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Abstract

Coastal environments are highly dynamic, making monitoring of suspended sediment concen-
tration (SSC) both challenging and essential. SSC serves as an indicator of coastal processes,
storm impact, water quality and ecosystem service delivery. However, direct measurement of
SSC is costly, logistically difficult and spatially limited. Although remote sensing offers a
promising alternative by estimating SSC from surface reflectance, it requires calibration and
is often constrained by site-specific applicability. This study presents a machine learning
framework for national-scale SSC estimation using Landsat-8 and Sentinel-2 imagery, calibrated
with 147 in situ SSC samples. Several models were evaluated, with XGBoost yielding the best
performance (R* = 0.72, RMSE = 17 mg/L). SHapley Additive exPlanations values were used for
model interpretability. Visible and infrared bands, along with geographic features, were iden-
tified as key predictors, reflecting the importance of coastal typology in shaping the SSC-
reflectance relationship. The model’s value was demonstrated through a 10-year spatio-temporal
analysis of SSC in Wexford Harbour. Seasonal patterns showed higher estuarine mixing in
winter, while high SSC events coincided with rainfall and strong winds, indicating responsive-
ness to meteorological drivers. These findings highlight the potential of integrating remote
sensing and machine learning for scalable, interpretable and cost-effective SSC monitoring.

Impact statement

Climate change and land-use change are threatening the functioning and quality of coastal
environments in Ireland, as elsewhere across the globe. Suspended sediment concentration in
coastal waters acts as an indicator of coastal dynamics, storm impact, water quality and
ecosystem service delivery. Its measurement is thus of extreme importance to coastal manage-
ment and land-use planning, and capturing temporal and spatial fluctuations in suspended
sediment concentrations is critical for informed environmental management and decision-
making. Measuring SSC is also notoriously difficult, as direct sampling of coastal waters is at best
costly and at worst impossible, compromising the ability of governments and public agencies to
monitor SSC. Remote sensing from aircraft or satellites allows us to estimate SSC remotely but
this has other challenges, such as cloud cover or the complex way in which many constituents of
coastal water (e.g., algae) reflect sunlight and complicate the SSC ‘signal’. We offer a method-
ology for estimating SSC in the coastal waters of Ireland using machine learning. As there are
some direct measurements within Irish coastal areas (from water samples largely collected to
meet Ireland’s obligations as part of the EU’s Water Framework Directive’s), we were able to
compare measured with remotely estimated SSC using a combination of NASA’s Landsat-8 and
Copernicus Sentinel-2 satellite imagery. As the relationship between actual and satellite esti-
mated SSC is heavily affected by the type of coast, we see an influence of geographic location on
the model developed. The resultant machine-learning tool has the advantage that it can be
continuously improved as more satellite imagery is acquired, with minimal field sampling effort.
If adopted by governments and public agencies as a tool to monitor SSC, spatially explicit coastal
management and planning will improve markedly.

Introduction

Suspended sediment concentration (SSC) is an important parameter to monitor at the coast.
Changes in SSC can reflect coastal erosion and affect the formation of coastal landforms, as well as
impacting how coastal landforms persist and continue to provide coastal flood protection.
Coastal wetland areas are particularly sensitive to changes in SSC. Within shallow estuarine
settings allochthonous (externally derived and tidally imported) sediment has been shown to be a
critical determinant of an individual coastal wetland’s ability to accrete upwards (French et al.,
1995). Once compaction and shallow subsidence has been taken into account (see, e.g., Allen
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(2000)), such accumulation determines the wetland’s elevation
relative to sea-level rise. Under conditions of low wave energy,
suspended sediment can also deposit on tidal flats and influence
the time to maturity of salt marshes or mangroves, which provide
many important ecosystem services (Lovelock, 2008; Currin et al.,
2017). Thus, in addition to requiring sufficient accommodation
space (e.g., landwards migration), whether intertidal wetlands can
persist in the face of a rise in sea level is critically determined by
SSCs (see also Saintilan et al. (2022) and Kirwan and Megonigal
(2013)). Sediment in tidal waters also plays an important role in
impacting water quality and primary production, both of which are
key controls on the shallow-water marine food web (Bilotta and
Brazier, 2008). Spatial patterns and temporal changes in SSC are
thus important in affecting recreational and commercial marine
fisheries.

Importantly, recent global climatic and regional and local land-
use changes have led to changes in many of the controls on
sediment delivery and distribution in shallow coastal seas.
Although land-use changes such as dam construction, river dredg-
ing and flood defences have significantly altered the release of
sediment from river catchments (Syvitski et al., 2005; Heritage
and Entwistle, 2020), there has also been an increasing intensity
of meteorologically induced storm surges (Debernard et al., 2002;
Michaels et al., 2006), and changes in the behaviour of sediment
(e.g., the flocculation of clay particles, which is dependent on
salinity and flow velocities (Mietta et al., 2009) in the coastal ocean.
The spatial distribution of SSC is thus of particular interest in areas
that have coastlines vulnerable to flooding or erosion and
dependent on the deposition and configuration of the shallow
intertidal zone. In Ireland, such areas include Wexford Harbour.
In such locations, better monitoring of SSC can aid in planning of
adjacent land-use and coastal flood risk management. Current
modelling of SSC, however, is often based on point measurements
at specific locations for water quality assessment, at long and
irregular time intervals. Knowledge on the spatio-temporal patterns
of SSC is thus limited by the spatial distribution of the sampling
sites, which does not allow for sufficient frequency of observations
over larger (=km?) areas and time periods (=decades).

Remote sensing of SSC

Remote sensing has become a powerful tool for monitoring inland
and coastal water bodies. Earth observation satellites, such as those
in the Landsat, Sentinel and MODIS missions, acquire imagery
across a range of spectral bands, from visible to near-infrared and
shortwave infrared, allowing for consistent large-scale observations
of surface conditions. These sensors measure top-of-the-
atmosphere radiance, which is processed to yield surface reflect-
ance: the proportion of incoming solar radiation reflected by the
Earth’s surface back towards the sensor at different wavelengths
(Wang et al., 2020).

In aquatic environments, surface reflectance is influenced by the
optical properties of the water column, which are, in turn, affected
by various constituents, including suspended sediments, coloured
dissolved organic matter (CDOM), phytoplankton (quantified via
chlorophyll a) and dissolved substances (Gholizadeh et al., 2016).
SSC, in particular, plays a dominant role in modulating water-
leaving reflectance, primarily through the scattering and absorption
of light. Because suspended particles alter the reflectance signature
in specific spectral regions it is possible to relate satellite-derived
surface reflectance to SSC using a range of modelling approaches.
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Analytical and semi-analytical methods require detailed infor-
mation about the water column, including depth, sediment char-
acteristics (e.g., mass, rock type and grain size) and the relative
proportions of CDOM and SSC (Wang et al., 2020). Montanher
and de Souza Filho (2015) found that different spectral bands were
needed for modelling SSC, depending on whether the water was
dominated by inorganic particles or a combination of inorganic and
phytoplankton. The turbidity of the water also affects the best
spectral bands for modelling (Gholizadeh et al.,, 2016). These
methods necessitate comprehensive local water studies, making
the resulting models highly location-specific. Empirical methods,
by contrast, rely primarily on SSC samples collected near the time
of satellite image capture. These samples are used to establish a
statistical relationship between surface reflectance and SSC
(Wang et al., 2020). Several challenges arise when using these
methods. First, they often remain location-specific, as the rela-
tionship between reflectance and SSC is influenced by the par-
ticular particulate matter present, as well as water depth. Second,
these methods require a substantial number of SSC samples
collected concurrently with satellite overpasses under cloud-free
conditions, particularly for dynamic areas.

Research on coastal SSC modelling has primarily focused on
location-specific empirical models, often achieving good results in
non-turbid waters (<100 mg/L) using multiple spectral bands.
However, in turbid waters, model performance frequently deteri-
orates, likely due to reflectance saturation in visible bands around
100 mg/L and in non-visible bands between 500 and 1,000 mg/L
(Luo et al, 2018). As a result, remote sensing, based solely on
surface reflectance, becomes less effective for detailed SSC model-
ling in highly turbid waters (Shahzad et al., 2018).

Given the prevalence of local-specific models, most studies
either target highly turbid waters, such as rivers, or waters with
low turbidity (Marinho et al., 2021). One of the major challenges in
applying remote sensing to SSC modelling is obtaining a suffi-
ciently large and representative dataset of in situ SSC samples for
calibration. This is particularly critical in coastal regions, which
often experience high spatial and temporal variabilities in SSC and
are vulnerable to processes on instantaneous timescales, such as
localised erosion, that can have a high but potentially short-lived
impact on sediment in the water column. Identifying and quan-
tifying these changes is essential for effective management and
mitigation strategies.

Machine learning models

Traditional approaches for SSC modelling in the literature often
rely on regression models using one or more spectral bands
(Knaeps et al., 2015). These models have used various regression
forms, including linear, log-linear and polynomial equations, to
relate surface reflectance to SSC. Although relatively simple and
interpretable, such models are typically limited in their ability to
capture complex, non-linear relationships and often require
location-specific calibration. To address these limitations, more
recent studies have explored machine learning (ML) techniques,
including Random Forests and gradient boosting methods, which
offer enhanced predictive capabilities. For instance, Hu et al. (2023)
combined spectral bands with weather and river flow data to
estimate monthly SSC using a gradient boosting model in the lower
Yellow River in China. ML models have become increasingly
popular in the study of coastal sediment transport (Goldstein
et al,, 2019), driven by the growing availability of remote sensing
and environmental data.
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However, ML models also present significant challenges.
Chief among these is their reliance on large, high-quality train-
ing datasets. Without sufficient data, especially labelled SSC
samples, models are prone to overfitting and poor generalisation
(Goldstein et al., 2019; Brigato and Iocchi, 2021). This leads to
overconfidence in the model and low performance outside the
training dataset. Deep learning models, such as neural networks,
are particularly data-intensive and have seen limited application
due to the high cost and logistical complexity of acquiring
adequate in situ samples.

Interpretability remains a key concern when applying ML in
environmental sciences. SHapley Additive exPlanations (SHAP)
has emerged as a widely used method for interpreting complex
models. Rooted in game theory (Shapley et al., 1953), SHAP treats
each feature as a player in a cooperative game and allocates the
model’s output to features based on their marginal contributions.
It provides local explanations that show how individual input
features influence model predictions. SHAP is especially effective
for explaining ensemble models like Random Forests and
XGBoost, which otherwise would be a black box, by looking at
the importance of the features across the ensemble, making it
more stable for ensemble methods than sensitivity analysis. It has
been successfully applied in environmental modelling for feature
selection, model transparency and diagnostics (Lundberg and Lee,
2017; Tang et al., 2022).

The primary goal of this study was to develop a model capable of
capturing spatio-temporal patterns of SSC to gain insights into the
dynamic nature of SSC in coastal waters, taking advantage of the
spatio-temporal coverage of satellite-based remotes sensing. Infor-
mation on such patterns and their dynamics over time is needed
both for furthering our marine and coastal ecological and geomor-
phological knowledge base but also for tailoring land and coastal
management practices in a way that allows adaptation to climatic
change and mitigation of climate change impacts. The advantages
of the model’s ability to accurately detect patterns and changes in
SSC, its sensitivity to variations thus outweigh the fact that its ability
to exactly predict SSC at any given point in place and time is
necessarily limited.

Materials and methods
Data

Satellite imagery

This study used imagery from the Harmonised Landsat and
Sentinel-2 (HLS) dataset, developed by NASA to provide consist-
ent surface reflectance products from Landsat-8/9 (OLI) and Sen-
tinel-2A/B (MSI) satellites (Claverie et al., 2018). By harmonising
bandpass differences, spatial resolution (30 m) and applying
bidirectional-reflectance-distribution-function normalisation, the
dataset enables high temporal resolution (2—3 days) through com-
bined satellite observations. The satellite images were obtained and
processed using Google Earth Engine (Gorelick et al., 2017).

SSC data

In situ SSC samples were obtained from the EPA and Eden Ireland,
covering the period 1992-2024, collected as part of the Water
Framework Directive’s monitoring of transitional and coastal
waters (Environmental Protection Agency, 2024). Only surface
and grab samples were included because the spectral signal weakens
with depth (Curran and Novo, 1988). Each sample was taken at a
monitoring station, which had a unique set of coordinates.

Combined dataset

In order to use remote sensing imagery as input to an SSC model,
calibration to the study area is needed. This requires a set of samples
matched with satellite images within a short time period, or over-
pass. The number of days between sample measurement and sat-
ellite image capture, and the timing of the sample, are particularly
important in coastal areas, where there is a high amount of change
on short timescales, and where the timescale and degree of such
change is itself time-dependent (e.g., seasonally variable). It is thus
to be expected that the accuracy of any model is improved where
samples are collected as close as possible in time to the time of
satellite overpass. Unfortunately, this is particularly tricky in areas
that receive a lot of clouds and precipitation, such as coastal regions
of Ireland, and can limit the amount of available data. This study
uses a strict overpass of <1 day, which allows for a suitable range of
SSC values to be used for calibration, with 151 samples available in
total. Similar studies such as Yepez et al. (2018), which modelled
SSC in the range of 18-203 mg/L used an overpass of 1 day, while
Dethier et al. (2020) tested an overpass range of 0—8 days and found
that 2 days best balanced accuracy with uncertainty for their study
area. The location of each monitoring station, with the number of
samples available is shown in Figure 1A, and a histogram of the SSC
in a log scale is shown in Figure 1B. There were 147 in situ samples
that were matched with satellite images, from 78 unique monitoring
stations between July 2013 to October 2024. Ninety-seven of the
images were from Landsat-8 and 50 were from Sentinel-2.

Methods

This study involved data pre-processing, data aggregation and
comparing modelling methods for prediction and validation of
SSC. The code used to produce the results in this article is publicly
available to download on the authors GitHub repository: https://
github.com/igoea20/Remote_Sensing SSC_Ireland.

Data pre-processing

Remotely sensed spectral data require a high-amount of pre-
processing to ensure its accuracy, particularly in areas where there
is a high amount of cloud cover, such as the Irish coast. Cloud and
shadow masking was performed using the Fmask quality bands,
masking cirrus, cloud, cloud shadow and cloud-adjacent pixels
based on the approach described by Qiu et al. (2019). Known
limitations of the S30 cloud detection are addressed using a time-
series outlier-filtering method adapted from Chen and Guestrin
(2016), which applies a Hampel filter and temporal-consistency
analysis using the modified Normalised Difference Water Index
(mNDWTI), which is a ratio of the green (0.53-0.59 pm) and
shortwave-infrared (1.57-1.65 um) bands (Vermote et al., 2008;
Claverie et al.,, 2018). Cloud-contaminated or physically implaus-
ible values (e.g., negative reflectance) were removed. Water pixels
were identified using the mNDWT (Xu, 2006).

For the in situ samples of SSC, some data points had to be
removed due to their unsuitability to remote sensing. Measure-
ments from water shallower than 1 m were excluded to reduce
errors from sediment bed backscattering. Only samples from
depths <5 m were used to ensure that the satellite-derived signal
corresponded to the upper water column, as the penetration
reduces with turbidity (Curran and Novo, 1988).

Random forest
Random Forest regression, an ensemble method based on decision
trees, was implemented using Scikit-learn (Pedregosa et al., 2011).

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.182, on 30 Nov 2025 at 16:50:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/cft.2025.10016


https://github.com/igoea20/Remote_Sensing_SSC_Ireland
https://github.com/igoea20/Remote_Sensing_SSC_Ireland
https://doi.org/10.1017/cft.2025.10016
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Monitoring Stations

&= =1} @
No. Samples

N

[ Samples

Sample Count

10° 10! 102
Suspended Sediment Concentration [mg/L]

Figure 1. Location and distribution of the sampled SSC. The locations of the monitoring
stations and the number of samples from each station are shown in (A), with the
distribution (in the log scale) shown in (B).

It uses bootstrap samples to train individual trees, with predictions
averaged to improve accuracy and reduce overfitting. To use RF
models, it is necessary to adjust the model’s hyperparameters to suit
the data and problem in question. RandomizedSearchCV was used
to randomly search a grid of hyperparameters, choosing the opti-
mal hyperparameters that minimised root mean squared error
(RMSE). The optimal hyperparameters found were as follows:
number estimators of 50, min samples in a split of 2, min samples
in a leaf of 1, max features of 1 and max depth of 7.

Extreme gradient boosting

XGBoost (Chen and Guestrin, 2016), a gradient boosting frame-
work, builds sequential models where each minimises the errors of
its predecessor, with the model consisting of many weak learners
(small regression models), and the final predictions being the
weighted sum of the predictions from the weak learners. It has
improved control against overfitting compared to Random Forest
through regularisation. The XGBoost library (version 2.1.2) was
used (Chen et al., 2016), with hyperparameters tuned using Ran-
domizedSearchCV. The optimal hyperparameters found were as
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follows: number of trees of 100, tree depth of 4, learning rate of
0.03 and subsample of 0.7. To improve the model interpretability,
SHAP values were computed for the final XGBoost model, allow-
ing insight into feature contributions and reducing its “black-box”
nature.

Multi-layer-perceptron

Multi-layer perceptron (MLP) is a simple form of feedforward
artificial neural network, and was implemented using Scikit-learn
(Pedregosa et al., 2011). Due to the limited number of samples
available for training, it was configured with one hidden layer.
Hyperparameters, such as the number of neurons in the hidden
layer, learning rate and regularisation strength, were optimised
using RandomizedSearchCV. The optimal hyperparameters found
were as follows: solver = ‘adam’, initial learning rate = 0.03, hidden
layer size = 10, alpha = 0.01 and activation = ‘relu’.

Input variables

Input features to the model included the spectral bands, band ratios
and spatial coordinates. The coordinates were included to account
for regional environmental gradients and potential spatial autocor-
relation. The input vector was as follows: [‘Blue’, ‘Red’, ‘Green’,
‘NIR Narrow’, ‘Blue/Red’, ‘Blue/Green’, ‘Red/Green’, ‘SWIR 1’,
‘Latitude’, ‘Longitude’], where Blue (0.45-0.51 pm), Red (0.64—
0.67 um) and Green (0.53-0.59 pm) are the visible bands, NIR
narrow (0.85-0.88 um) is the near-infrared band and SWIR 1(1.57—
1.65 pm) is the Shortwave Infrared band.

Model evaluation

Model performance was evaluated using leave-one-out cross-
validation (LOOCV) (Hastie et al., 2005). In this approach, the
dataset of size N is split into N iterations, each using N — 1 samples
for training and the remaining one for testing. This method ensures
each data point is tested once, providing an unbiased estimate of
model generalisation, and ensuring the performance is reflective of
the whole dataset. Model performance was evaluated using the
RMSE (Equation 1), the coefficient of determination (R%, Equa-
tion 2) and the relative percentage bias (Equation 3), where SSC; is
the true in situ value of SSC for observation i, SSC; is the predicted
value of SSC for observation i, SSC is the mean value of observed
SSC and # is the total number of observations.

Y (SSC; —$5C))°

RMSE = (1)
n
A N2
R*=1— w )
> (SSC,- — SSO)
1 N
= (s8¢ — §5¢Ci)
Rel.Bias = 100 x 2 (3)
SSC)
Results
Model performance

The results for all three modelling approaches are shown in Table 1.
The XGBoost method demonstrated the highest model perform-
ance with R> = 0.72, RMSE = 17 mg/L, Rel Bias = —1.8%. The scatter
plot in Figure 2A) shows the results from the LOOCV predictions,
compared to the in situ samples. Overall, the model was able to
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Table 1. Results from LOOCV of the machine learning models

Model RMSE [mg/L] R? Rel. bias (%)
Random Forest 19 0.65 —0.68
MLP 23 0.47 2.77
XGBoost 17 0.72 -18
A —— 1:1line

140 4

—— Line of best fit, R%: 0.72
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Figure 2. (A) The modelled SSC, using the XGBoost model, is shown in blue. Each point
is from an LOOCV iteration. The green line shows a linear regression between observed
and predicted SSC. (B) The SHAP analysis of the input features is shown with the x-axis
showing whether the feature increased or decreased SSC. The colour bar indicates
whether the sample had a high or low value for that feature.

learn the distribution, but there was a lot of scatter around the y =x
line.

Feature importance

Figure 2B shows the SHAP summary plot of the XGBoost model,
indicating the impact of each feature on the SSC output. The x-axis
shows the SHAP value of each feature, with a value >0 indicating
that the feature pushed the prediction higher, and a value <0 means
the feature lowered the predicted SSC. The colour of each point
indicates whether the feature value was high or low. Each point
indicates a training point in the model. Longitude is shown to have
the largest overall impact on model predictions, with higher values
(the east of the country), tending to increase SSC. This suggests that
regional differences, such as contrasting geology, sedimentology
and glacial history, as well as exposure to the predominant westerly
airflow, strongly influence SSC, and we can see that there is a non-

<4

CW33002Q81SY4002

TW33002098SR3007
A\ : s -

TW300021025R4002

Figure 3. Six monitoring stations were identified that could not be accurately predicted
using the model.

linear relationship, as expected (Devoy et al., 2021). The red and
blue bands both have significant influence on SSC, with lower red or
blue values tending to decrease SSC. Latitude is less important, but
we can see that there is an indication of north—south differences,
with higher latitude tending to decrease SSC. The other bands (non-
visible NIR narrow and SWIR 1, and band ratios) have less of an
impact on SSC, and they tend to show complex relationships with
SSC, due to the relationship being non-linear. We see that a high
Blue/Green is associated with lower SSC (lower turbidity). A com-
bination of short and long wavelengths takes advantage of deeper
water penetration and sensitivity to high values of SSC (Curran and
Novo, 1988).

Several monitoring stations had consistently high prediction
error (>20 mg/L); some of these locations are shown in Figure 3.
The errors at the monitoring stations can be explained as follows: in
(A), there is wave breaking and diffraction around a man-made
structure; in (B), there is shallow-water wave shoaling; in (C), itis a
shallow subtidal area with surface reflectance of the bed changing
between low and high tides (spring tidal range of 1.5 m, neap of
0.9 m; Hartnett and Nash, 2004); in (D), there is an artificial surface
above the water body and in (E) and (F), there are tidal inner-
estuary channels.

Seasonal- and event-based patterns in SSC

The developed model facilitates investigation of both seasonal vari-
ations and event-driven anomalies in SSC. Figure 4 illustrates the
seasonal distribution of SSC within Wexford Harbour, comparing
the winter period (December 2022—February 2023) with the summer
period (June 2023—August 2023).

Figure 5 provides additional insight into potential environmen-
tal drivers of extreme SSC events. Figure 5A displays the monthly
distribution of daily total rainfall and average windspeed measured at
Johnstown Castle in Wexford over the period 2014-2024. Superim-
posed red lines indicate years in which SSC exceeded 140 mg/L,
highlighting the temporal alignment between extreme SSC values
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Figure 4. The seasonal median SSC is shown for Wexford Harbour. (A) The SSC from December 2022 to February 2023. (B) The SSC from June 2023 to August 2023. The distribution of

SSC for (A) is shown in (C), and the distribution of (B) is shown in (D).

and weather extremes. Between 2014 and 2025, eight SSC measure-
ments exceeded 140 mg/L, spanning five unique dates: 03/10/2019,
19/10/2022, 08/07/2023, 27/09/2023 and 13/06/2024. These events
were cross-examined against concurrent meteorological conditions.
Notably, the SSC peak in June 2024 coincided with anomalously high
daily rainfall for that month, as observed in Figure 5B. Similarly,
high-rainfall conditions were also observed during the SSC peaks in
September 2023 and October 2022, Figure 5C shows that the SSC
events on 27/09/2023 and 03/10/2019 corresponded to days with
unusually high windspeed for those months.

Discussion

The XGBoost model had the highest R* value and lowest RMSE,
and was chosen as the best of the ML models tested for remotely
sensed SSC in coastal Ireland. Feature attribution using SHAP
analysis provided additional insights into the model’s behaviour.
Among the input features, longitude was more influential than
latitude, indicating a pronounced east—west spatial gradient in the
SSC—spectral reflectance relationship. This spatial dependency is
likely due to differences in coastal geomorphology, hydrodynamics
and sediment characteristics between the Irish Sea and Atlantic-
facing coasts, and exposure to the predominant westerly airflow
(Gallagher et al, 2014), (Devoy, 2008). SHAP analysis also

confirmed that the visible bands, particularly blue, green and red,
were among the most important spectral features.

Interpreting trends in SSC

In Figure 4, a clear seasonal signal is evident, with more mixing in
the winter months. Although the median SSC for the whole estuary
is similar (32 mg/L for winter and 31 mg/L for summer), the spatial
distribution of SSC is different as observed in Figure 4C and D.
In summer, 70% of the pixels are less than 30 mg/L, compared to
60% in winter. The maximum SSC in winter is 209 mg/L in winter
and 179 mg/L in summer. This pattern of elevated SSC in a wider
spatial area may be attributed to increased hydrodynamic activity,
including higher river discharge and wind-driven resuspension
during the winter season. Bowers et al. (1998) identified strong
seasonal variations in suspended sediment in the Irish Sea.

The model also facilitates the identification and analysis of
extreme suspended SSC events, as illustrated in Figure 5. When
examined alongside concurrent meteorological data, including
daily total rainfall and average windspeed, these high-SSC episodes
frequently coincide with periods of intense weather activity. In the
Wexford Harbour case study, six remote sensing detected SSC
peaks were investigated. Of these, three were associated with anom-
alously high monthly rainfall, while four corresponded with ele-
vated wind speeds. These observations are consistent with previous
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Figure 5. A) The monthly distribution of daily total rainfall measured at Johnstown
Castle in Wexford. The red lines mark the years that had SSC values over 140 mg/L in
that month. B) The monthly distribution of daily average windspeed measured at
Johnstown Castle in Wexford. The red lines mark the years that had SSC values over
140 mg/L in that month.

findings suggesting that both runoff and wind-driven resuspension
significantly influence episodic increases in SSC (Kalnejais et al.,
2007; Drewry et al., 2009). Fluvial input, in particular, emerges as a
likely contributor to such events, while windspeed appears to play
an additional role in mobilising and resuspending sediments, fur-
ther elevating SSC levels. Further research, with additional data for
a greater set of extreme events could allow for a better understand-
ing of the drivers of SSC and whether it is from runoff or wind-
driven resuspension. To understand this relationship from a causal
standpoint, we suggest further development of methodology.
Meteorological records also indicate the occurrence of named
storms in close temporal proximity to several of the identified SSC
events. Notably, Storm Agnes occurred on 27 September 2023,
coinciding with one of the highest SSC values observed during
the study period. Similarly, Storm Lorenzo impacted the region
on 4 October 2019, shortly after an SSC spike recorded
on 3 October 2019 (Met Eireann, 2025). These temporal align-
ments reinforce the hypothesis that extreme weather events can

act as significant triggers for abrupt increases in coastal SSC
(Miller, 1999; Suursaar et al., 2015).

Collectively, these findings highlight the model’s capability to
capture both spatial and temporal variabilities in SSC. In add-
ition to identifying high-SSC zones and seasonal trends, it proves
effective in detecting episodic events linked to environmental
drivers such as rainfall anomalies, storm activity and wind-
induced resuspension.

Study limitations and next steps

A key limitation of the model lies in its reduced accuracy at higher
SSC (>75 mg/L) levels. This issue is evident in Figure 2 and is
consistent with previous findings on reflectance saturation at ele-
vated SSCs (Curran and Novo, 1988; Markert et al., 2018; Shahzad
et al, 2018). Reflectance becomes less sensitive to additional
suspended material beyond certain thresholds, particularly due to
the optical saturation of visible and near-infrared bands (Bowers
et al,, 1998; Doxaran et al., 2002; Luo et al., 2018). Moreover, ML
models such as XGBoost and Random Forest are inherently non-
extrapolative, meaning their predictions are restricted to the range
observed in the training data (Chen and Guestrin, 2016). Therefore,
caution is needed when interpreting model outputs in high-turbidity
regimes, and they should not be treated as absolute estimates outside
the validated range. A major contributing factor to this limitation is
the under-representation of high-SSC samples in the training dataset.
Expanding the calibration dataset to better capture high-turbidity
conditions would be a logical next step. Targeted field sampling in
known high-turbidity areas, coordinated with satellite overpasses,
could enhance the model’s predictive power and ability to model
extreme sediment conditions.

Figure 3 highlights several monitoring stations where SSC pre-
dictions were problematic. These cases emphasise the importance
of quality control in calibration data and the need for manual
inspection and filtering to ensure representativeness. Remote sens-
ing models must also be applied cautiously, particularly in tidal
areas where water depth fluctuates and may push pixels in and out
of the valid range for SSC estimation (Pahlevan et al., 2017; Dethier
et al,, 2020).

The lack of high-resolution, up-to-date bathymetry data for
Ireland’s coastal waters presents an additional constraint (O’Toole
et al., 2020). Without accurate bathymetric information, the reli-
ability of reflectance-based SSC estimates diminishes in shallow or
variable-depth regions. Addressing this will require improved tidal
prediction tools and detailed bathymetric surveys to support
broader operational use.

This study also raises broader questions around the complexity
and interpretability of ML models in environmental science.
Although achieving high predictive accuracy is important, it must
not come at the expense of transparency and rigorous validation.
This includes using cross-validation, multiple performance metrics
and interpretability tools such as SHAP values. However, it is
important to note that SHAP, while useful, only provides correl-
ational insight. Moreover, model performance is constrained by the
quality and size of the training data, requiring thoughtful choices
around regularisation, architecture and parameter tuning—espe-
cially in deep learning models such as neural networks (Karpatne
et al.,, 2018; Zhu et al., 2023).

Although results were visualised using downsampled outputs
for clarity, the model retains its full 30 m spatial resolution, enabling
fine-scale environmental monitoring in regions as small as 5 km”.
This makes the method particularly well-suited for event-based
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studies (e.g., storms or floods), multi-year trend assessments and
local-scale management decisions. For example, it can help evaluate
post-construction sediment changes around coastal infrastructure
(e.g., breakwaters or tidal barrages) by comparing recent SSC
patterns to historical baselines. It also holds promise for the long-
term monitoring of sediment-sensitive ecosystems such as estuar-
ies, saltmarshes and wetlands.

In addition to expanding the dataset and improving bathymetry,
future research could explore the use of causal inference methods to
go beyond correlational models and gain a mechanistic under-
standing of the drivers of SSC variability. This could yield more
actionable insights for environmental planning and policy, espe-
cially in coastal zones prone to rapid sediment changes.

Conclusions

In this study, we developed and validated an ML approach for
modelling SSC in coastal areas using remote sensing data,
incorporating geographic information to improve predictive
accuracy. Our model, based on XGBoost, integrated visible
and infrared spectral bands from Landsat and Sentinel satellites
with spatially explicit geographic data, and was rigorously evalu-
ated using LOOCV.

The model effectively captured key spatio-temporal patterns
of relative SSC in shallow coastal waters, demonstrating strong
performance across multiple scales. At the regional level, it suc-
cessfully identified SSC dynamics across thousands of kilometres
surrounding the island of Ireland. At the local scale, its applica-
tion to multi-temporal imagery of Wexford, Ireland, revealed
seasonal and event-driven sediment patterns that were consistent
with known meteorological, hydrodynamic and fluvial processes
at that site. Wexford estuary is a drowned valley estuary with a
barrier, with flood-tidal dominance. Sediment supply forming the
sediment deposits is heavily impacted by seasonal tides and
flooding, with a large internal fetch distance meaning that waves
are generated that can resuspend SSC and modify the shoreline
(Cooper, 2016).

Given the complexity and variability of Ireland’s coastal
zones, shaped by a range of environmental drivers, our findings
are encouraging. They indicate that this modelling framework
can accommodate location-specific dynamics within a unified
and scalable SSC monitoring approach. Although further refine-
ment is warranted, particularly through more sophisticated
integration of geographic information, such as geographic
regression techniques or spatial clustering of regions, our results
highlight the potential of remote sensing-based SSC monitoring.
Such methods can support local and national agencies in track-
ing sediment dynamics across seasonal to multi-annual time-
frames and spatial scales ranging from tens of meters to the
national level. Ultimately, this approach can inform adaptive
land and coastal management strategies that promote ecological
resilience, geomorphological stability and climate adaptation in
dynamic coastal environments.
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