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Bounded Analytic Functions and the Cauchy
Transform

General references for this chapter are [110, 182,219,321,378,415]. Verdera
has a recent survey in [426]. Many of the topics are continued in the higher-
dimensional case in Chapter 10.

9.1 Removable Sets and Menger Curvature

In 1888 Painlevé [375] proved that any compact subset E of the plane with
one-dimensional Hausdorff measure zero is removable for bounded analytic
functions. This was before the existence of Hausdorff measures, but the condi-
tion simply means that E can be covered with finitely many discs, the sum of
whose diameters is arbitrarily small.

The removability means that any bounded complex analytic function in
U\ E, where U is an open set containing £, has an analytic extension to U. It is
easy to see by the Cauchy integral formula that it is enough to consider U = C
and then by Liouville’s theorem E is removable if and only if every bounded
analytic function in the complement of £ must be constant. The problem of
finding a geometric characterization of removability is called Painlevé’s prob-
lem.

In 1947 Ahlfors [1] characterized removable sets in terms of the analytic

capacity vy:
Y(E) = sup {|1§20 l2(f(2) = f(eo))]: |f] < 1, f analytic in C\ E}

Then y(E) = 0 if and only if E is removable. However, this is still a complex
analytic characterization.

Here is an easy proof of Painlevé’s theorem: Let f: C\ E — C be analytic
with |f| < 1, f(0) = 0,and let z € C\ E. Let € > 0 and cover E with discs
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9.1 Removable Sets and Menger Curvature 79

Bj,j = 1,...,k such that Zl;zl d(Bj) < & and z is outside them. Let I" be the
boundary of their union. Then by the Cauchy integral formula,

1 FQ an
=—— | =—d .
JQ =55 Jo =z ¢
For small ¢ this is bounded by C(z)e, so f(z) = 0.
What can we say if we only have H!(E) < oo? From the above argument

we still get that

T, {—-z
where the I'; are surrounding E with H'(T';) < #H'(E) + 1 and d(T';, E) — 0.
Some subsequence of fH'[_T; converges weakly to a complex measure on
E. Looking at this a bit more closely, one finds that this measure is absolutely
continuous with respect to H' L_ E. This leads to the representation

10 = Celoo = [ £ are. zec\E
E{—2
where ¢ is a bounded complex-valued Borel function on E and Cg(y) is the
Cauchy transform of ¢.

So we can rephrase Painlevé’s problem, at least for sets with finite length, in
terms of the Cauchy transform: when can we put a bounded non-trivial Borel
function on E whose Cauchy transform is bounded? How does this relate to
rectifiability? For A" almost all points z € E with ¢(z) # 0, the integral fE |l —
A @) dH'¢ = o0, so Cre(p)(z) is not defined on E. Thus Cz(¢)(z) can be
bounded when z is near E only due to cancellation, and the cancellation comes
from the symmetries of E: for many points z € E, if { € E, the symmetric point
27— ¢ should be close to E. Heuristically, rectifiable sets have such symmetries
and purely unrectifiable sets fail to have them. We have a theorem of
David [136]:

f@=- e

Theorem 9.1 Let E C C be compact with H'(E) < oo. Then E is removable
for bounded analytic functions if and only if E is purely 1-unrectifiable.

Although the above discussion may give some indication why this could be
true, completing the proof has been a long and difficult journey. It was finished
when David in [136] showed that purely unrectifiable sets are removable. But
let us first look at the other direction. So we should show that if E is rectifiable
with 0 < H'(E) < oo, then there is a bounded non-constant analytic function
in its complement. We may assume that E is a subset of a C' graph I', even
with a small Lipschitz constant. If E is a line segment, finding ¢ is easy: if ¢
is a smooth function on E vanishing at the endpoints, then Cg(¢p) is bounded
by a direct computation. If E is a subset of the graph I' of a C'* function
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80 Bounded Analytic Functions and the Cauchy Transform

for some a > 0, then one can still construct ¢, see [219, Theorem 1.7.1]. But
when I' is only C 1 nobody knows how to construct it, that is, without using
Hahn-Banach or something like that. However, it is known to exist by duality
methods involving the Hahn—Banach theorem or some of its equivalent forms,
see [110,378,415]. To do this one considers Cr as a singular integral operator
on I'. We shall discuss this and other singular integrals more in Chapter 10.
The final step needed was Calderén’s theorem, [85], saying Cr is bounded in
L*(T"). More precisely,

f ICre(g) dH" < f |gI* dH" for g € LA(ID),
T T

with constant independent of €, where

Cra(g)@) = f 89 ya0g zer. ©.1
{

el ji—de) § — 2
This only gives us non-zero functions g such that Cr.(g) € L*(T') uniformly in
&, but then duality methods based on the Hahn—-Banach theorem can be used to
produce ¢ for which Cr(¢) is bounded in C \ E.

Calderén [85] proved the L?-boundedness of the Cauchy transform on Lips-
chitz graphs with small Lipschitz constant in 1977. In 1982 Coifman, McIntosh
and Meyer [115] proved this for general Lipschitz graphs. Since then many
people have given different proofs. David [133] proved that the Cauchy trans-
form is bounded on a rectifiable curve I if and only if " is AD-1-regular, that
is, uniformly 1-rectifiable.

To prove the converse statement of Theorem 9.1 we need to show that if E is
not removable, then it contains a rectifiable subset of positive measure. We can
again start with a bounded complex-valued Borel function ¢ on E such that
Cg(¢) is bounded in C \ E. There are three main steps in the proof.

(1) Modify H'[_E and ¢ to a finite Borel measure y and a bounded Borel
function g such that £ ~ H'L_ E on some F C E with u(F) > 0, u(B(z, 7)) < r
for z € C,r > 0, the real part of g > & > 0 on C and the Cauchy transform
Cug € BMO(u).

This was done in [143], except that we only derived L? estimates for Cug,
the BMO estimates were then (later, although the papers appeared in different
order) proved in [136]. For the modifications we needed to construct gener-
alized dyadic cubes for non-doubling measures similar to those mentioned in
Section 5.5. Then BM O(u) refers to BMO defined with these cubes. The con-
struction of u and g is done by stopping time arguments similar to those used
by Christ in [111] in the AD-regular case.

Before explaining step (2), let us define that C,, is bounded in L?(u) if the
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9.1 Removable Sets and Menger Curvature 81

truncated Cauchy transforms C,, ¢,

C/J,eg(Z) = f & dﬂ{, £ > 0,
|¢—z|>€ {-z
are uniformly bounded in L?(u). Furthermore, we say that Cr is bounded in
L?(E) if this holds for u = H'L_E.

(2) Use a T(b)-theorem to prove that the singular integral operator C, is
bounded in L?(i). Again, a suitable 7'(b)-theorem in the AD-regular case was
proved in [111]. But in the present general non-doubling situation, no such
result was known and David proved it in [136]. Roughly speaking, it says that
the existence of b = g as in step (1) implies the L?>-boundedness of Cy.

(3) Recall from (3.2) the Menger curvature c(z1,22,z3) = 1/R, where R is
the radius of the circle passing through z;,z, and z3. The final step (which
was completed first) is based on its relation to the Cauchy kernel 1/z, which is
provided by the following remarkable formula of Melnikov [334]:

1

— = (21,2, 3) 9.2)
7 (o) = 2003 (2o = Zo3)

for distinct points zj,z2,z3 € C, where o runs through the six permutations

of {1,2,3}. See [415, Section 3.2] for the easy elementary proof. Define the

curvature of u by

A = fff6(11,12,13)2 duzy duzs duzs.

In [335], Melnikov and Verdera integrated (9.2) with respect to u, wrote
|Cpel (2)I* as a double integral and used Fubini’s theorem six times to get

1
f [Cuel[" du = <2+ OG(E)), 9.3)

where in c¢2(u) the integration is performed over the triples with mutual dis-
tances bigger than €. Since the left-hand side is bounded by step (2), so is the
right-hand side, whence ¢*(u) < oo, and the proof is completed by the David—
Legér Theorem 3.18.

The formula (9.2) is remarkable firstly because it relates to the Cauchy
kernel a non-negative quantity which vanishes on lines, and only on lines. This
alone would be very useful. Secondly, this quantity has a concrete geometric
meaning.

The above argument gives

Theorem 9.2 Let E ¢ C be H' measurable with H'(E) < oo. If Cg is
bounded in L*(E), then E is 1-rectifiable.
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82 Bounded Analytic Functions and the Cauchy Transform

Of course, the converse also holds in the sense that if £ is 1-rectifiable, it
contains subsets F with H'(E \ F) arbitrarily small for which C is bounded
in L2(F).

Nazarov, Treil and Volberg, see [365,366], proved a little later than David
a T'(b) theorem which also completes the proof of Theorem 9.1. Their method
was quite different. They used random translations of the standard dyadic
squares, finding them in a good position with large probability. This method
has turned out to be very useful in many later developments.

The formula (9.3) was used by Melnikov and Verdera in [335] to give yet
another proof for the L?>-boundedness of the Cauchy transform on Lipschitz
graphs.

If in the above sketch of the proof we can start with a real-valued ¢, then the
modified function g will be positive and we can immediately go from step (1) to
step (3). This was done in [143], and it resulted to the analogue of Theorem 9.1
for Lipschitz harmonic functions. We shall discuss them in higher dimensions
in Chapter 10.

It is easy to see that sets of Hausdorff dimension bigger than 1 are not re-
movable. Hence after David’s theorem, only the case with dimension 1 and
infinite measure remained open. The complete solution of Painlevé’s problem
was given by Tolsa in [409]:

Theorem 9.3 Let E C C be compact. Then E is not removable if and only if
there is ;1 € M(E) such that u(B(z, r)) < r for z € C and r > 0 and c*>(u) < co.

Notice that when H'(E) < oo, Tolsa’s criterion is equivalent to rectifiability
by Theorems 3.18 and 5.2, with the latter applied to Lipschitz graphs.

By results of Melnikov [334] and Tolsa [410], we also have a quantitative
version of Theorem 9.3 in terms of the analytic capacity, see also Theorems
4.14 and 6.1 in [415].

Theorem 9.4 Let E C C be compact. Then
WE) ~ sup {u(E): p € M(E). *(w) < p(E). u(B(z. 1) < r for 2 € C.r > 0},
For AD-regular sets, we have

Theorem 9.5 If E ¢ R? is closed and AD-1-regular, then E is uniformly
L-rectifiable if and only if Cg is bounded in L*(E).

As mentioned above, the boundedness on uniformly rectifiable sets is due
to David [133]. The converse was proved in [327] using (9.3), the above-
mentioned results of Christ and Theorem 5.4, with p =2, of David and Semmes.
It also gave Theorem 9.1 for AD-regular sets.
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9.2 Projections 83

Jaye and Nazarov gave in [256] a different proof for Theorem 9.5 using
reflectionless measures, see some comments on them at the end of Section
10.2. Their proof does not use Menger curvature but relies on other special
properties of the Cauchy kernel.

For general measures ¢ on C with linear growth, u(B(z,r)) < rforz e C,r >
0, the boundedness of C,, in L?(u) is equivalent to c*(ul_B) < u(2B) for all
discs B, see [415, Theorem 3.5]. Hence, recalling Theorem 5.4 and the notation
(6.1), the following result of Azzam and Tolsa [42] extends Theorem 9.5:

Theorem 9.6 Let u € M(C) with u(B(z,r)) < rforz € C,r > 0. Then

A(u) + u(C) ~ f B f B, r)ZM d,ux% dr + u(C). (9.4)
0

Recall their closely related rectifiability characterization in Theorem 6.2.
For the corresponding result for the Riesz kernels R,_; in R", see Theorem
10.5.

Combining Theorem 9.6 with Theorems 9.3 and 9.4, we have a g char-
acterization of removable singularities of bounded analytic functions and of
analytic capacity.

9.2 Projections

The validity of Theorem 9.1 was conjectured by Vitushkin in [431]. Actu-
ally he formulated his question for general compact sets E: is E removable if
and only if H'(P.(E)) = 0 for almost all lines L through the origin? By the
Besicovitch projection Theorem 3.13, this is equivalent to pure unrectifiability
when E has finite measure. In general the answer is no. I showed in [320] that
the projection condition is not conformally invariant, whereas the removability
obviously is. This did not tell us which of the implications is false, but soon af-
terwards Jones and Murai constructed in [265] a non-removable set with zero
projections. An easier construction with Menger curvature was done by Joyce
and Morters in [266]. The other direction is still open. Because of Tolsa’s The-
orem 9.3, this can be stated purely as a geometric measure theory problem:
if H'(PL(E)) > 0 for positively many lines L, is it then possible to construct
u € M(E) such that u(B(z,r)) < r forz € C and r > 0 and ¢*(u) < co? Chang
and Tolsa proved in [88] a partial result in this direction.

Dabrowski and Villa [129] showed that the projection condition (5.6) im-
plies that y(E) > 0. Moreover, they then proved the quantitative estimate
v(E) ~ d(E). For these results, they used their analyst’s salesman theorem for
sets satisfying (5.6) and Theorems 9.4 and 9.6.
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84 Bounded Analytic Functions and the Cauchy Transform
9.3 Principal Values

From Theorem 9.2, we get a characterization of rectifiability in terms of the
boundedness of the Cauchy transform. Now we give a characterization in terms
of the convergence properties of the Cauchy transform.

Theorem 9.7 Let E c C be H' measurable with H'(E) < oo. Then E is
1-rectifiable if and only if the finite limit

1
lim ——dH'¢
&0 JizeE: [i—>e) { — 2

exists for H' almost all z € E.

The convergence for rectifiable sets was proved in [326]; in [425] Verdera
gave a different Hahn—Banach proof. The other, more difficult, direction was
proved by Tolsa in [408]. Under the assumption of positive lower density, it
was proved in [322]. Both papers contain more general results for measures.
We say that u € M(C) has a principal value at 7 if the finite limit

. 1
Cu(z) :=lim —dul
£=0 Jig:1p—doe) € — 2

exists. Define the maximal transform

1
P u('-
\]{;2 [¢—z|>¢} -z

Proving and using a variant of a T'(b) theorem of Nazarov, Treil and Volberg,
see [365] or [366], Tolsa proved first that if ®*!(u, z) < o and C*u(z) < oo for
u almost all z € C, then C; is L?-bounded on a set of large 1 measure. Then he
concluded that by (9.3), there are compact sets E; such that u(C \ U;‘;IE j) =
0 and c*(ul_E;) < co. Applying this and Theorem 3.18 to u = H'L_E,
Theorem 9.7 follows, even with the existence of principal values replaced by
the finiteness of the maximal function.

In [322] I proved:

C*u(z) := sup

>0

Theorem 9.8 Let u € M(C). If ©®'(u,z) > 0 and Cu(z) exists for u almost
all z € C, then u is 1-rectifiable.

The proof uses tangent measures, recall Section 4.3. The assumptions imply
that for u almost all z € C every v € Tan(y, z) is symmetric which means that

f (—2)dvi =0forzespty,r>0.
B(z,r)
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9.4 Square Functions 85

Then up to discrete measures the symmetric measures were characterized. Ev-
ery non-discrete symmetric measure is either a constant multiple of the two-
dimensional Lebesgue measure or a constant multiple of the one-dimensional
Lebesgue measure on a line or a countable sum of constant multiples of the
one-dimensional Lebesgue measures on parallel lines. Theorem 9.8 was de-
duced from this.

Tolsa extended also Theorem 9.8 in [411]:

Theorem 9.9 Let u € M(C). If ©*'(u,z) > 0 and C*u(z) < oo for p almost
all z € C, then u is 1-rectifiable.

The proof involves similar ingredients as [408], but considerable extra diffi-
culties are caused by the weaker density assumptions. The paper contains more
detailed information about measures with finite Cauchy maximal transform.

For u € M(R"), x € R" and r > 0, define

m —m~—1
C/(x,r)=r (y = x)duy.
B(x.r)

It vanishes on spt u for all » > 0 if and only if y is symmetric. The finiteness in
the following theorem is a kind of approximate symmetry condition.

Theorem 9.10 Let u € M®R") with 0 < ®"(u,x) < oo for u almost all
x € R" Then u is m-rectifiable if and only szooo ICy7 (x, NIF/rdr < o for u
almost all x € R".

The sufficiency of this condition for rectifiability follows from the work of
Mayboroda and Volberg [332], while Villa proved the necessity in [428]. Villa
also proved an analogous result for uniform rectifiability and considered more
general kernels.

9.4 Square Functions

In [147], David and Semmes proved the following:

Theorem 9.11 Let E C C be AD-1-regular. For f € L>(E) and z € C\ E
define
F(z) = S dH'w.
EZ—W
Then E is uniformly rectifiable if and only if

f |F'(2)PPd(z, E)dz < f |f? dH" for all f € L*(E).
C E
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86 Bounded Analytic Functions and the Cauchy Transform

See Theorem 1.2.41 in [147], where also an (n — 1)-dimensional version in
R" is given with the Cauchy transform replaced by the Riesz transform R,,_;.
Here is a related result with harmonic functions:

Theorem 9.12 Let Q C R” be a corkscrew domain (see Section 11.1) with
AD-(n — 1)-regular boundary. Then 0Q is uniformly rectifiable if and only if

f IVu(x)Pd(x,0Q) dx < | supfu(x): x € Q)
QnB(a,r)

forall a € 9Q, r > 0 and for every bounded harmonic function u in Q.

The ‘only if” direction was proved by Hofmann, Martell and Mayboroda
[238] and the ‘if’ direction by Garnett, Mourgoglou and Tolsa [222]. These
papers show that this estimate is also equivalent to an approximation property
of harmonic functions. Related results were proven by Hofmann and Tapiola
[240] and Bortz and Tapiola [78].

9.5 Other Related Kernels

The Menger curvature trick (9.2) is particular to the Cauchy kernel 1/z. We
shall now discuss some positive results and counterexamples with other ker-
nels.

For Q: S' — C, define

ka(z) = Q(z/lzD/lzl, z # 0.

Huovinen proved in [244] that Theorem 9.8 remains valid for kg, , with Q(z) =
7*/|z[F, where k is an odd positive integer. Assuming additionally that the lower
density is finite, it holds for finite linear combinations of such kernels. Now
the tangent measures satisfy the Q-symmetricity fB - Q —-z)dvi=0forze
sptv,r > 0. Huovinen characterized the supports of such non-discrete mea-
sures. They are either unions of lines or the whole plane C. Observe that the
cancellation for z* does not only come from —z, but from k — 1 other points too.
Thus, when k > 3, in addition to flat tangent measures, also certain finite sums
of up to k flat measures on lines through the origin are possible tangent mea-
sures. These are called spike measures by Jaye and Merchan, and they cause
new problems as compared to the case k = 1. Anyway, Huovinen was able to
show that under positive lower density and the existence of principal values,
only flat measures occur as tangent measures almost everywhere.

Jaye and Merchan [255] proved Huovinen’s € result assuming positive and
finite upper density almost everywhere. So we have:
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9.5 Other Related Kernels 87

Theorem 9.13  Let k be an odd positive integer and u € M(C). Suppose that
0 < ®*!(u, 2) < oo for u almost all z € C or ®!(u, z) > 0 for u almost all 7 € C.
If the finite limit

¢ -2

lim Z|l<+l ,u{

e=0 Jir—gpse |0 —

exists for p almost all z € C, then y is 1-rectifiable.

New methods are required; for k > 3, the Menger curvature is not avail-
able and tangent measures do not seem to work either. To deal with this, Jaye
and Merchin combined Tolsa’s and Huovinen’s methods. They introduced «
numbers in the spirit of (5.4), but now minimizing the distance to spike mea-
sures. They showed that positive and finite upper density and the existence of
principal values imply that these @ numbers tend to zero. This alone does not
imply rectifiability, but combined with L?-boundedness it does. The needed
L?-boundedness again follows by 7'(b) theorems. The proof is also based on
the earlier work [253] and [254] of these authors.

In [429], Villa proved the rectifiability result for odd bi-Lipschitz functions
Q: S' — S with constant close to 1 under positive lower density and finite
upper density. Then the AD-1-regular Q-symmetric measures are 1-flat.

In [245], Huovinen considered kernels satisfying the standard Calderén—
Zygmund conditions and some additional cancellation conditions. Let K;(z) =
Re(2)/|z|* — tRe(z)*/|z|*,t € R. When ¢ = 1, he proved that there exist compact
purely 1-unrectifiable AD-regular sets such that the principal values exist al-
most everywhere and the operator is L>-bounded on some subset of positive
measure. This phenomenon is caused by the cancellation coming from the co-
ordinate axis. Jaye and Nazarov [257] found for t+ = 3/4, a compact purely
1-unrectifiable set with positive and finite 1-measure for which the operator is
L?-bounded. This set is not AD-regular but has the interesting property that,
despite the L?>-boundedness, the principal values do not exist. In fact, their ker-
nel was much simpler, Z/z2, but its real part is 4K,. Mateu and Prat [316] gave
an example in higher dimensions.

Chousionis, Mateu, Prat and Tolsa [105] considered the kernels Re(z)/|z|**!
for positive odd integers k. They proved for them the analogues of Theorems
9.2 and 9.5. They did it by relating to these kernels a sum of permutations
as in (9.2) and showed that it is non-negative and has properties similar to
the Menger curvature. This allowed them to prove the analogue of the David—
Legér Theorem 3.18. Chunaev [113] did the same for a larger class of kernels
including K; as above for certain parameters 7 for which the permutation sum is
non-negative. But for some ¢ this sum takes both positive and negative values.
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88 Bounded Analytic Functions and the Cauchy Transform

Even for a range of such ¢, Chunaev, Mateu and Tolsa [114] managed to prove
analogous results.

David [137] and Chousionis [96] considered some self-similar fractals and
constructed Calderén—Zygmund kernels for which the operators are bounded
on these fractals. The kernels are defined to fit the self-similarities of the sets.
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