
TPLP 25 (4): 402–416, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100185 First published online 26 August 2025

402

Comparing Non-Minimal Semantics for Disjunction
in Answer Set Programming

FELICIDAD AGUADO, PEDRO CABALAR, BRAIS MUÑIZ,
GILBERTO PÉREZ and CONCEPCIÓN VIDAL

University of A Coruña, A Coruña, Spain

(e-mails: felicidad.aguado@udc.es, cabalar@udc.es, brais.mcastro@udc.es, gperez@udc.es,

concepcion.vidalm@udc.es)

submitted 24 July 2025; revised 24 July 2025; accepted 27 July 2025

Abstract

In this paper, we compare four different semantics for disjunction in Answer Set Programming
that, unlike stable models, do not adhere to the principle of model minimality. Two of these
approaches, Cabalar and Muñiz’ Justified Models and Doherty and Szalas’ Strongly Supported
Models, directly provide an alternative non-minimal semantics for disjunction. The other two,
Aguado et al’s Forks and Shen and Eiter’s Determining Inference (DI) semantics, actually intro-
duce a new disjunction connective, but are compared here as if they constituted new semantics
for the standard disjunction operator. We are able to prove that three of these approaches (Forks,
Justified Models and a reasonable relaxation of the DI-semantics) actually coincide, constituting
a common single approach under different definitions. Moreover, this common semantics always
provides a superset of the stable models of a programme (in fact, modulo any context) and is
strictly stronger than the fourth approach (Strongly Supported Models), that actually treats
disjunctions as in classical logic.

KEYWORDS: answer set programming, disjunctive logic programming, equilibrium logic, forks

1 Introduction

Answer Set Programming (ASP) Marek and Truszczyński (1999); Niemelä (1999) con-

stitutes nowadays a successful paradigm for practical Knowledge Representation and

problem solving. Great part of this success is due to the rich expressiveness of the ASP

language and its declarative semantics, based on the concept of stable models in Logic

Programming (LP) proposed by Gelfond and Lifschitz, 1988. Stable models were origi-

nally defined for normal logic programmes, but later generalised to accommodate multiple

syntactic extensions. One of the oldest of such extensions is the use of disjunction in the

rule heads Gelfond and Lifschitz (1991). Informally speaking, we may say that the exten-

sion of stable models to disjunctive logic programmes is based on an extrapolation of

model minimality . To explain this claim, let us first recall their original definition for

the non-disjunctive case. To define a stable model I of a programme P , we first obtain

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185
https://orcid.org/0000-0002-4334-9267
https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0002-9817-6666
https://orcid.org/0000-0001-6269-6101
https://orcid.org/0000-0002-5561-6406
mailto:felicidad.aguado@udc.es
mailto:cabalar@udc.es
mailto:brais.mcastro@udc.es
mailto:gperez@udc.es
mailto:concepcion.vidalm@udc.es
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068425100185&domain=pdf
https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 403

the so-called programme reduct P I , a programme that corresponds to replacing each

negative literal in P by its truth value according to I. Programme P I amounts to a set

of definite Horn clauses and the semantics for these programmes was well-established

since the origins of LP. A (consistent) definite programme always has a least model van

Emden and Kowalski (1976) that further coincides with the the least fixpoint of the

immediate consequences operator TP , a derivation function that informally corresponds

to an exhaustive application of Modus Ponens on the programme rules. A model I of P is

stable if it coincides with the least model of P I or, equivalently, the least fixpoint of TP I .

Now, once we introduce disjunction in the rule heads of P , the reduct P I need not be a

definite programme any more. As a result, there is no guarantee of a least model (we may

have several minimal ones) whereas operator TP I is not defined, since the application

of Modus Ponens may not result in the derivation of atoms.1 Therefore, two choices are

available: (i) requiring I to be one of the minimal models of P I ; or (ii) modifying the

way in which atoms in P I can be derived, with some alternative to TP I . As a simple

example, consider the disjunctive programme P(1) consisting of rules:

a∨ b a∨ c (1)

P(1) has five classical models {a}, {b, c}, {a, b}, {a, c} and {a, b, c} but only the first

two are minimal. On the other hand, even though it is a positive programme, the appli-

cation of TP(1)
is undefined and the way to extend it for disjunctive heads is unclear.

Stable models for disjunctive programmes Gelfond and Lifschitz (1991) adopt criterion

(i) based on “minimality” – it is surely the most natural option, but also introduces some

drawbacks. First, we no longer have an associated derivation method like the immediate

consequences operator used before. Second, the complexity of existence of stable model

jumps one level in the polynomial hierarchy, from NP-complete Marek and Truszczynski

(1991) for normal programmes to ΣP
2 -complete for disjunctive programmes Eiter and

Gottlob (1995).

Alternative (ii) has also been explored in the literature in various ways, leading to

different disjunctive LP semantics that do not adhere to minimality. Without trying

to be exhaustive, we study here four alternatives that, despite coming from different

perspectives, show stunning resemblances. These four approaches are (by chronological

order) the strongly supported models by Doherty and Sza�las (2015), the so-called fork

operators by Aguado et al. (2019), the determining inference (DI) semantics by Shen

and Eiter (2019) the same year, and the justified models by Cabalar and Muñiz (2024). In

the paper, we prove that the last three cases actually coincide (with a slight relaxation

of the DI-semantics), whereas strongly supported models constitute a strictly weaker

semantics.

The rest of the paper is organised as follows. The background section contains a descrip-

tion of the approach based on forks which we will take as a reference for most of the

correspondence proofs. It also contains a pair of new results (Section 2.3) about replac-

ing disjunctions by forks. Section 3 describes justified models and proceeds then to prove

that the stable models of a fork-based disjunctive programme coincide with the justified

1 It is still possible to derive sets of disjunctions of atoms Lobo et al. (1992), or sets of minimal
interpretations Fernández and Minker (1995) but these options were less explored in the ASP literature.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

F. Aguado et al.404

models of a disjunctive logic programme. In Section 4, we recall the DI-semantics and

then prove that, under certain reasonable relaxations of this approach, it also coincides

with the semantics of forks. The next section covers the case of strongly supported mod-

els, proving in this case that it constitutes a strictly weaker semantics with respect to the

other three approaches, equivalent among them. Finally, Section 6 concludes the paper.2

2 Background: overview of forks

In this section, we revisit the basic definitions for the fork operators and their denotational

semantics. This semantics is based in its turn on Equilibrium Logic Pearce (1996) and its

monotonic basis, the logic of Here-and-There (HT) Heyting (1930), which is introduced in

the first place. Then, we recall the definition of forks and some previous results that will

be used later on for the proofs of correspondence with the other approaches. Finally, we

conclude the section providing a new theorem (Th. 2) to be used later, that proves that

the replacement of a disjunction by a fork in any arbitrary disjunctive logic programme

always produces a superset of stable models.

2.1 Here-and-there and equilibrium logic

Let AT be a finite set of atoms called the alphabet or vocabulary . A (propositional)

formula ϕ is defined using the grammar:

ϕ ::= ⊥ | p |ϕ∧ϕ |ϕ∨ϕ |ϕ→ϕ

where p is an atom p∈AT . We use Greek letters ϕ, ψ, γ and their variants to stand for

formulas. We also define the derived operators (ψ←ϕ)
def
= (ϕ→ψ), ¬ϕ def

= (ϕ→⊥) and

� def
= ¬⊥. Given a formula ϕ, by AT (ϕ)⊆AT we denote the set of atoms occurring in ϕ.

A theory Γ is a finite3 set of formulas that can be also understood as their conjunction.

When a theory consists of a single formula Γ = {ϕ} we will frequently omit the braces.

An extended disjunctive rule r is an implication of the form:

p1 ∨ . . .∨ pm← pm+1 ∧ . . .∧ pn ∧¬pn+1 ∧ . . .∧¬ph ∧¬¬ph+1 ∧ . . .∧¬¬pk (2)

where all pi above are atoms in AT and 0≤m≤ n≤ h≤ k. The disjunction in the con-

sequent is called the head of r and denoted as Head(r), whereas the conjunction in

the antecedent receives the name of body of r and is denoted by Body(r). We define

the sets of atoms h(r)
def
= {p1, . . . , pm}, b+(r)

def
= {pm+1, . . . , pn}, b−(r)

def
= {pn+1, . . . , ph},

b−−(r)
def
= {ph+1, . . . , pk} and b(r)

def
= b+(r)∪ b−(r)∪ b−−(r). We say that r is an extended

normal rule if |h(r)| ≤ 1. We drop the adjective “extended” when the rule does not have

double negation. That is, when k= h we simply talk about a disjunctive rule and further

call it normal rule, if it satisfies |h(r)| ≤ 1. An empty head h(r) = ∅ represents falsum

⊥ and, when this happens, the rule is called a constraint . An empty body b(r) = ∅ is

assumed to represent � and, when this happens, we usually omit ←� simply writing

the rule head. A rule with b(r) = ∅ and |h(r)|= 1 is called a fact . A programme P is a

2 Appendices with the proofs and some previous additional definitions have been included as supplemen-
tary material.

3 In this paper, we exclusively focus on finite theories since some of the semantics are not defined for the
infinite case. We leave for future work studying which semantic relations are preserved in that case.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 405

set of rules and, when the programme is finite, we will also understand it as their con-

junction. We say that programme P belongs to a syntactic category if all its rules belong

to that category.

A classical interpretation T is a set of atoms T ⊆AT . By T |=ϕ we mean the usual

classical satisfaction of a formula ϕ. Moreover, we write M(ϕ) to stand for the set of

classical models of ϕ. An HT-interpretation is a pair 〈H, T 〉 (respectively called “here”

and “there”) of sets of atoms H ⊆ T ⊆AT ; it is said to be total when H = T . Intuitively,

an atom p is considered false, when p �∈ T , or true when p∈ T , but the latter has two

cases: it may be certainly true when p∈H or just assumed true when p∈ T \H. An

interpretation 〈H, T 〉 satisfies a formula ϕ, written 〈H, T 〉 |=ϕ, when the following

recursive rules hold:

• 〈H, T 〉 �|=⊥
• 〈H, T 〉 |= p if p∈H
• 〈H, T 〉 |=ϕ∧ ψ if 〈H, T 〉 |=ϕ and 〈H, T 〉 |=ψ

• 〈H, T 〉 |=ϕ∨ ψ if〈H, T 〉 |=ϕ or 〈H, T 〉 |=ψ

• 〈H, T 〉 |=ϕ→ψ if both (i) T |=ϕ→ψ, and (ii) 〈H, T 〉 �|=ϕ or 〈H, T 〉 |=ψ

An HT-interpretation 〈H, T 〉 is a model of a theory Γ if 〈H, T 〉 |=ϕ for all ϕ∈ Γ. Two

formulas (or theories) ϕ and ψ are HT-equivalent, written ϕ≡ψ, if they have the same

HT-models.

A total interpretation 〈 T, T 〉 is an equilibrium model of a formula ϕ iff 〈 T, T 〉 |=ϕ

and there is no H ⊂ T such that 〈H, T 〉 |=ϕ. If so, we say that T is a stable model of ϕ

and we write SM(ϕ) to stand for the set of stable models of ϕ.

2.2 Forks

A fork F is defined by the following grammar:

F ::=⊥ | p | (F | F) | F ∧ F |ϕ∨ϕ |ϕ→ F

where ϕ is a propositional formula over AT and p∈AT is an atom. It can be proved,

by structural induction, that any propositional formula ϕ is a fork. Note that a fork is

not allowed as an argument of a disjunction nor as the antecedent of an implication.

The intuition of this new connective “|” is that the stable models of a fork such as

(ϕ1 | . . . |ϕn) – in fact, all forks are reducible to this form – will be the union of stable

models of each ϕi. The formal semantics of forks is based on the idea of denotations (sets

of models) we define next in several steps.

Given a set of atoms T ⊆AT , a T -support H⊆ 2T is a set of subsets of T so that, if

H �= ∅, then T ∈H. Given a propositional formula ϕ, the set of sets of atoms {H ⊆ T |
〈H, T 〉 |=ϕ} forms a T -support we denote as [[ϕ]]T . For readability sake, we directly

write a T -support as a sequence of sets between square braces: for instance, some possible

supports for T = {a, b} are [{a, b} {a}], [{a, b} {b} ∅] or the empty support []. Given two

T -supports, H and H′, we define the order relation H�H′ iff either H= [] or [] �=
H′ ⊆H, read as H is “less supported” than H′. Intuitively, this means that H′ is closer

to make T a stable model than H. Given a T -support H, we define its complementary

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

F. Aguado et al.406

support H as:

H def
=

{
[] if H= 2T

[T]∪ {H ⊆ T |H /∈H} otherwise.

The ideal of H is defined as ↓H= {H′ | H′ �H} \ { [] }. Note that, the empty support

[] is not included in the ideal, so ↓[] = ∅. If Δ is any set of supports, we use its �-closure:

↓Δ def
=

⋃
H∈Δ

↓H=
⋃

H∈Δ

{H′ �H |H′ �= [] }.

We define a T -view Δ as any �-closed set of T -supports, that is, ↓Δ = Δ. Given a T -view

Δ, we write H ∈̂Δ iff H∈Δ or both H= [] and Δ = ∅.
Definition 1

(T -denotation). Let AT be a propositional signature and T ⊆AT a set of atoms.

The T -denotation of a fork or a propositional formula F , written 〈〈 F 〉〉T , is a T -view

recursively defined as follows:

〈〈 ⊥ 〉〉T def
= ∅

〈〈 p 〉〉T def
= ↓[[p]]T for any atom p

〈〈 F ∧G 〉〉T def
= ↓{H ∩H′ | H ∈ 〈〈 F 〉〉T and H′ ∈ 〈〈G 〉〉T }

〈〈ϕ∨ ψ 〉〉T def
= ↓{H ∪H′ | H ∈̂ 〈〈ϕ 〉〉T and H′ ∈̂ 〈〈 ψ 〉〉T }

〈〈ϕ→ F 〉〉T def
=

{ {2T } if [[ϕ]]T = []
↓{ [[ϕ]]T ∪H |H ∈ 〈〈 F 〉〉T } otherwise

〈〈 F |G 〉〉T def
= 〈〈 F 〉〉T ∪ 〈〈G 〉〉T

where F , G denote forks or propositional formulas.

We say that T is a stable model of a fork F when 〈〈 F 〉〉T = ↓[T] or, equivalently, when

[T]∈ 〈〈 F 〉〉T . The set SM(F) collects all the stable models of F .

Definition 2

(Strong Entailment/Equivalence of forks). We say that fork F strongly entails fork G,

in symbols F |∼G, if SM(F ∧L)⊆ SM(G∧L), for any fork L. We further say that

F and G are strongly equivalent, in symbols F ∼=G if both F |∼G and G |∼ F , that is,

SM(F ∧L) = SM(G∧L), for any fork L.

Interestingly, Aguado et al. (2019) (Prop. 11) proved that F |∼G is equivalent to

〈〈 F 〉〉T ⊆ 〈〈G 〉〉T , for every set of atoms T ⊆AT and, thus, F ∼=G amounts to 〈〈 F 〉〉T =

〈〈G 〉〉T , for every T . Other properties proved by Aguado et al. (2019) we will use below

are:

(F |G) |L ∼= F | (G |L) (3)

(F |G)∧L ∼= (F ∧L) | (G∧L) (4)

SM(F |G) = SM(F)∪ SM(G) (5)

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 407

Example 1.

Consider the fork:

(a | b)∧ (a | c) (6)

We can apply distributivity (4) and associativity (3) to conclude that (6) is actually

strongly equivalent to:

a∧ a | a∧ c | b∧ a | b∧ c
which is a fork built with 4 propositional formulas. By (5), the stable models of this

fork are the union of stable models of these 4 formulas, namely, {a}, {a, c}, {a, b}
and {b, c}.

We conclude this section introducing the polynomial reduction of any fork F into a

propositional formula pf (F) by Aguado et al. (2022) that may help for a better under-

standing of the behaviour of forks, and is used in the proof of Theorem 4 later on. For

simplicity, we constrained here pf (F) to the case in which F has the form P | for some

extended disjunctive programme P , using less definitions and getting pf (F) in the form

of a disjunctive logic programme.

Definition 3.

Let P be some extended disjunctive logic programme. For each r ∈ P we define pf (r|)
as: pf (r|) def

= r if r is an extended normal rule, that is |h(r)| ≤ 1; otherwise, given h(r) =

{p1, . . . , pm}:

pf (r|) def
= (x1 ∨ . . .∨ xm←Body(r)) ∧

m∧
i=1

(pi← xi)

for a set of fresh propositional atoms x1, . . . , xm.

We also define pf (P |) def
=

∧
r∈P pf (r|). For example, pf (P

|
(1)) is the conjunction of:

x1 ∨ x2 a← x1 b← x2 y1 ∨ y2 a← y1 c← y2

Theorem 1

(From Main Theorem Aguado et al. (2022)). Let P be an extended logic programme.

P | and pf (P |) are strongly equivalent, modulo alphabet AT (P).

2.3 Replacing disjunctions by forks

As expected, the definition of stable models for forks is a proper extension of stable models

for propositional theories (or if preferred, equilibrium models Pearce (1996)) and so, in its

turn, it also applies to the more restricted syntax of logic programmes with disjunction

Gelfond and Lifschitz (1991). This means that disjunction ”∨” in logic programmes

respects the principle of minimality. For instance, under this definition we still have the

same two stable models for programme P(1), namely, SM(P(1)) = {{a}, {b, c}}. However,

minimality is lost if we replace ”∨” by ”|,” as illustrated next.

For any disjunctive rule r, let us denote by r| the fork obtained by substituting in

h(r) the operator ”∨” by ”|” and let P | def
=

∧
r∈P r

| for any programme P as expected.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

F. Aguado et al.408

For instance, the fork P
|
(1) would correspond to (6) in Example 1 whose stable models

were {a}, {b, c}, {a, b} and {a, c} – the last two are not minimal whereas the first two

coincide with SM(P(1)). The main result in this section proves that the replacement of

regular disjunctions by forks in any rule r always produces a superset of stable models,

even if that rule is included in a larger arbitrary context. Namely, we have the strong

entailment relation r |∼ r|.
Theorem 2.

Let ϕ and α1, . . . , αn be propositional formulas with n≥ 1. Then:

ϕ→ (α1 ∨ · · · ∨ αn) |∼ ϕ→ (α1 | · · · | αn)

Since strong entailment allows us to proceed rule by rule, we conclude:

Corollary 1.

Let P be any extended disjunctive logic programme, then P |∼ P |.

As a result, a disjunctive programme that has no stable models may restore coherence

(existence of stable model) if we replace disjunctions by forks. Take the following example

(adapted from Ex. 1 by Shen and Eiter (2019)).

Example 2.

Consider the programme P(7) consisting of the three rules:

a∨ b a b←¬b (7)

Disjunction a∨ b is redundant and can be removed, because it is an HT-consequence of

a. But once a∨ b disappears, it is clear that b←¬b prevents obtaining any stable model.

Yet, if we change the disjunction in a∨ b by a fork, we can restore coherence. The fork

P
|
(7) corresponds to:

(a | b)∧ a∧ (¬b→ b)
∼= (a | b)∧ a∧¬¬b HT-equivalence
∼= (a∧ a∧¬¬b) | (b∧ a∧¬¬b) by distributivity (4)
∼= (a∧¬¬b) | (a∧ b) HT-equivalence

and then SM(P(7)) = SM(a∧¬¬b)∪ SM(a∧ b) = ∅ ∪ {{a, b}}= {{a, b}}, so P
|
(7) has a

unique stable model {a, b}.

3 Justified models

We proceed now to compare the forks semantics with justified models Cabalar and Muñiz

(2024). This approach was originally introduced to provide a definition of explanations

for the stable models of a logic programme. Such explanations have the form of graphs

built with rule labels and reflect the derivation of atoms in the model. A classical model

of a logic programme is said to be justified if it admits at least one of these explanation

graphs. In the case of normal logic programmes, justified and stable models coincide, but

Cabalar and Muñiz (2024) observed that, when the programme is disjunctive, it may

have more justified models than stable models. In other words, although every stable

model of a disjunctive programme admits an explanation, we may have classical models

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 409

of the programme that admit an explanation but are not stable, breaking the principle

of minimality in many cases. In this way, justified models provide a weaker semantics

for disjunctive programmes that, as we will see, actually coincides with the behaviour of

fork-based disjunction. Let us start recalling some basic definitions, examples and results

by Cabalar and Muñiz (2024).

Definition 4

(Labelled logic programme). A labelled rule r is an expression of the form �:(2) where (2)

is any extended disjunctive rule and � is the rule label, we will also denote as Lb(r) = �.

A labelled logic programme P is a set of labelled rules that has no repeated labels, that is,

for any pair of different rules r, r′ ∈ P , Lb(r) �= Lb(r′).

If r is a labelled rule, we keep the definitions of the formulas Body(r) and Head(r)

and sets of atoms h(r), b(r), b+(r), b−(r) and b−−(r) as before, that is, ignoring the

additional label. Similarly, if P is a labelled logic programme, P | denotes the fork that

results from removing the labels and, as before, replacing disjunctions ∨ by |. A set of

atoms I is a classical model of a labelled rule r iff I |= Body(r)→Head(r) in classical

logic. Given a labelled logic programme P , by Lb(P) we denote the set of labels of the

programme Lb(P)
def
= {Lb(r) | r ∈ P}. Note that no label is repeated, but P can contain

two rules r, r′ with the same body and head and different labels Lb(r) �= Lb(r′). For

instance, we could have two repeated facts with different labels �1 : p and �2 : p possibly

representing two different and simultaneously applicable sources of information.

Definition 5

(Support Graph/Explanation). Let P be a labelled programme and I a classical model

of P . A support graph G of I under P is a labelled directed graph G= 〈 I, E, λ 〉 where
the vertices are the atoms in I, the (directed) edges E ⊆ I × I connect pairs of atoms,

and λ : I→Lb(P) is an injective function that assigns a label for every atom p∈ I so

that: if r ∈ P is the rule with Lb(r) = λ(p) then p∈ h(r), I |= Body(r) and b+(r) = {q |
(q, p)∈E}. A support graph G is said to be an explanation if it additionally satisfies

that G is acyclic.

The fact that λ is injective guarantees that there are no repeated labels in the graph.

Additionally, the definition tells us that if an atom p is labelled with λ(p) = � then � must

be the label of some rule r where (1) p occurs in the head, (2) the body of the rule is

satisfied by I and (3) the incoming edges for p are formed from the atoms in the positive

body of r. Since an explanation G= 〈 I, E, λ 〉 for a model I is uniquely determined by

its atom labelling λ, we can abbreviate G as a set of pairs p �→ λ(p) for p∈ I.

Definition 6

(Supported/Justified model). Let I be classical model of a labelled programme P , I |= P .

Then, I is said to be a (graph-based) supported model of P if there exists some support

graph of I under P , and is further said to be a justified model of P if there exists

some explanation (i.e. acyclic support graph) of I under P . Sets SPM (P) and JM (P)

respectively stand for the (graph-based) supported and justified models of P .

We can also define SPM (P) and JM (P) for any non-labelled programme P by assum-

ing we previously label each rule in P with a unique arbitrary identifier. Note that

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

F. Aguado et al.410

different labels produce different explanations, but the definition of justified/supported

model is not affected by that.

Theorem 3

(Th. 1 and Th. 2 from Cabalar and Muñiz (2024)). If P is a labelled disjunctive pro-

gramme, then: SM(P)⊆ JM (P). Moreover, if P contains no disjunction, then SM(P) =

JM (P).

However, if we allow disjunction, we may have justified models that are not stable

models, as illustrated below.

Example 3.

Let P(8) be the following labelled version of P(1):

�1 : a∨ b �2 : a∨ c (8)

The classical models of P(8) are {a}, {a, b}, {a, c}, {b, c}, {a, b, c}. The last one,

{a, b, c}, is not justified, since we would need three different labels and we only have

two rules. Each model {a, c}, {a, b}, {b, c} has a unique explanation corresponding to the

atom labellings {a �→ �1, c �→ �2}, {b �→ �1, a �→ �2} and {b �→ �1, c �→ �2}, respectively. On

the other hand, model {a} has two possible explanations, corresponding to {a �→ �1} and
{a �→ �2}. To sum up, we get four justified models, {a, c}, {a, b}, {b, c} and {a} but only
two of them are stable, {a} and {b, c}.

In other words, the justified models of P(8) coincide with the stable models of its fork

version P
|
(8) = P

|
(1) = (6) seen before. This is in fact, a general property that constitutes

the main result of this section.

Theorem 4.

JM (P) = SM(P |) for any labelled disjunctive logic programme P .

Supported models SPM (P) correspond to the case in which we also accept cyclic expla-

nation graphs. Obviously, JM (P)⊆ SPM (P), because all acyclic explanations are still

acceptable for SPM (P). Cabalar and Muñiz (2024) also proved that SPM (P) generalise

the standard notion of supported models – that is models of Clark’s completion Clark

(1978) – to the disjunctive case. For instance, the programme P(9) consisting of the rule:

�1 : p← p (9)

has two supported models, I = ∅ (which is also stable and justified) and I = {p} with a

cyclic support graph where node p is connected to itself. As a remark, notice that the

definition of our “graph-based” supported models Cabalar and Muñiz (2023) does not

correspond to the (also called) supported models obtained from the programme comple-

tion defined by Alviano and Dodaro (2016) for disjunctive programmes. The latter, we

denote AD(P), impose a stronger condition: a rule r supports an atom p∈Hd(r) with

respect to interpretation I not only if I |= Body(r) but also I �|= q for all q ∈Hd(r) \ p.
To illustrate the difference, take programme P(8): as it has no cyclic dependencies,

graph-based supported and justified models coincide, that is, SPM (P(8)) = JM (P(8)) =

{{a}, {a, b}, {a, c}, {b, c}} we saw before. However, AD(P(8)) = {{a}, {b, c}} that, in this

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 411

case, coincide with the stable models of the programme. Model {a, b} is supported (under

Def, 6) because a is justified by rule �1 and b by rule �2. However, under Alviano and

Dodaro’s definition, rule �1 is not a valid support for a since we would further need b

(the other atom in the disjunction �1) to be false. The situation for model {a, c} is anal-

ogous. It is not hard to see that SM(P) �AD(P) � SPM (P) (the first inclusion proved

by Alviano and Dodaro (2016)), so clearly, AD(P) is more interesting for computation

purposes when our goal is approximating SM(P). However, SPM (P) provides a more lib-

eral generalisation of the definition of supported model from normal logic programmes:

as in that case, I is a supported model of P if, for every atom p∈ I, there exists some

rule r with p “in the head” and I |= Body(r). This definition has also a closer relation to

JM (P) and explanation generation or to the DI-semantics (as we see in Theorem 8 in

the next section).

4 Determining inference

The third approach we consider, DI Shen and Eiter (2019), also introduces a new dis-

junction operator in rule heads, with the same syntax as forks “|”. Besides, first-order

formulas are allowed to play the role of atoms, and so, the syntax accepts regular dis-

junction “∨” too. However, in this paper (for the sake of comparison) we describe the

DI-semantics directly on the syntax of extended disjunctive rules of the form (2) seen

before,4 using “∨” to play the role of the DI disjunctive operator.

The DI-semantics understands disjunction as a non-deterministic choice and is based

on the definition of a head selection function. This function will tell us, beforehand, which

head atom will be chosen if we have to apply a rule for derivation. We introduce next a

slight generalisation of that definition.

Definition 7

(Open/Closed Head Selection Function). Let P be an extended disjunctive logic pro-

gramme and I ⊆AT an interpretation. A head selection function sel for I and some

r ∈ P is a formula:

sel(Head(r), I)
def
=

{⊥ if h(r)∩ I = ∅
pi otherwise, for some pi ∈ h(r)∩ I

We say that sel is closed if sel(Head(r), I) = sel(Head(r′), I) for any pair of rules r, r′

with the same head atoms h(r) = h(r′). If this restriction does not apply, we just say that

sel is open.

The original definition by Shen and Eiter (2019) (Def. 4) corresponds to what we call

here closed selection function and forces the same choice when two rule heads are formed

by the same set of atoms.

The reduct of a programme P with respect to some interpretation I and selection

function sel is defined as the logic programme P I
sel

def
= { sel(Head(r), I)←Body(r) | I |=

Body(r) }. Note that P I
sel is an extended normal logic programme (possibly containing

4 To be precise, Shen and Eiter (2019) treat double negation classically, whereas here, we take the liberty
to keep doubly negated atoms in the body and interpret them as in Equilibrium Logic.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

F. Aguado et al.412

constraints) where we replaced each disjunction by the atom determined by the selection

function sel.

Definition 8

(Candidate stable model). A classical model I of a an extended disjunctive logic pro-

gramme P is said to be a candidate stable model5 if there exists a selection function sel

such that I ∈ SM(P I
sel). We further say that I is closed if sel is closed. By CSM (P), we

denote the set of candidate stable models of P .

To understand the difference between closed and open selection functions, take the

following programme P(10):

p ⊥← c a∨ b b∨ a← p (10)

The set CSM (P(10)) consists of {p, a}, {p, b} and {p, a, b}, but only the first two models

are closed, since they make the same choice in both disjunctions a∨ b and b∨ a that

have the same atoms. Note that this condition is rather syntax-dependent: if we replace

b∨ a← p by the rule b∨ a∨ c← p, then open candidate stable models are not affected

(c must be false due to constraint ⊥← c) but {p, a, b} becomes now a closed candidate

stable model, since the sets of atoms in a∨ b and b∨ a∨ c are different.

A DI-stable model I of a programme P is a model that is minimal among the closed

candidate stable models (Def. 7 by Shen and Eiter (2019)). Thus, DI-semantics actually

imposes an additional minimality condition. However, if we focus on the previous step,

CSM (P), we can prove that they coincide with SM(P |) and, by Theorem 4, with JM (P)

too.

Theorem 5.

CSM (P) = SM(P |) for any extended disjunctive logic programme P .

We conclude this section by proving that the decision problem CSM (P) �= ∅ is NP-

complete, recalling the following complexity result proved by Shen and Eiter (2019)

Proposition 6

(From Table 1 by Shen and Eiter (2019)). Deciding the existence of a DI-stable model

for a disjunctive programme, under the well-justified semantics Shen et al. (2014), is an

NP-complete problem.

Theorem 7.

Given an extended disjunctive logic programme P , deciding CSM (P) �= ∅ is an NP-

complete problem.

As one last result in this section, we provide an alternative characterisation of the

supported models from Def. 6 using DI-semantics. For normal logic programmes, I is a

supported model of P if, for every atom p∈ I, there exists some rule r with p in the head

and I |= Body(r). Alternatively, supported models can also be captured as the fixpoints

of the immediate consequences van Emden and Kowalski (1976) operator TP
def
= {p | (p←

B)∈ P, I |=B}, namely, I is a supported model of P iff I = TP (I). We can extend this

relation for disjunctive logic programmes as follows.

5 Or candidate answer set in the original terminology Shen and Eiter (2019).

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 413

Theorem 8.

Let P be a labelled programme and I a classical model of P . The following assertions

are equivalent:

1. I ∈ SPM (P)

2. TP I
sel

(I) = I for some head selection function sel.

5 Strongly supported models

For our last comparison, we consider strongly supported models by Doherty and Sza�las

(2015):

Definition 9

(Strongly Supported Models6). A model T of an extended disjunctive logic programme

P is a strongly supported model of P if there exists a sequence of interpretations

H0 ⊆H1 ⊆ . . .⊆Hn = T such that

1. For i= 0: H0 ∩ h(r) �= ∅ for all r ∈ P with b(r) = ∅. For i≥ 1: Hi ∩ h(r) �= ∅ for all

r ∈ P with7 〈Hi−1, T 〉 |= Body(r).

2. For each i≥ 0: Hi only contains atoms obtained by applying point 1, that is, if

p∈Hi then p∈ h(r) for some rule r mentioned in point 1.

We denote the set of strongly supported models of P as SSM (P).

Doherty and Sza�las (2015) (Th. 1) proved that the stable models of P , SM(P), coin-

cide with the minimal elements of SSM (P) and, furthermore, SM(P) = SSM (P) when P

has no disjunction. However, in general, the SSM semantics makes disjunction to behave

classically. For instance, from Def. 6 above, we can easily observe that, if P is a set of

disjunctions of atoms, then SSM (P) =M(P). As a result, since (1) is a pair of disjunc-

tions, SSM (P(1)) =M(P(1)) that is the five classical models {a}, {a, b}, {a, c}, {b, c} and

{a, b, c} mentioned before. Note that CSM did not accept {a, b, c}, pointing our that it

is a stronger semantics, as corroborated next:

Theorem 9.

CSM (P)⊆ SSM (P) for any extended disjunctive logic programme P .

To conclude this section, we observe that, despite their name similarity, supported

SPM (P) and strongly supported models SSM (P) are unrelated. To prove SPM (P) �⊆
SSM (P), just take the programme P(9) with no disjunctions, so that SSM (P) = SM(P) =

{∅}. However, {p} ∈ SPM (P) as we discussed before. To prove SSM (P) �⊆ SPM (P) we

already saw that {a, b, c} ∈ SSM (P(1)) \ JM (P(1)). But, since P(1) has no implications,

the support graphs contain no edges, so that acyclicity is irrelevant meaning JM (P(1)) =

SPM (P(1)).

6 We use Def. 4 by Doherty et al. (2016) but adjusting H0 as in Def. 11 by Doherty and Sza�las (2015).
7 The original definition is not given in terms of HT-satisfaction, but it uses a definition involving pairs

of sets of atoms that is completely equivalent, for the syntactic fragment of logic programmes.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

F. Aguado et al.414

Fig 1. Inclusion relations among several semantics for disjunctive logic programmes.

6 Conclusions

We have studied four different semantics for any disjunctive logic programme P in

ASP that, unlike the standard stable models SM(P) do not adhere to the principle

of model minimality. These four approaches are: forks Aguado et al. (2019) here denoted

as SM(P |); justified models Cabalar and Muñiz (2024) JM (P); (a relaxed version of)

DI Shen and Eiter (2019) we denoted CSM (P); and strongly supported models SSM (P)

Doherty and Sza�las (2015). The summary of our results is shown in Figure 1, where

M(P) represents the classical models of P and SPM (P) an extension of supported mod-

els for the disjunctive case Cabalar and Muñiz (2024). Interestingly, the three semantics

SM(P |), JM (P) and CSM (P) coincide, although their definitions come from rather

different approaches, showing that they may capture a significant way to understand

disjunction in ASP, removing minimality and keeping the computational complexity of

existence of stable model as an NP-complete problem.

For future work, we plan to study other alternatives. For instance, one reviewer sug-

gested replacing disjunctions by choice rules Simons et al. (2002) so that each disjunctive

rule of the form p1 ∨ . . .∨ pm←Body becomes the choice rule 1{p1, . . . , pm}←Body and

the rest of rules are left untouched. The behaviour of this replacement produces similar

results to SSM (P) and we plan to study a formal (dis)proof of this coincidence for future

work.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/

S1471068425100185.

Acknowledgements

We wish to thank the anonymous reviewers for their useful comments that have helped

to improve the paper and, especially, for refuting an incorrect proof of a result included

in a previous version of the document. This research was partially funded by the Spanish

Ministry of Science, Innovation and Universities, MICIU/AEI/ 10.13039/501100011033,

grant PID2023-148531NB-I00, Spain.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185
https://doi.org/10.1017/S1471068425100185
https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 415

References

Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G. and Vidal, C. 2022.
A polynomial reduction of forks into logic programs. Artificial Intelligence 308, 103712.

Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G. and Vidal, C. 2019.
Forgetting auxiliary atoms in forks. Artificial Intelligence 275, 575–601.

Alviano, M. and Dodaro, C. 2016. Completion of disjunctive logic programs. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9–15 July 2016, Kambhampati, S., Ed. IJCAI/AAAI Press, New York, NY,
USA, 886–892.

Cabalar, P. and Muñiz, B. 2023. Explanation graphs for stable models of labelled logic
programs. In Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP’23), CEUR-WS.org, CEUR Workshop Proceedings, Vol. 3437.

Cabalar, P. and Muñiz, B. 2024. Model explanation via support graphs. Theory and Practice
of Logic Programming 24, 6, 1109–1122.

Clark, K. L. (1978) Negation as failure. In Logic and Databases, H. Gallaire and J. Minker,
Eds. Plenum, 293–322.

Doherty, P., Kvarnström, J. and Szalas, A. 2016. Iteratively-supported formulas and
strongly supported models for kleene answer set programs - (extended abstract). In Logics in
Artificial Intelligence - 15th European Conference, JELIA 2016, Larnaca, Cyprus, November
9–11, 2016, Proceedings, L. Michael and A. C. Kakas, Eds. Lecture Notes in Computer Science,
Springer, Vol. 10021, 536–542.

Doherty, P. and Sza�las, A. 2015. Stability, Supportedness, Minimality and Kleene Answer Set
Programs. Springer International Publishing, Cham, 125–140.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15, 289–323.

Fernández, J. and Minker, J. 1995. Bottom-up computation of perfect models for disjunctive
theories. The Journal of Logic Programming 25, 1, 33–51.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proc. of the 5th International Conference on Logic Programming (ICLP’88), MIT Press,
Cambridge, MA, USA, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385.

Heyting, A. 1930. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse, 42–56.

Lobo, J., Minker, J. and Rajasekar, A. (1992) Foundations of disjunctive logic programming.
In Logic Programming. MIT Press.

Marek, V. and Truszczyński, M. 1999. Stable Models and an Alternative Logic Programming
Paradigm. Springer-Verlag, 169–181.

Marek, V. W. and Truszczynski, M. 1991. Autoepistemic logic. Journal of the ACM 38, 3,
588–619.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

Pearce, D. 1996. A new logical characterisation of stable models and answer sets. In Proc.
of Non-Monotonic Extensions of Logic Programming (NMELP’96), Springer, Bad Honnef,
Germany, 57–70.

Shen, Y.-D. and Eiter, T. 2019. Determining inference semantics for disjunctive logic programs.
Artificial Intelligence 277, 103–165.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

F. Aguado et al.416

Shen, Y.-D., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T. and Deng, J.
2014. FLP answer set semantics without circular justifications for general logic programs.
Artificial Intelligence 213, 1–41.

Simons, P., Niemelä, I. and Soininen, T. (2002) Extending and implementing the stable
model semantics. Artificial Intelligence 138, 181–234. Knowledge Representation and Logic
Programming

Van Emden, M. H. and Kowalski, R. A. 1976. The semantics of predicate logic as a
programming language. Journal of the ACM 23, 733–742.

https://doi.org/10.1017/S1471068425100185 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100185

	Introduction
	Background: overview of forks
	Here-and-there and equilibrium logic
	Forks
	Replacing disjunctions by forks

	Justified models
	Determining inference
	Strongly supported models
	Conclusions
	References

