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Inclusion Relations for New Function
Spaces on Riemann Surfaces

Rauno Aulaskari and Jouni Rittya

Abstract. 'We introduce and study some new function spaces on Riemann surfaces. For certain pa-
rameter values these spaces coincide with the classical Dirichlet space, BMOA, or the recently defined
Qp space. We establish inclusion relations that generalize earlier known inclusions between the above-
mentioned spaces.

1 Introduction

Let R be an open Riemann surface that possesses a Green’s function, i.e., R ¢ Og, and
let gr(z, ) denote the Green function on R with logarithmic singularity at & € R.
Let A(R) denote the collection of all analytic functions on R. The classical Dirichlet
space AD(R) consists of those F € A(R) for which

/|F'(z)|2 dA(z) < oo,
R

where dA(z) is the element of the Lebesgue area measure on R. Following [7], we
define BMOA(R) as the set of F € A(R) such that

sup/ |F'(2)|*gr(z, @) dA(z) < oo.
a€R JR

For 0 < p < o0, the space Q,(R), introduced in [2], consists of those F € A(R) for
which

sup/ |F'(2)|*gk (2, ) dA(z) < 0.
aER JR

Metzger [7] (see also [5]) showed that BMOA(R) contains AD(R) analogously to the
case of the unit disc. This result was sharpened in [2] by proving that AD(R) C Q,(R)
for all p > 0; see also [1]. Notice that Q;(R) = BMOA(R).
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We will generalize the above-mentioned definitions of function spaces in the fol-
lowing way. For 0 < p,q < oo, define

ADY(R) = {F € A(R) : sup/ |F(z) — F(a)|17*|F'(2)*dA(2) < oo},
a€ERJR

Hiyoa(R) = {F € AR): Sug/ |F(z) — F(a)|7*|F'(2)|*gr (2, a)dA(z) < oo},
ag R

Hé,,(R) ={FeAR): sup/ |F(z) — F(o)|"*|F'(2)|’gk (2, )dA(z) < o0} .
a€ER JR

Then AD?’(R) = AD(R), Hlon(R) = BMOA(R) by [12] (see also [10]), and
ng (R) = Qp(R) forall 0 < p < oo.

2 AD(R) C BMOA(R) for all 0 < g < oo

For F € A(R),0 < g < coand v € R, let H|p_p(,)|« denote the least harmonic majo-
rant of the subharmonic function u(z) = |F(z) — F(a)|9. We set Hjp_p(q)j«(2) = o0 if
1 admits no harmonic majorant. The following result follows by [ 12, Corollary 2.6];
see also [10, Proposition 1].

Lemma A LetF € A(R),0 < q < ooanda € R. Then
2
Hip_p(a(@) = %/IF(Z) — F(o)|7*|F(2)|*gr(2, @) dA(z).
R
An application of [6, Corollary 1] gives

l _ q—2 |/ 2 %

(2.1) - |F(z) — F(a)|T*|F'(2)["dA(2) > qH\F—F(a)H(a)a
R

from which Lemma A yields
ADY(R) C Hijyoa(R) = BMOA(R)

forall 0 < g < 0.

q q
3 HQm (R) C Hsz (R)forall 0 < p; < p; <
To prove this inclusion the following lemma is needed.

Lemma 3.1 Let R be an open Riemann surface that possesses a Green’s function, i.e.,
R¢& Og. Let F € ARR), andletov € R,0 < p; < p; < ocoand 0 < q < co. Then

/ww-mw#%%ﬁ£@MM@s
R

C/ |F(z) — F()|7*|F'(2)|*gk' (2, a)dA(z),
R

Downloaded from https://www.cambridge.org/core. 11 Nov 2025 at 22:37:04, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

468 R. Aulaskari and J. Rittya

where

c_ p2(p2 — D)elq' P T(py — 1)+ p2 + 1, if1 < p1 <pr<oo
= IR
(p1((p1— Detg' P T(p1 —1,q)+ 1)) , #f0<p <p, <L

Proof By considering a regular exhaustion of R, it is sufficient to prove the assertion
in the case where R is the interior of a compact bordered Riemann surface R and F is
analytic on R.

Letw € Rand Ry, = {z € R: gr(z, ) > 1}. Then clearly

(3.1) / |F(z) — F(a)|17*|F'(2)’gk’ (z, ) dA(z) <
R\R;
/ |F(z) — F()|7*|F' (2)|gk' (2, ) dA(2).
R\Ria

Let o,crj, j = 1,...,m, and B, k = 1,...,n, be the distinct zeros of F(z) — F(a)
in R, , and on JR, ,, respectively. For a, aj, B, j = 1,...,mandk = 1,...,n, we
take the parameter discs U(c, €) and U(a;, €) and the half discs B(5, ) such that
they are mutually disjoint. Denote

Ria{o}.06) = Ria \ {U(om e) UV U(aj, &) U U B(B, E)} .

Green’s formula yields

(3.2)
/ (8% (z, ) AJF(2) = F(a)| — |F(z) — F()|"Agy* (2, 0)) dA(z) =
Ry {aj}.(6}

AP Felty

p2
/ ('F(z)_F(aWM—gﬁz(z,a
OR\ 0 faj} {5} on on

where A denotes the Laplacian, % denotes the differentiation in the inward normal
direction, and ds is the arc length element on JR; 4 (4,},{5,)- Lengthy but routine
calculations show that

A|F(z) — F(a)|1 = ¢*|F(z) — F(a)|T2|F'(2)|?
and
Agh(z,a0) = pa(py — 1)gh* 2 (z,0)|PL(2)|%,

where

P.(2) = gr(z, ) +igp(z, )
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and gz (z, o) is a harmonic conjugate of gr(z, ). It is known that g (z, o) is locally
defined up to an additive constant, and

dgk’(z, ) _, Ogr(z, @)

on 2 On

forz € OR, 4.
Let H‘lFfF(Q)‘,, denote the least harmonic majorant of |F(z) — F(«)|? on Ry 4. It
turns out that the function
®1.0(2) 1= |(F(2) — F(a)e™ @1 = [F(2) — F(a)|Tef)
is subharmonic on R, ,, and
®1,4(2) = €!|F(z) — F(a)|?
for all z € OR; ,. The maximum principle yields
(3.3) |F(z) = F(a)|? < eH[p_poa(2)e B E)
forallz € Ry 4.

Let gg, (2, &) be the Green function of R, with logarithmic singularity at a.
Then Agg, . (z,a) = 0in Rio {03080 and gg, . (z,a) = 0 forz € OR, . By [12,13],

we have
1 Ogr,.(z, )
1 _ 1,a Y
(34) H‘F_F(O{)'q(a) = E /BRLu |F(Z) — F(a)|qT dS
T

=3 / |F(z) — F(a)|7*|F'(2)|*gr, . (z, @) dA(z).
T JRia

To deal with the area integral in (3.4), denote S, , = {z € R : gr(z,) =t} fort > 0.

Ifz € S, thendt = de. Letting ¢ — 0 in (3.2) we see that all the integrals

p2 »
/’ IF(z) — F(ar 28 Z0) 4 / F2) — Fa)p 2R & 4
U (ave) on oU(a;.0) an

gk’ (z, @) B|E(z) — F(a)|?
F(z) — F(a)|1-2R 222 g5, / P2 (2, a) ————— (s,
/c?B(ﬂk,s) | | On U (ae) 8 On

0|F(z) — F(a)|? O|F(z) — F(a)|?
Pz )2~ s, / Pz )= L s
/au(a o X on o8 On

tend to zero for all j = 1,...,mand k = 1,...,n. Therefore the equality (3.2)
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becomes
(3.5)

L, g(@) = ¢ /R [F(z) = F()["*[F'(2)| g}’ (2, ) dA(2)

Lo

=pa(pr—1) |F(2) — F(a)|%gk % (z, a)|PL(2)|? dA(2)
Ria

Ogr(z, ) 0|F(z) — F(a)|?
_ qIoR\E ) 4 e S e
+ p2 /Rm |F(z) — F(a)] pe ds /aRm e ds

=pa(pr— 1) |F(2) — F(a)|%gk % (z, a)|PL(2)|? dA(2)
Riq

ep [ IR - Flap B 4
OR) h

+q2/ |F(z) — F(a)|7*|F'(2)|* dA(z),
R

Lo

where, by Green’s formula,

7 / IF(2) — F(o) 12 F' () dA(2) = — / OlF@ —F)l”
1 0.

Riq Riq on

We first concentrate on the case 1 < p; < p, < co. By the formulae (3.3), (3.5),
and (2.1), and by using the inequality gg, (2, &) < gr(z, @), z € Ry 4, We obtain

(3.6)
L pyg(@) < pa(ps — l)eq/ Hp_po(2)gk (2, 0) P (2)Pe 5= dA(2)
Rl.a

+ ZWPZH\IF—F(a)w(a) +q / |F(z) — F(a)|77%|F'(2)|* dA(z)

Lo

S pz(pz — 1)661/ (/ HllFF(a)q(Z)agRa(:Oé)d.s) g}€2_2(z)a)e—qgl2(z~0¢) dt
1 St

t

+pod’ /R |F(z) — F(a)|"?|F'(2)*gr, , (2, @) dA(2)

La

+q2/ |F(z) — F(a)|17*|F'(2)|*gr (2, ) dA(2)
R

La

oo
< 2mpr(pr — l)equlF_F(a)lq(a)/ th2=2=4t gy
1

oo /R IF(2) — F(a)]2|F'(2) Pgr(z, ) dA(2)

La
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+ 612/ |F(z) — F(a)|7*|F'(2)|*gr (2, ) dA(2)
R

lLa

< pap2 — l)qzeq/ |F(z) = F(a)|"72|F'(2)|*gr,,, (2, ) dA(2)

Rio
. ! / ubr 274 gy
gt J,
+q* (pa+1) [ |F(z) — F(@)|"7%|F'(2) gk (z,a) dA(2)

Riq

< @ (p2(p2 — Delq' " PT(py — 1) + py + 1)
: / |F(z) — F(a)|"*|F'(2)]’gk' (z, &) dA(2),
Ria

whereI'(p, — 1) = fooo uP2=2e" dy is the gamma function. By combining (3.1) and
(3.6) we obtain the desired inequality for 1 < p; < p, < 0.
Let now 0 < p; < p < 1. Then the estimate (3.3) gives

(3.7)
Iy pyq(@) > pi(pr — l)eq/ H|1F—F(a)\q(Z)eiqu(Z’a)gzgliz(Zv @) [P (2)|* dA(z)
Ry

+ 27rp1H|1F7F(a)‘q(a) +q° / |F(z) — F(a)|7%|F'(2)|* dA(z)

Rl,a

o
=27pi(p1 — l)eqH‘lpfF(a)‘q(a)/ th1 =274 gy
1

+ 27rp1H|1F7F(Q)‘q(a) +q / |F(z) — F(a)|7%|F'(2)|* dA(z)

Ria

= 27P1H|1F—F(a)|q(0‘)((l)l —Delg' " PT(p1 —1,9) + 1)

+q2/ |F(z) — F()|7%|F'(2)|* dA(z),
R

La

where I'(p; — 1,9) = fqoo uP1=2¢=" duy is the incomplete gamma function. We note
that

A(pr,g) = (p1 = Delq' " ""T(p1 — 1,9) +1 >0,
and hence by dividing by ¢* in (3.7) we obtain

(3.8) / |F(z) — F(a)|7*|F'(2)| gk (2, ) dA(2)
Rio

> piA(p1,q) | |F(z) — F()|7*|F'(2)|*gr,, (2, @) dA(2)
R

+/ |F(z) — F(a)|7%|F'(2)|* dA(z).
R

1o
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Since gg, , (z, &) = gr(z, ) — 1 for z € Ry o, (3.8) yields

(3.9) / |F(z) — F()|7*|F'(2)|gk' (2, ) dA(2)
Ry

> p1A(p1,q) |F(z) — F(a)|7*|F'(2)|"gr (2, @) dA(2)
Rio

+(1*p1A(p1,q))/ |F(z) — F(a)|17*|F'(2)|* dA(2)

Ria
> plA(phq)/ |F(z) — F()|"2|F'(2) ¢k’ (2, @) dA(2).
Ria
The last inequality follows from the fact that 1 — p;A(p1,q) > 0. The desired in-

equality for 0 < p; < p, < 1 follows by combining (3.1) and (3.9). ]

Theorem 3.2 Let R be a Riemann surface such that R € Qg, andlet0 < p; < p; <
oo and 0 < q < oo. Then the following inclusion holds:

q q
Hy, (R) C H (R).

Proof Ifeither 0 < p; < p; <lorl < p; < p; < o0, then the assertion follows
directly from Lemma 3.1. If 0 < p; <1 < p; < 00, then Lemma 3.1 gives

H{, (R) C Hijyox(R) C Hy, (R)

forall0 < g < oo. u

4 ADI(R) C HgP(R) forall 0 < p,g < o0

In Section 2, we noted that the inclusion AD?(R) C HgMOA(R) = BMOA(R) holds
forall 0 < g < oo. This fact is sharpened in this section by showing the following
result.

Theorem 4.1 ADI(R) C ng (R) forall0 < p,q < .

Proof Theorem 3.2 implies that BMOA(R) C HgP(R) forall1 < p < oo and

0 < g < oo. Combining this with the inclusion ADY(R) C BMOA(R), 0 < g < o0,
we deduce

(4.1) ADI(R) C ng (R)

forall1 < p <ooand 0 < g < 0.
Nowlet 0 < p < 1. Recall that R; , = {z € R: gr(z, ) > 1}. By (3.5),

(4.2) qz/ |F(z) — F(a)|17*|F'(2) gk (z, ) dA(z) <
R

La

2mpH|p_p(yja(@) +q2/ |F(z) — F(a)|7%|F'(2)|* dA(z),
Ry
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because p — 1 < 0. Suppose now that F € AD4(R). Then there exists M; > 0 such
that

/ |F(z) — F(a)|172|F(2)|* dA(z) < / |F(z) — F(a)|972|F'(2)|* dA(z) < M; < o0
Ry R

for all & € R. By Section 2 we know that F € BMOA(R). Hence, by Lemma A, there
exists M, > 0 such that

(4.3) Hip_poy)a(@) < Hip—pape(@) < Mz < 00

for all « € R. By (4.2) and (4.3), we deduce

(4.4) / |F(z) — F()|77*|F'(2)|*gk (2, ) dA(z) < iz (2mpM, + g°M,)
R

La q
=M + 277—21’1\42
q
for all & € R. On the other hand, we immediately see that
(4.5) / |F(z) — F(oz)|q_2|F’(z)\zgf’z(z7 o) dA(z)
R\Ry o
< / |F(z) — F(a)|77%|F'(2)|* dA(z)
R\Ryq
< / |F(z) — F(a)|7%|F'(2)|* dA(z)
R
<M,
for all &« € R. Combining (4.4) and (4.5) we obtain
—21 1l (N2 P 2mp
supR |F(z) — F(a)|7*|F'(2)|"gp (z, ) dA(z) < 2M, + ?Mz
ac R

forall0 < p < land 0 < q < oo. Thus F € HgP(R)foraHO < p < land
0 < g < oo. This together with (4.1) completes the proof. ]
5 ng(R) C B(R) forall 0 < p,g < ¢

Let Ag(«) be the density of the hyperbolic distance (Poincaré metric) on a hyperbolic
Riemann surface R. The Bloch space is defined as

. ~|F(o)]
B(R) := {F € A(R) : 2121)% (@) < oo}.

The purpose of this section is to show the maximal property of B(R) with respect to
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the spaces ng (R). In the case of the unit disc, an analogous result follows by a work
of Rubel and Timoney [9].

Theorem 5.1 ng(R) C B(R) forall0 < p,q < o0.

Proof Let7: D — R be a universal covering map of the unit disc D to the Riemann
surface R. Let €2 denote the fundamental polygon of the Fuchsian group I'. If & € R
and a € () satisfy m(a) = a, then we may take the Green function of the Riemann
surface D /T by setting gr(z, a) = gr(7(z), ). By a result of Myrberg [11, p. 522], we
know that

gr(z,a) = gn(zv(a),

yel’

where gpy(z, a) is the Green function of D) with logarithmic singularity at a. Therefore
we may define the space ng(]D)/I‘) = ng(R) in the sense that f € ng(]D)/F) if f
is analytic in D and f = F o 7, where F € ng (R). With a similar understanding,
B(D/T) = B(R).

First let 1 < p < oo. Suppose now that f € ng(]D)/F), but f ¢ B(D/T).
Then [3, Lemma] or [8] implies that there exist a sequence of points {a,} in ID and
a sequence of positive numbers {p, } such that p, /(1 — |a,|) — 0, as n — o0, and
{f(ay+pn€)— f(a,)} converges uniformly on compact subsets of C to a non-constant
analytic function fy(§). Here, without loss of generality, we may assume that a, €
for each n € N. Note that in general this is not possible, but the reasoning in (5.1)
below shows that we may do so. Now, for § > 0, set K = K(0) = {€ € C: |¢] < §}.

Denote ¢,(§) = a, + pn€ and g,(§) = f(@n(§)) — f(©n(0)) = f(an + pu§) — f(an).
Then

€O = [/(©T2 >8>0 and [g (&) = [ >8>0

uniformly in

Kl = K\ (Ugl:lD(g]vg) U Uzmle(Wiyé“)) )

where D(§j,e) = {£ : |€ = &| < e} C Kand D(n;,e) = {£ : [€ —ni| < €},
n; € OK,forall j=1,...,nandi = 1,...,m. Here, for 0 < g < oo, the points §;,
j =1,...,n,are the zeros and poles of fy in K = {¢ € C: |[{| < ¢}, and the points
Mi»1 = 1,...,m, are the zeros and poles of f; in OK. We take € > 0 so small that all
the discs D(&;, €) and D(;, €) are pairwise disjoint. Now

1= n(0)pn(&) | _ o ‘ 1 —a,(a, + pu§)
@n(g) - Qpn(o) an + pné~ — ay
oy 1—pan| 1+£an| .

log

— 00,

Downloaded from https://www.cambridge.org/core. 11 Nov 2025 at 22:37:04, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Inclusion Relations for New Function Spaces on Riemann Surfaces 475

as n — oo, for all ¢ € K;. On the other hand, by the assumption,

(5.1)

/ 16 (©)121g() Peh (0 (), 90(0)) dAE)
Ky
- / (D) — Flan) "2 1f gz an) dA(R)
wn(Ky)
< / 1F@) — Flalt2If' () gl (z. a) dAC)
D

= Z/ﬂ f(2) = @) f"(2)Pg(4(2), an) dA(2)

yer

=/Q|f(2)—f(an)lq_zlf’(Z)2(2&{;(7(2),%)) dA(z)

yel

p
< /Q 1f(2) - f(an)|q2|f’(2)2<zg10)(7(2)7an)> dA(2)

yel

= /Q |f(z) — f(an)|q*2|f'(z)\2gl‘3(z, a,)dA(z) < C < oo

for all n € N. But this is a contradiction, since the left-hand side of (5.1) tends to
infinity as n — oo. Thus ng(]D)/l") C B(D/T) foralll < p <ocand0 < g < cc.
The assertion follows from the nesting property in Theorem 3.2. ]

6 Hj (R) #B(R)

Using the same idea as in the proof of [4, Theorem 4.2] we can prove that there exists
a Riemann surface R such that ng (R) # B(R). Since the proof is almost identical to
the original one, we omit the details.

Theorem 6.1 Forevery 0 < p,q < oo there exists a Riemann surface R such that
ng (R) # B(R).
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