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On Bauschke–Bendit–Moursi modulus of
averagedness and classifications of
averaged nonexpansive operators
Shuang Song and Xianfu Wang
Abstract. Averaged operators are important in Convex Analysis and Optimization Algorithms. In
this article, we propose classifications of averaged operators, firmly nonexpansive operators, and
proximal operators using the Bauschke–Bendit–Moursi modulus of averagedness. We show that if
an operator is averaged with a constant less than 1/2, then it is a bi-Lipschitz homeomorphism.
Amazingly the proximal operator of a convex function has its modulus of averagedness less
than 1/2 if and only if the function is Lipschitz smooth. Some results on the averagedness of
operator compositions are obtained. Explicit formulae for calculating the modulus of averagedness
of resolvents and proximal operators in terms of various values associated with the maximally
monotone operator or subdifferential are also given. Examples are provided to illustrate our results.

1 Introduction

Throughout, we assume that

X is a real Hilbert space with inner product ⟨⋅, ⋅⟩ ∶ X × X → R,

and induced norm ∥ ⋅ ∥. Let Id denote the identity operator on X. Recall the following
well-known definitions [6, 13].

Definition 1.1 Let T ∶ X → X and μ > 0. Then, T is
(i) nonexpansive1 if

(∀x ∈ X)(∀y ∈ X) ∥Tx − Ty∥ ⩽ ∥x − y∥;
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(ii) firmly nonexpansive if

(∀x ∈ X)(∀y ∈ X) ∥Tx − Ty∥2 + ∥(Id − T)x − (Id − T)y∥2 ⩽ ∥x − y∥2;

(iii) μ-cocoercive if μT is firmly nonexpansive.

Definition 1.2 Let T ∶ X → X be nonexpansive. T is k-averaged2 if T can be repre-
sented as

T = (1 − k)Id + kN ,

where N ∶ X → X is nonexpansive, and k ∈ [0, 1].
Averaged operators are important in optimization (see, e.g., [1, 3, 5, 6, 9, 10, 13–

15, 20, 24]). Firmly nonexpansive operators, being 1/2-averaged [6, Proposition 4.4],
form a proper subclass of the class of averaged operators. From the definition, we have
Id is the only 0-averaged operator. When k ∈ (0, 1], various characterizations of k-
averagedness (see [3, Proposition 2.2], [6, 13]) are available, including

(∀x ∈ X)(∀y ∈ X) ∥Tx − Ty∥2 ⩽ ∥x − y∥2 − 1 − k
k

∥(Id−T)x − (Id−T)y∥2 ,(1.1)

and (∀x ∈ X)(∀y ∈ X)
∥Tx − Ty∥2 ⩽ ⟨x − y, Tx − Ty⟩ + (1 − 2k)(⟨x − y, Tx − Ty⟩ − ∥x − y∥2).(1.2)

When k = 0, while the historic Definition 1.2 gives T = Id (linear), characterization
(1.2) gives T = Id + v (affine) for some v ∈ X, hence they are not equivalent in this case.
From (1.1) or (1.2) and the fact that Id is the only 0-averaged operator, we can deduce
that if an operator is k0-averaged, then it is k-averaged for every k ⩾ k0. This motivates
the following definition, which was proposed by Bauschke, Bendit, and Moursi [5].

Definition 1.3 (Bauschke–Bendit–Moursi modulus of averagedness) Let T ∶ X → X
be nonexpansive. The Bauschke–Bendit–Moursi modulus of averagedness of T is
defined by

k(T) ∶= inf{k ∈ [0, 1] ∣ T is k-averaged}.

We call it the BBM modulus of averagedness.

It is natural to ask: How does the modulus of averagedness impact classifications
of averaged operators? In view of Definition 1.3, if T ∶ X → X is firmly nonexpansive
then k(T) ⩽ 1/2. Based on this, we define the following, which classifies the class of
firmly nonexpansive operators using the modulus of averagedness.

Definition 1.4 (Normal and special nonexpansiveness) Let T ∶ X → X. We say that
T is normally (firmly) nonexpansive if k(T) < 1/2, and T is specially (firmly) nonex-
pansive if k(T) = 1/2.

2Usually, one excludes the cases k = 0 and k = 1 in the study of averaged operators, but it is very
convenient in this article to allow these cases.

https://doi.org/10.4153/S0008414X25101284 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101284


Modulus of averaged operators 3

k = 1/2

k < 1/2

Let Γ0(X) denote the set of all proper lower semicontinuous convex functions from
X to (−∞,+∞]. Recall that for f ∈ Γ0(X), its proximal operator is defined by (∀x ∈
X) P f (x) ∶= argmin

u∈X
{ f (u) + 1

2 ∥u − x∥2}. For a nonempty closed convex subset C of

X, its indicator function is defined by ιC(x) ∶= 0 if x ∈ C, and +∞ otherwise. If f = ιC ,
we write P f = PC , the projection operator onto C. It is well known that P f is firmly
nonexpansive [6], which implies k(P f ) ⩽ 1/2. Some natural questions arise: Given f ∈
Γ0(X), when is P f normally (or specially) nonexpansive? how can we calculate k(P f )?
In [5], these problems are essentially solved in linear cases, or, in smooth case on the
real line.

The goal of this article is to classify averaged nonexpansive operators, including firmly
nonexpansive operators, via the Bauschke–Bendit–Moursi modulus of averagedness in
a general Hilbert space. We provide some fundamental properties of modulus of aver-
agedness of averaged mappings, firmly nonexpansive mappings and proximal mappings.
We determine what properties normally (or specially) nonexpansive operators possess by
using the monotone operator theory. One amazing result is that a proximal mapping of a
convex function has its modulus of averagedness less than 1/2 if and only if the function
is Lipschitz smooth. Many examples are provided to illustrate our results. Bauschke–
Bendit–Moursi modulus of averagedness turns out to be an extremely powerful tool in
studying averaged operators and firmly nonexpansive operators!

The rest of the article is organized as follows. In Section 2, we explore some basic
properties of the modulus function and show that a normally nonexpansive operator is
a bi-Lipschitz homeomorphism. In Section 3, averagedness of operator compositions
and some asymptotic behaviors of averaged operators are examined. In particular, the
limiting operator of an averaged operator is a projection if and only if its BBM modulus
is 1/2. In Sections 4 and 5, we investigate both normal and special nonexpansiveness
of resolvents and proximal operators. Our surprising results are Theorem 4.17 and
Theorem 5.3, characterizing normal and special resolvents and proximal operators. In
Section 6, we establish formulae of modulus of averagedness of resolvents in terms of
various values of maximally monotone operators. Finally, in Section 7, we extend a
modulus of averagedness formula on a composition of two projections by Bauschke,
Bendit, and Moursi in R

2 to general Hilbert spaces.
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2 Bijective theorem

2.1 Auxiliary results

This section collects preparatory results on modulus of averagedness used in later
proofs. For any operator T ∶ X → X and any v ∈ X, the operator T + v is defined by

(∀x ∈ X) (T + v)x ∶= Tx + v .

Proposition 2.1 Let T ∶ X → X be nonexpansive and v ∈ X. Then,
(i) k(T + v) = k(T).

(ii) k(T(⋅ + v)) = k(T).
Proof (i): The result follows by combining (T + v)x − (T + v)y = Tx − Ty with
characterization (1.2).

(ii): The result follows by combining x − y = (x + v) − (y + v) with
characterization (1.2). ∎
Proposition 2.2 Let T ∶ X → X be nonexpansive. If k(T) > 0, then T is k(T)-
averaged. Moreover, T is β-averaged for every β ∈ [k(T), 1].
Proof Due to k(T) > 0, we can use characterization either (1.1) or (1.2). The right
hand side of (1.1) or (1.2) is a continuous and increasing function in term of k, thus
the result follows. ∎

Let FixT ∶= {x ∈ X ∣ Tx = x} denote the set of fixed points of T ∶ X → X. Our
following result characterizes k(T) = 0.
Proposition 2.3 Let T ∶ X → X be nonexpansive. Then,

k(T) = 0 ⇔∃v ∈ X ∶ T = Id + v .(2.1)

If, in addition, FixT ≠ ∅, then

k(T) = 0 ⇔ T = Id.(2.2)

Proof Suppose ∃v ∈ X ∶ T = Id + v. Obviously k(Id) = 0. Thus, by Proposition 2.1,
k(T) = k(Id + v) = 0.

Suppose k(T) = 0. Assume that for any v ∈ X: T ≠ Id + v. Then, there exist x0 , y0 ∈
X such that (T − Id)x0 ≠ (T − Id)y0, whence ∥(T − Id)x0 − (T − Id)y0∥2 > 0. Our
assumption implies T ≠ Id, and Id is the only 0-averaged operator, thus there exists a
sequence (kn)n∈N in (0, 1] such that T is kn-averaged and kn → 0. Now characteriza-
tion (1.1) implies that for any n ∈ N:

∥Tx0 − Ty0∥2 ⩽ ∥x0 − y0∥2 − 1 − kn

kn
∥(Id−T)x0 − (Id−T)y0∥2 ,

i.e.,

0 ⩽ ∥x0 − y0∥2 − ∥Tx0 − Ty0∥2 + (1 − 1
kn
)∥(T − Id)x0 − (T − Id)y0∥2 .

Note that ∥(T − Id)x0 − (T − Id)y0∥2 > 0. Now letting n →∞ yields 0 ⩽ −∞, which
is a contradiction.

When FixT ≠ ∅, (2.2) follows from (2.1). ∎
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Proposition 2.4 Let T ∶ X → X be nonexpansive. Then, T is firmly nonexpansive if and
only if k(T) ⩽ 1/2.
Proof “⇐”: When 0 < k(T) < 1/2, apply Proposition 2.2. When k(T) = 0, apply
Proposition 2.3.

“⇒”: The assumption implies that T is 1/2-averaged. Hence, k(T) ⩽ 1/2. ∎
Example 2.5 If T ∶ X → X is a constant mapping, i.e., (∃v ∈ X)(∀x ∈ X) Tx = v ,
then k(T) = 1/2.
Proof Because T is firmly nonexpansive, k(T) ⩽ 1/2. By (1.2), if T is k-averaged, then
2k ⩾ 1, so k(T) ⩾ 1/2. Altogether, k(T) = 1/2. ∎

We end up this section with a fact on convexity.
Fact 2.6 [5, Fact 1.3] Let T1 , T2 ∶ X → X be nonexpansive and λ ∈ [0, 1]. Then, k(λT1 +
(1 − λ)T2) ⩽ λk(T1) + (1 − λ)k(T2). Consequently, T ↦ k(T) is a convex function on
the set of averaged mappings, as well as on the set of firmly nonexpansive mappings.
Corollary 2.7 Let T ∶ X → X be nonexpansive and λ ∈ [0, 1]. Then, k(λT) ⩽ λk(T) +
(1 − λ)/2.
Proof Let T2 be zero mapping in Fact 2.6 and apply Example 2.5. ∎

2.2 Bijective theorem

In this section, we will show that normally nonexpansive operator must be bijective
and bi-Lipschitz. First, we prove that normally nonexpansive operators must be bi-
Lipschitz and injective.
Lemma 2.8 Let T ∶ X → X be normally nonexpansive. Then, T is a bi-Lipschitz
homeomorphism from X to ran T. In particular, T is injective.
Proof In view of Proposition 2.3, we may assume k(T) > 0. Then, T is k(T)-
averaged by Proposition 2.2, i.e.,

(∀x ∈ X)(∀y ∈ X) ∥Tx − Ty∥2 + (1 − 2k(T))∥x − y∥2

⩽ 2(1 − k(T))⟨x − y, Tx − Ty⟩.

Since k(T) < 1
2 , there exists α ∈ (0, 1

2 ) such that k(T) = 1
2 − α. Substituting k(T)

in above inequality and using the Cauchy–Schwarz inequality, we have

∥Tx − Ty∥2 + 2α∥x − y∥2 ⩽ (1 + 2α)⟨x − y, Tx − Ty⟩,
∥Tx − Ty∥2 + 2α∥x − y∥2 ⩽ (1 + 2α) (∥x − y∥ ∥Tx − Ty∥) ,

2α (∥x − y∥2 − ∥x − y∥ ∥Tx − Ty∥) ⩽ ∥x − y∥ ∥Tx − Ty∥ − ∥Tx − Ty∥2 ,
2α∥x − y∥ (∥x − y∥ − ∥Tx − Ty∥) ⩽ ∥Tx − Ty∥ (∥x − y∥ − ∥Tx − Ty∥) .

Now if ∥x − y∥ − ∥Tx − Ty∥ = 0, then ∥Tx − Ty∥ = ∥x − y∥ ⩾ 2α∥x − y∥ since 2α < 1.
If ∥x − y∥ − ∥Tx − Ty∥ ≠ 0, then 2α∥x − y∥ ⩽ ∥Tx − Ty∥. Thus in both cases we have
2α∥x − y∥ ⩽ ∥Tx − Ty∥. Combining it with ∥Tx − Ty∥ ⩽ ∥x − y∥, we have

2α∥x − y∥ ⩽ ∥Tx − Ty∥ ⩽ ∥x − y∥.

i.e., T is a bi-Lipschitz homeomorphism from X to ran T . ∎
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Next, we make use of monotone operator theory to prove that normally nonexpan-
sive operators must also be surjective.

Fact 2.9 [6, Example 20.30] Let T ∶ X → X be firmly nonexpansive. Then, T is
maximally monotone.

Fact 2.10 ((Rockafellar–Vesely) [6, Corollary 21.24]) Let A ∶ X ⇉ X be a maximally
monotone operator such that lim∥x∥→+∞ inf ∥Ax∥ = +∞. Then, A is surjective.

Lemma 2.11 Let T ∶ X → X be normally nonexpansive. Then, T is surjective.

Proof By Lemma 2.8, T is bi-Lipschitz since T is normally nonexpansive. Thus, there
exists ε > 0, such that ε∥x − y∥ ⩽ ∥Tx − Ty∥. Let y = 0, then ε∥x∥ ⩽ ∥Tx − T0∥. Using
the triangle inequality, we have

∥Tx∥ ⩾ ε∥x∥ − ∥T0∥.

Thus, lim∥x∥→∞ ∥Tx∥ = ∞. Combining Fact 2.9 with Fact 2.10 we complete the proof.
∎

Theorem 2.12 (bi-Lipschitz homeomorphism) Let T ∶ X → X be normally nonexpan-
sive. Then, T is a bi-Lipschitz homeomorphism of X. In particular, T is bijective.

Proof Combine Lemmas 2.8 and 2.11. ∎

Taking the contrapositive of Theorem 2.12, we obtain a lower bound for modulus
of averagedness.

Corollary 2.13 Let T ∶ X → X be nonexpansive. If T is not bijective, then k(T) ⩾ 1/2.

Remark 2.14 In terms of compact operators (see, e.g., [23]), Theorem 2.12 implies
that X is finite-dimensional if and only if there exists a normally nonexpansive
compact operator on X.

Example 2.15 (Averagedness of projection) Let C be a nonempty closed convex set
in X and C ≠ X. Then, PC is specially nonexpansive.

Proof We have k(PC) ⩽ 1/2 since PC is firmly nonexpansive. Now since C ≠ X,
let x0 ∈ X/C. Because PC (x0) ∈ C and x0 ∈ X/C, we have PC (x0) ≠ x0. However,
PC (x0) = PC (PC (x0)). Thus, PC is not injective. Therefore, PC is specially nonex-
pansive by Corollary 2.13. Another way is to observe that PC is not surjective. ∎

Corollary 2.16 Let M ∈ Rn×n be nonexpansive. If det(M) = 0, then k(M) ⩾ 1/2.

Remark 2.17 Consider the matrix

A = 1
2
( 2 0

0 −1 ) .

Then, one can verify that k(A) = 3/4 > 1/2. However, det(A) ≠ 0 and thus A is a bi-
Lipschitz homeomorphism of R2. Hence, the converse of Theorem 2.12 fails. We will
show later that the converse of Theorem 2.12 does hold when T is a proximal operator
(see Theorem 5.3).
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3 Operator compositions and limiting operator

In this section, we examine the modulus of averagedness of operator compositions
and explore its asymptotic properties.

3.1 Composition

Proposition 3.1 Let T1 and T2 be nonexpansive operators from X to X. Suppose one of
the following holds:
(i) T1 is not surjective.

(ii) T2 is not injective.
(iii) T1 is bijective and T2 is not surjective.
(iv) T2 is bijective and T1 is not injective.
Then, k(T1T2) ⩾ 1/2.
Proof Since T1 and T2 are nonexpansive operators, we have T1T2 is nonexpansive
as well. Each one of the four conditions implies that T1T2 is not bijective. Now, use
Corollary 2.13. ∎

Ogura and Yamada [20] obtained the following result about the averagedness of
operator compositions.

Fact 3.2 ([20, Theorem 3] (see also [15, Proposition 2.4])) Let T1 ∶ X → X be α1-
averaged, and let T2 ∶ X → X be α2-averaged, where α1 , α2 ∈ (0, 1). Set

T = T1T2 and α = α1 + α2 − 2α1α2

1 − α1α2
.

Then, α ∈ (0, 1) and T is α-averaged.
Formulating this result here using the modulus of averagedness, we have the

following result.

Proposition 3.3 Let T1 ∶ X → X and T2 ∶ X → X be nonexpansive. Suppose
k (T1) k (T2) ≠ 1. Then,

k (T1T2) ⩽
k (T1) + k (T2) − 2k (T1) k (T2)

1 − k (T1) k (T2)
.

Proof Let φ (T1 , T2) ∶= k(T1)+k(T2)−2k(T1)k(T2)
1−k(T1)k(T2)

. We consider five cases.
Case 1: k (Ti) = 1 for some i ∈ {1, 2}. Then, φ (T1 , T2) = 1. Since T1 and T2 are

nonexpansive, we have T1T2 is nonexpansive, i.e., k (T1T2) ⩽ 1 = φ (T1 , T2).
Case 2: k (Ti) ∈ (0, 1) for any i ∈ {1, 2}. Then, combining Proposition 2.2 and

Fact 3.2, we have T1T2 is φ (T1 , T2)-averaged. Thus, k (T1T2) ⩽ φ (T1 , T2).
Case 3: k (T1) = 0 and k (T2) ∈ (0, 1). Then, there exists v1 ∈ X such that T1 =

Id + v1 by Proposition 2.3. Thus, T1T2 = T2 + v1 and k (T1T2) = k (T2 + v1) = k (T2) by
Proposition 2.1. While φ (T1 , T2) = k (T2) in this case, we have k (T1T2) = φ (T1 , T2).

Case 4: k (T1) ∈ (0, 1) and k (T2) = 0. Then, there exists v2 ∈ X such that T2 =
Id + v2 by Proposition 2.3. Thus, T1T2 = T1(⋅ + v2) and k (T1T2) = k (T1(⋅ + v2)) =
k (T1) by Proposition 2.1. While φ (T1 , T2) = k (T1) in this case, we have k (T1T2) =
φ (T1 , T2).
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Case 5: k (T1) = k (T2) = 0. Then, there exist v1 ∈ X and v2 ∈ X such that T1 =
Id + v1 and T2 = Id + v2 by Proposition 2.3. Thus, T1T2 = Id + v2 + v1 and k (T1T2) =
k (Id + v2 + v1) = 0. While φ (T1 , T2) = 0 in this case, we have k (T1T2) = φ (T1 , T2).

Altogether, we complete the proof. ∎
Proposition 3.4 Let C be a nonempty closed convex set in X and C ≠ X. Then, for any
nonexpansive operator T ∶ X → X:

1
2
⩽ k (T ○ PC) ⩽

1
2 − k(T)

and
1
2
⩽ k (PC ○ T) ⩽ 1

2 − k(T) .

Proof Observe that PC is neither surjective nor injective in this case. Thus, by
Proposition 3.1, we have k(T ○ PC) ⩾ 1/2 and k(PC ○ T) ⩾ 1/2. Now by Example 2.15,

k (T) + k (PC) − 2k (T) k (PC)
1 − k (T) k (PC)

= 1
2 − k(T) .

Thus, by Proposition 3.3, we have k (T ○ PC) ⩽ 1
2−k(T) and k (PC ○ T) ⩽ 1

2−k(T) , which
complete the proof. ∎
Remark 3.5 Particularly, if we let T = PV and C = U , where U and V are both closed
linear subspaces, then k (PV PU) = 1+cF

2+cF
∈ [ 1

2 , 2
3 ], where cF ∈ [0, 1] (see [5, Corollary

3.3]). This coincides with the bounds we obtained as 1
2−k(PU)

= 2
3 by Example 2.15.

We can generalize the results of two operator compositions to finite operator
compositions.

Proposition 3.6 Let m ⩾ 2 be an integer and let I = {1, . . . , m}. For any i ∈ I, let Ti be
nonexpansive from X to X. Suppose one of the following holds:
(i) T1 is not surjective.

(ii) Tm is not injective.
(iii) T1 is bijective and T2 ⋅ ⋅ ⋅Tm is not surjective.
(iv) Tm is bijective and T1 ⋅ ⋅ ⋅Tm−1 is not injective.
Then, k (T1 ⋅ ⋅ ⋅Tm) ⩾ 1/2.

Proof Apply Proposition 3.1. ∎
Corollary 3.7 Let C1 , . . . , Cm be nonempty closed convex sets in X. If C1 ≠ X or Cm ≠
X, then k (PC1 ⋅ ⋅ ⋅ PCm) ⩾ 1/2.

The following result is about modulus of averagedness of isometries.

Proposition 3.8 Let A be a n × n orthogonal matrix and A ≠ Id. Then, k(A) = 1.

Proof Since A is orthogonal, we have ∥Ax − Ay∥ = ∥x − y∥. On the other hand,
ran(Id−A) is not a singleton. Hence, k(A) = 1 by using (1.1). ∎
Corollary 3.9 Let m ⩾ 1 be an integer and let I = {1, . . . , m}. For any i ∈ I, let A i be a
n × n orthogonal matrix. Suppose that A1 ⋅ ⋅ ⋅Am ≠ Id. Then, k(A1 ⋅ ⋅ ⋅Am) = 1.
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3.2 Limiting operator

In this section, we discuss the asymptotic behavior of modulus of averagedness. Recall
that a sequence (xn)n∈N in a Hilbert space X is said to converge weakly to a point x in
X if (∀y ∈ X) limn→∞ ⟨xn , y⟩ = ⟨x , y⟩. We use the notation limw

n→∞ xn for the weak
limit of (xn)n∈N. Recall for a nonexpansive operator T ∶ X → X, FixT is closed and
convex (see, e.g., [9, Proposition 22.9]).

Fact 3.10 [6, Proposition 5.16] Let α ∈ (0, 1) and let T ∶ X → X be α-averaged such
that Fix T ≠ ∅. Then, for any x ∈ X, (T n x)n∈N converges weakly to a point in Fix T.

In view of the above fact, we propose the following type of operator.

Definition 3.1 (Limiting operator) Let α ∈ (0, 1) and let T ∶ X → X be α-averaged
such that Fix T ≠ ∅. Define its limiting operator T∞ ∶ X → X by x ↦ limw

n→∞ T n x .

Remark 3.11 The full domain and single-valuedness of T∞ are guaranteed by
Fact 3.10. Hence, T∞ ∶ X → X is well defined.

Example 3.12
(i) [6, Example 5.29] Let α ∈ (0, 1) and let T ∶ X → X be α-averaged such that FixT ≠

∅. Suppose T is linear. Then, T∞ = PFixT .
(ii) [6, Proposition 5.9] Let α ∈ (0, 1) and let T ∶ X → X be α-averaged such that

FixT ≠ ∅. Suppose FixT is a closed affine subspace of X. Then, T∞ = PFixT .

The limiting operator of an averaged mapping enjoys the following pleasing prop-
erties.

Proposition 3.13 Let α ∈ (0, 1) and let T ∶ X → X be α-averaged such that FixT ≠
∅, X. Then, the following hold:

(i) FixT = FixT∞ = ran T∞.
(ii) (T∞)2 = T∞.

(iii) k (T∞) ∈ [ 1
2 , 1].

Proof (i): If x ∉ FixT , then T∞x ≠ x since T∞x ∈ FixT by Fact 3.10. If x ∈ FixT ,
then T∞x = limw

n→∞ T n x = limw
n→∞ x = x. Thus, Fix T = Fix T∞. The equality FixT =

ran T∞ follows by using Fact 3.10 again.
(ii): For any x ∈ X, T∞x ∈ ran T∞, thus T∞x ∈ FixT∞ by (i). Therefore, (T∞)2 x =

T∞ (T∞x) = T∞x, which implies that (T∞)2 = T∞.
(iii): Since the norm is weakly lower-semicontinuous, we have

(∀x ∈ X)(∀y ∈ X) ∥T∞x − T∞y∥ ⩽ lim inf
n→∞

∥T n x − T n y∥ .

As T ∶ X → X is nonexpansive, by induction we have for any n ∈ N, ∥T n x − T n y∥ ⩽
∥x − y∥. Altogether, T∞ is nonexpansive, which implies that k(T∞) ⩽ 1. On the other
hand, we have ran T∞ = Fix T ≠ X by (i) and the assumption, so T∞ is not surjective.
Thus, k(T∞) ⩾ 1/2 by Corollary 2.13. ∎

The modulus of averagedness provides further insights into the limiting operator.

Theorem 3.14 Let α ∈ (0, 1) and let T ∶ X → X be α-averaged such that FixT ≠ ∅, X.
Then, the following are equivalent:
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(i) T∞ = PFixT .
(ii) k (T∞) ⩽ 1/2.

(iii) k (T∞) = 1/2.

Proof (i) ⇒ (ii): Obvious.
(ii)⇒ (i): The result follows by combining Proposition 3.13(i)&(ii) and the fact that

if T ∶ X → X is firmly nonexpansive and T ○ T = T , then T = PranT (see [9, Exercise
22.5] or [8, Theorem 2.1(xx)]).

(ii) ⇔ (iii): Apply Proposition 3.13(iii). ∎

In the following, we discuss limiting operator on R. The following extends
[5, Proposition 2.8] from differentiable functions to locally Lipschitz functions. Below
∂L g denotes the Mordukhovich limiting subdifferential [12, 19, 22].

Lemma 3.15 Let g ∶ R→ R be a locally Lipschitz function. Then, g is nonexpansive if
and only if (∀x ∈ R) ∂L g(x) ⊂ [−1, 1] in which case k(g) = (1 − inf ∂L g(R)) /2.

Proof The nonexpansiveness characterization of g follows from [12, Theorem 3.4.8].
Write g = (1 − α)Id + αN , where α ∈ [0, 1] and N ∶ R→ R is nonexpansive. If α = 0,
the result clearly holds. Let us assume α > 0. Then, N(x) = (g(x) − (1 − α)x)/α and
∂L N(x) = (∂L g(x) − (1 − α))/α. N is nonexpansive is equivalent to

(∀x ∈ R) (∂L g(x) − (1 − α))/α ⊆ [−1, 1] ⇔ (∀x ∈ R) ∂L g(x) ⊆ [1 − 2α, 1],

from which

α ⩾ 1 − inf ∂L g(R)
2

and the result follows. ∎

In Example 3.12 we see that if T ∶ X → X is α-averaged and linear with Fix T ≠ ∅, X,
then k (T∞) = 1/2. The following example shows that it is not true in nonlinear case.

Example 3.16 Let

f (x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x ⩽ 0,
x if 0 ⩽ x ⩽ 1,
− 1

2 x + 3
2 if x ⩾ 1.

Then, f is (3/4)-averaged and Fix T = [0, 1]. However,

f∞(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x ⩽ 0 or x ⩾ 3,
x if 0 ⩽ x ⩽ 1,
− 1

2 x + 3
2 if 1 ⩽ x ⩽ 3,

and k ( f∞) = 3/4.
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Proof By computation, we have

∂L f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if x < 0,
[0, 1] if x = 0,
{1} if 0 < x < 1,
{−1/2, 1} if x = 1,
{−1/2} if x > 1,

and ∂L f∞(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if x < 0 or x > 3,
[0, 1] if x = 0,
{1} if 0 < x < 1,
{−1/2, 1} if x = 1,
{−1/2} if 1 < x < 3,
[−1/2, 0] if x = 3.

Applying Lemma 3.15, we obtain k( f ) and k( f∞). ∎

Next, we show that if T ∶ X → X is firmly nonexpansive, a stronger condition than
averagedness, then on the real line it is true that k (T∞) = 1/2.

Proposition 3.17 Let f ∶ R→ R be firmly nonexpansive such that Fix f ≠ ∅,R. Then,
f∞ = PFix f . Consequently, k ( f∞) = 1/2.

Proof Since f is firmly nonexpansive, we have f is nondecreasing and nonexpansive.
Now as Fix f ⊆ R is closed and convex, it must be one of the form [a,+∞), (−∞, b] or
[a, b]with a, b ∈ R because Fix f ≠ ∅,R. Since the proofs for all cases are similar, let us
assume that Fix f = [a, b]. When x ⩾ b, because f is nondecreasing, we have f (x) ⩾
f (b) = b, f 2(x) ⩾ f (b) = b, and an induction leads f n(x) ⩾ b. Then, f∞(x) ⩾ b by
Fact 3.10. Since f∞(x) ∈ [a, b] by Fact 3.10 again, we derive that f∞(x) = b. Similar
arguments give f∞(x) = a when x ⩽ a. Clearly, when x ∈ [a, b], (∀n ∈ N) f n(x) = x,
so f∞(x) = x. Altogether f∞ = PFix f . ∎

Motivated by Example 3.12 and Proposition 3.17, one might conjecture that
k (T∞) = 1/2 whenever k (T) ⩽ 1/2. However, this is not true in general. To find a
counter example, by Theorem 3.14, it suffices to find a firmly nonexpansive operator
such that its limiting operator is not a projection. We conclude this section with the
following example from [7, Example 4.2].

Example 3.18 Suppose that X = R
2. Let A = R(1, 1) and B =

{(x , y) ∈ R2 ∣ −y ⩽ x ⩽ 2}. For z = (x , y) ∈ R2 , we have PA(z) = ( x+y
2 , x+y

2 ) and

PB(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(2, y) if x ≥ 2, y ≥ −2,
(2,−2) if y ≤ min{x − 4,−2},
((x − y)/2,−(x − y)/2) if x − 4 < y ≤ −x ,
(x , y) if (x , y) ∈ B.

Then, the Douglas–Rachford operator T = Id−PA + PB(2PA − Id) is firmly nonexpan-
sive and has k(T∞) > 1/2. By Theorem 3.14, it suffices to show T∞ ≠ PFixT . Indeed,
by [7, Fact 3.1] we have FixT = {s(1, 1) ∣ s ∈ [0, 2]} because of A∩ intB ≠ ∅. Let z0 =
(4, 10), and (∀n ∈ N) zn+1 = Tzn . Direct computations give

z1 = (−1, 7), z2 = (−2, 3), z3 = (−1/2, 1/2), and z4 = (0, 0).

On the other hand, let z∗ = (2, 2), then {z4 , z∗} ⊂ FixT . Thus, T∞z0 = z4 while
PFixT z0 ≠ z4 as ∥z0 − z∗∥ = 2

√
17 < ∥z0 − z4∥ = 2

√
29.
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4 Resolvent

Let A ∶ X ⇉ X be a set-valued operator, i.e., a mapping from X to its power set. Recall
that the resolvent of A is JA ∶= (Id + A)−1 and the reflected resolvent of A is RA ∶=
2JA − Id. The graph of A is graA ∶= {(x , u) ∈ X × X ∣ u ∈ Ax} and the inverse of A,
denoted by A−1, is the operator with graph gra A−1 ∶= {(u, x) ∈ X × X ∣ u ∈ Ax}. The
domain of A is dom A ∶= {x ∈ X ∣ Ax ≠ ∅}. A is monotone, if

∀(x , u), (y, v) ∈ gra A, ⟨x − y, u − v⟩ ⩾ 0.

A is maximally monotone, if it is monotone and there is no monotone operator B ∶
X ⇉ X such that gra A is properly contained in gra B. Unless stated otherwise, we
assume from now on that

A ∶ X ⇉ X and B ∶ X ⇉ X are maximally monotone operators.

Fact 4.1 ((Minty’s theorem) [6, Proposition 23.8]) Let T ∶ X → X. Then, T is firmly
nonexpansive if and only if T is the resolvent of a maximally monotone operator.

The goal of this section is to give characterizations of normal and special nonex-
pansiveness by using the monotone operator theory.

4.1 Auxiliary results

We first provide a nice formula for the modulus of averagedness of (1 − λ)Id + λT
in terms of the modulus of averagedness of T. The following is an adaption of
[6, Proposition 4.40]. For completeness, we include a simple proof.

Fact 4.2 Let T ∶ X → X be nonexpansive and let λ ∈ (0, 1]. For α ∈ [0, 1], T is
α-averaged if and only if (1 − λ)Id + λT is λα-averaged.

Proof Suppose T is α-averaged. Then, T = (1 − α)Id + αR with R being nonexpan-
sive. It follows that

(1 − λ)Id + λT = (1 − λ)Id + λ(1 − α)Id + λαR(4.1)
= (1 − λα)Id + λαR,(4.2)

so that (1 − λ)Id + λT is λα-averaged. Because λ ∈ (0, 1], the reverse direction also
holds. ∎

Lemma 4.3 Let T ∶ X → X be nonexpansive. Then, for every λ ∈ [0, 1], we have

k((1 − λ)Id + λT) = λk(T).(4.3)

Proof We split the proof into the following cases.
Case 1: λ = 0. Clearly, (4.3) holds because k(Id) = 0.
Case 2: λ > 0. We show (4.3) by two subcases.
Case 2.1: k((1 − λ)Id + λT) = 0. By Proposition 2.3, there exists v ∈ X: (1 − λ)Id +

λT = Id + v such that T = Id + v/λ. Then, k((1 − λ)Id + λT) = 0 = k(T) by Proposi-
tion 2.3 again.
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Case 2.2: k((1 − λ)Id + λT) > 0. On one hand, we derive k((1 − λ)Id + λT) ⩽
λk(T) by Fact 4.2. On the other hand, since (1 − λ)Id + λT is λ-averaged, we have
0 < k((1 − λ)Id + λT) ⩽ λ. For every β ∈ [k((1 − λ)Id + λT), λ], the mapping (1 −
λ)Id + λT is β-averaged. Write β = λα with α = β/λ ∈ (0, 1]. Fact 4.2 implies that T
is α-averaged, thus k(T) ⩽ β/λ. Taking infimum over β gives k(T) ⩽ k((1 − λ)Id +
λT)/λ, i.e., λk(T) ⩽ k((1 − λ)Id + λT). Therefore, k((1 − λ)Id + λT) = λk(T).

Altogether, (4.3) holds. ∎
Example 4.4 Let C be a nonempty closed convex set in X and C ≠ X. Consider the
reflector to C defined by RC ∶= 2PC − Id. Then, the following hold:

(i) k(RC) = 1.
(ii) For λ ∈ [0, 1], k((1 − λ)Id + λRC)) = λ.

(iii) For λ ∈ [0, 1], k((1 − λ)Id + λPC)) = λ/2.

Proof Apply Example 2.15 and Lemma 4.3. ∎
Remark 4.5 This recovers [5, Example 2.3] for C = V , a closed subspace of X.

Example 4.6 Let A ∶ X ⇉ X be maximally monotone. Consider the reflected resol-
vent of A defined by RA ∶= 2JA − Id. Then, k (RA) = 2k (JA) by Lemma 4.3. Con-
sequently, k (RA) < 1 (that is, RA is α-averaged for some α ∈ [0, 1)) if and only
if JA is normally nonexpansive. Likewise, k (RA) = 1 if and only if JA is specially
nonexpansive.

The following result concerning the Douglas–Rachford operator (see, e.g., [6, 9])
is of independent interest.

Theorem 4.7 Let U , V be two closed subspaces of X, and U ≠ V. Consider the Douglas–
Rachford operator

TU ,V ∶= Id + RU RV

2
.

Then, k(TU ,V) = 1/2.

Proof We have RU RV ≠ Id since U ≠ V . Note both RU and RV are orthogonal.
Thus, k (RU RV) = 1 by Corollary 3.9. Therefore, by Lemma 4.3, we have k(TU ,V) =
k(RU RV)/2 = 1/2. ∎
Remark 4.8 Let A, B ∶ X ⇉ X be two maximally monotone operators. The Douglas–
Rachford operator related to (A, B) is

TA,B =
Id + RARB

2
.

It is interesting to know k(TA,B) in general.

Next, we recall Yosida regularizations of monotone operators. They are essential
for our proofs in Section 4.2.

Definition 4.1 (Yosida regularization) For μ > 0, the Yosida μ-regularization of A is
the operator

Yμ(A) ∶= (μId + A−1)−1 .
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For Yosida regularization, we have the classic identity: Yμ(A) = μ−1 (Id − JμA); see
[22, Lemma 12.14]. The following result is [6, Theorem 23.7(iv)]. Here, we take the
opportunity to give a detailed proof.

Proposition 4.9 For α, μ > 0, the following formula holds

JαYμ(A) =
μ

μ + α
Id + α

μ + α
J(μ+α)A.

Proof First,

αYμ(A) = α (μId + A−1)−1 = [(μId + A−1) (α−1Id)]−1

= (α−1 μId + A−1(α−1Id))−1 = (α−1 μId + (αA)−1)−1

= Yα−1 μ(αA).

Thus, we only need to prove the formula holds for α = 1.
Let y ∈ X, z = J(μ+1)A(y) and x = μ

μ+1 y + 1
μ+1 z. We will prove x = JYμ(A)(y). We

have z = (μ + 1)x − μy, y − z = μ+1
μ (x − z) and Yμ(A) = 1

μ (Id − JμA). Thus,

z = J(μ+1)A(y) ⇔ y − z ∈ (μ + 1)Az ⇔ μ + 1
μ

(x − z) ∈ (μ + 1)Az

⇔ x − z ∈ (μA)z ⇔ z = JμAx ⇔ (μ + 1)x − μy = JμAx

⇔ y − x =
x − JμAx

μ
= Yμ(A)(x) ⇔ x = JYμ(A)(y).

∎

Combining Proposition 4.9 and Lemma 4.3, we have the following.

Corollary 4.10 For any α ∈ [0, 1), the following hold:

(i) JαY1−α(A) = (1 − α)Id + αJA.
(ii) k(JαY1−α(A)) = αk(JA).

k ⩽ 1

Id

JA

JαY1−α(A)
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Corollary 4.11 For μ > 0, the following hold:

(i) JYμ(A) =
μ

μ+1 Id + 1
μ+1 J(μ+1)A.

(ii) k(JYμ(A)) = 1
μ+1 k(J(μ+1)A).

Example 4.12 Let C be a nonempty closed convex set in X and C ≠ X. Consider the
normal cone to C defined by NC(x) ∶= {u ∈ X ∣ supc∈C⟨c − x , u⟩ ⩽ 0} if x ∈ C, and ∅
otherwise. Then,

(∀μ > 0) k(JYμ(NC)) = k(Jμ−1(Id−PC)) =
1

2(μ + 1) .(4.4)

In particular,

(∀α ∈ (0, 1)) k(JαY1−α(NC)) = k(Jα(1−α)−1(Id−PC)) =
α
2

.(4.5)

Proof Apply Corollary 4.10 with A = NC to obtain

JYμ(NC) = Jμ−1(Id−JμNC )
= Jμ−1(Id−PC)(4.6)

= μ
μ + 1

Id + 1
μ + 1

J(μ+1)NC =
μ

μ + 1
Id + 1

μ + 1
JNC(4.7)

= μ
μ + 1

Id + 1
μ + 1

PC .(4.8)

Using Lemma 4.3 and k(PC) = 1/2 because C ≠ X, we have

k(Jμ−1(Id−PC)) =
1

μ + 1
k(PC) =

1
2(μ + 1) .

Finally, (4.5) follows from (4.4) by using μ = (1 − α)/α. ∎

Remark 4.13 Observe that Corollary 4.11(i) shows that Yμ(A) is the resolvent average
of monotone operators 0 and (μ + 1)A (see, e.g., [4].

4.2 Characterization of normally averaged mappings

The Yosida regularization of monotone operators provides the key. Recall that T ∶ X →
X is μ-cocoercive with μ > 0 if μT is firmly nonexpansive, i.e.,

(∀x ∈ X)(∀y ∈ X) ⟨x − y, Tx − Ty⟩ ⩾ μ∥Tx − Ty∥2 .

Fact 4.14 [6, Proposition 23.21 (ii)] T ∶ X → X is μ-cocoercive if and only if there exists
a maximally monotone operator A ∶ X ⇉ X such that T = Yμ(A).

Lemma 4.15 Let A ∶ X ⇉ X be maximally monotone. Suppose that JA is normally
nonexpansive. Then, A is single-valued with full domain, and cocoercive.

Proof If k(JA) = 0, Proposition 2.3 shows that JA = Id + v for some v ∈ X. Then, A ∶=
−v, which is clearly single-valued with full domain, and cocoercive. Hence, we shall
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assume 0 < k (JA) < 1/2. Set

N = JA − (1 − 2k (JA)) Id
2k (JA)

.

Then, JA = (1 − 2k (JA)) Id + 2k (JA)N and N is nonexpansive with k(N) = 1/2 by
Lemma 4.3. It follows from Fact 4.1 that N is firmly nonexpansive, i.e., there exists
a maximally monotone operator B ∶ X ⇉ X such that N = JB . Thus, by Corollary 4.10,
we have

JA = (1 − 2k (JA)) Id + 2k (JA)N = (1 − 2k (JA)) Id + 2k (JA) JB

= J2k(JA)Y1−2k(JA)
(B) .

Therefore, A = 2k (JA)Y1−2k(JA)(B). Since JA is normally nonexpansive, we have
2k (JA) ∈ (0, 1). Thus, 2k (JA)Y1−2k(JA)(B), being a Yosida regularization, is a single-
valued, full domain, and cocoercive operator due to Fact 4.14. Hence, A is single-
valued with full domain, and cocoercive. ∎

Lemma 4.16 Suppose A ∶ X ⇉ X is single-valued with full domain, and cocoercive.
Then, JA is normally nonexpansive.

Proof Since A is single-valued with full domain, and cocoercive, by Fact 4.14, there
exist a maximally monotone operator B ∶ X ⇉ X and μ > 0 such that A = Yμ(B). Since
B is maximally monotone, by Corollary 4.11, we have

JYμ(B) =
μ

μ + 1
Id + 1

μ + 1
J(μ+1)B = JA.

Since B is maximally monotone and μ + 1 > 1, we have (μ + 1)B is maximally mono-
tone as well. Thus, k(J(μ+1)B) ⩽ 1/2 by Fact 4.1. Now, Lemma 4.3 gives

k (JA) =
1

μ + 1
k (J(μ+1)B) ⩽

1
μ + 1

⋅ 1
2
< 1

2
.

∎

The main result of this section comes as follows.

Theorem 4.17 (Characterization of normally averaged mapping) Let A ∶ X ⇉ X be
maximally monotone. Then, JA is normally nonexpansive if and only if A is single-valued
with full domain, and cocoercive.

Proof Combine Lemmas 4.15 and 4.16. ∎

In view of Fact 4.1, the characterization of special nonexpansiveness follows imme-
diately as well.

Example 4.18 Let A ∈ Sn
++, the set of n × n positive definite symmetric matrices.

Then, k (JA) < 1/2 and k (JA−1) < 1/2 by Theorem 4.17.

The following fact follows from [8, Theorem 2.1(i)&(iv)].
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Fact 4.19 Let T ∶ X → X be firmly nonexpansive. Then, the following hold:

(i) T = JA for a maximally monotone operator A ∶ X ⇉ X.
(ii) T is injective if and only if A is at most single-valued, i.e.,

(∀x ∈ domA) Ax is empty or a singleton.

(iii) T is surjective if and only if domA = X.

Remark 4.20 Combining Theorem 4.17 and Facts 4.19 and 4.1, we recover Theo-
rem 2.12, since A being cocoercive implies Id + A being Lipschitz.

5 Proximal operator

Let f ∈ Γ0(X). Recall that the proximal operator of f is given by

P f (x) ∶= argmin
u∈X

{ f (u) + 1
2
∥u − x∥2} ,

that the Moreau envelope of f with parameter μ > 0 is defined by eμ f (x) ∶=
minu∈X( f (u) + 1

2μ ∥u − x∥2), and that the Fenchel conjugate of f is defined by
f ∗(y) ∶= supx∈X(⟨x , y⟩ − f (x)) for y ∈ X. It is well known that P f = (Id + ∂ f )−1,
where ∂ f is the subdifferential of f given by ∂ f (x) ∶= {u ∈ X ∣ (∀y ∈ X) f (y) ⩾
f (x) + ⟨u, y − x⟩} if x ∈ dom f , and ∅ if x /∈ dom f . Also, P f is firmly nonexpansive,
i.e., k (P f ) ⩽ 1/2 (see, e.g., [6, 22]).

In this section, we will characterize the normal and special nonexpansiveness of
P f . We begin with the following definition.

Definition 5.1 (L-smoothness) Let L ∈ [0,+∞). Then, f is L-smooth on X if f is
Fréchet differentiable on X and ∇ f is L-Lipschitz, i.e.,

(∀x ∈ X)(∀y ∈ X) ∥∇ f (x) − ∇ f (y)∥ ⩽ L∥x − y∥.

Fact 5.1 ((Baillon-Haddad) [2] (see also [6, Corollary 18.17])) Let f ∈ Γ0(X). Suppose
f is Fréchet differentiable on X. Then,∇ f is μ-cocoercive if and only if∇ f is μ−1-Lipschitz
continuous.

For further properties of L-smooth functions, see [6, 11, 22]. We also need

Fact 5.2 ((Moreau) [6, Theorem 20.25]) Let f ∈ Γ0(X). Then, ∂ f is maximally
monotone.

The following interesting result characterizes a L-smooth function f via the
modulus of averagedness of P f . It shows that for proximal operators not only can
Theorem 4.17 be significantly improved but also the converse of Theorem 2.12 holds.

Theorem 5.3 (Characterization of normal proximal operator) Let f ∈ Γ0(X). Then,
the following are equivalent:

(i) P f is normally nonexpansive.
(ii) There exists L > 0 such that f is L-smooth on X.
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(iii) f ∗ is 1/L-strongly convex for some L > 0.
(iv) P f ∗ is a Banach contraction.
(v) P f is a bi-Lipschitz homeomorphism of X.

Proof “(i)⇔(ii)”: By Fact 5.2, ∂ f is maximally monotone. Let A = ∂ f in Theo-
rem 4.17 and combine it with Fact 5.1.

“(ii)⇔(iii)”: Apply [6, Theorem 18.15].
“(iii)⇔(iv)”: Apply [18, Corollary 3.6].
“(i)⇒(v)”: Apply Theorem 2.12.
“(v)⇒(i)”: The assumption implies that (P f )−1 = Id + ∂ f is full domain, single-

valued and Lipschitz, so is ∂ f = ∇ f . By Fact 5.1, ∇ f is co-coercive. It remains to apply
Theorem 4.17. ∎

Remark 5.4 (1) Bi-Lipschitz homeomorphisms of a Euclidean space form an impor-
tant class of operators. For instance, Hausdorff dimension, which plays a central
role in fractal geometry and harmonic analysis, is bi-Lipschitz invariant (see [17]).
Theorem 5.3(i) ⇔ (v) thus provides a large class of such nonlinear operators.

(2) By endowing Γ0(X)with the topology of epi-convergence (see, e.g., [21, Propo-
sition 3.5, Corollary 4.18]), Theorem 5.3 (i) ⇔ (ii) implies that most convex functions
have their proximal mappings with modulus of averagedness exactly 1/2, in the sense
of co-meagerness (the complement of a meager set).

The characterization of special proximal operator follows immediately as well.
The following example shows that P f being only bijective does not imply that P f is
normally nonexpansive.

Example 5.5 Let X = R. Define

φ(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ln x if x ⩾ e ,
1
e x if − e < x < e ,
− ln(−x) if x ⩽ −e .

Then, the following hold:
(i) φ is a proximal operator of a function in Γ0(R).

(ii) φ is a bijection.
(iii) φ is specially nonexpansive.
(iv) The inverse mapping of φ:

(φ)−1(y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e y if y ⩾ 1,
e y if − 1 ⩽ y ⩽ 1,
−e−y if y ⩽ −1,

is not Lipschitz.

Proof (i): φ is a proximal operator because it is nonexpansive and increasing (see
[6, Proposition 24.31]). (ii): Obvious. (iii): We have that φ is differentiable with

φ′(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
x if x ⩾ e ,
1
e if − e < x < e ,
− 1

x if x ⩽ −e .
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Thus, inf x∈R φ′(x) = 0. By Lemma 3.15 or [5, Proposition 2.8], k(φ) = (1 −
inf x∈R φ′(x))/2 = 1/2. (iv): Direct calculations. ∎
Corollary 5.6 Let f ∈ Γ0(X). Suppose dom f ≠ X. Then, P f is specially nonexpansive.

Proof Observe that dom f ≠ X implies dom ∂ f ≠ X. Thus, f is not L-smooth for any
L > 0 and the result follows by Theorem 5.3. ∎
Remark 5.7 When C is a nonempty closed convex subset of X and C ≠ X, obviously
ιC ∈ Γ0(X) and dom ιC = C. By Corollary 5.6, PC is specially nonexpansive, which
recovers Example 2.15.

For the Moreau envelope, we have the following result.

Proposition 5.8 Let f ∈ Γ0(X) and let μ, α > 0. Then,

k(Pαeμ f ) =
α

μ + α
k(P(μ+α) f ).(5.1)

If, in addition, f is not Lipschitz smooth, then

k(Pαeμ f ) =
1
2

α
μ + α

.

Proof By [9, Theorem 27.9], we have

Pαeμ f =
μ

μ + α
Id + α

μ + α
P(μ+α) f .

It suffices to apply Lemma 4.3.
If, in addition, f is not Lipschitz smooth, then (μ + α) f is not Lipschitz smooth so

that k(P(μ+α) f ) = 1/2 by Theorem 5.3. Use (5.1) to complete the proof. ∎
Example 5.9 Let μ, α > 0. Consider the Huber function defined by

Hμ ∶ X → R ∶ x ↦
⎧⎪⎪⎨⎪⎪⎩

1
2μ ∥x∥2 if ∥x∥ ⩽ μ,
∥x∥ − μ

2 if ∥x∥ > μ.

It is well-known that Hμ = eμ∥ ⋅ ∥ and that ∥ ⋅ ∥ is not Lipschitz smooth, Therefore, by
Proposition 5.8,

k(PαHμ) =
1
2

α
μ + α

.

Example 5.10 Let C be a nonempty closed convex subset of X and C ≠ X. Consider
the support function of C defined by σC ∶ X → [−∞,+∞] ∶ x ↦ supc∈C⟨c, x⟩. Then,
the following hold:
(i) If C is a singleton, then k(PC) = 1/2 and (∀λ > 0) k(PλσC ) = 0.

(ii) If C contains more than one point, then k(PC) = 1/2 and (∀λ > 0) k(PλσC ) = 1/2.

Proof The fact that k(PC) = 1/2 has been given by Example 2.15. Now observe that
the support function σC has PλσC = Id − λPC(⋅/λ).

(i): We have PλσC = Id + v for some v ∈ X. Then, apply Proposition 2.3.
(ii): The function λσC(x) is not Lipschitz smooth, since it is not differentiable at 0.

Apply Theorem 5.3 to derive k(PλσC ) = 1/2. ∎
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6 Compute modulus of averagedness via other constants or values

In this section, introducing monotone value for monotone operators, cocercive value
for cocoercive mappings and Lipschitz value for Lipschitz mappings, we provide
various formulae to quantify the modulus of averagedness for resolvents and proximal
operators.

6.1 Monotone value and cocoercive value

Recall that we assume A ∶ X ⇉ X is a maximally monotone operator. For μ > 0, we say
that A is μ-strongly monotone if A− μId is monotone, i.e.,

(∀(x , u) ∈ gra A)(∀(y, v) ∈ gra A) ⟨x − y, u − v⟩ ⩾ μ∥x − y∥2 .

It is clear that if an operator is μ0-strongly monotone (or cocoercive), then it is μ-
strongly monotone (or cocoercive) for μ ⩽ μ0. Observing this property, we define the
following functions for a maximally monotone operator.

Definition 6.1 (Monotone value) Suppose that A is strongly monotone. The mono-
tone value (or best strong monotonicity constant) of A is defined by

m(A) ∶= sup{μ > 0 ∣ A is μ-strongly monotone}.

Otherwise, we define m(A) = 0.

Definition 6.2 (Cocoercive value) Suppose A is single-valued with full domain, and
cocoercive. The cocoercive value (or best cocoercivity constant) of A is defined by

c(A) ∶= sup{μ > 0 ∣ A is μ-cocoercive}.

Otherwise, we define c(A) = 0.

We present basic properties of monotone value and cocoercive value. Note an
operator is μ-cocoercive if and only if its inverse is μ-strongly monotone.

Proposition 6.1 Let μ > 0. The following hold:
(i) (duality) m (A) = c (A−1) and m (A−1) = c (A).
(ii) m(μA) = μm(A) and c(μA) = μ−1c(A).
(iii) c(A) = +∞ if and only if A is a constant operator on X.
(iv) m(A+ B) ⩾ m(A) + m(B) and

c ((A−1 + B−1)−1) ⩾ c(A) + c(B).

(v) (Yosida regularization) m(A+ μId) = m(A) + μ and c (Yμ(A)) = c(A) + μ.

Proof (i), (ii), (iii) and (iv) can be directly verified. (v): Since Yμ(A) = (μId + A−1)−1,
we have

c (Yμ(A)) = c ((μId + A−1)−1) = m (μId + A−1)
= μ + m (A−1) = μ + c(A).

∎
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The following fact connects averaged operators with cocoercive mappings, and can
be directly verified.

Fact 6.2 [24, Proposition 3.4(iii)] Let T ∶ X → X be nonexpansive and α ∈ (0, 1).
Then, T is α-averaged if and only if Id − T is 1/(2α)-cocoercive.

Proposition 6.3 Let T ∶ X → X be nonexpansive. Then,

k(T) = 1
2c(Id − T) .

Proof Combine Proposition 2.3 and Fact 6.2. ∎

Corollary 6.4 Let T ∶ X → X be normally nonexpansive. Then, Id − T is a Banach
contraction with constant 2k(T).

Proof By Proposition 6.3, Id−T is cocoercive with constant 1/(2k(T)). Using the
Cauchy–Schwarz inequality, we have that Id − T is Lipschitz with constant 2k(T). The
contraction property follows by 2k(T) < 1 since T is normally nonexpansive. ∎

Remark 6.5 Lemma 2.11 can also be proved by using Corollary 6.4 and the Banach
fixed-point theorem. Indeed, given a normally nonexpansive T and for any v ∈ X, the
mapping x ↦ x − Tx + v is a Banach contraction and, therefore, has a fixed point x0.
Then, x0 = x0 − Tx0 + v which implies that Tx0 = v, therefore, T is surjective.

The following result connects the modulus of averagedness of a resolvent to the
co-coercivity of associated maximally monotone operator.

Proposition 6.6 (Modulus of averagedness via cocoercive value) Let A ∶ X ⇉ X be
maximally monotone and α > 0. Then,

k (JαA) =
1
2

α
α + c(A) .

Proof In view of Proposition 6.1(ii), it suffices to prove the case when α = 1. Note
that Y1(A) = Id−JA. By Proposition 6.1(v), c (Id−JA) = c(A) + 1. Now apply Proposi-
tion 6.3. ∎

We have the following corollary in view of Proposition 6.1(i).

Corollary 6.7 (Modulus of averagedness via monotone value) Let A ∶ X ⇉ X be
maximally monotone and α > 0. Then,

k(JαA) =
1
2

α
α + m (A−1) .

The following example illustrates our formulae in this section.

Example 6.8 Suppose that A ∶ X → X is a bounded linear operator and that A is skew,
i.e., (∀x ∈ X)⟨x , Ax⟩ = 0. Then, A is maximally monotone, and the following hold:
(i) If A ≡ 0, then c(A) = +∞. Clearly,

k(JA) = k(Id) = 0 = 1
2

1
1 +∞ .
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(ii) If A is not a zero operator, then c(A) = m(A) = m(A−1) = c(A−1) = 0. Therefore,
the formulae give k(JA) = k(JA−1) = 1/2, which coincides with Theorem 4.17
because A and A−1 is not cocoercive.

6.2 Lipschitz value

Definition 6.3 (Lipschitz value) Let T ∶ X → X. The Lipschitz value (or best Lipschitz
constant) of T is defined by

�(T) ∶= inf {L ⩾ 0 ∣ ∀x , y ∈ X , ∥Tx − Ty∥ ⩽ L∥x − y∥} .

Moreover, for a maximally monotone operator A ∶ X ⇉ X, define �(A) = +∞ if A is
not single-valued with full domain.

The following formula connects Lipschitz value with cocoercive value. Note that
we follow the convention that inf ∅ = +∞, (+∞)−1 = 0 and 0−1 = +∞.

Lemma 6.9 �(A) ⩽ [c(A)]−1.

Proof Suppose c(A) ∈ (0,+∞). Then, A is c(A)-cocoercive and, therefore,
[c(A)]−1-Lipschitz on X by the Cauchy–Schwarz inequality. Thus, �(A) ⩽ [c(A)]−1.

Suppose c(A) = +∞. It follows from Proposition 6.1(iii) that A is a constant
operator. Thus, �(A) = 0 = [c(A)]−1.

Suppose c(A) = 0. Then, �(A) ⩽ +∞ = [c(A)]−1. ∎
Fact 6.10 [6, Proposition 17.31] Let f be convex and proper on X, and suppose that
x ∈ int dom f . Then, f is Gâteaux differentiable at x ⇔ ∂ f (x) is a singleton in which
case ∂ f (x) = {∇ f (x)}.

Proposition 6.11 �(∂ f ) = [c(∂ f )]−1.

Proof Suppose c(∂ f ) ∈ (0,+∞). Then, ∂ f is singe-valued with full domain. Thus,
∂ f = ∇ f by Fact 6.10. While ∇ f is c(∂ f )-cocoercive, by applying Fact 5.1, we have
�(∇ f ) = [c(∇ f )]−1.

Suppose c(∂ f ) = +∞. Then, ∂ f is a constant operator by Proposition 6.1. Thus,
�(∂ f ) = 0 = [c(∂ f )]−1.

Suppose c(∂ f ) = 0. If ∂ f is singe-valued with full domain, then again by applying
Facts 6.10 and 5.1, we have ∂ f = ∇ f is not Lipschitz, thus �(∂ f ) = +∞ = [c(∂ f )]−1. If
∂ f is not singe-valued, or not with full domain, then �(∂ f ) = +∞ by the definition of
Lipschitz value. Thus, �(∂ f ) = +∞ = [c(∂ f )]−1. ∎

Now we are able to propose the following interesting formula for proximal opera-
tors.

Theorem 6.12 (Modulus of averagedness via Lipschitz value) Let f ∈ Γ0(X). Then,

k (P f ) =
1
2

1
1 + [�(∂ f )]−1 .

Proof By Fact 5.2, ∂ f is maximally monotone. The result follows by letting A = ∂ f
in Proposition 6.6 and combining it with Proposition 6.11. ∎

Using �(αT) = α�(T) for α > 0, we obtain the following result.
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Corollary 6.13 Let f ∈ Γ0(X) be L-smooth on X for some L > 0 and let α > 0. Then,

k (Pα f ) =
1
2

α�(∇ f )
1 + α�(∇ f ) .

The following example illustrates our formulae in this section.

Example 6.14 Let C be a nonempty closed convex set in X and C ≠ X. Consider the
distance function of C defined by dC(x) ∶ X → [−∞,+∞] ∶ x ↦ inf c∈C ∥x − c∥. Then,
for any α > 0 the following hold:

(i) k (P α
2 d2

C
) = 1

2
α

1+α .
(ii) c (Id − PC) = � (Id − PC) = 1.

(iii) P α
2 d2

C
is a bi-Lipschitz homeomorphism of X.

Proof (i): By [11, Example 6.65], P α
2 d2

C
= 1

1+α Id + α
1+α PC . Thus, we have k (P α

2 d2
C
) =

α
1+α k(PC) = 1

2
α

1+α by Lemma 4.3 and Example 2.15.
(ii): We have c (Id − PC) = 1 by Proposition 6.3 and k(PC) = 1/2. On the other

hand, since 1
2 d2

C ∈ Γ0(X) and ∇ 1
2 d2

C = Id − PC (see, e.g., [6, Corollary 12.31], we have
c (Id − PC) = � (Id − PC) = 1 by Proposition 6.11.

Consequently, Corollary 6.13 is verified by the results of (i) and (ii):

k (P α
2 d2

C
) = 1

2
α�(∇ 1

2 d2
C)

1 + α�(∇ 1
2 d2

C)
= 1

2
α�(Id − PC)

1 + α�(Id − PC)
= 1

2
α

1 + α
.

(iii): By (i), k (P α
2 d2

C
) = 1

2
α

1+α < 1
2 , i.e., P α

2 d2
C

is normally nonexpansive. The result
follows by Theorem 2.12. ∎

7 Bauschke, Bendit, & Moursi’s example generalized

The following example on the modulus of averagedness of PV PU extends [5, Example
3.5] in R

2 to a Hilbert space. Instead of using [5, Theorem 3.2], we provide a much
simpler proof.

Example 7.1 Let θ ∈ (0, π/2). In the product Hilbert space H = X × X, define

U = X × {0}, V = {(y, (tan θ)y) ∣ y ∈ X}.

Then,

k(PV PU) =
1 + cos θ
2 + cos θ

.(7.1)

Proof We have

PU = [Id 0
0 0] , and PV = [

1
1+tan2 θ Id tan θ

1+tan2 θ Id
tan θ

1+tan2 θ Id tan2 θ
1+tan2 θ Id

]

so that

PV PU = [
1

1+tan2 θ Id 0
tan θ

1+tan2 θ Id 0] .
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Put T = PV PU . Then, T is k-averaged if and only if

(∀x ∈H) ∥Tx∥2 + (1 − 2k)∥x∥2 ⩽ 2(1 − k)⟨x , Tx⟩.(7.2)

For x = (x1 , x2) with x i ∈ X, we have

Tx = ( 1
1 + tan2 θ

x1 , tan θ
1 + tan2 θ

x1), ⟨Tx , x⟩ = ∥x1∥2

1 + tan2 θ
+ tan θ

1 + tan2 θ
⟨x1 , x2⟩.

Substitute above into (7.2) to obtain

∥x1∥2

1 + tan2 θ
+ (1 − 2k)(∥x1∥2 + ∥x2∥2) ⩽ 2(1 − k)( ∥x1∥2

1 + tan2 θ
+ tan θ

1 + tan2 θ
⟨x1 , x2⟩),

which can be simplified to

(2k − 1) − tan2 θ
1 + tan2 θ

∥x1∥2 + (1 − 2k)∥x2∥2 − 2(1 − k) tan θ
1 + tan2 θ

⟨x1 , x2⟩ ⩽ 0.(7.3)

When x2 = 0, this gives (2k − 1)(− tan2 θ) ⩽ 0, so k ⩾ 1/2. If k = 1/2, this gives

(∀x1 , x2 ∈ X) − tan θ
1 + tan2 θ

⟨x1 , x2⟩ ⩽ 0,

which is impossible. Thus, k > 1/2. Dividing (7.3) by ∥x2∥2 and applying the Cauchy–
Schwarz inequality, we have

(2k − 1) tan2 θ
1 + tan2 θ

( ∥x1∥
∥x2∥

)
2

+ 2(1 − k) tan θ
1 + tan2 θ

( ± ∥x1∥
∥x2∥

) + (2k − 1) ⩾ 0.(7.4)

Substituting t = ∥x1∥/∥x2∥ into (7.4) yields

(2k − 1) tan2 θ
1 + tan2 θ

t2 + 2(1 − k) tan θ
1 + tan2 θ

(±t) + (2k − 1) ⩾ 0

which happens if and only if

(2(1 − k) tan θ
1 + tan2 θ

)
2

⩽ 4(2k − 1)2 tan2 θ
1 + tan2 θ

i.e., (1 − k)2 ⩽ (2k − 1)2(1 + tan2 θ). Taking square root both sides, we have 1 − k ⩽
(2k − 1)/ cos θ, so that k ⩾ (1 + cos θ)/(2 + cos θ). Hence,

k(T) = 1 + cos θ
2 + cos θ

.

∎
Remark 7.2 Let U , V be two closed subspaces of H. Recall that while the cosine of
Dixmier angle between U , V is defined by

cD(U , V) = sup{⟨u, v⟩ ∣ u ∈ U , v ∈ V , ∥u∥ ⩽ 1, ∥v∥ ⩽ 1},(7.5)

the cosine of the Friedrich angle between U , V is defined by

cF(U , V) = sup{⟨u, v⟩ ∣ u ∈ U ∩ (U ∩ V)⊥ , v ∈ V ∩ (U ∩ V)⊥, ∥u∥ ⩽ 1, ∥v∥ ⩽ 1}.
(7.6)
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For more details on the angle between subspaces, see [5, 16]. With U = X × {0}, V =
{(y, (tan θ)y) ∣ y ∈ X} given in Example 7.1, for θ ∈ (0, π/2), we have U ∩ V = 0 so
that (U ∩ V)⊥ =H = X × X. Then,

cD(U , V) = cF(U , V)
(7.7)

= {⟨(x , 0), (y, (tan θ)y)⟩ ∣ x ∈ X , y ∈ X , ∥x∥ ⩽ 1, ∥(y, (tan θ)y)∥ ⩽ 1}(7.8)
= {⟨x , y⟩ ∣ x ∈ X , y ∈ X , ∥x∥ ⩽ 1, ∥y∥ ⩽ cos θ} = cos θ .(7.9)

Hence, both the Dixmier and Friedrich angles between U and V are exactly θ.

Acknowledgements The authors thank the editor and an anonymous referee
for careful reading and constructive comments, especially on Example 3.18 and
Remark 6.5. Inspiring discussions with Dr. H.H. Bauschke benefited the article.

References

[1] J. B. Baillon, R. E. Bruck, and S. Reich, On the asymptotic behavior of nonexpansive mappings
and semigroups in Banach spaces. Houston J. Math. 4(1978), 1–9.

[2] J. B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés et n-cycliquement
monotones. Israel J. Math. 26(1977), 137–150.

[3] S. Bartz, M. N. Dao, and H. M. Phan, Conical averagedness and convergence analysis of fixed
point algorithms. J. Global Optim. 82(2022), 351–373.

[4] S. Bartz, H. H. Bauschke, S. M. Moffat, and X. Wang, The resolvent average of monotone
operators: dominant and recessive properties. SIAM J. Optim. 26(2016), 602–634.

[5] H. H. Bauschke, T. Bendit, and W. M. Moursi, How averaged is the composition of two linear
projections? Numer. Funct. Anal. Optim. 44(2023), 1652–1668

[6] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert
spaces. 2nd ed., Springer, Cham, 2017.

[7] H. H. Bauschke, M. N. Dao, D. Noll, and H. M. Phan, On Slater’s condition and finite
convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in
Euclidean spaces. J. Global Optim. 65(2016), 329–349.

[8] H. H. Bauschke, S. M. Moffat, and X. Wang, Firmly nonexpansive mappings and maximally
monotone operators: Correspondence and duality. Set-Valued Var. Anal. 20(2012), 131–153.

[9] H. H. Bauschke and W. M. Moursi, An introduction to convexity, optimization, and algorithms.
SIAM, Philadelphia, PA, 2023.

[10] H. H. Bauschke, W. M. Moursi, and X. Wang, Generalized monotone operators and their
averaged resolvents. Math. Program. 189(2021), 55–74.

[11] A. Beck, First-order methods in optimization. SIAM, Philadelphia, PA, 2017.
[12] J. M. Borwein and Q. J. Zhu, Techniques of variational analysis. Springer-Verlag, New York, NY,

2005.
[13] A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces. Springer, Heidelberg,

2012.
[14] P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged

operators. Optimization 53(2004), 475–504.
[15] P. L. Combettes and I. Yamada, Compositions and convex combinations of averaged

nonexpansive operators. J. Math. Anal. Appl. 425(2015), 55–70.
[16] F. Deutsch, The angle between subspaces of a Hilbert space. In: S. P. Singh (ed.), Approximation

theory, wavelets and applications, NATO ASI Series. Series C, Mathematical and Physical
Sciences, 454, Kluwer Academic Publishers Group, Dordrecht, 1995, pp. 107–130.

[17] K. Falconer, Fractal geometry: Mathematical foundations and applications. John Wiley & Sons,
Chichester, 2014.

[18] H. Luo, X. Wang, and X. Yang, Various notions of nonexpansiveness coincide for proximal
mappings of functions. SIAM J. Optim. 34(2024), 642–653.

https://doi.org/10.4153/S0008414X25101284 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101284


26 S. Song and X. Wang

[19] B. S. Mordukhovich, Variational analysis and generalized differentiation: I. Basic theory.
Springer-Verlag, Berlin, 2006.

[20] N. Ogura and I. Yamada, Non-strictly convex minimization over the fixed point set of an
asymptotically shrinking nonexpansive mapping. Numer. Funct. Anal. Optim. 23(2002), 113–137.

[21] C. Planiden and X. Wang, Strongly convex functions, Moreau envelopes, and the generic nature
of convex functions with strong minimizers. SIAM J. Optim. 26(2016), 1341–1364.

[22] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer, Berlin, 2004.
[23] W. Rudin, Functional analysis. 2nd ed., McGraw-Hill, New York, 1991.
[24] H. K. Xu, Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl.

150(2011), 360–378.

Department of Mathematics, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna,
BC, Canada
e-mail: cat688@student.ubc.ca shawn.wang@ubc.ca

https://doi.org/10.4153/S0008414X25101284 Published online by Cambridge University Press

mailto:cat688@student.ubc.ca
mailto:shawn.wang@ubc.ca
https://doi.org/10.4153/S0008414X25101284

	1 Introduction
	2 Bijective theorem
	2.1 Auxiliary results
	2.2 Bijective theorem

	3 Operator compositions and limiting operator
	3.1 Composition
	3.2 Limiting operator

	4 Resolvent
	4.1 Auxiliary results
	4.2 Characterization of normally averaged mappings

	5 Proximal operator
	6 Compute modulus of averagedness via other constants or values
	6.1 Monotone value and cocoercive value
	6.2 Lipschitz value

	7 Bauschke, Bendit, & Moursi's example generalized

