(O) — 771(”]-76) (n(n _ 4)6 _ (n2 _ 4)6ni’i) )
Furthermore, since w, = e and v, assumes its minimal value at t =0 we see
€

wy (0) = 1. Therefore, at t =0 it holds

A:(0) = —iiig (0) — B (0)ivy +

_ _ n(n—4) 9 ntd
= —¥.(0)w, + T (n(n —4)e — (n” —4)e )
By (15) we have
1l nf(n—4)2 5 (n—4)2(n®—4) 2
He = 5116(0) - 55 ¢ + 5 gn=1, (42)
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As we remarked earlier, the energy is a decreasing function of ¢, minimized by the
cylinder, which has the largest possible necksize, so differentiating (42) we see

d d n2(n—4)2 nn—4)(n? —4) nia

Qo D B s .

0 > dEHE U(—;(O) dE'UE(O) 16 e+ 16 c 1 ( 3)

. n(n —4 nta
— (0 (0) = " o~ e — (2 — 4)e )
This implies that
d
AE(O) = _diff,HE > 0,
and so w is nondegenerate. 0

COROLLARY 17. Let g € My be nondegenerate. Then there exists an open neigh-
borhood U of g in M that embeds into Wy, as a Lagrangian submanifold, with
respect to the symplectic form given by (36).

Proof. As in the proof of Theorem 3, we can identify the bounded null space By as
the tangent space Ty M. In particular, this identification shows Ly (v) = 0 for each
v € Bgy. On the other hand, the linear decomposition lemma allows us to identify
B, as a k-dimensional subspace of W,. The corollary now follows. O
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