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Abstract

The latent Markov model (LMM) has been increasingly used to analyze log data from computer-interactive
assessments. An important consideration in applying the LMM to assessment data is measurement effects
of items. In educational and psychological assessment, items exhibit distinct psychometric qualities and
induce systematic variance to assessment outcome data. The current development in LMM, however,
assumes that items have uniform effects and do not contribute to the variance of measurement outcomes.
In this study, we propose a refinement of LMM that relaxes the measurement invariance constraint and
examine empirical performance of the new framework through numerical experimentation. We modify
the LMM for noninvariant measurements and refine the inferential scheme to accommodate the event-
specific measurement effects. Numerical experiments are conducted to validate the proposed inference
methods and evaluate the performance of the new framework. Results suggest that the proposed inferential
scheme performs adequately well in retrieving the model parameters and state profiles. The new LMM
framework demonstrated reliable and stable performance in modeling latent processes while appropriately
accounting for items’ measurement effects. Compared with the traditional scheme, the refined framework
demonstrated greater relevance to real assessment data and yielded more robust inference results when the
model was ill-specified. The findings from the empirical evaluations suggest that the new framework has
potential for serving large-scale assessment data that exhibit distinct measurement effects.

Keywords: computerized assessments; interaction log; latent Markov model (LMM); longitudinal measurement invariance;
measurement noninvariance; process data; transition analysis

1. Introduction

As computers are increasingly used in educational and psychological assessments, interaction log data
(e.g., response times, mouse clickstreams, action counts) have become readily accessible and afforded
numerous research opportunities. The interaction log data, also known as process data in educational
assessment, record individual’s interaction with an operation system and have been used to inform
respondents’ behavioral patterns and mental modes (Greift et al., 2016; He et al., 2023; Kang et al.,
2024; Welling et al., 2024). In education, the interaction data have been further used to predict students’
future performance (Qiu et al., 2018; Waheed et al., 2023), refine assessment designs and interventions
(Dunbar et al., 2014; Kuo & Wu, 2013; Mislevy et al., 1999).

One way to model interaction log data is to apply the latent Markov model (LMM; Baum & Petrie,
1966; Wiggins, 1955, 1973). The model describes individual’s interaction outcomes as a cross-sectional
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time-series and posits a latent state sequence to explain the variance of manifest observations. The model
can describe dynamics of temporal outcomes while offering flexibility in modeling various indicator
variables. In the field of education, LMM has been used to model students’ learning behaviors (Chen
et al,, 2019; Geigle & Zhai, 2017; Shih et al., 2010; Tang et al., 2021), mental modes (Kang et al., 2024;
Molenaar et al., 2016, 2019), problem-solving strategies (Tang, 2024; Xiao et al., 2021), and affective
states (Fwa & Marshall, 2018; Magsood et al., 2022).

An important consideration in applying the LMM to assessment data is invariance of measurement
(Cappé et al., 2005, chapter 14)—the measurement process that generates manifest observations from
latent states must remain constant across occasions. When construed for assessment data, the assump-
tion of measurement invariance (MI) means that the measurement stimuli that prompt responses (e.g.,
items, problems, tasks, and questions) have homogeneous psychometric qualities and do not induce
variance to the outcome data. The MI assumption ensures that longitudinal variance in the outcome
data is explained by the evolution of underlying latent states. If the measurement system fluctuates over
occasions — termed as measurement noninvariance (MNI)—, the difference in the outcome data cannot
be fully attributed to the latent states, and the inference on the state profiles will become confounded by
the extraneous variance.

While the MI provides an important ground for modeling longitudinal variance, the assumption
becomes less tenable when it comes to assessment data. In educational and psychological assessments,
items are purposefully designed to exhibit distinct psychometric properties (e.g., easy vs. difficulty items,
facile vs. laborious tasks) so they can measure various levels of latent traits. The distinct measurement
properties of items, if not properly addressed, can bring about systematic variance to outcome data and
interfere with the inference on the model parameters and state profiles.

The perceived importance of MI in LMM led to a number of studies exploring ways to test
measurement (non)invariance (Di Mari et al., 2022; Kim et al., 2023; Nagelkerke et al., 2016). These
studies, however, suggested heuristic approaches comparing model fit or approximating MNI through
random effects. Given that assessment data are expected to inherently exhibit MNI, a formal model that
explicitly takes into account measurement effects will lend greater utility.

The purpose of this study is to present a refined LMM framework that explicitly models items’
measurement effects and performs inference under the apparent violation of MI. We formulate measure-
ment models of LMM allowing event-specific measurement effects and present an inferential scheme
that affords inference on the measurement parameters. The measurement models are formulated for
computer-interactive assessments that yield structured log data where items serve as measurement
stimuli (e.g., item performance scores, item interaction times, and item action counts). The new
inferential scheme is derived from the established analytic solutions (e.g., Baum et al., 1970; Dempster
et al,, 1977; Rabiner, 1989) while allowing for item-level measurement effects and accommodating
different indicator variables (e.g., nominal, ordinal, continuous, count).

The proposed refinement can enhance the functionality of LMM in addressing the MNI and can
be applied to any indicator data that exhibit distinct measurement properties (e.g., different indicator
categories, distributional characteristics, psychometric qualities). With the inference routines directly
derived from the established solutions (e.g., Baum-Welch and Viterbi algorithms), the new framework
will demonstrate high implementational efficiency without requiring exploratory model comparison
or variance approximation. In this study, we especially consider a computer-interactive assessment for
an example application and show that the suggested framework can entertain large-scale multimodal
cross-sectional time-series data of many measurement events. The framework is applied to temporal
observations from behavioral and cognitive indicators that treat items as measurement events, and it
is found that the framework performs reliably well in accounting for items’ measurement effects and
decoding underlying latent state profiles.

We emphasize that the focus of the present study is on the methodological refinement of LMM
and the demonstration of its empirical performance in noninvariant measurements. While studies
exist that modeled measurement effects within a mixture of latent-trait and latent-state models (e.g.,
Molenaar et al., 2016, 2019; Vermunt et al., 2008), no concrete methodological scheme has been
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yet established for conducting regular transition analysis in the measurement noninvariant data. The
current study presents model formulations and inferential algorithms for implementing LMM in the
measurement noninvariant data and demonstrates their experiential performance and relevance to
educational assessment data.

In what follows, we present the new LMM framework that relaxes the MI constraint and the
corresponding inferential methods that accommodate differential measurement effects. We then report
simulation studies that evidence the reliability of the inferential scheme and document the functioning
of the modeling framework from numerical experiments. In evaluating the empirical performance,
we especially focus on the performance in describing the measurement-variant and invariant data to
gauge the validity of the framework, and examine probable consequences of model misuse. The ensuing
Section 5 presents an example application of the framework to a real assessment and discusses practical
relevance. The article concludes in Section 6 with a summary of findings and directions for future
research.

2. Modeling framework
2.1. Latent Markov model

To establish an LMM framework that accommodates MNI, we consider an assessment setting in which
afixed set of items (j=1, ..., J) is administered to a sample of subjects (i=1, ..., N) in same sequence.
We assume that, at each measurement point j (i.e., item assignment), individual’s interaction with the
assessment is logged as cross-sectional data that consist of K indicators (e.g., response scores, interaction
time, action frequency).' Let X; = (Xijx:j=1,...,J;k=1,...,K) denote a sequence of interaction data
observed from a subject i. The goal of LMM is to elicit a sequence of latent states, S; = (Si, ... , Siy), that
explains the emission probabilities of the manifest outcomes. The state variable at each measurement
point takes a discrete value from a finite set, S; € S, and is assumed to follow a first-order Markov process,

P(Sj = Sj|Sl =81y -0y S]'_l = Sj_l) = P(Sj = S]' ‘ Sj_l = 5]'_1)7 (1)
with a realized value, sj e S(j=1, ... ,J).” The equality (1) implies that a latent state at any measurement
point is determined exclusively by the immediately preceding state and is conditionally independent of

the past states.

2.1.1. Structural model

Assuming a latent Markov chain for manifest data necessitates a structural model that describes the
behavior of latent states. In LMM, the structural model is formulated by two constituting models:
(i) the initial state model that describes the probabilities of initial latent states and (ii) the transition
model that describes the transition probabilities of latent states at adjacent event times. Both models
can be formulated according to the needs of data. In this study, we apply ordinary multinomial logistic
regression and freely estimate state probabilities without particular structure (i.e., stationary state
transition, within-state homogeneity).

The initial state model is formulated as

o)
R ST @

'We view interaction outcomes as time series from a sequence of measurement events. For activity stream data that are
observed without specific measurement stimuli (e.g., navigation patterns, keystrokes), LMM can be applied after aggregating
data (e.g., Magsood et al., 2022) or after numeric scaling (e.g., Tang et al., 2020, 2021), or at the single-subject level (e.g., Tang,
2024; Xiao et al., 2021).

“Throughout, P(-) is used to denote the probability of an event and p(-) to denote the probability distribution. The notation,
|S|, will be used to denote the cardinality of the state set (i.e., the number of latent states).
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for each s € S with the state-specific multinomial intercept, {; (€ R). The state transition model is
similarly formulated as

exp (T ) 3)

P = 18129 = 5 e (o)
re sr

for each 5" € S, where 7, (¢ R) models the logit change from state s to s’. Models (2) and (3) provide
a basic form of the structural model and will be used as a baseline throughout the study. Although not
pursued in this study, the models can be extended to integrate covariates (Bartolucci et al., 2014, 2015;
Vermunt et al., 1999) or random intercepts (Altman, 2007; Kang et al., 2024; Tang, 2024) or to allow
time-variant transitions (Farcomeni, 2015).

2.1.2. Measurement model
Along with the structural model, LMM employs a measurement model to link the observable indicators
with the state variables. The model describes emission probabilities of indicator outcomes for each latent
state. In this study, measurement models are formulated for the variables that are commonly observed
from computer-logged interaction data (e.g., response scores, interaction times, and behavioral counts).
The models can accommodate variables in canonical forms. For the variables that exhibit unique
distributional characteristics (e.g., skewness, inflated zero counts, and covariate effects), we leave the
modification to future work.

For modeling nominal indicators, the study applies multinomial logistic regression (McCullagh &
Nelder, 2018). Let X; denote a nominal indicator that takes {0,1,...,M;} values. The probability of
observing each score value is evaluated as

exp (Vsjm)

bgm = P(Xj=m|Sj=5) = ———— —
1+ 1;1 exp ( vsjl)

)

forme{1,...,M;},and
1

¢s0 = P(X;=0[Sj=5) = ——r——,
1+ Zl=’1 exp (vsjl)

where v, (¢ R) denotes the log odds of a score m over a zero score, i.e., log(%). Observe that the
5

response probabilities are defined for each item (i.e., measurement event) and allow for within-state
MNI.

The measurement model for ordinal categorical variables is constructed by implying stochastic
ordering between the categories. In this study, we apply an adjacent-categories logit model that connects
to the multinomial model (Agresti, 2014, chapter 8; Tutz, 2022). Continuing with the established
notation, let X; denote an ordinal categorical variable that takes {0,1, ..., M;} values. The probability
of observing each score value is evaluated as

exp (Zio vsi)

¢5jm=P(Xj=m|Sj=S)= M 9
Sloexp (X1 vsit)

(5)

where vy, denotes the logit of a response probability between adjacent categories, vsj = log (%)
g, m

The continuous and count indicator variables are similarly modeled by the canonical models, each
with the Gaussian distribution and Poisson regression:

N2
p(Xj=x|Sj=5) = %exp(—w) (6)
j

2
2m0? 20
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and

(A5)"exp (-Ag)

p(Xj =15 =) = =20

™)

where yg (€ R), og(€ R"), and (e R") each denote the state-specific location, scale, and rate
parameters for item j.

2.1.3. LMM
Integrating the constituting models, LMM is defined by the joint probability distribution of (Xj, S;):

] ]
p(Xi,8:) =p(Si) [ [ (SijlSij-1) [ [p (X185, (8)

j=2 j=1

where p(Si1) denotes the probability of an initial latent state, p(S;|S;j-1) denotes the probability
of transitioning latent states from time j— 1 to j, and p(Xj|S;) denotes the probability of emitting
measurement outcomes, X;; = (Xijk :k=1,...,K), at state Sj. For notational convenience, we let
mos = p(S1 =s) foreachs€ S,and 7y = p(Sj=s'|Sj-1 =s) foranyje {2, ..., ]} ands, s" € S. We again note
that both the measurement and structural models can be extended to include covariates as appropriate.
This direction is not pursued in this study as our primary interest is in the extension of the LMM
framework that accommodates measurement effects.

2.2. Inference

Continuing with the assessment setting in which a fixed set of items is administered to a sample of
subjects, the parameters of LMM are estimated from multiple chains of multimodal time-series data.
LetX=(X;:i=1,...,N) denote a collection of indicator data observed from a calibration sample and
0 contain the parameters of LMM. The parameter set, 6 = (7o, 7, ¥), includes the vector of initial state
probabilities, 770 = (70 : s € S), the state transition probability matrix, 7 = (71 : 5,5 € S), and the emis-
sion parameters of the measurement model, ¥ = (¢sjm, phsj, 052]», Ag:me{l,....Mj},je{l,...,J},seS).

Given a set of latent state sequences, S = (S;: i=1,...,N), the likelihood of 8 is evaluated by the
joint probability distribution of (X, §):

N J J K
p(X,80) = [T|p(Snsm) [ Tp(Sii|Sij-i; ) [ TT [p(Xise | Sis w) |-
i=1 j=2

=1 k=1
The parameters of LMM are then estimated as the mode of the joint likelihood:
0 = arg max p(X, ).

In real settings, the state sequence variable cannot be directly observed and remains latent. To deal
with the missing S, the expectation-maximization algorithm (Dempster et al., 1977) is employed that
iteratively maximizes the conditional expectation of logp(X, S; 8) given the posterior distribution of S.
The algorithm alternates between the expectation and maximization steps to iteratively update the
parameters of the model. At the expectation step, the algorithm evaluates conditional expectation of
the complete-data log-likelihood based on the provisional estimate, 0":
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N
> =LEg x o [ 108P(A,050) | = slx,, 00 | Logp(Xi, 8
0(6;6") Egx g0 [logp(X,$:0)] = 3 E, . g0 [logp(xi, s 0)] ©)

i=1

> © ] lx 8

= Z[ZP(& =s[x:,0')logmos+ > > > p(Sj-1=5,5=5"|x;,0' ) logmey + -+
i=1 LseS j=25eSs'eS
K
et 2SS p(S) = s|x:, 01 log pi(Xiik |8 = 5,0) |-
j=lk=1seS

The equation (9) requires computation of posterior probabilities of the unobservable variables, S;
and (Sj-1, S;). A practical approach to dealing with the missing state variables is to apply the Baum-
Welch (BW) algorithm (Baum et al., 1970). The algorithm draws possible trellis of state paths and
applies dynamic recursion programming to evaluate the probabilities that lead up to each state sequence
scenario. The original algorithm is designed for measurement-invariant data. In this study, we refine the
BW algorithm to accommodate differential measurement effects. We note that the refined estimation
bears a resemblance to the process applied in Vermunt et al. (2008). The existing work is aimed for
mixture LMMs on categorical outcomes while the present estimation is aimed for standard transition
analysis on multimodal indicator data.

2.2.1. Baum-Welch algorithm

Designed for LMM, the BW algorithm applies dynamic recursion programming to compute cardinal
probabilities that can estimate p(S;|x;) and p(Sj-1, Sj|xi). Let a;(s) and B;(s) each denote the joint
probability of (xi1, ..., xi;, Sj = s) and the conditional probability of (xij41, ..., i) given S; = s. Each
probability measure is evaluated by a recursion algorithm based on the latest parameter values, 60 The
joint probability measure, «;(s), is obtained via forward recursion as

aij(s) =p(xi, ..., %ij, i =) = (x5S = 5) > aijo1 (r) s
reS
for each item j (=2, ... ,J) with 71 = p(Sj = s|Sj=1 = r), and a1 (s) = mosp(xi1 |S1 = s). The conditional
probability measure, f3;(s), is obtained via backward recursion as

Bii(s) =p(xijer, - %y [Sj=5) = D" Bijer (r)p(%iju1|Sje1 = 1) 7
reS

foreachj(=J-1,...,1) with e = p(Sj=r|Sj-1 =) and By(s) = 1.
The posterior probability of S; given x; is then evaluated as
a;j(s)Bi (s)
Lres aii(r)Bii(r)

The joint posterior probability of (Sj_1, S;) given x; is evaluated as

i o1 (5) By (s )p (| =5/, 0 ) e .
S5 i1 (DB (7P (x| S = 7, 0 )

reSr'eS

yi(s) = p(8; = s|x;,0) =

& 1y (55) = p(Sior =5, = 5|1, 01)) =

Plugging the posterior probabilities into (9), the Q-function becomes

N ]
Q(6; G(t)) = Z Z i1 (s) logmos + Z Z Z f,»(j_w)(s, s')logﬂssl 4+

i=1 L seS j=2seSs'eS

oo 4

J
j=1

> > yii(s) logpk (X s w) |-

k=1seS
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2.2.2. Parameter update

Once the Q-function is evaluated based on the expected posterior probabilities, the model parameters
can be updated via a standard Newton’s method. At the maximization step, the following objective
function is maximized to obtain the new parameter iterate:

O(0,A",01) = Q(6; ) + A5 (1 -3 7105) + Z/\fM(l -3 71) (10)
seS seS s'eS
where "M = (A, A" (s € S) contains Lagrange multipliers that constrain the probability measures.’
The A§™ places an equality constraint on the initial state probabilities, 3 g 70s = 1; each AZ places an
equality constraint on the transition probabilities, Y. 75 = 1. The model parameters are then updated
as a set of values that maximize the O-function:

A(t+1)

0 < arg max O(G,ALMWU)).

2.2.3. Computation

Equating the score function of (10) at zero yields closed-form equations for some model parameters,
allowing analytic computation. For example, the initial state probabilities and state transition probabil-
ities can be updated as

N J
(z+1) Zfil Yil(S) and 7-[(’“) - Yint Zj=2 Ei(jfl,j)(sa Sl)
Thos ) ss’ :
Zﬁl Zres Yi1 (7‘) ﬁl Zjl'zz ZreS Ei(j—l,j) (57 7‘)

The measurement parameters for the continuous and count outcomes can be updated as

N
and 10D Yic1 Vi (8)xij

N . ’ sj N . ’

i 1)’1](5) i1 7ii(s) iz 7i(s)

The measurement parameters of the discrete outcomes require numeric iteration and can be updated as

the root of the score function: 5= [Zl 1ii(s) 610%7,(}(” 15 ] 0.

(t+1) Zz 193 (8)X;j 02(t+1) - Zﬁl)’ij(s)(xij_ﬂsj)z
§j

2.2.4. Standard error

As the model parameter estimates are obtained from the above estimation, standard errors can be
evaluated based on the Hessian matrix. The standard error of each parameter estimate is obtained as the
square root of the diagonal entry of the inverse of the negative Hessian matrix. Supplementary Section A
provides the estimating equations for evaluating standard errors of the model parameter estimates.

2.3. State estimation

Once the model parameters are estimated with adequate precision, latent states underlying the indicator
sequence can be decoded based on the estimated model parameter values. In this study, we obtain state
estimates as the most probable state sequence from the posterior probability distribution (i.e., maximum
a posteriori). For a subject with the observed data, x;, the state sequence is estimated as

i ]
§ = argmax p(s|x;,0) o< p(s1) [ [ p(sjlsi-1)- [ [p(xils)- (11)

€S j=2 j=1

Equation (11) can be solved by the Viterbi algorithm (Rabiner, 1989; Viterbi, 1967) that recursively
finds the most probable sequence of latent states. The algorithm evaluates probabilities of possible state
sequences that could have generated the indicator sequence and retrospectively determines the most

3The superscript, LM, is used to differentiate from the rate parameter, A, of the Poisson distribution.
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likely sequence of latent states leading to the final state. For implementational details, we refer to Jurafsky
and Martin (2019, pp. 152-154, 555-557).

3. Simulation study I: Validation

We illustrate the performance of the proposed methods through a series of Monte Carlo simulation
studies. In Study I, we verify the accuracy and reliability of the inference scheme and examine the
performance of the new LMM framework in the measurement-noninvariant data. In Study II, the new
modeling framework is compared with the existing framework in describing the measurement-invariant
and noninvariant data.

3.1. Design

The performance of the new LMM framework was validated under five-factorial experimental design.
The design factors include: (i) latent dimensionality (|S|), (ii) the shape of the initial state probability
distribution (7), (iii) stability of state transition (), (iv) between-state distinction in the emission
parameters (A), and (v) the sample size (N). The latent state dimensionality determines the complexity
of data and can influence the estimation precision. In this study, the state dimension was varied at |S| = 3
and 5 to simulate moderately and fairly complex latent structures. The state probabilities determine the
sample characteristics and can likewise influence the inference outcomes. The present study considered
different scenarios for simulating the state probabilities. For the initial state probability distribution, we
considered two scenarios—when the distribution is (i) balanced (71os = 1/|S]| for each s € S) and skewed
(710s = 1.1 - 0.1|S| for the first state and 0.1 otherwise; i.e., o = (.8,.1,.1) when |S| =3; (.6, .1, .1, .1, .1)
when |S| =5). The state transition probabilities were similarly simulated for two scenarios: (i) when the
states remain stable over time (7, = .9 when s =" and .1/(|S| - 1) otherwise) and (ii) when the states
make moderate transitions (77,» = .7 for s =s" and .3/(|S| — 1) otherwise) (Bacci et al., 2014; Baldwin,
2015).

Along with the structural factors, two additional factors were considered for the measurement
model—the difference in the emission parameters between states and the sample size. The between-
state difference in the emission parameters dictates distinguishability of the underlying latent states
and can influence the overall parameter recovery. In this study, emission parameters were simulated
for two scenarios—when the parameters show moderate and large differences (see below for detailed
values). The size of calibration data can similarly impact the inference precision and was varied at three
levels to create small, moderate, and large sample size conditions—N = (100, 300, 500) when |S| = 3 and
(300, 500, 1000) when |S| = 5.

The other factors were fixed at constant values. The study assumed a medium-length assessment
with J = 20 measurement events and collected three indicators at each measurement point (K = 3).
The indicator set consisted of ordinal scores (e.g., response scores), continuous outcomes (e.g., reaction
times), and count records (e.g., the numbers of erroneous attempts and hints requested). The number
of response categories for ordinal outcomes was fixed at four (M; = 3).

3.1.1. Data generation

Simulating data for LMM yields two data sets: (i) N-by-] state sequence data and (ii) N-by-J-by-K
measurement outcome data. For creating state sequence data, we first obtained initial state variables
from the multinomial distribution with 7o probabilities and generated subsequent state variables from
the Markov chains with 7 transition probabilities. The measurement outcome data for each latent
state were then generated as follows. Among the multiple latent states, we assumed that one state
represents a normal test-taking mode and the emission parameters of this state follows a constant set of
hyperparameters, yj ~ N'(0,.3%), o; ' ~ NV/(3.33,.3), and log); ~ NV(3,.3%). The emission parameters
of other states were generated by shifting the hyperparameters of the normal state as y} < uj+Aand
Al < A;£2A with A = .5 and 1.0 to simulate moderate and large shifts. The parameters of the ordinal
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15| =3

1S =5

State 1: Normal test-taking mode

o High probabilities of attaining middle accuracy scores:
(¢sf17 ¢sf'2) > (¢sj07 ¢s/3)

© Modest response times: ys; ~ N (0, 3%),
oyt~ N(3.33,.3%)

o Moderate interactions: log s ~ N/ (3, .3%)
State 2: Noneffortful responding

o High probabilities of getting low accuracy scores:
(850, $51) > ($s72, $573)

o Short response times: usj ~ N'(=4,.3%),
oyt~ N(3.33,.3%)

e Few interactions: log Ay ~ NV (3-24, .3%)
State 3: Plodding

o High probabilities of attaining high accuracy scores:
(652, $573) > ($5j0, Psi1)

e Long response times: p; ~ N (4, .32),
oyt ~ N (3.33,.3)

e Many interactions: logAs; ~ /(3 +24, .3%)

State 1: Normal test-taking mode

e High probabilities of attaining middle accuracy scores:
(¢’sj17 ¢sj2) > (¢s/'07 ¢s/'3)

o Modest response times: y5; ~ A/ (0, .3%),
oyt ~ N (3.33,.3%)

o Moderate interactions: logAs; ~ A/ (3, .3%)
State 2: Noneffortful responding

o High probabilities of getting low accuracy scores:
(¢50, $51) > (52, 6573)

o Short response times: us; ~ N/ (=4,.3%),
oyt ~ N (3.33,.3%)

o Few interactions: log Ay ~ NV (3-24, .3%)
State 3: Struggling

o High probabilities of getting low accuracy categories:
((psta ¢sj1) > (¢5j27 ¢5/3)

o Long response times: pg; ~ N (A, .32),
oyt ~ N (3.33,.3)

e Many interactions: log g ~ A/ (3+24, .3%)
State 4: Efficient responding

e High probabilities of attaining high accuracy scores:
(852, $573) > ($5j0, Psi1)

o Short response times: ug; ~ N (=4, .3%),
oyt~ N(3.33,.3%)

o Few interactions: logAs; ~ N (3-24A,.3%)
State 5: Plodding

e High probabilities of attaining high accuracy scores:
(¢’sj27 ¢sj3) > (¢s/'07 ¢s/'1)

o Long response times: y5; ~ N'(4, .3%),
oyt ~ N (3.33,.3%)

o Many interactions: logAs; ~ A/ (3+24, .3%)

Note: |S|: Number of latent states at each measurement point. ¢s;,: Probability of responding to category m on item j at state s. ug;: Mean of log
response times on item j at state s. oy;: Standard deviation of log response times in item j at state s. A;: Mean of action frequencies of state s on
item j. A: Degree of shift in the emission parameters; Set at .5 (Moderate) and 1.0 (Large).

outcomes were generated from the uniform distribution, ¢gm ~ U (0, 1)(2;@:0 ¢sjm = 1 for each s), and
reordered according to the hypotheses on the latent states. Table 1 details the scenarios hypothesized for
the state labels. When |S| = 3, we assumed that the first state represents the normal test-taking mode,
and the other states represent noneffortful and plodding states. When |S| = 5, we assumed that each
latent state represents the normal, noneffortful, struggling, efficient, and plodding states.

As we determine the hyperparameters for each state and obtain emission parameters for each item
and state, we generated indicator data following the measurement model formulations. The response
score data were generated following (5) on the scale of (0, 1, 2, 3), the response time data following
(6) on the log metric, and action count data following (7). All simulation conditions were repeated 100
times each with a unique set of model parameters and calibration data.
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3.1.2. Evaluation

While the data simulation yields state sequence data, the state variables cannot be observed in real
settings. The inference algorithms for LMM will attempt to estimate the parameters of the model
and retrieve the underlying state values. To evaluate the inferential performance of the proposed
methods, we estimated the model parameters applying the measurement outcome data and examined
the estimation results.

The model estimation was performed applying standard convergence criteria (e.g., log-likelihood
tolerance of .001, difference in the iterates less than .005), and the estimation outcomes were evaluated
by three measures: (i) bias, (ii) root mean squared error (RMSE), and (iii) standard error. For each model
parameter, the bias and RMSE were calculated as

2

Bias=0,-6), and RMSE=+| — > (8,-6,),
1=

=1
N—

where 0 denotes a generating parameter value, 0 denotes the corresponding estimate, and I (=1, ... ,L)
indexes the congeneric parameter (e.g., s forall se |S|andje {1,...,]}).

Since the model parameters were estimated without the knowledge about latent states, a label-
switching problem arises when comparing the model parameters. In this study, we determined the order
of states based on the proximity of the estimates to the generating parameter values. Among all possible
state permutations (e.g., (1,2, 3), (1,3, 2),...,(3,2, 1) when |S| = 3), the final state set was determined as
the one that yielded minimum distance from the generating values (i.e., the most likely state set). In real
settings, the label switching is generally not of concern as the true underlying states are not known and
the states can be labeled based on the observations from the model parameters.

As we confirm that the model parameters are estimated adequately, we performed state decoding,
estimating state sequences underlying the indicator data. The accuracy of the state estimates was
evaluated based on the match rate between the estimated and true values:

NJ I(gij = Sij)
State Recovery Rate = Z Z 2
o= N

where I(-) denotes the indicator function, s;; denotes the state value of subject i at time j, and $; gives
the corresponding estimate.

Below we present results of the simulation experiments. The outcomes from the multiple replications
were summarized by averaging the evaluation statistics over the repetitions. Where appropriate, partial
effect-size measure, 7%, is reported to inform the significance of the design variables. The value may be
interpreted following the convention (Cohen, 1988)—#* smaller than .01 as a small effect, between .06
and .14 as a medium effect, and larger than .14 as a large effect.

3.2. Results

3.2.1. Bias

In Table 2, we report average biases of the parameter estimates from the |S| = 3 condition. The results for
the probability-based parameters were obtained by treating the first state and score levels as a reference
category and averaging over the |S| -1 state levels (for 7o and 7,+) and M; — 1 score categories (for ¢) to
avoid the cancellation due to the sum-to-one constraints (i.e., > 7os = 1, X, /s = 1, 32, $jm = 1). The
bias results under other reference categories can be found from Supplementary Table B1. The reported
values indicate that the estimation overall entailed minimal bias. All parameter domains showed close-
to-zero biases with no particular directions. The observed values were constantly small in all evaluation
scenarios. All design factors were found to have insignificant impact on the bias statistics, suggesting
that the estimation performed stably well against the variation of the design factors.
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Table 2. Average bias of the model parameter estimates (|S| = 3)

Balanced initial state distribution Skewed initial state distribution

Tr A N o i~ ¢ u o A o i~ ¢ u o A

St Mod 100 -.004 -.001 .000 .000 -.011 .001 .052 -.006 .001 .001 -.010 .006
300 .002 .000 .000 .001 -.004 .004 .025 -.002 .000 .000 -.002 -.001

500 .002 .000 .000 .001 -.003 .002  .020 -.002 .000 .000 -.001 .000

Lrg 100 .000 .000 .000 .001 -.006 .007  .007 .000 .000 -.001 -.006 -—.002

300 .001 .000 .000 .000 -.002 -.002 .007 .000 .000 -.001 -.002 -.002

500 .002 .000 .000 .000 -.001 .000 .005 .000 .000 -.001 -.001 -.002

Unst Mod 100 -.018 -.008 -.001 .001 -.016 -.005 .102 -.010 .000 .001 -.018 -.001
300 -.009 -.005 .000 .000 -.006 .003 .090 -.006 .000 -.001 -.005 .002

500 -.012 -.005 -.001 .000 -.004 .001 .087 -.005 .000 .000 -.002 .002

Lrg 100 -.002 -.001 .000 .001 -.004 .006 .028 .000 .000 .000 -.004 -.001

300 -.002 -.001 .000 .001 -.001 .002  .020 .000 .000 .000 -.001 -.001

500 .000 -.001 .000 .001 .000 .001 .017 .000 .000 .000 .000 .000

Note: Tr: State transition scenarios (St: Stable (stayer probability = .9), Unst: Unstable (.7)). A: Difference in the emission parameters (Mod:
Moderate (e.g., Ay = .5), Lrg: Large (1.0)). N: Sample size. mo: Initial state probabilities. 7,y : State transition probabilities. ¢: Response
probabilities for ordinal outcomes. u: Location parameter for continuous outcomes. o: Scale parameter for continuous outcomes. A: Rate
parameter for count outcomes. The average biases for g, 755/, and ¢ were obtained by treating the first category as a baseline and averaging
over the remaining categories.

The results from the | S| = 5 condition showed a similar pattern (see Supplementary Tables B2 and B3).
Although the overall magnitude of bias slightly increased due to increased latent complexity, the bias
values remained constantly and stably small across the evaluated conditions.

3.2.2. RMSE

In Table 3, we report RMSEs of the parameter estimates for |S| = 3. The reported values again suggest
that the estimation performed adequately well in recovering the parameter values. The RMSEs were
reasonably small and remained stable across the evaluated conditions. The patterns across the design
variables were generally in line with the expectations. An increase in the sample size entailed decrease in
the estimation errors and improved parameter recovery (1* = .527 on average). The greater distinction
in the emission parameters similarly led to improved recovery (* = .253), reducing RMSEs by .038
on average. The factors related to the state distributions also showed expectable patterns. As the latent
states were more evenly distributed and remained stable, the estimation achieved greater accuracy
in recovering the model parameters. Between the two evaluated factors, the stability in transition
probabilities generally had greater influence on the recovery performance, yielding #* of .087 and an
average RMSE difference of .023 between the stable and unstable conditions (vs. #* = .025 and .009
difference when the initial state probability distribution was varied). All in all, the results from Table 3
evidenced that the estimation performed adequately well and delivered reliable outcomes.

The RMSE results from the |S| = 5 condition showed similar patterns with Table 3 (see Supplementary
Table B4). While the estimation errors increased in magnitude as a result of the increase in the free
parameters and data complexity, the overall size of errors was acceptably small (.193 on average). The
patterns relating to the design variables were also consistent with those in Table 3.

3.2.3. Standard error

In addition to the accuracy criteria, we also evaluated standard errors of the parameter estimates as
a measure of estimation precision. Supplementary Table B5 presents detailed results of the evaluated
standard errors. As shall be seen from the table, the estimation overall showed a well-regulated
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Table 3. Root mean squared error of the model parameter estimates (|S| = 3)

Balanced initial state distribution Skewed initial state distribution
Tr A N o Tlss/ ¢ u o A o Tlss ¢ u o A
St Mod 100 .061 047 .092 .083 .050 .370 .098 047 .100 .095 .057 419

300 .033 .020 .050 .051 .027 .215 .047 .020 .055 .050 .030  .226
500 .024 .021 .040 .044 021 .173 .037 .017 .043 .038 .023 .174
Lrg 100 .043 .010 .077 .055 .040 306 .032 .010 .084 .066 .049  .348
300 .024 .006 .044 .032 .023 .174 .022 .006 .048 .037 .027 .196
500 .021 .005 .034 .024 .018 .135 .017 .005 .037 .028 .021  .150

Unst Mod 100 .099 .091 107 125 .066 .485 .168  .087 .112  .130  .069 497
300 .070 .052 .064 .083  .037 .298 .145 .049 .067 .085 .039 .310

500 .062 .046 .053 .071  .029 247 .140 .043 .054  .074  .032 .259

Lrg 100 .049 017 .079  .062  .047 331 .057  .017  .081 .072  .053 .345

300 .026 .010 .045 .036 .026 .189 .037 .010 .046 .041 .030 .195

500 .022 .008 .034 .028 .021 .146 .030 .008 .036 .032 .024 .151

Note: Tr: State transition scenarios (St: Stable (stayer probability = .9), Unst: Unstable (.7)). A: Difference in the emission parameters (Mod:
Moderate (e.g., Ay =.5), Lrg: Large (1.0)). N: Sample size. mo: Initial state probabilities. 7, : State transition probabilities. ¢: Response probabilities
for ordinal outcomes. u: Location parameter for continuous outcomes. g: Scale parameter for continuous outcomes. A: Rate parameter for count
outcomes.

Table 4. Latent state recovery rate

|S|=3 |S|=5
Balanced Skewed Balanced Skewed
A N St Unst St Unst N St Unst St Unst

.5 100 .888 752 .882 749 300 .592 473 .650 473
300 919 .800 922 797 500 .593 483 .663 478
500 921 .810 .926 .806 1000 597 490 .668 485

1.0 100 .982 .945 .981 .946 300 .641 .605 702 .623
300 .984 951 .983 .953 500 .650 611 .698 .626
500 .984 .952 .983 .954 1000 .653 612 711 .630

Note: A: Difference in the emission parameters (Mod: Moderate (e.g., Ay = .5), Lrg: Large (1.0)). N: Sample size.
Tr: State transition scenarios (St: Stable (stayer probability = .9), Unst: Unstable (.7)).

behavior in estimating the standard errors. The impact of the design factors was generally negligible
(112 < .033) except for the sample size (112 >.225). As the calibration sample size increased, the estimation
consistently yielded smaller standard errors. Besides the sample size, no other design factors showed
significant impact, and standard errors remained stable across the evaluated settings.

3.2.4. State recovery

In Table 4, we report match rates between the estimated and true state values. The estimation was
performed by the Viterbi algorithm based on the estimated model parameter values. The results suggest
that the state estimation overall achieved adequate recovery. When data contained three latent states,
the estimation recovered the true states at 90.69% average rate. When there exist five states, the
underlying states were recovered at 60.04% rate on average. The estimation performance improved
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as the calibration data exhibit greater distinction in the emission probabilities (> > .474) and stability in
the transition probabilities (17> > .461) (average recovery rate .983 when |S| = 3 and .676 when [S| = 5).
The calibration sample size and the shape of the initial state distribution had relatively marginal impact
on the estimation of the state profiles (172 <.107).

4. Simulation study Il: Model comparison

As we verify the performance of the new LMM framework, we conducted a second simulation study
to evaluate the relative performance of the new framework to the existing model. Applying the
measurement-invariant and noninvariant data, we cross-fit the new and existing LMMs and examined
the estimation outcomes to gauge the robustness to model misspecification. The outcomes of this
experiment can help understand the probable consequences of misusing the models and will illustrate
the relative gravity of over- and under-fitting the LMMs.

4.1. Design

The simulation settings generally remained analogous to study I except for the data-generating model
and latent dimensionality. As the focus of the study shifted to cross-fit performance, we generated data
from the two distinct models—the model that assumes MI and the model that allows MNI. The data
generated from each model were then cross-fit by the competing model—the MNI model being fit to the
measurement invariant data (i.e., overfit) and the MI model being fit to the measurement noninvariant
data (i.e., underfit).” Along with the data-generating model, we also adjusted the latent dimensionality of
data at |S| = 3. Simulation study I verified that the estimation routine performs stably across the different
latent dimensions. Given this finding, we fixed the latent dimensionality at a constant value and assumed
that findings of the present experiment would have similar implications for other dimensions.

4.1.1. Evaluation

The performance of the models was evaluated based on the similar criterion measures with study I while
additionally considering absolute bias as a summary measure of biasedness and accuracy. For ease of
discussion, we focus on the absolute bias in this article and present other results in Supplementary
Material (see Supplementary Tables B8-B10). As with study I, all simulation conditions were repeated
100 times, each with a unique set of parameters and data, and outcomes were summarized by averaging
over the replications.

4.2. Results

In Tables 5 and 6, we report average absolute biases observed from the two modeling scenarios.
The results are presented for the ill-fitted models to compare with the outcomes from the normal
fitting (see Supplementary Tables B6 and B7). Comparison of Tables 5 and B6 suggests that assuming
heterogeneous measurement effects in the invariant data can lead to increased estimation error. As the
MNI model was fit to the invariant data, the model parameter estimation yielded .034 larger absolute
bias and .027 lower state recovery rate compared to the normal fitting. The increase in the estimation
errors was especially pronounced when data contained few observations (.053 increase in absolute bias
on average) and displayed greater distinction in the emission parameters (.042 increase in absolute bias
and .035 decrease in state recovery rate). The increased disparity in these settings, however, appeared to
be due to the relatively stable performance of the MI model rather than of the poor performance of the
MNI model. The MI model showed comparatively strong performance in the above-described settings,
making the contrast with the MNI model more distinct. When evaluated the absolute performance of
the MNI model under the same settings, estimation errors were reasonably small, showing .106 average

*The estimation accuracy of MI was verified prior to the investigation (see Supplementary Table B6).
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Table 5. Average absolute bias and state recovery rate of the MNI model fit to the MI data

Model parameter recovery State
Balanced initial state distribution Skewed initial state distribution recovery
Tr A N o Tlss! ¢ u o A o Tlss! ¢ u o A BL SK

St Mod 100 .060 .083 .081 .085 .044 .373 .074 .084 .086 .109 .046 .382 .776 .730
300 .032 .062 .054 .063 .026 .254 .054 .062 .060 .089 .028 .269 .797 .750

500 .029 .059 .046 .058 .021 .219 .052 .058 .052 .084 .023 .235 .800 .753

Lrg 100 .043 .013 .059 .044 .033 .242 .066 .012 .064 .079 .035 .259 972 .912

300 .023 .007 .034 .025 .019 .140 .049 .006 .040 .064 .021 .156 977 915

500 .017 .006 .026 .020 .015 .108 .046 .005 .033 .058 .017 .127 .978 .915

Unst Mod 100 .053 .090 .084 .105 .054 .391 .066 .092 .087 .124 .055 .405 .713 .672
300 .033 .082 .055 .087 .035 .271 .047 .082 .058 .107 .036 .291 .727 .684

500 .028 .082 .047 .083 .031 .241 .040 .082 .051 .103 .032 .263 .729 .686

Lrg 100 .041 .018 .062 .049 .037 .250 .064 .017 .067 .084 .039 .277 942 .882

300 .023 .011 .035 .028 .021 .148 .046 .011 .041 .065 .023 .178 950 .887

500 .018 .009 .027 .022 .016 .113 .043 .009 .034 .060 .019 .146 951 .888

Note: Tr: State transition scenarios (St: Stable (stayer probability = .9), Unst: Unstable (.7)). A: Difference in the emission parameters (Mod:
Moderate (e.g., Ay = .5), Lrg: Large (1.0)). N: Sample size. my: Initial state probabilities. 75 : State transition probabilities. ¢: Response
probabilities for ordinal outcomes. u: Location parameter for continuous outcomes. ¢: Scale parameter for continuous outcomes. A: Rate
parameter for count outcomes. BL: Balanced initial state distribution. SK: Skewed initial state distribution. The number of latent states was
fixed at|S| = 3.

Table 6. Average absolute bias and state recovery rate of the MI model fit to the MNI data

Model parameter recovery State

Balanced initial state distribution Skewed initial state distribution recovery

Tr A N o Tlsst ¢ u o A o Tlsst ¢ U o A BL SK

St Mod 100 .131 .062 .067 .236 .106 .255 .156 .091 .068 .237 .098 .263 .836 .812
300 .116 .055 .065 .234 .109 .248 .147 .074 .066 .236 .102 .253 .843 .827

500 .113 .055 .065 .234 .109 .245 .151 .076 .065 .236 .101 .251 .846 .827

Lrg 100 .049 .011 .065 .233 .115 .236 .040 .011 .065 .230 .112 .239 .970 .970

300 .036 .007 .064 .232 .116 .231 .031 .007 .064 .230 .113 .235 971 .970

500 .035 .006 .064 .232 .116 .230 .028 .006 .064 .230 .114 .234 971 .970

Unst Mod 100 .161 .144 .068 .243 .066 .252 .172 .140 .068 .242 .065 .261 .706 .702
300 .151 .150 .066 .243 .064 .245 .170 .145 .067 .242 .064 .254 707 .702

500 .149 150 .066 242 .064 .242 .166 .145 .066 .241 .063 .252 .707 .703

Lrg 100 .073 .018 .064 .236 .121 .240 .046 .017 .065 .230 .111 .241 919 .924

300 .062 .014 .063 .236 .120 .236 .041 .012 .064 .229 .112 236 .919 .924

500 .061 .012 .063 .236 .121 .235 .040 .011 .064 .229 .112 .235 .920 .924

Note: Tr: State transition scenarios (St: Stable (stayer probability = .9), Unst: Unstable (.7)). A: Difference in the emission parameters (Mod:
Moderate (e.g., Au = .5), Lrg: Large (1.0)). N: Sample size. 7y Initial state probabilities. 7, : State transition probabilities. ¢: Response
probabilities for ordinal outcomes. u: Location parameter for continuous outcomes. g: Scale parameter for continuous outcomes. A: Rate
parameter for count outcomes. BL: Balanced initial state distribution. SK: Skewed initial state distribution. The number of latent states was
fixed at | S| = 3.
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absolute bias when N = 100 and .058 average absolute bias and .931 average state recovery rate when the
emission parameters were of large distinction.

Comparing Table 6 and Supplementary Table B7 similarly illuminates consequences of underfitting.
When the MI model was fit to the measurement-noninvariant data, the model parameter estimates
came to contain larger errors (.069 larger absolute bias on average) and the state profiles were less likely
to match the true values (.050 lower recovery rate on average). The impact of underfitting was especially
dire in large calibration data. In normal fitting, the increase in the sample size resulted in smaller
estimation errors (° = .093 on average). When the model was underfit, however, increasing the sample
size had a marginal influence (5* = .000) and the estimation errors remained constantly large across the
different sample conditions.

Compared with the findings from Table 5, the trends in Table 6 seemed to imply that constraining
measurement parameters in the measurement-noninvariant data can lead to larger estimation errors
than overfitting and that the increased errors are harder to rectify. For example, if the MNI model is
mistakenly fit to the measurement-invariant data, increasing the sample size (4 = .050) can help remedy
the increased errors and attain outcomes comparable to the MI model (e.g., .021 absolute bias difference
and .027 state recovery difference when N = 500). If the MI model is fit to the measurement-noninvariant
data, on the other hand, no other adjustments or manipulations can be made to remedy the superfluous
errors caused by the misfit.

5. Real data application

The performance of the proposed methods was further examined using empirical data from an
international educational assessment, the Program for International Student Assessment (PISA). PISA
measures 15-year-old pupils’ scholastic ability in reading, mathematics, and science and is known to
exhibit large variation in students’ test-taking behaviors due to its low-stakes consequences. In this study,
we performed transition analysis on example assessment data and examined students’ latent mental
processes during the assessment.

5.1. Analysis setting

5.1.1. Data

The example data were obtained from the 2015 Science assessment, the last assessment administered in
linear forms. Science was the main subject area in 2015 and was chosen for its extensive sample data.
For example analysis, we drew out S07-12 booklets that were newly released in the administration year
and performed transition analysis on the US sample data. The examined data contained N = 883 ~ 1318
observations after cleaning (students with more than five missing entries were removed).” The number
of items (i.e., the number of measurement points) ranged between J = 16 and 18 with a majority of items
being scored dichotomously and a few scored polytomously on the scale of (no, partial, full) credits.
The items on the booklets varied in presentation forms (e.g., simple multiple choice, complex multiple
choice, open responses) and showed distinct patterns in the interaction indicators.

5.1.2. Analysis

The transition analysis was performed based on three interaction indicators: (i) the ordinal response
scores, (ii) response times on a log scale, and (iii) the number of total actions on each item. The
count outcomes from the examined data showed large variations (e.g., a maximum of 251 actions on a
simple multiple-choice item) and were treated as continuous after a log transformation.® For modeling
interaction behaviors, we applied the two forms of LMM: (i) the model that assumes MI and (ii) the
model that allows MNI. Note that the MI model does not allow variation in the measurement stimuli
and cannot be applied to the raw data that differ in the number of response categories. For evaluating

>The interaction logs with missing entries were ignored when evaluating the measurement likelihood.
©The normality of the continuous indicators was evaluated prior to model fitting.
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relative performance of the models, the data needed to be reshaped so that both the models can be
applied. In this study, we created factitious data that dichotomized the raw score data into two categories
(0: no/partial, 1: full credits) to compare the performance of the models and additionally applied the
original set of data to evaluate the performance of the MNI model in the raw outcomes.

5.1.3. Evaluation

The comparison of the models was performed based on the relative model fit measures, including the
Akaike information criterion (AIC; Akaike, 1973), corrected AIC (Burnham & Anderson, 2002; Sugiura,
1978), Bayesian information criterion (BIC; Schwartz, 1978), and adjusted BIC (Sclove, 1987).” The
same set of criterion measures was used to determine the number of latent states underlying the data
(Bartolucci et al., 2017). Below we present results and findings from the empirical analysis. For ease of
discussion, results are presented for two booklets that showed distinct patterns.

5.2. Analysis I: Booklet SO7

Table 7 reports fit statistics of the models applied to the S07 booklet data (N = 1137, J = 17).% The
models were fit to the two data sets: (i) the original set of data that contain ordinal response scores, log
interaction times, and log action counts, and (ii) the recoded data that contain dichotomized response
scores and process indicators. The fit results of the MI model for the raw data are missing because the
model does not allow variation in the item characteristics and could not be applied to the original data
that differ in the response categories.

In Table 7, the results from the recoded data suggest that the MNI model overall achieved a better fit
than the MI model. While the model increased in the number of free parameters, it constantly yielded
smaller criterion statistics when the latent dimension was held constant. The MI model on the other
hand showed much lower likelihood and demonstrated constantly subpar fitness compared to the MNI
model.

The fit statistics within each model also suggested distinct patterns related to the latent dimension-
ality. In the MI model, the fit measures achieved the best outcomes when the number of latent states
was conditioned at four or five. In the MNI model, the measures showed the best performance as the
dimension was set at two or three. When applied to the raw outcome data, the MNI model similarly
favored the two-state solution, consistently suggesting fewer latent dimensions than the MI model.
Provided that the MI model does not allow variance in the measurements, it seemed that the model
tended to ascribe residual variance from the items to the latent factors and came to overpredict the
underlying latent dimensionality. All in all, the comparison of the fit statistics in Table 7 suggested that
the MNI model better describes the observed data and the variation in the indicator variables can be
reasonably summarized by two latent states. In the following discussion, we elaborate findings from the
two-state MNI model.

The state probability estimates from the two-state MNI model suggested that a majority of students
entered the booklet in State 1 (62.63%) and showed a strong tendency to stay in the same state across the
assessment (.700 (State 1), .911 (State 2)). Students in State 1 tended to receive low accuracy response
scores (415 on average (SD = .533)), spend little time on the items (50.154 seconds on average (50.791)),
and attempt a few interactions (11.643 actions on average (31.633)). Students in State 1 generally attained
higher accuracy scores (.713 (.558)), spent more time on the items (85.068 (62.021)), and exerted more

7The performance of the fit measures was evaluated retrospectively based on the parameter estimates from the real data.
See Supplementary Section C for details.

8The numeric values of the log-likelihood do not monotonically increase along with the increase in the number of states.
Due to the challenge in achieving global optima with the expectation-maximization algorithm in LMM, the models were
uniformly initialized applying nonparametric clustering (i.e., partitioning around medoids on the Gower distance metric).
While the resulting numeric values may not represent global optima of the models, they allow comparison of the models
under the controlled setting. See Supplementary Section C for the empirical performance of the log-likelihood and the related
information criteria in identifying the number of latent states.
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Table 7. Relative model fit statistics from the S07 booklet data

Data Mod |S| df logLike AIC CAIC BIC ABIC
Recoded Ml 1 5 —70930.5 141866.1 141901.3 141896.3 141880.4
2 13 —61371.5 122755.9 122847.4 122834.4 122793.1
3 23 —61286.7 122596.4 122758.3 122735.3 122662.2
4 35 —58772.4 117579.9 117826.1 117791.1 117680.0
5 49 -58747.7 117544.4 117889.2 117840.2 117684.6
MNI 1 85 —45078.9 90242.8 90840.9 90755.9 90485.9
2 173 —42384.3 84989.6 86544.6 86323.6 85621.7
3 263 —42076.2 84543.5 87294.6 86903.6 85661.7
4 355 —44483.4 89561.8 93748.3 93153.3 91263.4
5 449 —44377.3 89587.6 95448.7 94615.7 91969.9
Raw MNI 1 88 —46493.2 93074.5 93693.6 93605.6 93326.1
2 179 -43345.4 86917.8 88515.0 88288.0 87567.0
3 272 —43426.0 87252.0 90066.4 89666.4 88395.9
4 367 —45396.9 91400.8 95671.7 95064.7 93136.7
5 464 —46097.9 93043.7 99010.4 98162.4 95468.9

Note: Data: Recoded (Dichotomous response scores, Log interaction times, Log action counts); Raw (Polytomous response scores, Log
interaction times, Log action counts). Mod: Model (MI: Measurement invariance, MNI: Measurement noninvariance). |S|: Number of
states. df: Degrees of freedom. logLike: log-likelihood. AIC: Akaike information criterion. CAIC: Corrected AIC. BIC: Bayesian information
criterion. ABIC: Adjusted BIC. The best outcomes under each condition are boldfaced.

Table 8. Average emission parameter values in the SO7 booklet data

Response score Interaction time Number of actions
sio P51 bsp2 Hsi 9% Hsi s
Simple MC
Statel  .669(.045)  .331(.030) - 3.288(.047) .836(.033) 1.130(.026) 485 (.018)
State 2 .278(.019) .722(.031) = 3.781(.019) 487 (.013) 1.086 (.016) 415 (.012)
Complex MC

State 1 462 (.038) .493 (.036) .317(.030) 3.541(.037) .621 (.026) 1.668 (.016) .256 (.011)
State 2 .308 (.019) .655 (.028) .263(.018) 4.121(.017) ATT7(.012) 1.923(.014) .391(.010)

Open Response
State 1 .889 (.056) .095 (.016) .041 (.014) 3.866 (.052) .859 (.037) 2.736 (.080) 1.313(.057)
State 2 .465 (.023) 405 (.021) .324(.020) 4.791 (.014) 423 (.010) 4.577(.019) .547(.013)

Note: MC: Multiple choice. ¢gn: Probability of scoring m on item j at state s. ug;: Mean of the continuous outcome of item j at state s.
og;: Standard deviation of the continuous outcome of item j at state s. Within the parentheses are average of the standard errors of the
parameter estimates.

interactions (50.999 (96.804)). Taking the patterns from the indicators together, it could be inferred that
State 1 represents a state of less attention and less effort and State 2 of greater attention and more effort.

The emission parameter estimates from the model indicated a consistent finding with the observa-
tions from the state estimates and the raw data. In Table 8, we report average measurement parameter
values for the different state levels and item types (see Supplementary Table B11 for item-level estimates).
The emission parameters from State 1 were consistently associated with the larger probabilities of low
response scores, lower time intensities, and fewer action counts. The parameters from State 2 were
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Table 9. Relative model fit statistics from the S09 booklet data

Data Mod |S] df logLike AIC CAIC BIC ABIC
Recoded MI 1 5 —68058.0 136126.0 136126.1 136151.3 136135.4
2 13 —62181.6 124389.2 124389.5 124454.9 124413.6
3 23 —60465.9 120977.7 120978.7 121094.0 121020.9
4 85 —59526.5 119123.1 119125.3 119300.0 119188.8
5) 49 -59438.7 118975.4 118979.8 119223.0 119067.4
MNI 1 80 —43638.4 87436.8 87448.9 87841.2 87587.1
2 163 —43461.0 87248.1 87301.9 88072.0 87554.2
3 248 -41305.1 83106.1 83242.0 84359.6 83571.9
4 335 —43214.6 87099.2 87373.1 88792.4 87728.4
5 424 —47622.4 96092.8 96584.4 98235.9 96889.1
Raw MNI 1 81 —44303.3 88768.6 88781.0 89178.0 88920.7
2 165 —44039.1 88408.1 88463.4 89242.1 88718.0
3 251 -42207.9 84917.9 85057.5 86186.5 85389.3
4 339 —43596.9 87871.9 88153.7 89585.3 88508.5
5 429 —44565.9 89989.8 90496.6 92158.1 90795.5

Note: Data: Recoded (Dichotomous response scores, Log interaction times, Log action counts); Raw (Polytomous response scores, Log
interaction times, Log action counts). Mod: Model (MI: Measurement invariance, MNI: Measurement noninvariance). |S|: Number of states.
df: Degrees of freedom. logLike: log-likelihood. AIC: Akaike information criterion. CAIC: Corrected AIC. BIC: Bayesian information criterion.
ABIC: Adjusted BIC. The best outcomes under each condition are boldfaced.

associated with the larger probabilities of high response scores, longer times, and greater interaction
efforts. The parameter values from the different item types were also found consistent with the expecta-
tion. The simple multiple-choice (MC) items tended to involve less time and relatively few interactions

(gs(j””’e) =3.534, pls(j”““) = 1.108 on average). The complex MC items required greater time efforts and
interactions (each with 3.831 and 1.796 on average). The open-response items were associated with the
greatest intensities in time and action efforts (4.329 and 3.657 each).

5.3. Analysis Il: Booklet S09

Among the six booklets examined, four booklets $(07,08,11,12) indicated two latent states and the
other two $(09,10) three states. Below we present outcomes from the S09 booklet (N = 1158, ] = 16)
that showed the other distinct patterns.

Table 9 reports fit statistics of the models fit to the two sets of trimodal data: (i) the recoded data that
contain binary response scores, log interaction times, and log action counts and (ii) the raw data with
ordinal scores and the time and count values. The results from the table confirm the consistent findings
on the models. The MNI model constantly achieved greater fitness when the calibration data and latent
dimensions were held constant. The MI model suggested a greater number of latent states due possibly
to no avenue for accounting for varying measurement effects of items.

Examining outcomes of the three-state MNI model revealed that students tended to begin the
booklet in States 2 (54.48%) and 3 (34.90%) and stay in the same state. The staying and transition
probabilities were estimated as

to State 1 to State 2 to State 3

from State 1 .751 .200 .049
from State2  .057 .748 .196
from State 3 .038 .382 .580.
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Table 10. Average emission parameter values in the S09 booklet data

Response score Interaction time Number of actions
bs0 bsi1 bs2 tsj s thsj s
Simple MC
Statel  .582(.060)  .418(.049) = 3.206 (.067)  .833(.047) .870(.035) 447 (.025)
State2 456 (.024)  .544(.028) = 3.667 (.016)  .396(.011) .641(.012) .309 (.009)
State 3 .469 (.034) .531 (.038) - 4,040 (.025) .469 (.018) 1.198 (.029) .558 (.021)
Complex MC

State 1 .884 (.068) .116 (.026) .000 (.004) 3.338(.051) .698 (.036) 1.689 (.029) .402 (.020)
State 2 .506 (.027) .486 (.026) .064 (.010) 3.900 (.013) .321(.009) 1.736 (.011) .276 (.009)
State 3 .548 (.042) 414 (.037) .300 (.028) 4.281(.028) 469 (.019) 2.132(.029) .502 (.020)

Open Response

Statel  .979(.074)  .021(.037) = 3.666(.064)  .851(.046)  2.155(.087)  1.151(.062)
State2  .764(.035)  .236(.018) = 4458 (015)  .378(.011)  4.284(.022) .560 (.016)
State3  .644(.043)  .356(.031) = 5.099 (.019)  .355(.014)  5.296(.025) 465 (.018)

Note: MC: Multiple choice. ¢gn: Probability of scoring m on item j at state s. ug;: Mean of the continuous outcome of item j at state s.
agg;: Standard deviation of the continuous outcome of item j at state s. Within the parentheses are average of the standard errors of the
parameter estimates.

The patterns in the indicator variables suggested that students in State 1 tended to receive low accuracy
scores (.117 on average (SD = .321)), devote little time (42.246 seconds on average (50.301)), and show
relatively few actions (10.819 actions on average (35.930)). Students in State 2 attained medium scores
(432 (.502)) with time and interaction efforts in middle ranges (64.625 seconds (38.444); 30.255 actions
(47.895)). Those in State 3 received relatively high scores (.450 (.544)) and showed distinctly long
interaction times (125.089 (78.397)) and many actions (89.992 (148.740)). Taking the indicator patterns
collectively, it could be concluded that State 1 represents a less effortful mode, State 2 a conscientious
working mode, and State 3 a state of plodding.

The emission parameters presented in Table 10 supported similar conclusions (see Supplementary
Table B12 for detailed results). The parameters from State 1 were associated with the larger probabilities
of low accuracy scores, and less time and interaction intensities. Those from State 2 were associated with
the larger probabilities of high accuracy scores, and moderate intensities of time and interaction efforts.
Those from State 3 were associated with the larger probabilities of high accuracy scores and intense
interaction efforts. The parameter values for the different types of items showed reckonable trends—
the simple MC items entailing less time and interaction intensities (ﬂs(j“me) =3.638, ﬂs(jma) =.903), the
complex MC items invoking increased interaction efforts (each with 3.840 and 1.852 on average) and
the open-response items requiring most intensive problem-solving efforts (4.408 and 3.912 each).

5.4. Analysis lll: Cluster 20

The calibration results from the booklet data suggested that the MNI model performs reliably well and
provides sensible outcomes. In the subsequent analysis, we analyzed cluster-level data to investigate
the development of latent processes over a span of time. In PISA, students receive a battery of four
booklets—two from the major subject area and two from the secondary subject areas—, and their test-
taking behaviors can change across the occasions. In this study, we applied the MNI model to example
cluster data to track the evolution of interaction patterns across the two booklets of science assessment.

The example data were obtained from Science Cluster 20 that assigned S07 and S09 as the first two
booklets. The data contained N = 141 students’ interaction observations on J = 33 items. As with the
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Figure 1. State progression across the assessment.
Note: State 1 was conceived as a less effortful state and State 2 as a more conscientious state based on the patterns in the indicator
variables.

above analysis, we used (response scores, interaction times, and action counts) as interaction outcomes
and fit the MNI model assuming different latent dimensionalities. The final size of latent dimensions
was determined based on the relative model fit measures.

The results from the model suggested a similar pattern to the above analyses. The fit measures
consistently endorsed the two-state solution, characterizing State 1 as a less effortful state (i.e., lower
accuracy scores, shorter response times, and fewer interactions) and State 2 as a more attentive
and conscientiously-working state (i.e., higher accuracy scores, longer interaction times, and many
interactions). The state probability estimates from the model suggested that students tended to begin
the assessment with approximately equal probabilities of States 1 and 2 (.462 and .538 each) and
gradually immerse in State 2 as the assessment progresses (P(S; = State 2|S;-; = State 1) = .373,
P(S; = State 2|Sj_; = State 2) = .837). Figure 1 delineates the prevalence of the states across the
assessment stages. As can be seen, a portion of students began the assessment in a less effortful mode
and gradually delivered stable performance as the assessment progressed.

In Figures 2 and 3, we introduce state trajectories of two example students who attained low (< 5)
and high (> 30) total scores. Both figures show that the students displayed moderate variation in
their interaction behaviors. As latent states were estimated by the MNI model, distinct patterns were
observed regarding the underlying mental process. In Figure 2, the student showed modest activities
at the beginning of the assessment and tended to display a retreating behavior as the assessment
progressed, resulting in a low total score. The student’s state estimates revealed that the student was
indeed in a normal working mode at the beginning but frequently transitioned between the effortful and
noneffortful states toward the end of the assessment. The student in Figure 3 similarly showed varying
interaction patterns across the assessment, and yet, the patterns closely conformed to the demands of the
different item types. In both the figures, the color brightness in the count outcomes indicates different
item types—the brightest indicating the simple MC items, the moderately dark color the multiple MC
items, and the darkest color representing the open-response items. Figure 3 reveals that whenever the
student exerted adequate amounts of efforts that are needed for the items, the student was estimated to
be in a normal working mode. On the whole, the students from the low-scoring group showed patterns
similar to Figure 2 and those from the high-scoring group similar to Figure 3. Students in the middle-
score category tended to show fewer effortful states but more frequent transitions than those in the
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Figure 2. State trajectory of an example student who scored low.

high-scoring group. All in all, the observations from the state estimates corroborate that the LMM-
MNI framework provides sensible state estimates that appropriately take into account the measurement
properties of the items.

6. Conclusion

The purpose of this study was to present a refined LMM framework that accommodates event-
specific measurement effects and performs transition analysis under longitudinal MNI. The traditional
LMM:s assume that stimuli of measurement products exhibit constant properties and do not contribute
to the variance of outcome data. This assumption of MI is not generally tenable in educational
and psychological assessments as items exhibit distinct psychometric properties. In this study, we
proposed a refinement strategy for LMM that relieves the invariance constraint and accommodates
the noninvariant measurements. We formulated the measurement model of LMM, accounting for
items’ unique measurement properties, and modified the estimation procedures to enable inference
on the measurement parameters. The empirical performance of the new framework was evaluated by
numerical experimentation with simulated data and through the application to real assessment data.
The observations from the simulation studies suggest that the new inference procedures perform
adequately well in recovering the model parameters and profiling the latent states. The bias and estima-
tion errors were kept small across various validation scenarios. The latent state profiles were accurately
identified, showing reasonably high match rates with the true values. The simulation experiments on the
whole suggested that the new framework achieves reliable and stable performance while appropriately
accounting for variant measurement effects. In addition to the inferential achievement, the performance
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Figure 3. State trajectory of an example student who scored high.

Note: The brightness of the color in the count outcomes indicates different item types. The brightest color corresponds to simple MC
items that involved least interaction; the moderately dark color represents multiple MC items that entailed moderate interactions;
and the darkest color represents open-response items that required most intensive interactions.

of the new framework was also evaluated in modeling measurement invariant data. Comparison with
the existing model suggested that the new framework carries relatively minor repercussions from
overfitting and the inference outcomes remain reliable despite the misspecification. Underfitting the
measurement-invariance model to measurement-noninvariant data, on the contrary, led to relatively
larger estimation errors and the errors remained persistent across the evaluation scenarios, making
it difficult to rectify with the change of environmental factors. Lastly, the empirical analysis of real
assessment data suggested that the new framework demonstrates adequate practical relevance and
provides credible inference outcomes that align with the observations from the manifest data.
Arguably, the proposed LMM framework achieves greater flexibility in modeling assessment
data as it explicitly takes into account the variation in the measurement process and can perform
transition analysis in the presence of distinct measurement effects. Refined for interaction log data
from computerized assessments, the new framework can accommodate various indicator variables that
differ in the measurement level (e.g., nominal, ordinal, continuous, count). The experimental analysis
of real assessment data indeed showed that the new framework better addresses the needs of real-
life data (e.g., items that differ in the response categories and presentation forms) and demonstrates
superior model fit than the traditional measurement-invariance model. The inference procedures that
are proposed along with the model were also shown to hold practical value. The numerical results from
the simulation studies evidenced that the inference scheme delivers reliable performance even when
data contain multiple indicators of many measurement events (i.e., intensive multimodal pooled data).
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The estimation was achieved with high computational efficiency, affording calibration of large sample
data, and extensive replications across multiple validation scenarios.

While the primary focus of this study was on the extension of the measurement model, the LMM
framework can be further elevated to enhance the flexibility and applicability. One immediate extension
is inclusion of covariates. LMM can accommodate various covariates in different sub-models. For
example, subject-level covariates (e.g., demographics) can be included in the structural model to
improve the predictability of the state memberships and transitions, or in the measurement model to
investigate differential measurement processes across the subgroups. The item- and indicator-specific
covariates (e.g., item format, minimum interactions needed) can be similarly added to the measurement
model to contemplate relevant research inquiries. The other extension can be made on the transition
model. While the present study assumed the conventional first-order time-invariant Markov chain, the
transition model can be extended to allow for higher-order Markov processes or time-variant transitions
to accommodate the needs of data (e.g., Farcomeni, 2015). Another extension of the LMM framework
is an adaptation of the measurement model. As alluded to in Section 2, the measurement models can be
adjusted to describe unique distributional characteristics of indicator data (e.g., skewness, zero inflation)
or to describe extra variation among subjects (e.g., Altman, 2007; Song et al., 2017). The model inference
methods can also be enhanced to tackle missing observations (e.g., Boeschoten et al., 2020; Luo & Du,
2003) or to ensure global optimization (e.g., Do & Artiéres, 2012). The current refinement of the LMM
framework can be easily integrated in the above extensions to further enhance the functionality in
serving the needs of real-world applications.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.10029.
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