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Abstract

One of the natural problems of operational semantics is to characterise the relationship between
eager and lazy evaluation. In the context of λ-calculus, this is expressed by the classic theorem
that call-by-value evaluation of a program to (weak-head) normal form can always be simulated
by a call-by-name evaluation. While the statement and intuition behind it are simple and clear,
naive attempts at proof famously fail: the result is usually established as a consequence of the more
complex standardisation theorem. In this work, we develop and formalise a novel and lightweight
inductive approach to tackle the problem of simulation between two semantics for a single calculus,
but with different evaluation orders. We exercise our method on the classic call-by-value and call-
by-name example and report on methodological takeaways suggested by our approach, in particular
what effect the flavour of semantics chosen has on the proof.

1 Introduction

Untyped λ-calculus is one of the prototypical models of computation since the dawn
of computer science (Barendregt, 1985): it remains the foundation of functional pro-
gramming languages and a common model language introduced in formal studies of
semantics (Landin, 1964; Reynolds, 1972; Plotkin, 1975; Reynolds, 1998; Pierce, 2002;
Wadler et al., 2022). While originally introduced as a calculus, with reductions performed
in arbitrary contexts, in modern applications to modelling programming languages, it
usually appears with (operational) semantics given only for closed terms, which model
complete programs. In such a setting, the main semantic distinction is whether function
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2 D. Biernacki et al.

application is eager, i.e., evaluates the argument before passing it to the function, giving
a call-by-value, or applicative, strategy or lazy,1 i.e., passes the argument to the function
without evaluating it, giving rise to the call-by-name, or normal, strategy (Plotkin, 1975).
It is trivial to observe that sometimes the call-by-name strategy terminates while call-by-
value does not. A natural, and much more difficult question is whether the converse holds:
if a program terminates under eager evaluation, does it also terminate if evaluated lazily?
While the answer to this is well known, the naive approach at a proof fails rather spectac-
ularly, as detailed below. The folklore proofs hinge on rather sophisticated results in the
reduction theory of the λ-calculus, such as the left-to-right standardisation theorem (Curry
& Feys, 1958) that for the λ-calculus is typically shown as a corollary of a theorem known
as semi-standardisation or factorisation of β-reduction through head reduction (Mitschke,
1979), or, even more directly, McKinna and Pollack’s factorisation of β-reduction through
weak-head reduction (McKinna & Pollack, 1999), which is an inductive formalisation of
Plotkin’s definition (Plotkin, 1975), and which also implies left-to-right standardisation.

In this paper, we present a simple method of building a simulation proof that relies
only on the two operational semantics and inductively defined predicates, rather than on
a full-fledged reduction theory and highly non-trivial general theorems characterizing this
reduction theory. First, such a reduction theory may not even be available or interesting to
be developed, and when it is, each modification of the calculus or programming language
under consideration requires the corresponding factorisation and/or standardisation theo-
rems to be re-established. In contrast, our method does not require any external results.
Second, we believe that our approach sheds far more light on the relationship between
the two semantics than the folklore proofs, by providing an explicit relation between the
two worlds. Finally and equally importantly, we find our method both scalable and simple
enough to warrant its inclusion in introductory courses on semantics.

Contributions. Concretely, we make the following contributions:

• We establish a novel, lightweight methodology for proving simulation results
between multiple semantics of a language, which differ in terms of order of
evaluation.

• We formalise our approach using the prototypical simulation between call-by-value
and call-by-name λ-calculus, in a range of semantic flavours.

• We mechanise the results using Agda, highlighting the simplicity, scalability and
robustness of our proof method.

2 Proving the simulation

To set the stage, we recall the syntax of untyped lambda-calculus, our language of choice,
in Figure 1. Note that the presentation is scope-aware: the set �X is the set of lambda-terms
with free variables drawn from the set X . While the presentation is a variant of Bird and
Paterson’s nested-type representation (1999) and is fully compatible with the functorial
approach to binding (Fiore et al., 1999), this is not fundamental: one can just as easily use
a standard definition of lambda terms and take �X = {e ∈� ∣ FV(e) ⊆X}.

1 In this paper we are lax about “laziness” in not considering call-by-need evaluation (Wadsworth, 1971).
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A simple proof of a classic theorem 3

�X ∋ eX ∶∶= x(x∈X) ∣ λx.eX⊎{x} ∣ eX
1 eX

2

Fig. 1. The (scope-aware) syntax of untyped λ-calculus. We elide the sets of free variables except
where their inclusion aids clarity. We take closed terms, i.e., p ∈�∅, as complete programs.

With the syntax of the calculus defined, we can define the call-by-value and call-by-
name semantics. However, before we do that, we discuss the flavours of semantics and
their impact on the difficulty of the simulation proof.

The problem with the naive approach and the impact of the semantic framework. The
intuition behind why the simulation theorem holds is very simple and convincing: since
we reduce the same program, at any step in the call-by-name evaluation, it will work on
a program that was evaluated by the call-by-value version at some point (possibly signifi-
cantly earlier). However, this intuition is difficult to reconcile with the usual presentation
of semantics, where reduction of β-redexes is performed via substitution (Plotkin, 1975).
Immediately after the first application with a non-value argument is encountered, and the
argument in the function position evaluated to matching values, we substitute different
terms on the call-by-value and call-by-name sides. Thus, we are no longer reducing the
same program on both sides and the simple-minded inductive argument breaks down.

This breakdown of our proof attempt is deeply unsatisfactory: of course, the programs
are slightly different, but intuition tells us that they still have the same structure, and that
wherever that structure diverges, it does so in a ‘safe’ way. However, it is far from obvious
how to capture this intuition formally. In fact, it turns out that it is easiest by utilising a
flavour of semantics where at any point the code that is evaluated is a sub-expression of the
original program – a variant of a subterm property (Accattoli & Dal Lago, 2012). If we set
up our semantics in this way, the original intuition that call-by-name only ever evaluates
pieces of code that call-by-value evaluated somewhere along the way can be made precise
in a natural fashion.

The simplest semantic format with this property is the environment semantics (Kahn,
1987), which is a big-step semantics with explicit environments, closely related to the
usual way of defining evaluators using closures and environments rather than a meta-level
substitution operation (Reynolds, 1972). One of its useful features, from an implementation
standpoint, is that at any point the expression that is evaluated can be represented as a
‘pointer’ into the program (i.e., the program text does not change under evaluation) – and
since this expression can be open, it is the environment that provides the interpretation for
the free variables. In our application, we can use this fact to drive the simulation argument,
since we can assert that the two semantics always evaluate the same expression, albeit in
somewhat different, but crucially, appropriately related, environments.

2.1 The environment semantics for call-by-value and call-by-name

In contrast to the classic substitution semantics, before we define the evaluation judge-
ments, we need to construct several pieces of instrumentation. For the sake of symmetry,
we define those in matching ways: for each semantics, the three components comprise
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4 D. Biernacki et al.

Clov ∋ c ∶∶= ⟨eX , ρX ⟩

Valv ∋ v ∶∶= ⟨λx.eX⊎{x}, ρX ⟩

ρX ∈Envv
X =X → Valv

(VAR)
x ∈X

⟨x, ρX ⟩ ⇓v ρ(x)

(LAM)
⟨λx.e, ρ⟩ ⇓v ⟨λx.e, ρ⟩

(APP)

⟨e1, ρ⟩ ⇓v ⟨λx.e, ρ′⟩ ⟨e2, ρ⟩ ⇓v v

⟨e, ρ′[x↦ v]⟩ ⇓v v′

⟨e1 e2, ρ⟩ ⇓v v′

Clon ∋ c ∶∶= ⟨eX , σ X ⟩

Valn ∋ v ∶∶= ⟨λx.eX⊎{x}, σ X ⟩

σ X ∈Envn
X =X → Clon

(VAR)
x ∈X σ(x) ⇓n v

⟨x, σ X ⟩ ⇓n v

(LAM)
⟨λx.e, σ ⟩ ⇓n ⟨λx.e, σ ⟩

(APP)

⟨e1, σ ⟩ ⇓n ⟨λx.e, σ ′⟩
⟨e, σ ′[x↦⟨e2, σ ⟩]⟩ ⇓n v′

⟨e1 e2, σ ⟩ ⇓n v′

Fig. 2. Environment semantics for call-by-value (left) and call-by-name (right). The difference in
structure of the two semantics is highlighted by framing the distinctive parts of the two definitions.
Note that in both cases, closures and values are closed by construction. To avoid clutter, we elide the
sets of free variables except where useful as a clarification.

the types of closures, values, and environments, with the evaluation judgements relating
closures to values in their respective semantics.

Starting with the call-by-value semantics, presented in Figure 2 (left), the only kind of
values we have are functions, represented by lambda-abstractions with X free variables,
together with a closing environment, ρ ∈Envv

X , which are extended once an argument
for the function is provided. The environments, defined mutually inductively with val-
ues, simply map their domains into values themselves. Finally, closures, which represent
complete running programs, are formed from an open expression together with a closing
environment. Note that both values and closures implicitly sum over all (finite) sets of free
variables. The evaluation judgement matches the usual definition of an evaluator: for the
variable case, we simply consult the environment, and encountering a lambda-abstraction
finishes the evaluation and packs the function with the environment to yield a value. For
the application case, we evaluate both sub-expressions in the environment with which we
started. The result of evaluation of the function position yields a lambda-abstraction with
some closing environment ρ′, which can now be extended with the result of the evaluation
of the argument to allow us to evaluate the body of the function.

The call-by-name semantics, presented in Figure 2 (right), has a very similar structure.
In this case, since the objects stored in the environment are not yet evaluated, it is the
closures and environments that are mutually inductively defined: closures consist of an
open expression and a closing environment, while environments map their domains into
closures themselves. Finally, values package a lambda-abstraction with a closing envi-
ronment, similarly to the call-by-value case. The evaluation judgement again mirrors a
standard evaluator: in the variable case we look up the matching closure in the environ-
ment and continue the computation, and the lambda-abstraction packages the function and
the environment as a value, as before. In the case of application, we only evaluate the argu-
ment in the function position to obtain a function with a new environment, and continue
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A simple proof of a classic theorem 5

ρ ∼e σ

⟨e, ρ⟩ ∼c ⟨e, σ ⟩

ρ ∼e σ

⟨λx. e, ρ⟩ ∼v ⟨λx. e, σ ⟩

v ∼v u c ⇓n u

v ∼ c

ρX ∼e σ X ⇐⇒ ∀x ∈X .ρ(x) ∼ σ(x)

Fig. 3. The simulation relation for environment semantics.

the evaluation of the function’s body in that environment extended with the argument
program paired with its initial matching environment. Note that in both cases the well-
scoped representation of terms and environments helps ensure that all the environments
are used correctly.

2.2 The simulation relation

Having defined the semantics, we can reify our initial intuition that a running call-by-name
program simulates a call-by-value one if they compute the same program — although we
also need to account for the fact that the environments cannot be arbitrary. In total, we
define four mutually inductive relations (some of which could be inlined). These comprise
similarity relations on closures, values, environments (relative to the same set of variables)
and function arguments. This last case relates arguments in call-by-value, i.e., values, to
arguments in call-by-name, i.e., closures. Figure 3 presents the complete definition.

The relations on closures, ∼c, and values, ∼v, are defined according to our intuition: the
expression is identical on both sides, while the closing environments need to be related.
This is the essential use of the subterm property – the distinction between the source
expressions and their closing environments allows us to insist that the former are iden-
tical, while the latter need merely to be related. This also suggests that our approach would
scale naturally if, for instance, we had additional kinds of values. The relation on environ-
ments, written ∼e, is a simple point-wise extension of the relation on arguments, ∼, which
matches call-by-value values to call-by-name closures. This is achieved by asserting that
the call-by-name closure evaluates to a value that is related to its call-by-value counterpart.
Note that the relation on environments holds trivially for the pair of empty environments,
and thus that any closures constructed from a program (i.e., a closed expression), paired
with the corresponding empty environment, are related.

2.3 The proof

With the simulation relations defined, we can finally state the main inductive lemma, as
the usual simulation square.

Lemma 2.1. If two closures are related, cv ∼
c cn, and the call-by-value closure evaluates

to a value, cv ⇓v v, then the call-by-name closure also evaluates to some value w, cn ⇓n w,
which is, moreover, related to its counterpart, v ∼v w.

Note that in light of our definition of simulation relation, the conclusion of this lemma
can also be stated simply as an instance of our fundamental relation on arguments, v ∼ cn.
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6 D. Biernacki et al.

Proof The proof proceeds by induction on the structure of the evaluation judgement. We
have three cases, which determine the structure of cv:

1. (VAR) In this case, both cv and cn are the same variable, x ∈X , in related envi-
ronments ρ ∼e σ , both ranging over X . Since the environments are related, the
resulting value, ρ(x) is related to the closure σ(x) as arguments – that is, we have
σ(x) ⇓n w and ρ(x) ∼v w. However, by the call-by-name version of (VAR), we have
⟨x, σ ⟩ ⇓n w, which ends this case of the proof.

2. (LAM) In this case, both sides terminate with a value: the lambda-abstraction
encountered is the same, and the environments are related by the similarity
assumption. Thus, the corresponding values are also related.

3. (APP) Finally, in the application case, both closures are formed as the application
of the same two expressions, say, e1 e2 with related environments ρ ∼e σ . From the
evaluation assumption for e1, which states that ⟨e1, ρ⟩ ⇓v ⟨λx.e, ρ′⟩, we learn by
induction hypothesis that the evaluation by name gives us the same function in a
related environment, i.e., that ⟨e1, σ ⟩ ⇓n ⟨λx.e, σ ′⟩ such that ρ′ ∼e σ ′. The evaluation
assumption for e2 gives us ⟨e2, ρ⟩ ⇓v v which, by induction hypothesis, ensures that
v ∼ ⟨e2, σ ⟩. This allows us to extend the environments ρ′ and σ ′ with v and ⟨e2, σ ⟩
respectively, getting ρ′[x↦ v] ∼e σ ′[x↦⟨e2, σ ⟩]. The proof now follows by the
induction hypothesis for the evaluation of e, using the (APP) rule to ‘extend’ the
evaluation on the call-by-name side. ∎

The lemma now serves to establish our original theorem as an immediate corollary.

Corollary 2.2. If a closed program, evaluated in an empty environment, terminates in
call-by-value, then it also terminates in call-by-name.

While the simulation proof presented above is elegant and simple, it raises a pertinent
question: does the approach we followed here scale to other calculi and other semantic
formats, or was it a happy accident that we were able to construct the similarity relations
in this particular case. In the following section, we give evidence that the approach is in
fact rather robust.

3 Substitutions and small steps: adaptations to other semantic formats

In this section, we sketch a way to adapt our proof to other common semantic formats.2

First, let us consider a substitution-based semantics (Reynolds, 1998, Chapter 10). It is
clear that we could port the definition in Figure 3 to a substitution-based semantics by
existentially quantifying over related substitutions and actually performing them to obtain
related programs. This, however, is unwieldy and rather unsatisfactory – and it is sensible
to ask whether there is a more natural approach to defining the simulation that would work
for substitution-based semantics.

2 For detailed definitions and other variations, please consult the Agda sources.
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A simple proof of a classic theorem 7

BETA
(λx.e) v↦v e[v/x]

APPL
e1↦v e′1

e1 e2↦v e′1 e2

APPR
e↦v e′

v e↦v v e′

BETA
(λx.e) e′↦n e[e′/x]

APPL
e1↦n e′1

e1 e2↦n e′1 e2

Fig. 4. Small-step, substitution-based semantics: call-by-value (left) and call-by-name (right). The
notation e[e′/x] denotes a substitution of expression e′ for the variable x in e; we take values v to
range over closed lambda abstractions, and only reduce closed programs.

It turns out that such an adaptation is possible. We can retain the three relations
on values (which now become simply closed lambda abstractions), arguments and
expressions – however, the latter relation now considers open terms, and is formed by
closing the relation for arguments under all the term formers. At the same time, the rela-
tion on arguments simply requires that the by-name side evaluates to a value and that the
two values are in the relation on values, which itself is just the relation on expressions,
specialized to closed lambda abstractions.

Intuitively, this definition expresses that the two programs share the structure until such
point (or points) where a substitution occurs: there, the results of substitution need to be
related as arguments, forcing the fact that evaluation on the by-name side terminates. It is
easy to show that this definition is closed under related substitutions, akin to Lemma 3.1
discussed in the following, thus leading to a fundamental simulation lemma, analogous to
the one we proved in the previous section.

While such a construction can account for substitution-based semantics, it remains tied
to big-step semantics. This is somewhat limiting: small-step semantics (Plotkin, 1981) are
extremely popular (Pierce, 2002; Harper, 2016), both due to conciseness of presentation
and ease of use (including, for instance, being able to express non-terminating computa-
tions). However, our definition of simulation – in particular, the relation on arguments –
seems to rely rather fundamentally on a program being evaluated all the way down to a
value. Can we reconcile this notion with a small-step notion of reduction, such as the one
presented in Figure 4?

It turns out that the answer is, again, yes. In fact, the notion of relation on arguments
can be split in two: a relation on programs that expresses that the lazy program can ‘catch
up with’ the eager one, i.e., reduce (in any number of steps) to a program that is struc-
turally3 related to the eager one. The relation on arguments is then just a special case
where the eager side of the relation is required to be a value. Since small-step closure
calculi usually entail additional semantic artifacts, we present a version of the simulation
for small-step, substitution-based semantics in Figure 5. Note that, in addition to the rela-
tions on arguments, and (open) expressions, we have the ‘chase’ relation (↜) — but also,
another relation, on closed programs. This last relation, written ∼p, relates expressions that
are related structurally, but with possible discrepancies in the argument position, where
the call-by-value side may have already started the process of evaluating the argument.
Note that under a lambda, the relation defaults to the usual, structural relation (with the

3 As before, up to occurrences of related argument substitution.
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8 D. Biernacki et al.

x ∼t x

ev ∼
t en

λx.ev ∼
t λx.en

ev ∼
t en av ∼

t an

ev av ∼
t en an

v ∼ e

v ∼t e

pv ∼
p p′n pn↦

∗
n p′n

pv ↜ pn

v↜ e

v ∼ e

ev ∼
t en

λx.ev ∼
p λx.en

pv ∼
p pn av ↜ an

pv av ∼
p pn an

Fig. 5. Simulation definition for small-step, substitution-based semantics. Here, ∼t is the open, struc-
tural closure of the relation for arguments, ∼. The later is expressed in terms of the ‘chase’ relation,
↜which in turn utilises a structural relation on partially evaluated programs, ∼p.

appropriately embedded related arguments). This setup leads, via a substitution lemma, to
a more relaxed version of the main lemma:

Lemma 3.1. For any related terms over a set X ⊎ {x}, ev ∼
t en and any related argu-

ments, v ∼ p, the results of substituting the argument for x on their respective sides are
also related, ev[v/x] ∼t en[p/x].

Lemma 3.2. The chase relation is closed under by-value reduction on the left, i.e., for any
chase-related closed programs, pv ↜ pn, if the call-by-value side reduces to some program
p, pv ↦

∗
v p, then the resulting program is still chase-related to pn, i.e., p↜ pn.

The former lemma proceeds by induction on the structure of the similarity of terms, using
the assumption whenever variable x is encountered, while the latter is proved by induction
on the reduction sequence, and then by mutual induction on the structure of relations ↜
and ∼p (for a single step on the by-value side). Since the chase relation is reflexive, the
original theorem remains a simple corollary in the case where p happens to be a value.

4 Formalisation

In this section, we briefly discuss our Agda (Norell, 2007) formalisation of the results
described in previous sections. In particular, we reprise the development of Section 2,
based on big-step, environment-based semantics. It is simple enough to allow us to present
in its entirety, highlighting how the maturity and sophistication of modern theorem-
proving/programming environments can aid in streamlining developments of ‘classical’
metatheoretic results. However, in the associated formalisation, we also work out the
development for other styles of semantics, providing adaptations to substitution-based
semantics and small-step calculi.

The syntax and operational semantics of our calculi are presented in Figure 6. Since
we chose a nested-type representation of well-scoped lambda-terms, à la Bird & Paterson
(1999), the presentation is very similar to that of Section 2. The flipside is that the sets of
closures and values inhabit Set1, due to quantification over a set of free variables; this is
largely inconsequential, and any other well-scoped representation would perform equally
well.
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A simple proof of a classic theorem 9

data Tm (X : Set) : Set where
‘_ : (x : X)→ Tm X
λ_ : (e : Tm (Ext X))→ Tm X
_⋅_ : (e1 e2 : Tm X)→ Tm X

Prog = Tm �

data Clov : Set1
data Valv : Set1
Envv : Set→ Set1

data Valv where
[λ_,_] : (e : Tm (Ext X)) (ρ : Envv X)→ Valv

Envv X = X→ Valv

data Clov where
[_,_] : (e : Tm X) (ρ : Envv X)→ Clov

data _⇓v_ : Clov → Valv → Set1 where
var : ∀ x (ρ : Envv X)→

[ ‘ x , ρ ] ⇓v ρ x
lam : ∀ e (ρ : Envv X)→

[ λ e , ρ ] ⇓v [λ e , ρ ]
app : [ e1 , ρ ] ⇓v [λ e , ρ′ ]→

[ e2 , ρ ] ⇓v u→
[ e , ρ′ ⊳ u ] ⇓v v→
[ e1 ⋅ e2 , ρ ] ⇓v v

ρ0 : Envv �
ρ0 ()

clov : Prog→ Clov

clov p = [ p , ρ0 ]

data Clon : Set1
data Valn : Set1
Envn : Set→ Set1

data Valn where
[λ_,_] : (e : Tm (Ext X)) (σ : Envn X)→ Valn

Envn X = X→ Clon

data Clon where
[_,_] : (e : Tm X) (σ : Envn X)→ Clon

data _⇓n_ : Clon → Valn → Set1 where
var : σ x ⇓n w→

[ ‘ x , σ ] ⇓n w
lam : ∀ e (σ : Envn X)→

[ λ e , σ ] ⇓n [λ e , σ ]
app : [ e1 , σ ] ⇓n [λ e , σ ′ ]→

[ e , σ ′ ⊳ [ e2 , σ ] ] ⇓n w→
[ e1 ⋅ e2 , σ ] ⇓n w

σ0 : Envn �
σ0 ()

clon : Prog→ Clon

clon p = [ p , σ0 ]

Fig. 6. Agda formalisation of the syntax and operational semantics for call-by-value (left) and call-
by-name (right) lambda-calculus.

Note that Agda’s support for mutual induction and induction-recursion makes the defini-
tions simple and largely devoid of clutter. We also make extensive use of the abbreviation
mechanisms usually called ‘implicit syntax’ (Pollack, 1990), i.e., arguments which in
a given context can be inferred by the typechecker may be omitted from the explicit
parametrisation of, e.g., term or datatype structure. Moreover, Agda extends such idiomatic
usage with a sophisticated generalisation mechanism that allows us to mimic the standard
practice of implicitly universally quantifying free variables in definitions in a formally
sound manner.

These convenient features also scale to the case of the definition of the simulation rela-
tion, presented in Figure 7, which again mirrors that of Section 2. Note that, even though
the relations on values and computations only have one constructor, this is due to simplic-
ity of our calculus: additional value- and computation-formers would be encountered in
larger languages (or, indeed, other semantic formats). On the other hand, the simulation
on arguments, ∼, is by its design a single-constructor type, and hence the datatype could
be replaced with a record. However, we found that this largely did not affect the proofs or
their readability.
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data _∼_ : Valv → Clon → Set1
data _∼v_ : Valv → Valn → Set1
_∼e_ : Envv X→ Envn X→ Set1
data _∼c_ : Clov → Clon → Set1

data _∼_ where
_∼⇓_ : {w : Valn}→ v ∼v w→ cn ⇓n w→ v ∼ cn

data _∼v_ where
[λ_,_] : (e : Tm (Ext X))→ ρ ∼e σ → [λ e , ρ ] ∼v [λ e , σ ]

ρv ∼e ρn = ∀ x→ ρv x ∼ ρn x

data _∼c_ where
[_,_] : (e : Tm X)→ ρ ∼e σ → [ e , ρ ] ∼c [ e , σ ]

∼0 : ρ0 ∼
e σ0

∼0 ()

clo0 : ∀ p→ clov p ∼c clon p
clo0 p = [ p , ∼0 ]

Fig. 7. Agda formalisation of the simulation relation for environment semantics.

lemma : cv ⇓v v→ cv ∼c cn → v ∼ cn

lemma (var x ρ) [ ‘ x , ρ∼σ ]
with ρ[x]∼w ∼⇓ σ [x]⇓w← ρ∼σ x = ρ[x]∼w ∼⇓ (var σ [x]⇓w)

lemma (lam e ρ) [ λ e , ρ∼σ ] = [λ e , ρ∼σ ] ∼⇓ (lam e _)

lemma (app [e1,ρ]⇓λe,ρ′ [e2,ρ]⇓u [e,ρ′⊳u]⇓v) [ e1 ⋅ e2 , ρ∼σ ]
with [λ e , ρ′∼σ ′ ] ∼⇓ [e1,σ ]⇓λe,σ ′ ← lemma [e1,ρ]⇓λe,ρ′ [ e1 , ρ∼σ ]
with u∼[e2,σ ]← lemma [e2,ρ]⇓u [ e2 , ρ∼σ ]
with v∼w ∼⇓ [e,σ ′⊳[e2,σ ]]⇓w← lemma [e,ρ′⊳u]⇓v [ e , ρ′∼σ ′ ⊳ u∼[e2,σ ] ]
= v∼w ∼⇓ (app [e1,σ ]⇓λe,σ ′ [e,σ ′⊳[e2,σ ]]⇓w)

theorem : clov p ⇓v v→ v ∼ clon p
theorem {p = p} p⇓v = lemma p⇓v (clo0 p)

Fig. 8. The Agda proof of the simulation theorem.

The proof itself, of Lemma 2.1 and equi-termination as its corollary, is presented in
Figure 8. By convention, the names of bound variables that represent judgements allude to
their types, e.g., [e,ρ′⊳u]⇓v has type [ e , ρ′ ⊳ u ] ⇓v v. We can observe that it follows the
same structure as the paper proof, following by induction on the structure of derivation,
making extensive use of ‘with’-notation (McBride & McKinna, 2004) to coordinate pattern
matching on recursive calls to lemma, corresponding to case analysis on the inductive
hypotheses. We believe that the conciseness and clarity of the formalised proof is quite
remarkable, and a testament to the simplicity of our proof method, while the ease with
which it can be extended to other semantic frameworks and language features speaks to its
robustness.
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5 Conclusion

We have developed and presented a new technique for proving simulation between oper-
ational semantics for the same underlying language that differ in eagerness of evaluation.
Our approach is elementary, hinging only on definitions of the semantics and (mutually)
inductively defined predicates: we believe it is well-suited to early courses of semantics of
programming languages, where a simulation theorem like the one we presented can high-
light certain properties of semantics, as well as choices and difficulties inherent in proving
these theorems. The argument’s structure makes it also very natural to mechanise, with
the expressive power of Agda paying off particularly handsomely in terms of simplicity in
handling of the definitions.

We have also seen that, while the simulation argument is simplest in the big-step,
environment-based semantics, the technique scales to other approaches, including both
small-step and substitution-based semantics. It is also rather obvious that it scales to calculi
with data extending beyond functions (for example, languages that include pairs, num-
bers or conditional expressions), where the traditional approach would require defining
an appropriate reduction theory and proving standardization – a non-trivial task, espe-
cially if the evaluation relation of the lazier of the calculi does not naturally coincide with
weak-head reduction!

One question that is rather natural to ask is whether our technique is, in some sense,
a logical relation (Tait, 1967; Plotkin, 1973; Statman, 1985; Mitchell, 1996, Chapter 8).
We believe that it does not fit that description: the crucial evidence lies in the treatment
of (functional) values. In the logical relations approach, functions or function-like entities
are related when they are related for any related arguments. In contrast, while the environ-
ments saved in a closure do make an appearance in our relation, we still require the bodies
of the functions to be syntactically, rather than observationally equal.

One consequence of this observation is that our technique is unlikely to scale directly
to a denotational setting (Stoy, 1977; Schmidt, 1986; Winskel, 1993; Reynolds, 1998),
where syntax is interpreted away, and the only way to inspect a value’s denotation, i.e., a
function, is to apply it to an argument. Constructing the simulation in domain theory would
inevitably require means markedly more complex than what we advocate in this work,
namely recursive (logical) relations over recursive domains (Reynolds, 1974; Pitts, 1993).

If the simplicity of means was not a main concern, one could actually employ syntactic
logical relations to build a simulation in the operational setting that would be akin to ours.
Such an approach, however, in order to ensure well-formedness of the logical relation,
would require the technique of step-indexing (Appel & McAllester, 2001; Ahmed, 2006):
since the calculus under consideration is untyped, one has to rely on a different inductive
structure than types when defining a logical relation.

A problem pertaining to the one addressed in this note is the relation of call-by-need and
call-by-name semantics for lambda-calculus. While proofs of their equivalence have been
developed (Ariola & Felleisen, 1997; Maraist et al., 1998; Launchbury, 1993), it would be
interesting to see whether our technique scales to this question – and indeed, whether it can
serve to simplify or streamline any of the approaches known from the literature. The most
promising in this endeavour appears to be Launchbury’s call-by-need heap-based natural
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semantics that has previously been shown equivalent to a non-deterministic call-by-value
semantics, using tools somewhat related to ours (Hackett & Hutton, 2019).
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