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Abstract

In this paper we solve a long-standing problem which goes back to Laurent Schwartz’s work on mean periodic
functions. Namely, we completely characterize those locally compact Abelian groups having spectral synthesis. So
far a characterization theorem was available for discrete Abelian groups only. Here we use a kind of localization
concept for the ideals of the Fourier algebra of the underlying group. We show that localizability of ideals is
equivalent to synthesizability. Based on this equivalence we show that if spectral synthesis holds on a locally
compact Abelian group, then it holds on each extensions of it by a locally compact Abelian group consisting of
compact elements, and also on any extension to a direct sum with a copy of the integers. Then, using Schwartz’s
result and Gurevich’s counterexamples, we apply the structure theory of locally compact Abelian groups to obtain
our characterization theorem.

1. Introduction

The study of spectral synthesis started with the fundamental paper of L. Schwartz [1], where the
following result was proved:

Theorem 1. Every mean periodic function is the sum of a series of exponential monomials which are
limits of linear combinations of translates of the function.

Here “limit” is meant as uniform limit on compact sets. A continuous complex-valued function on
the reals is called mean periodic if the closure — with respect to uniform convergence on compact sets
— of the linear span of its translates is a proper subspace in the space of all continuous complex-valued
functions. Calling this closure the variety of the function, the above result says that in the variety of
each mean periodic function all exponential monomials span a dense subspace.

The basic concepts in this result can easily be generalized to more general situations. Given a
commutative topological group G we denote by C(G) the space of all continuous complex-valued
functions equipped with the topology of uniform convergence on compact sets and with the pointwise
addition and pointwise multiplication with scalars. If f is in C(G) and y is in G, then 7, f denotes the
translate of f defined by

Ty f(x) = fx+y)

for each x in g. A closed linear subspace V in C(G) is called a variety on G if it is translation invariant,
that is, 7, f is in V for each f in V and y in G. Given an f in C(G) the intersection of all varieties
including f is denoted by 7(f), and it is called the variety of f.
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2 L. Székelyhidi

Given a commutative topological group G continuous complex homomorphisms of G into the
multiplicative group of nonzero complex numbers are called exponentials, and continuous complex
homomorphisms of G into the additive group of complex numbers are called additive functions. The
elements of the function algebra in C(G) generated by all exponentials and additive functions are called
exponential polynomials. Functions of the form

f@) =P(ar(x),az(x), ..., ax(x))m(x) (1

are called exponential monomials, if P : ck > Cisa complex polynomial in & variables, aj, as, . .., ax
are additive functions, and m is an exponential. Every exponential polynomial is a linear combination
of exponential monomials. If m = 1, then the above function is called a polynomial.

Using these concepts we say that the variety V on G is synthesizable, if exponential monomials span a
dense subspace in it. We say that spectral synthesis holds on V, if every subvariety of V is synthesizable.
We say that spectral synthesis holds on the group G, or the group G is synthesizable, if every variety on
G is synthesizable. Hence Schwartz’s theorem can be formulated by saying that spectral synthesis holds
on R. In the paper [2], M. Lefranc proved that spectral synthesis holds on Z". In [4], R. J. Elliott made
an attempt to prove that spectral synthesis holds on every discrete Abelian group, but his proof was
incorrect. In fact, a counterexample for Elliott’s statement was given in [7]. In [8], a characterization
theorem was proved for discrete Abelian groups having spectral synthesis.

In the present paper we give a complete characterization of those locally compact Abelian groups on
which spectral synthesis holds. Using the localization method we worked out in [9], we can show that if
a locally compact Abelian group is synthesizable, then so is its extensions by a locally compact Abelian
group consisting of compact elements (see [10]). Also, here we prove that if a locally compact Abelian
group is synthesizable, and on its extensions to a direct sum with the group of integers (see [12]). Finally,
using the results of Schwartz [1] and Gurevich [6] we apply the structure theory of locally compact
Abelian groups.

2. Derivations of the Fourier algebra

In this section we recall some concepts and results concerning the Fourier algebra of locally compact
Abelian groups.

Given a locally compact Abelian group G we denote by M (G) its measure algebra, which is
the space of all compactly supported complex Borel measures on G. This space is identified with the
topological dual of C(G) equipped with the weak*-topology. In fact, M. (G) is a topological algebra
with the convolution of measures defined by

<wmﬁ=//7uﬂmwmmw

for each y, v in M. (G) and f in C(G). In addition, C(G) is a topological vector module over M. (G).
It is clear that varieties on G are exactly the closed submodules of C(G), and we have a one-to-one
correspondence between closed ideals in M (G) and varieties in C(G) established by the annihilators:
V & AnnV and I <> Ann [ for each variety V and closed ideal /. For the sake of simplicity, we say that
the closed ideal I in M (G) is synthesizable, if the variety Ann [ is synthesizable.

Let G be a locally compact Abelian group and let A(G) denote its Fourier algebra, that is, the algebra
of all Fourier transforms of compactly supported complex Borel measures on G. We recall that the
Fourier transform defined by

mm=/m&nwm
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for each u in the measure algebra is the extension of the Fourier—Laplace transform on the dual group:
here m is not necessarily a unitary exponential, that is, a character of G, but it can be any complex
exponential on G.

The algebra A(G) is topologically isomorphic to the measure algebra M (G). For the sake of
simplicity, if the annihilator Ann 7 of the closed ideal 7 in M. (G) is synthesizable, then we say that
the corresponding closed ideal Tin A(G) is synthesizable. Given an ideal Tin A(G) a root of 1is an
exponential m at which every (i vanishes. The set of all roots of the ideal 1 is denoted by Z (IA ).

The continuous linear operator D : A(G) — A(G) is called a derivation of order one, if

D(fi-v)=D(p)-v+p-D()

holds for each [, v in A(G). For each natural number n > 1, the continuous linear operator D : A(G) —
A(G) is called a derivation of order n + 1, if the bilinear operator

(#,v) = D(iL-v) =D(fr) - v — i1 - D(¥)

is a derivation of order n in both variables. All constant multiples of the identity operator on A(G)
are considered derivations of order 0. Finally, we call a linear operator on A(G) a derivation, if it is
a derivation of order n for some natural number n. It is easy to see that all derivations on A(G) form
a commutative algebra with unit (see [9, Theorem 4]). The elements of the subalgebra generated by
derivations of order not greater than 1 are called polynomial derivations — in fact, they are polynomials
of derivations of order at most 1.

Given a continuous linear operator F on A(G) and an exponential m on G the continuous function
fr.m : G — C defined for x in G by

fr.m(x) = F(8) (m)m(x)

is called the generating function of F. The following proposition shows that each continuous linear
operator on A(G) is uniquely determined by its generating function.

Proposition 1. Let F be a continuous linear operator on A(G). Then

F(R)(m) = / Fieom (O (2) d () @)

holds for each exponential m and for every i1 in A(G).

Proof. For each exponential m, the mapping u +— F(i1)(m) defines a continuous linear functional on
the measure algebra M (G). We conclude (see e.g. [5, 3.10 Theorem]) that there exists a continuous
function ¢, : G — C such that

F(@)(m) = / () du(z)

holds for each u in M. (G). Then we have

om(x) = / om(2) d6(2) = F(3)(m),

hence ¢, (x) = fr m(x)m(x), which yields (2). O

Clearly, the generating function of the identity operator is the identically one function, and it is easy
to check that the generating function of a first order derivation is an additive function, and conversely,
each additive function generates a first order derivation. It follows that the generating function of a
polynomial derivation is a polynomial, and the degree of the generating polynomial is equal to the order
of the corresponding polynomial derivation (see also [9]).
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In general, there may exist nonpolynomial derivations on the Fourier algebra. However, the generating
function ¢ of any derivation is a so-called generalized polynomial, which, by definition, satisfies the
higher order difference equation

Ay yrseeynn #(x) = 0. 3)

Here Ay =7, —19,and Ay, y, .. y.., is the product of the linear operators 7y, — 1o fori =1,2,...,n+1
(see [9]). Polynomials are generalized polynomials, but the converse is not true. Still all generalized
polynomials generate derivations, which are not polynomial derivations. We shall see that the existence
of nonpolynomial derivations is closely related to the failure of spectral synthesis.

Given a derivation D and an exponential m we denote by 1; p.m the set of all functions /1 in A(G)
which are annihilated at m by all derivations of the form

ﬁw/¢mmmwm,

where ¢ belongs to the translation invariant linear space in C(G) generated by fp . In other words,
Ip.m is the set of those functions (i in A(G) which satisfy i(m) = Dg(m) = 0, and

/mmm ..... o] (¥) - () du(x) = 0

for each positive integer k and y1, y2, ..., yx in G. It is easy to see that for every derivation D on A(G)
and for each exponential m, we have the equation Ip ,,, = Ann7( fD mm) (see [9]) As a by- product we
obtain that Ip ,,, as well as 1, D.m is a closed ideal, hence so is the intersection ID m = pep I, D.m for
any family D of derivations. R

We note that for a polynomial derivation P(D1, D>, ..., Dy) the set Ip ,, consists of those Fourier
transforms (7 in A(G) that satisfy

(099" ---d* P)(Dy,Ds,...,Dy)(j1)(m) =0

for every choice of the nonnegative integers «;.

The dual concept is the following: given a closed ideal Iin A(G) and an exponential m, the set of
all derivations annihilating 1 at m is denoted by D; .. The subset of D | consisting of all polynomial
derivations is denoted by P; . Clearly, we have the inclusion

= (R PSR =4 () @
m ’ m ’
We note that if m is not a root of 7, then D; ,, = P; ,,, = {0}, consequently IADi m = fpi m = A(G),

hence those terms have no effect on the intersection.

Proposition 2. Let D be a family of derivations on A(G). The ideal Tin A(G) has the property
72 (o )
m

if and only if the functions fD,mm with D in D span a dense subspace in Ann I.

Proof. Let J= N IAp,m, and assume that J C 1. If the subspace spanned by all functions of the form
Jp.mm with D in D is not dense in Ann /, then there exists a yo not in Ann Ann/ = I such that pg
annihilates all functions of the form fp_,,m with D in D. In other words, for each x in G we have
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0= (o * fom)m(x) = / Foum(x = y)m(x = y) duao(y)
- / Foum(y =Xy = x) duo(y) = m(x) / Foum(y =) dio(y).

In particular, for x = 0
0= 1o % formm(0) = / Fom () dito(y) = D (o) (m)

holds for each D in D and for every m. Consequently, [ is in IAD,m for each m, hence it is in the set J, s
but not in / — a contradiction.

Conversely, assume that the subspace spanned by all functions of the form fD,mm with D in D, is
dense in Ann /. It follows that any u in M (G), which satisfies

/ Foum(x = y)m(x = y) du(y) = 0 ©)

for all D in D and x in G, belongs to I = Ann Ann /. Now let ji be in IAD’m for some m, and suppose that
D is in D. Then for each x in G, the function [ - §_y is in I'p s, hence

0=D(@-5o0)(m) = / Foum(x = Y)m(x - y) du(y),

that is, [ satisfies (6) for each D in D. This implies that g is in 7, and the theorem is proved. m]

Corollary 1. Let 1 be a closed ideal in A(G). Then I= ﬂmez(;) IApim,m holds if and only if all

functions of the form fD,mm withminZ (IA ) and D in P; . span a dense subspace in the variety Ann I.

3. Localization

The ideal I is called localizable, if we have equalities in (4). Roughly speaking, localizability of an ideal
means that the ideal is completely determined by the values of “derivatives” of the functions belonging
to this ideal. Nonlocalizability of the ideal T means that there is a ¥ not in 7, which is annihilated by all
polynomial derivations which annihilate T at its zeros.

Theorem 2. Let G be a locally compact Abelian group. The ideal Tin A(G) is localizable if and only
if it is synthesizable.

Proof. Assume that Ann [ is not synthesizable. Then the linear span of the exponential monomials in
Ann [ is not dense. In other words, there is a ¥ not in I such that v = pm = 0 for every polynomial p such
that pm is in Ann /. For each such pm we consider the polynomial derivation

D(R)(m) = / ) () du(x)

whenever f is in A(G). As pm is in Ann I, hence D is in P; - On the other hand, every derivation in
P; ,, has this form with some pm in Ann 1. As v * pm(0) = 0 for all these functions, we have

D(v)(m) = / p(x)ym(x)dv(x) = / p(0—x)m(0—x)dv(x) =v=*pm(0) =0,

holds for each D in P; , . This means that ¥ is annihilated by all derivations in P; . but ¥ is not in 1,
which contradicts the localizability.
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Now we assume that Ann [ is synthesizable. This means that all functions of the form fD,mm with
min Z(I) and D in P; , span a dense subspace in the variety Ann /. By Corollary 1,

= [ e

mEZ(I)
We show that this ideal is localizable. Assuming the contrary, there is an exponential m in Z(f) and
there is a ¥ not in Ip; m such that D(v)(m) = 0 for each derivation D in P; , . In other words, ¥ is

annihilated at m by all derivations in P; . and still ¥ is not in i’pi »m — a contradiction. O

4. Compact elements

In this section we show that if spectral synthesis holds on a locally compact Abelian group, then it also
holds on every extension by a locally compact Abelian group consisting of compact elements.

Theorem 3. Let G be a locally compact Abelian group and let B denote the closed subgroup of G
consisting of all compact elements. Then spectral synthesis holds on G if and only if it holds on G | B.

Proof. 1f spectral synthesis holds on G, then it obviously holds on every continuous homomorphic
image of G (see [11, Theorem 3.1]), in particular, it holds on G/B.

Conversely, we assume that spectral synthesis holds on G/B. This means that every closed ideal in
the Fourier algebra of G/B is localizable, and we need to show the same for all closed ideals of the
Fourier algebra of G.

First we remark that the polynomial rings over G and over G / B can be identified. Indeed, polynomials
on G are built up from additive functions on G, which clearly vanish on compact elements, as the additive
topological group of complex numbers has no nontrivial compact subgroups. Consequently, if a is an
additive function and x, y are in the same coset of B, then x — y is in B, and a(x — y) = 0, which means
a(x) = a(y). So, the additive functions on G arise from the additive functions of G /B, hence the two
polynomial rings can be identified.

Now we define a projection of the Fourier algebra of G into the Fourier algebra of G/B as follows.
Let ® : G — G/B denote the natural mapping. For each measure u in M. (G) we define up as the
linear functional

(up, ) = (U, p o ®)

whenever ¢ : G/B — C is a continuous function. It is straightforward that the mapping & + fip is a
continuous algebra homomorphism of the Fourier algebra of G into the Fourier algebra of G/B. As ®
is an open mapping, closed ideals are mapped onto closed ideals.

For a given closed ideal Tin A(G), we denote by I the closed ideal in A(G/B) which corresponds
to I under the above homomorphism. If m is a root of the ideal I, then g (m) = 0 for each & in I.In
other words,

(i, o @) = (jip, m) =

hence m o ®, which is clearly an exponential on G, is a root of 1. Suppose that D is a derivation in
P; e then it has the form

Dﬁ(mo@)zfp'(%OQ)dﬂ

with some polynomial p on G. According to our remark above, the polynomial p can uniquely be written
as pp o ®, where pp is a polynomial on G /B. In other words,

Dji(m o @) = (1, (pp o ®)(m o ®)) = (i, pprit) = Dp(iip)(m),

which defines a derivation D g on A(G/B) with generating function fp, . = ps.
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It follows that every derivation in 77; mod Arises from a derivation in 77;3 m On the other hand, if d

is a derivation in Pfg m then we have

dfin(m) = / pit dyu = (s, pit) = (g1, (p 0 ®) (5 0 )
- [ pl@w)6h o @) du(o).

which defines a derivation D in ’P; o

We summarize our assertions. Let  be a proper closed ideal in A(G) and assume that T is non-
localizable. It follows that there is a function ¥ not in / which is annihilated at M by all polynomial
derivations in P; ,,, for each exponential M on G. In particular, v is annihilated at m o ®@ by all polyno-
mial derivations in P; ., for each exponential m on G/B. We have seen above that this implies that

vp is annihilated at m’by all polynomial derivations in PfB ., and for each exponential m on G/B. As

spectral synthesis holds on G /B, the ideal 1, p is localizable, hence Vg is in 1, B, but this contradicts the
assumption that ¥ is not in /. The proof is complete. O

From this result it follows immediately that if every element of a locally compact Abelian group is
compact, then spectral synthesis holds on this group. In particular, spectral synthesis holds on every
compact Abelian group. Also, we can provide the following simple proof for the characterization theorem
of discrete synthesizable Abelian groups (see [8]):

Corollary 2. Spectral synthesis holds on a discrete Abelian group if and only if its torsion free rank is
finite.

Proof. If the torsion free rank of G is infinite, then there is a generalized polynomial on G, which is not
a polynomial (see [7]), hence there is a nonpolynomial derivation on the Fourier algebra. Consequently,
we have the chain of inclusions

IcC IDfm,m - IP;m,m’

which implies that T+ IApim,m, hence 1 is not synthesizable.

Conversely, let G have finite torsion free rank. The subgroup B of compact elements coincides with
the set T of all elements of finite order, and G /T is a (continuous) homomorphic image of Z" with
some nonnegative integer n. As spectral synthesis holds on Z" (see [2]), it holds on its homomorphic
images. O

5. Extension by the integers

In this section we show that if spectral synthesis holds on a locally compact Abelian group, then it also
holds on the group obtained by adding Z to it as a direct summand.
It is known that every exponential e : Z — C has the form

e(k) =%

for kin Z, where A is a nonzero complex number, which is uniquely determined by e. For this exponential
we use the notation e . It follows that for every commutative topological group G, the exponentials on
G X Zhave the formm e, : (g, k) — m(g)e,(k), where m is an exponential on G, and A is a nonzero
complex number. Hence the Fourier—Laplace transforms in A(G X Z) can be thought as two variable
functions defined on the pairs (m, 1), where m is an exponential on G, and A is a nonzero complex
number.
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Let G be a locally compact Abelian group. For each measure y in M (G X Z) and for every k in Z
we let

Sk(n)={g: g€G and (g,k) € suppu}.

As u is compactly supported, there are only finitely many &’s in Z such that S (u) is nonempty. We have

supp = |_J (S () x {k}),

keZ

and

Si(u) x {k} = (G x {k}) N supp p.

It follows that the sets Si (1) X {k} are pairwise disjoint compact sets in G X Z, and they are nonempty
for finitely many k’s only. The restriction of  to Sg (u) X {k} is denoted by uy. Then, by definition

wbﬁ=/fwwﬂ

for each f in C(G X Z), where yj denotes the characteristic function of the set Si(¢) X {k}. In other
words,

[ rau= [ re0duten

holds for each k in Z and for every f in C(G X Z). Clearly, u = X\ <7z Uk, and this sum is finite.
Lemma 1. Let y be in M (G X Z). Then, for each k in Z, we have

i = Mo * 0(0,k)-
Here 6o x) denotes the Dirac measure at the point (0, k) in G x Z.

Proof. We have for each f in C(G X Z):
o oa 1) = [ [ 7la+ ) duoCt) dsio
= [ stet+ 0 duoted) = [ (0 dute. D = G -
For each p in M. (G X Z), we define the measure ug in M. (G) by

(UG, p) = / v(g) du(g, 1),

whenever ¢ is in C(G). Clearly, every ¢ in C(G) can be considered as a function in C(G X Z), hence
this definition makes sense, further we have

m@@=/w@mmw.

Lemma 2. [f ] is a closed ideal in M (G X Z), then the set I of all measures ug with u in I, is a
closed ideal in M (G).
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Proof. Clearly ug +vg = (u+v)g and 1 - ug = (1 - u)g. Let ug be in I and £ in M. (G). Then we
have for each ¢ in C(G):

@*ﬂa¢>=/:/¢@+hﬁE@ﬁmGW)=/:/¢@+hﬁE@ﬁmMJ)

On the other hand, we extend ¢ from M. (G) to M. (G X Z) by the definition

@ﬂ=/f@®#@)

whenever f is in C(G X Z). Then

@aw=/w@@mw:/ww@@=@@,

that is £ = &. Finally, a simple calculation shows that

(€ ug, ) = (€ * wa. ¢),

hence & * g = (€ * p)g isin Ig, as € * pisin I.
Now we show that the ideal I is closed. Assume that (i, ) is a generalized sequence in [ such that
the generalized sequence (uq,c) converges to ¢ in M (G). This means that

lim / ¢(8) dia,c(g) = / w(g) dé(g)

holds for each ¢ in C(G). In particular, for each exponential m on G we have

tim [ () duao(s.) = lim [ () dio.c(6) = [ 1i(e) dée) = [ 1ie) (.

In other words,

lim g0 = &
holds. It follows

11(511 io = o,
consequently

& =& =00 = ligl Ha,0 % 0(0,k) = 11(?1 Hak-

Then we infer

5: zk:é?k = Zk:h};n,u(l,k = litl;nzk:,u(l,k = hlrtn,u(l:

where we can interchange the sum and the limit using the fact that in each sum the number of nonzero
terms is finite. As [ is closed, & is in I, which proves that ¢ = &g is in I, that is, I is closed. ]

Now we can derive the following theorem.

Theorem 4. Let G be a locally compact Abelian group. Then spectral synthesis holds on G if and only
if it holds on G X Z.
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Proof. If spectral synthesis holds on G X Z, then it obviously holds on its continuous homomorphic
images, in particular, it holds on G, which is the projection of G X Z onto the first component.

Conversely, we assume that spectral synthesis holds on G. This means that every closed ideal in the
Fourier algebra of G is localizable, and we need to show the same for all closed ideals of the Fourier
algebra of G X Z.

We consider the closed ideal 7 in the Fourier algebra A(G XZ), and we assume that Tis nonlocalizable,
that is, there is a measure v in M. (G X Z) such that ¥ is annihilated by Pf,m, , for each m and A, but v
is not in 7. We show that Y is in IAG; then it will follow that ¥ is in IA, a contradiction.

Suppose that a polynomial derivation d annihilates IAG at m. Then we have

dfic(m) = / pam(@)ii(8) duc (g) = / Pam(@)ii(g) dug. 1) = 0

for each [ in fG and for every exponential m on G, where p; ,, : G — C is the generating polynomial
of d at m. Then we define the polynomial derivation D on the Fourier algebra A(G X Z) by

DA(m, 1) = / Pam(@)i(9)A™ du(g.1).
If /i is in 7, then we have
D (m, ) = / Pam()(9) A dug (g.1) = 7% - / pam()i(g) dug ) = 0

for each k in Z. As i = Y.z fix. it follows that Dfi(m, 1) = 0 for each i in I. In other words, D is in
Pj .2 for each exponential m and nonzero complex number A. In particular, v is annihilated by D:

Dv(m, Q) = / pd,mﬁz(g)/l_l dv(g,1)=0.
It follows

9 (m) = DFo(m, A) = / pam()ii(g) dv(g.1) = 0.

As d is an arbitrary polynomial derivation which annihilates IAG at m, we have that v is annihilated
by PI}; ,, for each m. As spectral synthesis holds on G, the ideal I is localizable, consequently v is

in fg, which implies that ¥ is in f, and our theorem is proved. m]

6. Characterization theorems

Corollary 3. Let G be a compactly generated locally compact Abelian group. Then spectral synthesis
holds on G if and only if G is topologically isomorphic to R® x ZP x F, where a < 1 and b are
nonnegative integers, and F is an arbitrary compact Abelian group.

Proof. By the Structure Theorem of compactly generated locally compact Abelian groups (see [3, (9.8)
Theorem]) G is topologically isomorphic to R* x Z” x F, where a, b are nonnegative integers, and F
is a compact Abelian group. If spectral synthesis holds on G, then it holds on its projection R. By the
results in [1, 6], spectral synthesis holds on R“ if and only if a < 1, hence G is topologically isomorphic
to R x Z? x F where a < 1 and b are nonnegative integers, and F is a compact Abelian group.
Conversely, let G = R x Z? x F with b a nonnegative integer, and F a compact Abelian group. By [1],
spectral synthesis holds on R. By repeated application of Theorem 4, we have that spectral synthesis
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holds on R x Z” with any nonnegative integer b. Finally, by Theorem 3, spectral synthesis holds on
R x ZP x F. Our proof is complete. O

Corollary 4. Let G be a locally compact Abelian group. Let B denote the closed subgroup of all compact
elements in G. Then spectral synthesis holds on G if and only if G/B is topologically isomorphic to
R"X F, wheren < 1 is a nonnegative integer, and F is a discrete torsion free Abelian group of finite rank.

Proof. First we prove the necessity. If spectral synthesis holds on G, then it holds on G /B. By [3, (24.34)
Theorem], G /B has sufficiently enough real characters. By [3, (24.35) Corollary], G /B is topologically
isomorphic to R" x F, where n is a nonnegative integer, and F is a discrete torsion-free Abelian group.
As spectral synthesis holds on R” X F, it holds on the continuous projections R" and F. Then we have
n < 1, and the torsion-free rank of F is finite, by [8].

For the sufficiency, if F is a torsion-free discrete Abelian group with finite rank, then it is the
(continuous) homomorphic image of Z* with some nonnegative integer k. By repeated application
of Theorem 4, we have that spectral synthesis holds on R x 7 and then it holds on its continuous
homomorphic image R x F. Finally, by Theorem 3, we have that spectral synthesis holds on G. O
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