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Abstract

In this paper, we compare four different semantics for disjunction in Answer Set Programming
that, unlike stable models, do not adhere to the principle of model minimality. Two of these
approaches, Cabalar and Muniz’ Justified Models and Doherty and Szalas’ Strongly Supported
Models, directly provide an alternative non-minimal semantics for disjunction. The other two,
Aguado et al’s Forks and Shen and Eiter’s Determining Inference (DI) semantics, actually intro-
duce a new disjunction connective, but are compared here as if they constituted new semantics
for the standard disjunction operator. We are able to prove that three of these approaches (Forks,
Justified Models and a reasonable relaxation of the DI-semantics) actually coincide, constituting
a common single approach under different definitions. Moreover, this common semantics always
provides a superset of the stable models of a programme (in fact, modulo any context) and is
strictly stronger than the fourth approach (Strongly Supported Models), that actually treats
disjunctions as in classical logic.

KEYWORDS: answer set programming, disjunctive logic programming, equilibrium logic, forks

1 Introduction

Answer Set Programming (ASP) Marek and Truszczyriski (1999); Niemeld (1999) con-
stitutes nowadays a successful paradigm for practical Knowledge Representation and
problem solving. Great part of this success is due to the rich expressiveness of the ASP
language and its declarative semantics, based on the concept of stable models in Logic
Programming (LP) proposed by Gelfond and Lifschitz, 1988. Stable models were origi-
nally defined for normal logic programmes, but later generalised to accommodate multiple
syntactic extensions. One of the oldest of such extensions is the use of disjunction in the
rule heads Gelfond and Lifschitz (1991). Informally speaking, we may say that the exten-
sion of stable models to disjunctive logic programmes is based on an extrapolation of
model minimality. To explain this claim, let us first recall their original definition for
the non-disjunctive case. To define a stable model I of a programme P, we first obtain

()]

Check f
https://doi.org/10.1017/51471068425100185 Published online by Cambridge University Press Updates.


https://doi.org/10.1017/S1471068425100185
https://orcid.org/0000-0002-4334-9267
https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0002-9817-6666
https://orcid.org/0000-0001-6269-6101
https://orcid.org/0000-0002-5561-6406
mailto:felicidad.aguado@udc.es
mailto:cabalar@udc.es
mailto:brais.mcastro@udc.es
mailto:gperez@udc.es
mailto:concepcion.vidalm@udc.es
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068425100185&domain=pdf
https://doi.org/10.1017/S1471068425100185

Comparing Non-Minimal Semantics for Disjunction in ASP 403

the so-called programme reduct P’, a programme that corresponds to replacing each
negative literal in P by its truth value according to I. Programme P! amounts to a set
of definite Horn clauses and the semantics for these programmes was well-established
since the origins of LP. A (consistent) definite programme always has a least model van
Emden and Kowalski (1976) that further coincides with the the least fixpoint of the
immediate consequences operator Tp, a derivation function that informally corresponds
to an exhaustive application of Modus Ponens on the programme rules. A model I of P is
stable if it coincides with the least model of P! or, equivalently, the least fixpoint of Tpr.
Now, once we introduce disjunction in the rule heads of P, the reduct P! need not be a
definite programme any more. As a result, there is no guarantee of a least model (we may
have several minimal ones) whereas operator Tpr is not defined, since the application
of Modus Ponens may not result in the derivation of atoms.! Therefore, two choices are
available: (i) requiring I to be one of the minimal models of P'; or (ii) modifying the
way in which atoms in P! can be derived, with some alternative to Tp:. As a simple
example, consider the disjunctive programme F(;) consisting of rules:

aVb aVe (1)

Py has five classical models {a}, {b,c}, {a, b}, {a,c} and {a,b, c} but only the first
two are minimal. On the other hand, even though it is a positive programme, the appli-
cation of Tp,, is undefined and the way to extend it for disjunctive heads is unclear.
Stable models for disjunctive programmes Gelfond and Lifschitz (1991) adopt criterion
(i) based on “minimality” — it is surely the most natural option, but also introduces some
drawbacks. First, we no longer have an associated derivation method like the immediate
consequences operator used before. Second, the complexity of existence of stable model
jumps one level in the polynomial hierarchy, from NP-complete Marek and Truszczynski
(1991) for normal programmes to X4'-complete for disjunctive programmes Eiter and
Gottlob (1995).

Alternative (ii) has also been explored in the literature in various ways, leading to
different disjunctive LP semantics that do not adhere to minimality. Without trying
to be exhaustive, we study here four alternatives that, despite coming from different
perspectives, show stunning resemblances. These four approaches are (by chronological
order) the strongly supported models by Doherty and Szalas (2015), the so-called fork
operators by Aguado et al. (2019), the determining inference (DI) semantics by Shen
and Eiter (2019) the same year, and the justified models by Cabalar and Muniz (2024). In
the paper, we prove that the last three cases actually coincide (with a slight relaxation
of the DI-semantics), whereas strongly supported models constitute a strictly weaker
semantics.

The rest of the paper is organised as follows. The background section contains a descrip-
tion of the approach based on forks which we will take as a reference for most of the
correspondence proofs. It also contains a pair of new results (Section 2.3) about replac-
ing disjunctions by forks. Section 3 describes justified models and proceeds then to prove
that the stable models of a fork-based disjunctive programme coincide with the justified

L1t is still possible to derive sets of disjunctions of atoms Lobo et al. (1992), or sets of minimal
interpretations Ferndndez and Minker (1995) but these options were less explored in the ASP literature.
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models of a disjunctive logic programme. In Section 4, we recall the DI-semantics and
then prove that, under certain reasonable relaxations of this approach, it also coincides
with the semantics of forks. The next section covers the case of strongly supported mod-
els, proving in this case that it constitutes a strictly weaker semantics with respect to the
other three approaches, equivalent among them. Finally, Section 6 concludes the paper.?

2 Background: overview of forks

In this section, we revisit the basic definitions for the fork operators and their denotational
semantics. This semantics is based in its turn on Equilibrium Logic Pearce (1996) and its
monotonic basis, the logic of Here-and-There (HT) Heyting (1930), which is introduced in
the first place. Then, we recall the definition of forks and some previous results that will
be used later on for the proofs of correspondence with the other approaches. Finally, we
conclude the section providing a new theorem (Th. 2) to be used later, that proves that
the replacement of a disjunction by a fork in any arbitrary disjunctive logic programme
always produces a superset of stable models.

2.1 Here-and-there and equilibrium logic

Let AT be a finite set of atoms called the alphabet or vocabulary. A (propositional)
formula ¢ is defined using the grammar:

e o= LlplergloVelp—e
where p is an atom p € AT. We use Greek letters ¢, 1, v and their variants to stand for

formulas. We also define the derived operators (1 < @) = (¢ =), =9 = (¢ — L) and
T = — L. Given a formula ¢, by AT () C AT we denote the set of atoms occurring in .
A theory T is a finite® set of formulas that can be also understood as their conjunction.
When a theory consists of a single formula I' = {¢} we will frequently omit the braces.

An extended disjunctive rule r is an implication of the form:

PLV . VPPt A e AP APt A e AP ATt A AT (2)

where all p; above are atoms in AT and 0 <m <n < h <k. The disjunction in the con-
sequent is called the head of r and denoted as Head(r), whereas the conjunction in
the antecedent receives the name of body of r and is denoted by Body(r). We define
the sets of atoms h(r) = {p1, ..., pm}s b7 (1) = {Pmsts -2 Pn}s 07 (1) = {Prg1, - - 00}
b= (1) = {phy1, ..., pe} and b(r) = b (r) Ub~ (r) Ub~ ~(r). We say that r is an extended
normal rule if |h(r)| < 1. We drop the adjective “extended” when the rule does not have
double negation. That is, when k = h we simply talk about a disjunctive rule and further
call it normal rule, if it satisfies |h(r)| <1. An empty head h(r) =0 represents falsum
1 and, when this happens, the rule is called a constraint. An empty body b(r) =0 is
assumed to represent T and, when this happens, we usually omit <— T simply writing
the rule head. A rule with b(r) =0 and |h(r)| =1 is called a fact. A programme P is a

2 Appendices with the proofs and some previous additional definitions have been included as supplemen-
tary material.

3 In this paper, we exclusively focus on finite theories since some of the semantics are not defined for the
infinite case. We leave for future work studying which semantic relations are preserved in that case.
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set of rules and, when the programme is finite, we will also understand it as their con-
junction. We say that programme P belongs to a syntactic category if all its rules belong
to that category.

A classical interpretation T is a set of atoms T'C AT. By T = ¢ we mean the usual
classical satisfaction of a formula . Moreover, we write M (¢) to stand for the set of
classical models of ¢. An HT-interpretation is a pair ( H,T') (respectively called “here”
and “there”) of sets of atoms H CT C AT it is said to be total when H =T Intuitively,
an atom p is considered false, when p & T, or true when p € T, but the latter has two
cases: it may be certainly true when p € H or just assumed true when p€ T\ H. An
interpretation ( H,T') satisfies a formula ¢, written ( H,T') = ¢, when the following
recursive rules hold:

(H,T)EL
(H,T> EpifpeH
(H,T) =g At if (H,T) =g and (H,T) o
<H T)EeVYif(HT)=por (HT)E¢
(HT)Ep—yif both (i) TE¢—, and (ii) (H,T)FEpor (HT)EY
An HT-interpretation ( H,T') is a model of a theory I' if ( H,T') = for all p €I'. Two
formulas (or theories) ¢ and ¥ are HT-equivalent, written ¢ = 1), if they have the same
HT-models.

A total interpretation (7,7 ) is an equilibrium model of a formula ¢ iff (T,T) =
and there is no H C T such that ( H,T) = ¢. If so, we say that T is a stable model of ¢
and we write SM(p) to stand for the set of stable models of .

)

2.2 Forks
A fork F is defined by the following grammar:
Fu=Ll|p|(FIF)[FAF|oVele—F

where ¢ is a propositional formula over AT and p € AT is an atom. It can be proved,
by structural induction, that any propositional formula ¢ is a fork. Note that a fork is
not allowed as an argument of a disjunction nor as the antecedent of an implication.
is that the stable models of a fork such as
(p1]--.|en) — in fact, all forks are reducible to this form — will be the union of stable
models of each ;. The formal semantics of forks is based on the idea of denotations (sets
of models) we define next in several steps.

Given a set of atoms T'C AT, a T-support H C 2T is a set of subsets of T' so that, if
H #D, then T € H. Given a propositional formula ¢, the set of sets of atoms {H C T |
(H,T) = ¢} forms a T-support we denote as [ ]7. For readability sake, we directly
write a T-support as a sequence of sets between square braces: for instance, some possible
supports for T = {a, b} are [{a, b} {a}], [{a, b} {b} 0] or the empty support [ ]. Given two
T-supports, H and H’', we define the order relation H <X H' iff either H=[] or [ |#
H' CH, read as H is “less supported” than H'. Intuitively, this means that H’ is closer
to make T a stable model than H. Given a T-support H, we define its complementary

The intuition of this new connective

LL|”
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support H as:
[T JU{HCT|H¢H} otherwise.

The ideal of H is defined as | H ={H'|H' <H}\{[]}. Note that, the empty support
[]is not included in the ideal, so J[]=0. If A is any set of supports, we use its <-closure:

A= = U orsuin A0

HEA HEA

We define a T-view A as any <-closed set of T-supports, that is, VA = A. Given a T-view
A, we write H € A iff He A or both H=[] and A=0.

Definition 1
(T-denotation). Let AT be a propositional signature and T C AT a set of atoms.

The T-denotation of a fork or a propositional formula F, written { F )T, is a T-view
recursively defined as follows:

Ly =0

(p)* = |[p]T for any atom p
(FAGY =HHOH |He(F) and H € (G
(evu )™ =HHUN [HE(p)" and H'E ()

T det {27} if [¢]" =[]
(o= r)™ = {i{ [e]TUH|H e F)T } otherwise
(Fla)" =(F)Tu(a)”
where F'; G denote forks or propositional formulas.

We say that T is a stable model of a fork F when ( F )T = |[T] or, equivalently, when
[T] € { F)T. The set SM(F) collects all the stable models of F.

Definition 2

(Strong Entailment/Equivalence of forks). We say that fork F strongly entails fork G,
in symbols F|~G, if SM(FAL)CSM(GAL), for any fork L. We further say that
F and G are strongly equivalent, in symbols F =G if both F |~ G and G|~ F, that is,
SM(FANL)=SM(GAL), for any fork L.

~

>T

}
T}

=

Interestingly, Aguado et al. (2019) (Prop. 11) proved that F'|~G is equivalent to
(F YT C(G)T, for every set of atoms T C AT and, thus, F =G amounts to { F )T =
(G )T, for every T. Other properties proved by Aguado et al. (2019) we will use below

(F|G)[L=F[(G]L) (3)
(FI|G)AL= (FAL)|(GAL) (4)
SM(F | G) = SM(F) U SM(G) (5)
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Ezxzample 1.
Consider the fork:

(a[0)A(afc) (6)

We can apply distributivity (4) and associativity (3) to conclude that (6) is actually
strongly equivalent to:

aNalaNc|bha|bAc

which is a fork built with 4 propositional formulas. By (5), the stable models of this
fork are the union of stable models of these 4 formulas, namely, {a}, {a,c}, {a,b}
and {b, c}. O

We conclude this section introducing the polynomial reduction of any fork F' into a
propositional formula pf (F) by Aguado et al. (2022) that may help for a better under-
standing of the behaviour of forks, and is used in the proof of Theorem 4 later on. For
simplicity, we constrained here pf(F) to the case in which F has the form P! for some
extended disjunctive programme P, using less definitions and getting pf(F") in the form
of a disjunctive logic programme.

Definition 3.
Let P be some extended disjunctive logic programme. For each r € P we define pf(r‘)
as: pf (rY = r if ris an extended normal rule, that is |h(r)| < 1; otherwise, given h(r) =

{pla e 7pm}:
m
pf (PN = (2 V...V« Body(r)) A /\(pz —x;)
i=1
for a set of fresh propositional atoms x1, ..., Tm. O

We also define pf(Pl) = Avep pf (). For example, pf(P(ll)) is the conjunction of:

x1 VT a3 b+ o y1 VYo a1y c Yo
Theorem 1
(From Main Theorem Aguado et al. (2022)). Let P be an extended logic programme.
Pl and pf(P!) are strongly equivalent, modulo alphabet AT(P). O

2.3 Replacing disjunctions by forks

As expected, the definition of stable models for forks is a proper extension of stable models
for propositional theories (or if preferred, equilibrium models Pearce (1996)) and so, in its
turn, it also applies to the more restricted syntax of logic programmes with disjunction
Gelfond and Lifschitz (1991). This means that disjunction ”V” in logic programmes
respects the principle of minimality. For instance, under this definition we still have the
same two stable models for programme Py), namely, SM(P(;)) = {{a}, {b, c} }. However,
minimality is lost if we replace ”V” by ”|,” as illustrated next.

For any disjunctive rule r, let us denote by r! the fork obtained by substituting in

| def

h(r) the operator ”V” by ”|” and let P'= A .p rl for any programme P as expected.
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For instance, the fork PI1 would correspond to (6) in Example 1 whose stable models
were {a}, {b,c}, {a,b} and {a, c} — the last two are not minimal whereas the first two
coincide with SM(P(;)). The main result in this section proves that the replacement of
regular disjunctions by forks in any rule r always produces a superset of stable models,
even if that rule is included in a larger arbitrary context. Namely, we have the strong
entailment relation 7 |~ 7.

Theorem 2.
Let ¢ and o, ..., a, be propositional formulas with n > 1. Then:
O
p—=(V---Van) |~ o= (ar] - |an)
Since strong entailment allows us to proceed rule by rule, we conclude:
Corollary 1.
Let P be any extended disjunctive logic programme, then P |~ Pl O

As a result, a disjunctive programme that has no stable models may restore coherence
(existence of stable model) if we replace disjunctions by forks. Take the following example
(adapted from Ex. 1 by Shen and Eiter (2019)).

Ezample 2.
Consider the programme Py consisting of the three rules:

aVb a b+« b (7)

Disjunction a Vb is redundant and can be removed, because it is an HT-consequence of
a. But once a Vb disappears, it is clear that b < —b prevents obtaining any stable model.
Yet, if we change the disjunction in a Vb by a fork, we can restore coherence. The fork
P(‘7) corresponds to:

(a]b) ANa A (=b—b)
> (a|b)ANaA-—b HT-equivalence
= (aANaA—-=b) | (bAaA——-b) by distributivity (4)
> (aA—=b) | (aAD) HT-equivalence

and then SM(Pz)) = SM(a A ——b) U SM(a Ab) =0 U {{a, b}} = {{a, b}}, so P

) has a
unique stable model {a,b}.

3 Justified models

We proceed now to compare the forks semantics with justified models Cabalar and Muniz
(2024). This approach was originally introduced to provide a definition of ezplanations
for the stable models of a logic programme. Such explanations have the form of graphs
built with rule labels and reflect the derivation of atoms in the model. A classical model
of a logic programme is said to be justified if it admits at least one of these explanation
graphs. In the case of normal logic programmes, justified and stable models coincide, but
Cabalar and Muniz (2024) observed that, when the programme is disjunctive, it may
have more justified models than stable models. In other words, although every stable
model of a disjunctive programme admits an explanation, we may have classical models
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of the programme that admit an explanation but are not stable, breaking the principle
of minimality in many cases. In this way, justified models provide a weaker semantics
for disjunctive programmes that, as we will see, actually coincides with the behaviour of
fork-based disjunction. Let us start recalling some basic definitions, examples and results
by Cabalar and Muniz (2024).

Definition 4

(Labelled logic programme). A labelled rule r is an expression of the form £:(2) where (2)
is any extended disjunctive rule and £ is the rule label, we will also denote as Lb(r) =¢.
A labelled logic programme P is a set of labelled rules that has no repeated labels, that is,
for any pair of different rules r,r' € P, Lb(r) # Lb(r’).

If r is a labelled rule, we keep the definitions of the formulas Body(r) and Head(r)
and sets of atoms h(r), b(r), bT(r), b=(r) and b~ ~(r) as before, that is, ignoring the
additional label. Similarly, if P is a labelled logic programme, P! denotes the fork that
results from removing the labels and, as before, replacing disjunctions V by |. A set of
atoms I is a classical model of a labelled rule r iff I = Body(r) — Head(r) in classical
logic. Given a labelled logic programme P, by Lb(P) we denote the set of labels of the
programme Lb(P) = {Lb(r) | r € P}. Note that no label is repeated, but P can contain
two rules 7,7’ with the same body and head and different labels Lb(r) # Lb(r'). For
instance, we could have two repeated facts with different labels ¢; : p and ¢5 : p possibly
representing two different and simultaneously applicable sources of information.

Definition 5

(Support Graph/Explanation). Let P be a labelled programme and I a classical model
of P. A support graph G of I under P is a labelled directed graph G = {1, E,\) where
the vertices are the atoms in I, the (directed) edges E C I x I connect pairs of atoms,
and \: I — Lb(P) is an injective function that assigns a label for every atom p€ I so
that: if r € P is the rule with Lb(r) = X(p) then p € h(r), I = Body(r) and b*(r)={q]|
(q,p) € E}. A support graph G is said to be an explanation if it additionally satisfies
that G is acyclic. O

The fact that X is injective guarantees that there are no repeated labels in the graph.
Additionally, the definition tells us that if an atom p is labelled with A(p) = ¢ then ¢ must
be the label of some rule r where (1) p occurs in the head, (2) the body of the rule is
satisfied by I and (3) the incoming edges for p are formed from the atoms in the positive
body of r. Since an explanation G = (I, E, \) for a model I is uniquely determined by
its atom labelling A\, we can abbreviate G as a set of pairs p+— A(p) for p € I.

Definition 6

(Supported/Justified model). Let I be classical model of a labelled programme P, I |= P.
Then, I is said to be a (graph-based) supported model of P if there exists some support
graph of I under P, and is further said to be a justified model of P if there exists
some explanation (i.e. acyclic support graph) of I under P. Sets SPM(P) and JM(P)
respectively stand for the (graph-based) supported and justified models of P. O

We can also define SPM (P) and JM (P) for any non-labelled programme P by assum-
ing we previously label each rule in P with a unique arbitrary identifier. Note that
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different labels produce different explanations, but the definition of justified/supported
model is not affected by that.

Theorem &

(Th. 1 and Th. 2 from Cabalar and Muniz (2024)). If P is a labelled disjunctive pro-
gramme, then: SM(P) C JM(P). Moreover, if P contains no disjunction, then SM(P) =
JM(P). O

However, if we allow disjunction, we may have justified models that are not stable
models, as illustrated below.

Ezxample 3.
Let Pgy be the following labelled version of F(1y:

ly:aVb ly:aVe (8)

The classical models of Py are {a},{a,b},{a,c}, {b,c},{a,b,c}. The last one,
{a,b,c}, is not justified, since we would need three different labels and we only have
two rules. Each model {a, c}, {a,b}, {b, ¢} has a unique explanation corresponding to the
atom labellings {a— 1, ¢ Lo}, {b—={l1,a— Ly} and {b— £y, c— o}, respectively. On
the other hand, model {a} has two possible explanations, corresponding to {a+ {1} and
{a Lo}, To sum up, we get four justified models, {a, c}, {a, b}, {b,c} and {a} but only
two of them are stable, {a} and {b, c}. O

In other words, the justified models of Pgy coincide with the stable models of its fork

version P(‘g) = P(ll) = (6) seen before. This is in fact, a general property that constitutes
the main result of this section.

Theorem 4.
JM (P) = SM(P') for any labelled disjunctive logic programme P. O

Supported models SPM (P) correspond to the case in which we also accept cyclic expla-
nation graphs. Obviously, JM (P) C SPM(P), because all acyclic explanations are still
acceptable for SPM (P). Cabalar and Muniz (2024) also proved that SPM (P) generalise
the standard notion of supported models — that is models of Clark’s completion Clark
(1978) — to the disjunctive case. For instance, the programme P(gy consisting of the rule:

ly:psp 9)

has two supported models, I =§ (which is also stable and justified) and I = {p} with a
cyclic support graph where node p is connected to itself. As a remark, notice that the
definition of our “graph-based” supported models Cabalar and Muniz (2023) does not
correspond to the (also called) supported models obtained from the programme comple-
tion defined by Alviano and Dodaro (2016) for disjunctive programmes. The latter, we
denote AD(P), impose a stronger condition: a rule r supports an atom p € Hd(r) with
respect to interpretation I not only if I = Body(r) but also I}~ q for all ¢ € Hd(r) \ p.
To illustrate the difference, take programme Pgy: as it has no cyclic dependencies,
graph-based supported and justified models coincide, that is, SPM (Pg)) = JM (Pg)) =
{{a}, {a,b},{a, c}, {b, c}} we saw before. However, AD(P(g)) = {{a}, {b, c}} that, in this
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case, coincide with the stable models of the programme. Model {a, b} is supported (under
Def, 6) because a is justified by rule ¢; and b by rule ¢5. However, under Alviano and
Dodaro’s definition, rule ¢; is not a valid support for a since we would further need b
(the other atom in the disjunction ¢;) to be false. The situation for model {a, ¢} is anal-
ogous. It is not hard to see that SM(P) C AD(P) C SPM(P) (the first inclusion proved
by Alviano and Dodaro (2016)), so clearly, AD(P) is more interesting for computation
purposes when our goal is approximating SM(P). However, SPM (P) provides a more lib-
eral generalisation of the definition of supported model from normal logic programmes:
as in that case, I is a supported model of P if, for every atom p € I, there exists some
rule 7 with p “in the head” and I |= Body(r). This definition has also a closer relation to
JM(P) and explanation generation or to the DI-semantics (as we see in Theorem 8 in
the next section).

4 Determining inference

The third approach we consider, DI Shen and Eiter (2019), also introduces a new dis-
junction operator in rule heads, with the same syntax as forks “|”. Besides, first-order
formulas are allowed to play the role of atoms, and so, the syntax accepts regular dis-
junction “V” too. However, in this paper (for the sake of comparison) we describe the
DI-semantics directly on the syntax of extended disjunctive rules of the form (2) seen
before, using “V” to play the role of the DI disjunctive operator.

The DI-semantics understands disjunction as a non-deterministic choice and is based
on the definition of a head selection function. This function will tell us, beforehand, which
head atom will be chosen if we have to apply a rule for derivation. We introduce next a
slight generalisation of that definition.

Definition 7

(Open/Closed Head Selection Function). Let P be an extended disjunctive logic pro-
gramme and I C AT an interpretation. A head selection function sel for I and some
r € P is a formula:

L ifh(r)yNnI=0

def
sel(Head(r), I) = {pi otherwise, for some p; € h(r) NI

We say that sel is closed if sel(Head(r),I)= sel(Head(r"),I) for any pair of rules r,r’
with the same head atoms h(r) = h(r’). If this restriction does not apply, we just say that
sel is open. O

The original definition by Shen and Eiter (2019) (Def. 4) corresponds to what we call
here closed selection function and forces the same choice when two rule heads are formed
by the same set of atoms.

The reduct of a programme P with respect to some interpretation I and selection
function sel is defined as the logic programme P! = { sel(Head(r),I) < Body(r)|I =

sel

Body(r) }. Note that Pslel is an extended normal logic programme (possibly containing

4 To be precise, Shen and Eiter (2019) treat double negation classically, whereas here, we take the liberty
to keep doubly negated atoms in the body and interpret them as in Equilibrium Logic.
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constraints) where we replaced each disjunction by the atom determined by the selection
function sel.

Definition 8

(Candidate stable model). A classical model I of a an extended disjunctive logic pro-
gramme P is said to be a candidate stable model® if there exists a selection function sel
such that I € SM(PL),). We further say that I is closed if sel is closed. By CSM (P), we
denote the set of candidate stable models of P. O

To understand the difference between closed and open selection functions, take the
following programme F10):

D Ll+ec aVb bVa<+p (10)

The set CSM (P(1¢)) consists of {p, a}, {p, b} and {p, a, b}, but only the first two models
are closed, since they make the same choice in both disjunctions ¢V b and bV a that
have the same atoms. Note that this condition is rather syntax-dependent: if we replace
bV a < p by the rule bV aV c < p, then open candidate stable models are not affected
(c must be false due to constraint | < c¢) but {p, a, b} becomes now a closed candidate
stable model, since the sets of atoms in a Vb and bV a V ¢ are different.

A DI-stable model I of a programme P is a model that is minimal among the closed
candidate stable models (Def. 7 by Shen and Eiter (2019)). Thus, DI-semantics actually
imposes an additional minimality condition. However, if we focus on the previous step,
CSM (P), we can prove that they coincide with SM(P!) and, by Theorem 4, with JM (P)
too.

Theorem 5.
CSM (P) = SM(P') for any extended disjunctive logic programme P. O

We conclude this section by proving that the decision problem CSM (P) # is NP-
complete, recalling the following complexity result proved by Shen and Eiter (2019)

Proposition 6

(From Table 1 by Shen and Eiter (2019)). Deciding the existence of a DI-stable model
for a disjunctive programme, under the well-justified semantics Shen et al. (2014), is an
NP-complete problem.

Theorem 7.
Given an extended disjunctive logic programme P, deciding CSM(P)#( is an NP-
complete problem.

As one last result in this section, we provide an alternative characterisation of the
supported models from Def. 6 using DI-semantics. For normal logic programmes, I is a
supported model of P if, for every atom p € I, there exists some rule r with p in the head
and I = Body(r). Alternatively, supported models can also be captured as the fixpoints
of the immediate consequences van Emden and Kowalski (1976) operator Tp S {pl(p+
B) € P, I |= B}, namely, I is a supported model of P iff I =Tp(I). We can extend this
relation for disjunctive logic programmes as follows.

5 Or candidate answer set in the original terminology Shen and Eiter (2019).
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Theorem 8.
Let P be a labelled programme and I a classical model of P. The following assertions
are equivalent:

1. Ie€ SPM(P)
2. Tpi (I) =1 for some head selection function sel.

5 Strongly supported models

For our last comparison, we consider strongly supported models by Doherty and Szalas
(2015):

Definition 9

(Strongly Supported Models®). A model T of an extended disjunctive logic programme
P is a strongly supported model of P if there exists a sequence of interpretations
HyCH{C...CH,=T such that

1. For i=0: HyNh(r)#0 for all v € P with b(r)=0. For i >1: H; " h(r) £ 0 for all
re P with” (H;—1,T) = Body(r).

2. For each i >0: H; only contains atoms obtained by applying point 1, that is, if
p € H; then p € h(r) for some rule r mentioned in point 1.

We denote the set of strongly supported models of P as SSM(P). O

Doherty and Szatas (2015) (Th. 1) proved that the stable models of P, SM(P), coin-
cide with the minimal elements of SSM (P) and, furthermore, SM(P) = SSM (P) when P
has no disjunction. However, in general, the SSM semantics makes disjunction to behave
classically. For instance, from Def. 6 above, we can easily observe that, if P is a set of
disjunctions of atoms, then SSM (P) = M (P). As a result, since (1) is a pair of disjunc-
tions, SSM (P(1)) = M (P)) that is the five classical models {a}, {a, b}, {a,c}, {b, c} and
{a, b, ¢} mentioned before. Note that CSM did not accept {a,b, ¢}, pointing our that it
is a stronger semantics, as corroborated next:

Theorem 9.
CSM (P) C SSM(P) for any extended disjunctive logic programme P. O

To conclude this section, we observe that, despite their name similarity, supported
SPM (P) and strongly supported models SSM (P) are unrelated. To prove SPM(P) ¢
SSM (P), just take the programme P(gy with no disjunctions, so that SSM (P) = SM(P) =
{0}. However, {p} € SPM(P) as we discussed before. To prove SSM (P) ¢ SPM (P) we
already saw that {a,b,c} € SSM(P)) \ JM(F1)). But, since Py has no implications,
the support graphs contain no edges, so that acyclicity is irrelevant meaning JM (Py)) =
SPM (Pp)).

6 We use Def. 4 by Doherty et al. (2016) but adjusting Ho as in Def. 11 by Doherty and Szatas (2015).
7 The original definition is not given in terms of HT-satisfaction, but it uses a definition involving pairs
of sets of atoms that is completely equivalent, for the syntactic fragment of logic programmes.
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SSM(P)
SM(P) |—=— sm(P') = JM(P) = CsM(P)| =+ :M(P)
- sPu(p)|

Fig 1. Inclusion relations among several semantics for disjunctive logic programmes.

6 Conclusions

We have studied four different semantics for any disjunctive logic programme P in
ASP that, unlike the standard stable models SM(P) do not adhere to the principle
of model minimality. These four approaches are: forks Aguado et al. (2019) here denoted
as SM(P!); justified models Cabalar and Muiiiz (2024) JM(P); (a relaxed version of)
DI Shen and Eiter (2019) we denoted CSM (P); and strongly supported models SSM (P)
Doherty and Szatas (2015). The summary of our results is shown in Figure 1, where
M (P) represents the classical models of P and SPM (P) an extension of supported mod-
els for the disjunctive case Cabalar and Muniz (2024). Interestingly, the three semantics
SM(P"), JM(P) and CSM(P) coincide, although their definitions come from rather
different approaches, showing that they may capture a significant way to understand
disjunction in ASP, removing minimality and keeping the computational complexity of
existence of stable model as an NP-complete problem.

For future work, we plan to study other alternatives. For instance, one reviewer sug-
gested replacing disjunctions by choice rules Simons et al. (2002) so that each disjunctive
rule of the form p; V...V p,, + Body becomes the choice rule 1{p1, ..., pm} + Body and
the rest of rules are left untouched. The behaviour of this replacement produces similar
results to SSM (P) and we plan to study a formal (dis)proof of this coincidence for future
work.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/
51471068425100185.
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