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Abstract
This article surveys the use of nonparametric permutation tests for analyzing experi-
mental data. The permutation approach, which involves randomizing or permuting 
features of the observed data, is a flexible way to draw statistical inferences in com-
mon experimental settings. It is particularly valuable when few independent obser-
vations are available, a frequent occurrence in controlled experiments in econom-
ics and other social sciences. The permutation method constitutes a comprehensive 
approach to statistical inference. In two-treatment testing, permutation concepts 
underlie popular rank-based tests, like the Wilcoxon and Mann–Whitney tests. But 
permutation reasoning is not limited to ordinal contexts. Analogous tests can be con-
structed from the permutation of measured observations—as opposed to rank-trans-
formed observations—and we argue that these tests should often be preferred. Per-
mutation tests can also be used with multiple treatments, with ordered hypothesized 
effects, and with complex data-structures, such as hypothesis testing in the presence 
of nuisance variables. Drawing examples from the experimental economics litera-
ture, we illustrate how permutation testing solves common challenges. Our aim is to 
help experimenters move beyond the handful of overused tests in play today and to 
instead see permutation testing as a flexible framework for statistical inference.
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1 � Introduction and motivation

In economics and other social sciences, data from laboratory and field experiments 
present two common challenges for statistical inference. The first is interdepend-
ence. Markets and other group interactions create dependence relationships between 
observational units. The second challenge is small sample sizes. The costs of recruit-
ing and incentivizing subjects to participate in research experiments often force 
experimenters to settle for fewer observations than we might like. These costs were 
magnified during the recent Covid-19 lockdowns that required interactive experi-
ments to be run online, with a significant fraction of Zoom sessions being inter-
rupted by subjects leaving the meeting or experiencing connectivity issues. Sample 
sizes can also be small in natural experiments, especially where there is little exog-
enous dispersion of treatment conditions.1 While experimenters have never let these 
challenges stand in the way of useful research, neither have we grappled as seriously 
as we might with the question of how best to tailor statistical inference to our needs.

A common but conservative approach to addressing the interdependence prob-
lem is to perform statistical inference on a summary measure of behavior that can 
plausibly be interpreted as independent within the overall design of the experiment. 
Suppose an experiment assigns separate groups of subjects to 8 sessions, with each 
session involving 10 replications of a simulated market. This approach would com-
pute a single average efficiency measure for each session, yielding a final sample of 
8 independent observations for the whole experiment. The argument for aggregating 
so much of the data is not that economists cannot make progress with models of 
lower-level individual interactions; economics is replete with such tools. The prob-
lem is that the assumptions used to motivate sophisticated empirical models can lack 
credibility in an experimental context, especially when things like rationality and 
perfect foresight assumptions are the very things being tested—not assumed—in the 
study.

Aggregating lower-level observations can mitigate dependence problems but 
only by exacerbating the second challenge of experimental analysis: small sample 
sizes. When the experimenter is limited to few data points—perhaps six independent 
observations for an entire study—common tests struggle to justify statistical infer-
ence. Small sample sizes make it difficult to assess the distributional assumptions 
that parametric tests rely upon. Even more so, small sample sizes will usually pre-
clude reliance on tests that use limit theorems to motivate their null distributions. 

1  For example, Kagel and Roth (2000) summarize a comparison of different “clearinghouse” methods of 
matching medical residents with hospitals in the United Kingdom. Two locations used a “priority prod-
uct” method that tended to fail; two locations used a “deferred acceptance” method that, in theory, was 
“stable” with respect to bilateral deviations from assigned matches; and one location switched from one 
method to the other. Minor procedural and geographic details differentiated the locations and the match 
values and costs of making early matches were unobserved, so the authors conducted a laboratory experi-
ment in which each of the alternative matching methods was used in three laboratory sessions with care-
fully crafted parallel conditions.

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:33:00, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


777

1 3

Permutation tests for experimental data﻿	

To address these problems, experimenters turn to nonparametric tests that sacrifice 
statistical power for validity under a range of distributional conditions.

The use of nonparametric tests is now common in experimental research, but the 
selection of tests often seems to be driven more by familiarity (and perhaps litera-
ture lock-in) than by the properties of the tests themselves. This mirrors how experi-
mental methods are taught. If you ask a colleague how they introduce nonparametric 
testing in their graduate classes, the response will probably be that they instruct by 
example, presenting specific applications from papers as they arise. This approach 
has the advantage of introducing students to tests that are appropriate for common 
data patterns. But it has the disadvantage of obscuring relationships between dif-
ferent tests and the tradeoffs between them. Little is gained by directing students to 
textbooks for these additional details. Traditional statistics texts cover a wide array 
of techniques, beginning (and, for busy graduate students and experimentalists, 
often ending) with tests of limited relevance to the numerical, multi-dimensional 
data frequently encountered in experiments.

From an experimenter’s perspective, a better resource is something like Sidney 
Siegel’s (1956) classic: Non-parametric Statistics for the Behavioral Sciences.2 
Siegel’s presentations are clear, insightful, and laden with intuition. Even better, 
Siegel draws examples from behavioral psychology and economics experiments, so 
his presentations of statistical methods build upon and inform experimental design 
skills. While much of Siegel’s text has stood the test of time, the past 60 years have 
witnessed large advances in computing power and the consequent enabling of new 
capabilities in computational statistical analysis. These new capabilities deserve an 
equally accessible introduction to the field.

This article follows Siegel’s lead in emphasizing intuition and relevant examples 
while introducing a family of permutation tests that can be used to solve experi-
mental data analysis challenges. The idea behind these tests is to take seriously the 
experimental design that generated the data, relying on knowledge of experimental 
randomization and the null hypothesis of no treatment effect to construct statisti-
cal tests customized to individual applications. Common nonparametric tests like 
the Mann–Whitney and Wilcoxon tests are special cases of the general approach 
we describe, derived by applying permutation methods to ordinal data or to rank-
transformed versions of interval measurements. In categorical data analysis, Fish-
er’s exact test shares a similar motivation (Fisher, 1935). The methodology of per-
mutation testing will be familiar to those who have experience with bootstrap tests 
(Efron & Tibshirani, 1993), but with one important difference: whereas the theory 
behind bootstrap inference is based on random resampling with replacement from 
the observed data, the theory behind permutation inference is based on exhaustive 
permutation of the observed data or random sampling without replacement. Manly 
(2007) discusses the implementation details and strengths of each approach. For our 
purposes, it is enough to note that permutation methods work well for small samples 
while the attractive properties of bootstrap methods are usually asymptotic.

2  Siegel’s impact on experimental methodology cannot be overstated. Indeed, the annual Economic Sci-
ence Association prize for the best experimental economics dissertation is still called the Sidney Siegel 
Award.
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Beyond exposing the intuitive methodology of permutation testing, we also offer 
two comments on the relative attractiveness of different permutation tests. First, 
rank-based tests are overused today. Currently obscure tests based on (untrans-
formed) interval data present intuitive and possibly more powerful bases for statisti-
cal inference. Second, an underappreciated property of all permutation methods is 
the ability of these tests to accommodate data problems like interdependence, sec-
ondary nuisance variables, and other strata that can easily and intuitively be incor-
porated as permutation constraints.

Using data from various experiments to provide concrete examples, this paper 
illustrates these and other properties of permutation tests in the analysis of experi-
mental data. We begin in Part 2 with an introduction to sample permutation testing 
for k = 2 independent samples, comparing the now common Mann–Whitney test to 
the simpler and potentially more powerful Pitman permutation test. Part 3 does the 
same for data composed of matched pairs of observations. Parts 4–5 generalize two-
sample intuition to cases involving k > 2 samples. Part 6 introduces stratified per-
mutation methods. Finally, Part 7 briefly discusses the use of permutation methods 
for correlation and linear effects models. Table 1 summarizes the tests we present 
and the relationships between them.

Table 1   Reference table

Samples 
com-
pared

Relationship between samples Permutated feature of collected sample

Rank-transformed observa-
tions

Measured observations

k = 2 Independent Mann–Whitney Test
Part 2.2

Pitman Test
Part 2.1

k = 2 Dependent (matched pairs) Wilcoxon Test
Part 3.2

Fisher Test
Part 3.1

k > 2 Independent (unordered 
hypothesis)

Kruskal-Wallace Test
Part 4.2

Permutation F Test
Part 4.1

k > 2 Independent (ordered hypoth-
esis)

Jonckheere–Terpstra Test
Part 5.1

Directional Difference Test
Part 5.2

k = 2 Dependent Stratified Mann–Whitney 
Test

Part 6.1

Stratified Pitman Test
Part 6.1

k > 2 Dependent Friedman Test
Part 6.2

Stratified Permutation F 
Test

Part 6.2
k ≥ 2 Associated Ordinal Association Test

Part 7.1
Correlation, Regression 

Test
Parts 7.1, 7.2

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:33:00, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


779

1 3

Permutation tests for experimental data﻿	

2 � Permutation tests for k = 2 independent samples

The most fundamental statistical test for experimental work is the comparison of 
averages between unmatched samples. This situation is typical of experiments that 
draw subjects from a common pool, exposing each person to a single treatment. 
When contrasting measurements collected under one treatment, 

{
x1,… , xn

}
∼ Fx, 

against those collected under another treatment 
{
y1,… , ym

}
∼ Fy , the null 

hypothesis of no treatment effect corresponds to a situation in which measure-
ments from both samples are independent and identically distributed draws from 
the same underlying distribution: Fx = Fy = F.

Appropriate alternative hypotheses are derived from context and theory, as 
illustrated in the examples below. For simplicity, we confine our discussion to 
“shift” models in which distributions are assumed to differ in a measure of central 
tendency if at all. This assumption will often be plausible in the experimental 
context—especially where the only difference between observations is random 
assignment to a particular treatment—but is not innocuous and should not be 
ignored. Permutation tests can have power to detect not just differences in central 
tendency but also differences in distribution shape and variability. The assump-
tion of a shift model justifies attributing rejection of the null hypothesis to a dif-
ference in central tendency. When distributions may differ in not just location but 
also variance or shape, permutation tests with alternative hypothesis limited to 
locational shift may fail to control the probability of Type I error. This behavior is 
discussed and illustrated by Boik (1987), Romano (1990), Hayes (2000), and oth-
ers. One solution is to adopt a more general alternative hypothesis. Another solu-
tion may be to control Type I error rates through modified tests (Feltovich, 2003) 
or testing algorithms (Chung & Romano, 2016; Neuhäuser & Manly, 2004). For 
clarity, and to focus on the intuition behind permutation testing, we maintain the 
shift-model assumption throughout our discussion.

To keep things concrete, consider a classic two-treatment experiment that Cag-
inalp et al. (1998) used to evaluate factors that cause asset share prices to deviate 
from fundamental values of those shares. Each of the 7 sessions in this exper-
iment consisted of 9 traders who were endowed with “shares” of an asset and 
amounts of cash, with one treatment endowing subjects with a greater supply of 
shares (“asset rich”) and another treatment endowing them with a greater supply 
of lab cash (“cash rich”). Subjects knew that trading would occur in a series of 15 
double auctions, after which each share would pay a dividend with a transparently 
obvious expected value of $3.60. There was no final redemption value for shares, 
so the fundamental share value was the same, $3.60, irrespective of treatment. As 
shown in Table 2, all three price averages for the cash-rich treatment shown in the 
top row are higher than all four price averages for the asset-rich treatment shown 
in the bottom row.

To investigate how average prices differ between the cash-rich treatment (sample 
x) and the asset-rich treatment (sample y), an obvious test statistic is the difference 
in sample averages:
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The difference, which can be read off the treatment average column in Table 2 as 
Tobs = 3.71 − 2.99 = 0.72 , is consistent with the “excess cash hypothesis” advanced 
by the authors. Statistical inference requires comparing this test statistic to its null 
distribution, however, and—with only three observations in one treatment and four 
in the other—the usual assumptions required for parametric or asymptotic testing 
are hard to defend.3

At the cost of some statistical power, permutation tests provide a credible basis 
for statistical inference. Instead of assuming a null distribution for the test statistic, 
the strategy of permutation testing is to construct this distribution using only the 
observed data and an understanding of the data generating process.

2.1 � Permuting independent measured observations: the Pitman permutation 
test

Appropriate permutation strategies can be inferred from knowledge of the experi-
mental design and what the null hypothesis would mean for counterfactual sample 
draws. Here, the null hypothesis of no treatment effect would mean that average 
prices in every session of the experiment were independent draws from a common 
average-price distribution. By the same logic, each of the observed price draws 
would be just as likely to have been assigned to the cash-rich treatment as the asset-
rich treatment, so every permutation of the data between these treatments would 
have an equal ex ante probability of having been observed. With samples of 3 obser-
vations in the cash-rich treatment and 4 observations in the asset-rich treatment, 
there are 

(
7

3

)
= 35 equally probable ways that these data could have been assigned to 

the two treatments if the null hypothesis were true. The null distribution of the test 
statistic can be constructed by computing the value of the test statistic under each 
of these 35 permutations of the sample data, a subset of which are reproduced in 
Table 3.

After permutation values of the test statistic are computed, hypothesis testing 
becomes straightforward. In conventional hypothesis testing, the p-value for a two-
sided test represents the probability of drawing a value of the test statistic, T, at least 
as extreme as the observed value, Tobs , if the null hypothesis were true:

This probability is usually calculated by assuming that the test statistic follows a 
known distribution. Instead of assuming a distribution, permutation testing con-
structs the empirical null distribution of the test statistic from the sample data. 
Here, Tobs = 0.72 . There are only two ways that these data could be rearranged to 
result in a test statistic as extreme or more extreme than Tobs . These are the permu-
tations in the first and last rows of Table 3. Since the null hypothesis implies that 

(1)T = x − y

(2)two-sided p-value = PH0

(|T| ≥ ||Tobs||
)

3  The published paper analyzed the difference in price averages with a t test but also reported a Mann–
Whitney test for the difference in price medians (Caginalp et al., 1998).
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all permutations are equally probable, the p-value for a two-sided test of the null 
hypothesis is 2∕35 ≈ 0.057. More generally, the two-sided p-value for this permu-
tation test is the proportion of all test-statistic values greater than or equal to the 
observed value among all 

(
m

n

)
 ways of permuting the data between the two samples:

where Ti is the value of the test statistic for the ith permutation and 1(⋅) is the indica-
tor function with a value 1 if its argument is logically true and 0 otherwise.

One-sided versions of this permutation test are computed similarly; the only dif-
ferences are that the numerator consists of signed values of the test statistic and 
the inequality identifies more extreme observations in the hypothesized direction. 
A one-sided test for the Caginalp et al. (1998) data could be defended because the 
experiment was designed to evaluate the excess cash hypothesis that high cash-to-
asset ratios would tend to increase share prices. The p-value for this one-sided test is 
the probability of observing a signed value of the test statistic greater than or equal 
to the observed value under the null. Reviewing Table 3, only the observed permuta-
tion meets this criterion, so the one-sided p-value is 1∕35 ≈ 0.029.

In our experience, students often find the methodology of permutation testing 
more intuitive than normal-theory testing. Some find it so appealing that they never 
look back. Even so, it is instructive to consider some of the similarities and differ-
ences between the permutation method and the familiar approach of Student’s two-
sample t test.

First, unlike the t or normal distributions, the null distribution of a permutation 
test can be highly discrete. In the above one-sided example, the p-value of 0.029 is 
the strongest possible rejection of the null hypothesis for these sample sizes. Intui-
tively, no configuration of the data can be more extreme than the case where all 3 
observations in the cash-rich sample are greater than all 4 observations in the asset-
rich sample, so the p-value for this permutation test could never fall below 1/35 no 
matter how extreme the difference between the samples.

Second, while having a less discrete null distribution can allow Student’s t-test to 
reach lower p-values (0.025 for the two-sided t test versus 0.057 in the above two-
sided permutation test), it does so at the cost of assuming a specific distribution for 
the test statistic. This distributional assumption is not innocuous. Inaccurate distri-
butional assumptions can invalidate a parametric test. The permutation test imposes 
no distributional assumptions in the sense of requiring the sample data to come 
from a specific population distribution. While the permutation test is not equally 

(3)Pitman permutation test, two-sided p-value =

∑(
m

n
)

i=1
1
���Ti�� ≥ ��Tobs��

�
�
m

n

�

Table 2   Average share prices 
over all rounds, by Session

Caginalp et al. (1998): selected data from Table 2

Treatment Mean price per session (all rounds) Average

Cash rich 3.43 3.73 3.97 – 3.71
Asset rich 3.03 3.32 2.55 3.06 2.99
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powerful for all possible distributions, its validity is not based upon distributional 
assumptions.

Third, the similarity of this permutation test and Student’s t test is not superficial. 
Both tests are based on permutation-equivalent test statistics (functions of the differ-
ence of sample averages). As sample sizes become large, the efficiency of the per-
mutation test converges with that of the t-test (Hoeffding, 1952; Miller, 1997: p. 54). 
Thus, the two-independent-sample permutation test can be seen as a distributionally 
robust version of the t test.

Fourth, while the intuition of permutation testing fits most naturally to hypothesis 
testing, the methodology can also be used to generate a form of confidence interval 
(Manly, 2007: pp. 18–20; Miller, 1997: pp. 24, 28). To generate this interval, let 
y(�) = y + � be the observed values of sample y , shifted up or down by the value 
� . By inspection or numeric search, find the smallest and largest values of � such 
that the permutation test would fail to reject the null of no difference between x and 
y(�) at level � in a two-sided test. These end points constitute a 100(1 − �)% confi-
dence interval: a range of shift values that could not be rejected at the � level in a 
two-sided test. Applied to the Caginalp et al. (1998) data, for example, this process 
yields a 90% confidence interval of (0.244, 1.182). This interval is wider than the 
(0.266, 1.174) confidence interval produced by the standard t test but, unlike the t 
test, does not depend on distributional assumptions.

If everything in this section seems intuitive, one might wonder why this type of 
permutation testing is not more common in the experimental literature. Indeed, the 
Pitman subcaption of this section is a nod to one of the earliest proponents of this 
form of permutation testing (Pitman 1937a, 1937b, 1938), yet few experimenters 

Table 3   Computing the null distribution of the test statistic

*Observed samples

Permutation index 
(i)

Cash-rich session-aver-
age price (x)

Asset-rich session-average price (y) Test 
statistic 
Ti = xi − yi

1 3.03  2.55  3.06 3.43  3.73  3.97  3.32 − 0.73
2 3.03  3.32  2.55 3.43  3.73  3.97  3.06 − 0.58
3 3.32  2.55  3.06 3.43  3.73  3.97  3.03 − 0.56
4 3.43  3.03  2.55 3.73  3.97  3.32  3.06 − 0.52
5 3.43  2.55  3.06 3.73  3.97  3.03  3.32 − 0.50
… … … …
31 3.43  3.97  3.32 3.73  3.03  2.55  3.06 0.48
32 3.73  3.97  3.03 3.43  3.32  2.55  3.06 0.49
33 3.73  3.97  3.06 3.43  3.03  3.32  2.55 0.50
34 3.73  3.97  3.32 3.43  3.03  2.55  3.06 0.66
35* 3.43  3.73  3.97 3.03  3.32  2.55  3.06 0.72
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would recognize that name today.4 The explanation is that, while the theory of per-
mutation-based inference has been understood for more than 75 years, computing 
power has only recently made this type of case-by-case construction of null distribu-
tions a convenient option (Berry et al., 2019: ch. 2). Recent clearance of computa-
tional barriers might raise some doubts about the ease or practicality using permuta-
tion tests in published work, but none of them withstand scrutiny.

For example, one might worry that, for large sample sizes, the computational bur-
dens of permutation testing would still become prohibitive even with modern com-
puters. This does happen but it is a problem of little practical importance. For one 
thing, numerical simulation methods carry the theory of permutation testing past the 
computational horizon. An approximate permutation test simply replaces exhaustive 
permutation with many random reshuffles of the observed data.5 For another, nor-
mal theory and asymptotic testing become defensible as sample sizes grow, meaning 
the practical need for permutation testing fades just as its computational burdens 
begin to turn troublesome.

In a similar vein, one might worry that considerable scripting experience would 
be needed to perform tests that are not already standard routines in common statis-
tical software. Some comfort with scripting is indeed helpful, especially in strati-
fied permutation testing (discussed in Sect. 6) or when designing tests for compli-
cated randomization routines (Heß, 2017). But common statistical programs provide 
standard routines for permuting sample data; in some cases, available permutation 
testing libraries make scripting entirely unnecessary. We collect relevant software 
and routines for permutation testing in online appendixes.

Finally, a pragmatic researcher might hesitate to use an uncommon statistical test 
for fear that editors and reviewers would question it. We have encountered no evi-
dence of this ourselves. The theory of permutation testing is old and well estab-
lished. Methods papers have specifically recommended it for experimental work 
(Moir, 1998). And examples of the use of permutation testing in published work, 
while not common, are available to cite as precedent if needed. Examples include 
Sherstyuk (1999), Abbink (2004), Orzen (2008), Anderson et  al. (2011), Sieberg 
et al. (2013), Nosenzo et al. (2015), Rosokha and Younge (2020), Erkal et al. (2020), 
Kujansuua et al. (2021), Stephenson and Brown (2021), and Schram et al. (2022).

With no remaining obstacles to excuse its unfamiliarity, the Pitman permutation 
test deserves a more prominent role in the experimenter’s toolkit than it commands 
today.

4  As for most topics in statistics, R. A. Fisher also has strong claim to name recognition for this approach 
(e.g., Fisher 1936). Manly (2007: p. 113) provides an interesting discussion of philosophical contrasts 
between Pitman’s and Fisher’s permutation arguments. Somewhat a reflection of the weight of each 
scholar’s work, but mainly for expositional clarity, we refer to permutation testing in the two-independ-
ent-sample context as a Pitman permutation test, and to permutation testing in the matched-sample con-
text as a Fisher permutation test. Miller (1997: pp. 27, 53) adopts this same convention.
5  If simulations are used, it is advisable to run several large simulations to be sure that the resulting p 
value proportions are not affected in terms of the number of trailing digits being reported.
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2.2 � Permuting independent ranked observations: the Mann–Whitney test

While the Pitman permutation test is unfamiliar, related tests devised by Wilcoxon 
(1945) and Mann and Whitney (1947) are commonly employed in the experimental 
economics literature. The Wilcoxon and Mann–Whitney approaches describe dif-
ferent but equivalent tests and are sometimes referenced jointly as the Wilcoxon-
Mann–Whitney test. For ease of exposition, we refer to both tests as the Mann–Whit-
ney test, which helps to distinguish this permutation strategy from the Wilcoxon 
Signed Rank test (discussed in relation to matched-pair samples in Sect. 3.2). Just 
as lack of familiarity with the Pitman permutation test owes to historic and now 
outdated computational difficulties, the popularity of the Mann–Whitney test owes 
mainly to inertia from computational shortcuts of little modern importance.

The Mann–Whitney procedure presented in most non-parametric books involves 
ranking all sample data (both samples combined) and replacing each observation 
with its ordinal rank in the combined sample. Both the Wilcoxon and Mann–Whit-
ney versions of the test then compute special test statistics with computationally 
convenient null distributions (Gibbons & Chakraborti, 2003; Miller, 1997; Siegel, 
1956). The specific definition of the test statistic is not important for present pur-
poses. The thing to note is that the approach is equivalent to running a permutation 
test on the rank-transformed sample data.

Specifically, the Mann–Whitney test is a two-independent-sample permutation 
test (covered in Sect. 2.1) in which the data being permuted are not the measured 
observations but the ordinal ranks of those observations in the combined sample 
(Siegel, 1956: p. 155). Instead of permuting observed average prices in the Cagi-
nalp et  al. (1998) experiment, the Mann–Whitney test would permute the ranked 
values of each session-average price in the combined sample. The cash-rich average 
prices of 3.43, 3.73, and 3.97 were the three highest prices observed in this experi-
ment, with ranks 5, 6, and 7 respectively; the asset-rich average prices of 3.03, 3.32, 
2.55, and 3.06 were the four lowest prices, with ranks of 2, 4, 1, and 3 respectively. 
The Mann–Whitney test is equivalent to running a Pitman permutation test on these 
rank-transformed observations.

It happens to make no difference, in this example, whether one works in ranks or 
level data. Since the ranked versions of the samples, x = {5, 6, 7} and y = {2, 4, 1, 
3}, are more extreme than any other possible permutation, the one-sided p-value is 
still 1∕35 ≈ 0.029 and the two-sided p-value is still 2∕35 ≈ 0.057 . This is a special 
case, however, and permutation tests based on ranks are not generally the same as 
those based on observed values.

To illustrate the potential difference between these tests, consider an experi-
ment reported by Bohr et al. (2019), involving asset market performance with sav-
ing decisions over a simulated lifetime. Subjects, in this experiment, were permit-
ted to buy and sell asset “shares” that paid dividends each period. The dividends 
and interest paid on cash induced a flat fundamental share value (present value of 
future dividends) of $20 per share. In six sessions of the experiment (the “private-
savings” treatment), subjects traded assets while also deciding how much of their 
incomes to save for low-income “retirement” years. In another 6 sessions (the 
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“government-savings” treatment), a fixed portion of each subject’s income was with-
held by the “government” for retirement years. As a result of the difference in sav-
ings policy, subjects in the private-savings treatment carried cash amounts that were 
about twice as large as those in the government-savings treatment. Peak price data 
are provided for both treatments in Table 4, below.

While major price bubbles (above the $20 fundamental value) were observed in 
most sessions of the experiment, an interesting research question is whether peak 
asset prices were greater under the cash-rich private-savings treatment than under 
the government-savings treatment.6 The data are qualitatively consistent with this 
hypothesis but there is overlap between the samples. When permuting the measured 
observations under the Pitman test, there are 

(
12

6

)
= 924 possible permutations of the 

12 observations across treatments, 36 of which yield a treatment difference at least 
as extreme as the observed value, for a two-sided p-value of about 0.039. In contrast, 
when permuting rank-transformed observations under the Mann–Whitney test, there 
are 86 permutations in which the treatment difference (in average ranks) is at least 
as extreme as the observed value, yielding a two-sided p-value of about 0.093. The 
rank-based Mann–Whitney test barely supports rejection of the null hypothesis at 
the 10% level, while the Pitman test’s greater use of the sample information allows 
for rejection at the 5% level.7

Since the Pitman permutation test is sensitive to the magnitudes of observation 
differences, not just their rank comparisons, one might think that the p-values pro-
duced by Pitman tests will always be lower than those of equivalent Mann–Whitney 
tests. This intuition is incorrect. To illustrate, consider an experiment reported by 
Holt and Smith (2022) in which subjects competed for a fixed monetary prize by 
expending lab dollars on “effort” that has a specified cost per unit. One treatment 
contrast compared average total expenditures on “rent-seeking” activity with low 
effort cost (77, 83, 130, 81) against expenditures with high effort cost (132, 111, 
93, 87).8 Of the 

(
8

4

)
= 70 possible ways of permutating the sample observations, 

28 yield a treatment difference more extreme than what was observed, making the 
p-value of a two-sided Pitman test 28∕70 = 0.4 . After rank-transforming the sample 
observations, however, only 14 of 70 permutations yield an average difference more 
extreme than the observed value, meaning the p-value of a two-sided Mann–Whit-
ney test is 14∕70 = 0.2.

Another way that the Pitman and Mann–Whitney tests often differ is in confi-
dence intervals. Recall that the Pitman test produced a 90% confidence interval of 
(0.244, 1.182) when assessing the difference between cash-rich and asset-rich aver-
age prices in the Caginalp et al. (1998) experiment. Confidence intervals can also 

6  The authors used a Pitman permutation test with the peak price data shown in Table 4 above (Bohr, 
Holt, & Schubert, 2019).
7  The sharper result obtained with the Pitman test owes to the fact that the “reversals” from the general 
trend (peaks of 43, 42.5 and 38 under the government-savings treatment) are only slightly larger than 
some of the more modest peaks under the private-savings treatment (42, 38.5 and 36), whereas the larg-
est peak prices under the private-savings treatment (70, 61.5, and 53) greatly exceed most of the govern-
ment-savings observations.
8  Holt and Smith (2022) employ stratified permutation testing to evaluate these data (discussed in Part 
6), with a secondary strata for group size.
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be generated for rank-transformed tests (Bauer, 1972). Computing the end points of 
an interval by searching for the largest and smallest shift-terms where a two-sided 
Mann–Whitney test would not reject the null hypothesis at the 90% level yields a 
90% confidence interval of (0.111, 1.420).

If the only difference between the Mann–Whitney and Pitman permutation 
tests is that the Mann–Whitney tests drops information when sample data are 
measured as interval values, then why is the Mann–Whitney test so popular? It 
once enjoyed the important advantage of having a null distribution that could 
be pre-computed and printed in critical-value tables in statistics textbooks. But 
modern computing power makes this all but irrelevant. The rank-based test is still 
appropriate when the sample data are ordinal as measured.9 And, because the 
rank conversion suppresses distortions caused by outliers, the Mann–Whitney 
test may also be preferable to the Pitman test when experimenters are concerned 
that outliers might be introduced by measurement errors, procedural issues, or 
other artificial influences.

In most cases involving interval measurements, however, the Pitman test presents 
the more compelling option. The Pitman test uses more of the sample information 
and is more sensitive to differences between measured observations. In a Monte 
Carlo comparison of the Pitman test against Student’s t-test and the Mann–Whitney 
test, Moir (1998) finds the Pitman test to match or outperform the more familiar 
tests in most applications.10 Where data are interval as measured (prices, auction 
revenues, market efficiencies), and where policy interest concerns the magnitudes of 
treatment effects, it is hard to justify passing over the Pitman test in favor of an alter-
native that is less sensitive to these aspects of the data.

3 � Permutation tests for k = 2 matched pairs

An important distinction when analyzing experimental data concerns the difference 
between within-subjects designs and between-subjects designs. In between-sub-
jects designs, each person or group is exposed to a single experimental treatment. 

Table 4   Peak price data and 
ranks for asset shares

Bohr et al. (2019): selected data from Table 1

Treatment Session 
peak 
prices

Mean

Private savings 42 36 53 61.5 38.5 70 50.2
Government savings 42.5 21.25 30 26 43 38 33.5

9  For example, measures of individual characteristics, e.g. risk aversion or type-A personality, are typi-
cally considered to be ordinal in the absence of precise preference models that may observed responses 
to questions.
10  Specifically, Moir (1998) finds the Pitman test (in that paper referred to as the “ER means test”) to 
perform about as well as the t-test when the underlying distribution is close to normal and to outperform 
the t-test in some non-normal settings. The Mann–Whitney test underperformed both the Pitman test and 
t-test in most settings considered.

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:33:00, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


787

1 3

Permutation tests for experimental data﻿	

This produces samples of independent observations (the focus of the previous sec-
tion). Within-subjects designs expose each person or group to multiple treatments 
in sequence. Exposure to more than one treatment has the potential drawback that 
behavior induced by one treatment may carry over to another treatment—a design 
bias known as an order effect. But within-subjects designs have the advantage of 
collecting data in a way that allows each person or group to serve as its own control 
group—a potentially valuable property when considering treatment effects in the 
presence of heterogeneity.

In the two-treatment context, within-subjects designs produce samples consist-
ing of matched pairs of observations. For example, if measurements are taken when 
n subjects are exposed to a control condition of an experiment, 

(
x1,… , xn

)
∼ Fx , 

and measurements are repeated when the same n subjects are exposed to a treat-
ment condition of the experiment, 

(
y1,… , yn

)
∼ Fy , then the difference vector (

d1 = x1 − y1,… , dn = xn − yn
)
∼ Fx−y reflects how exposure to the treatment has 

changed the measured outcome within each subject in the experiment. It is conveni-
ent to work directly from this difference vector when testing hypotheses using this 
type of matched-pair data. The null hypothesis of no treatment effect, Fx = Fy , cor-
responds to a difference distribution, Fx−y , that is symmetric about 0, such that dif-
ferences between the control and treatment are explained by random noise alone. 
The alternative hypothesis of treatment distributions differing in central tendency 
corresponds to a difference distribution with non-zero central value—again, assum-
ing a shift model.

A helpful illustration of a within-subjects design is an experiment created to 
study how prices respond to changes in the number of sellers and market power in 
a posted-price oligopoly. Davis and Holt (1994) assigned each of 12 sessions of an 
experiment to two of three treatments. Six of the sessions entailed 30 periods of 
price competition followed by 30 periods of competition under a redistribution of 
production capacity that created or reduced market power, holding the number of 
sellers fixed.11 The other six sessions entailed 30 periods of price competition fol-
lowed by 30 periods of competition with the addition or removal of 2 sellers from 
the market, holding market power fixed.12

Table 5 shows observed price measures for this experiment. The numbers in the 
table are average prices over the final 15 replications of a market treatment—that is, 
the later replications in which strategies and behavior have had time to reach steady 
states. Asterisks on session labels denote those sessions in which subjects were first 
exposed to the topmost of the two treatments. Orthogonal treatment assignment 
was intended to mitigate the potential design bias caused by any order effects in the 
experiment.

11  Specifically, in the Power design, the mixed strategy Nash equilibrium price distributions are above 
the competitive price, and in the No-Power design the Nash equilibrium price equals the competitive 
price.
12  Constant market power is achieved by structuring demand and cost conditions such that the symmetric 
mixed strategies of sellers in setting prices yields the same predicted price distributions for each treat-
ment.
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The researchers sought to answer two related questions. First, does the market 
power created by redistribution of production capacity to larger sellers confer pric-
ing power? Second, even holding market power constant, is there a pure numbers 
effect in which fewer competitors means greater pricing power? In both cases, the 
data appear to reflect a treatment effect, but with only 6 matched-pair data points for 
each comparison, tests based on assumed distributions are again hard to defend. A 
permutation approach is more persuasive.13

3.1 � Permuting pairs of measured observations: the Fisher permutation test

As before, the appropriate permutation strategy for constructing the null distribution 
of a test statistic can be inferred from knowledge of the experimental design and 
what the null hypothesis would mean for counterfactual sample draws. Here, the null 
hypothesis of no treatment effect implies that the vector-difference of matched pairs 
should have zero mean, suggesting the use of the average difference as an appropri-
ate test statistic:14

As noted above, the null hypothesis implies that the difference distribution should 
be symmetric around zero. This motivates a simple permutation strategy for con-
structing the null distribution of the test statistic.

Since every difference is equally likely to be either positively or negatively signed 
under the null hypothesis, the null distribution of the test statistic can be computed 
by recalculating the value of the test statistic under all possible permutations of the 
signs of the sample differences. Equivalently, and perhaps more intuitively, since Fx 
and Fy are equal under the null hypothesis, the observed values in every matched 
pair are equally likely to have been assigned to opposite treatments under the null—
which corresponds to simply swapping the sign of their difference. This strategy of 
permuting signs is often attributed to Fisher (1935). We refer to it as the Fisher per-
mutation test.

For a sample of n matched pairs, there are 2n ways that the signs of all matched 
pairs could be permuted under the null. Taking the p-value to be the probability of 
seeing a value of the test statistic, T, as or more extreme than the observed value, 
Tobs , a permutation p-value is as follows:

where 1(⋅) is again the indicator function.
The Davis and Holt experiment provides a concrete context for illustration. 

Recall that the first question is whether increased market power confers pricing 

(4)T = d

(5)Fisher permutation test, two-sided p-value =

∑2n

i=1
1
���Ti�� ≥ ��Tobs��

�
2n

14  Of course, d = x − y , so the test statistic could equivalently be expressed as in Eq. (1). We adopt this 
form of the test statistic because it better matches the intuition of the matched-pairs permutation strategy.

13  Davis and Holt (1994) based their analysis on standard Wilcoxon signed-rank tests.
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power in this setting. For the 6 matched pairs in sessions S1–S6 of Table 5, the 
average price is higher for the market power treatment in every case. That is, the 
sample-difference vector has only positive signs. Since there are 26 = 64 possi-
ble permutations of the signs of these matched pairs under the null, only two of 
which result in a test statistic as or more extreme than the observed test statistic, 
the two-sided p-value is 2∕64 ≈ 0.031 . Since economic theory predicts a positive 
sign for this treatment effect, it is arguably more appropriate to use a one-sided 
test in this setting. The one-sided p-value corresponding to a test of the alterna-
tive hypothesis that prices are higher with greater market power seeks only those 
permutations with test statistic values greater than or equal to the observed value. 
Since no alternative permutation of the signs of these data provides an average 
value larger than what was observed, the one-sided p-value is about 0.016 . This 
example is, however, misleading in its simplicity. Since all differences were of 
the same sign, the magnitudes of differences did not need to be considered in 
calculating the 1∕64 probability for each tail. Next, we consider a more realistic 
example with some overlap.

The second question is whether a pure numbers effect gives smaller numbers of 
competitors greater pricing power, even when holding technological market power 
constant. For the 6 matched pairs in sessions S7–S12 of Table 5, the average price 
is greater under the 3-seller treatment in all but one case. Focusing on the one-sided 
test, 2 possible permutations yield an average difference greater than or equal to 
the observed value. The p-value of a one-sided test is thus 2∕64 ≈ 0.031 ; the cor-
responding p-value for a two-sided test would be 4∕64 ≈ 0.062.

Note that the previous conclusion would not have been reached if testing had 
not accounted for matched pairs in this design. If the 3-seller power and 5-seller 
power samples on the right side of Table 5 had been treated as independent sam-
ples, a Pitman permutation test would give a one-sided p-value of about 0.273, 
which would not support rejection of the null hypothesis of no numbers effect. 
The intuitive explanation for this is that groups of subjects can differ in com-
petitiveness. The most collusive outcome observed in any 3-seller market was 
produced by the same group that produced the most collusive outcome in any 
5-seller market. Using each group as its own control helps to mitigate the effects 
of subject heterogeneity and thus helps to reveal treatment effects that might oth-
erwise be difficult to distinguish from noise in the data.

Table 5   Average prices for different oligopoly markets

Davis and Holt (1994): Table 1, page 479
*The top treatment was the first exposure in this session

Treatment/session S1* S2 S3* S4 S5* S6 S7* S8 S9* S10 S11* S12

5 sellers no market power 329 308 341 410 310 397
5 sellers market power 407 468 430 455 397 441 415 471 392 401 392 512
3 sellers market power 425 470 408 436 424 517
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Like the Pitman test, the Fisher permutation test has appeared in published 
articles. Examples include Baillon, Schlesinger, and van de Kuilen (2018) and 
Bao et al. (2020).

3.2 � Permuting ranked observations: the Wilcoxon signed‑rank test

Just as the ability to perform permutation tests on measured data is often over-
looked in experimental analysis of independent samples, so is it overlooked in 
the matched-pairs context. By far, the most common small-sample test in the 
matched-pairs setting is the Wilcoxon (1945) signed-rank test. The name of this 
test reflects the peculiar transformation that it applies to the measured data. All 
matched-pair differences are ranked from smallest to largest in absolute value, 
and these ranks are then reassigned the signs of the original difference data. To 
illustrate, the vector of sample treatment differences d = (−6, 4, 0,−3) becomes 
SRd = (−4, 3, 1,−2).

As was the case for the Mann–Whitney test, the original motivation for using 
the signed-rank transformation was primarily to enable reliance on a test statistic 
for which a precompiled null distribution could be provided in printed form. The 
specifics of the relevant test statistic and its distribution are interesting but are 
not belabored here. Accessible presentations are provided by Wilcoxon (1945) 
and most introductory texts on nonparametric statistics (Gibbons & Chakraborti, 
2003; Miller, 1997; Siegel, 1956). It is sufficient to note that the Wilcoxon signed-
rank test is a Fisher permutation test conducted on the signed ranks of the sample 
difference vector.

How do the Fisher permutation test and the Wilcoxon signed-rank test com-
pare? For the Davis and Holt experiment, both yield the same p-values. Fisher’s 
permutation test has strong intuitive appeal as the permutation analog of Stu-
dent’s one-sample t-test (Miller, 1997). Monte Carlo evidence demonstrates the 
superior power of the Fisher permutation test over the Wilcoxon signed rank test 
for a variety of sample sizes and distributions (Kempthorne & Doerfler, 1969). 
This is intuitive, as a Fisher permutation test run on interval data uses more sam-
ple information than does a Wilcoxon signed-rank test. In our opinion, the Fisher 
permutation test should be the experimenter’s default choice when differences 
between observed measurements reflect important outcomes—with the Wilcoxon 
test reserved for situations in which data are ordinal as measured or when outliers 
are a concern.

To illustrate the last point, suppose that the first session of the 5 seller no-
market-power treatment had yielded an observed price of 700, rather than 329. 
Since the Fisher permutation test is based on measured values instead of ranks, 
the magnitude of this observation affects the test statistic quite a bit. When con-
sidering the one-sided alternative, there are now 26 possible sign permutations 
that yield average differences greater than or equal to the observed difference, for 
a p-value of 26∕64 ≈ 0.406 . The magnitude of the high-price observation has less 
effect when converted to a signed rank in the Wilcoxon test. When considering 
the one-sided alternative, there are only 14 possible sign permutations that would 
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yield an average difference of signed ranks greater than or equal to the observed 
value, for a p-value of 14∕64 ≈ 0.219 . The Fisher permutation test’s sensitivity 
to extreme observations is a strength of the test when these observations reflect 
underlying economic conditions but is a weakness when these observations are 
artificial outliers.

4 � Permutation tests for k > 2 independent and unordered samples

The permutation tests discussed thus far have involved comparisons of two treat-
ments, but many experiments involve more than two treatments. While multiple 
pairwise comparisons can always be conducted in this setting, there are downsides 
to this approach. For one thing, it can be difficult to interpret situations in which 
some tests justify rejection of the null hypothesis while others do not. True, these 
differences in outcome may be important findings in some cases, but in other cases 
they can frustrate efforts to state succinctly whether a relationship was strongly 
rejected by the data. For another thing, the simultaneous assessment of multiple tests 
may require multiple-comparison adjustments to control for error inflation, leading 
to power loss.

Simultaneous tests designed to detect locational differences among a set of more 
than two samples can be an attractive alternative. Two common examples of this 
approach are tests of multiple unordered treatment effects and tests of treatment 
effects with ordered predicted intensity. This part will take up the case of unordered 
treatment effects, first with measured data and then with rank-transformed data.

4.1 � Permuting measured observations: the F test

The test of multiple unordered treatment effects is a simple generalization of the test 
of locational difference between two independent samples. In the two-sample set-
ting, samples x and y are compared to see whether their means are statistically dis-
tinguishable. In the more general setting, k > 2 samples, x1,… , xk, of size n1,… , nk 
are compared simultaneously to see whether any of their means are statistically 
distinguishable. If experiment sessions are run at k different universities, for exam-
ple, a researcher might want to determine whether any subject pool differences are 
revealed. In statistics textbooks, this procedure falls under the heading of one-factor 
analysis of variance (ANOVA) testing, and statistical inference would most likely be 
based on the F statistic and its comparison to the F distribution:

where xi,j denotes the ith observation in sample xj , xj and nj denote the mean and 
number of observations in sample xj , x denotes the grand mean when all samples are 
pooled together, and N is the total number of observations. This test is known to be 

(6)F =
(k − 1)−1

∑k

j=1
nj
�
xj − x

�2

(N − k)−1
∑k

j=1

∑nj

i=1

�
xi,j − xj

�2
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robust against non-normality (Miller, 1997: 80–81), but experimental data may push 
the boundaries of what could plausibly justify the assumption of a specific, paramet-
ric null distribution.

Applications of permutation testing in one-way ANOVA go back nearly as far as 
the use of permutation testing in the two-sample setting (Pitman, 1938). The rea-
son is that the two-sample permutation process generalizes in an intuitive way to 
the higher order setting. To illustrate, consider an experiment that Holt and Sprott 
(2022) use to evaluate different methods for auctioning off-shore wind energy leases. 
One treatment implements a clock auction used by the US Department of Interior. 
The initial clock price is set low to generate excess demand for leases, and the clock 
price is raised in a sequence of rounds until there is no excess demand, which deter-
mines the uniform sale price. A second treatment models the multi-round sealed-bid 
procedure used in the UK. In that auction, the high bidder in the first round receives 
any leases they bid for at their own bid price, and these leases are removed from 
the auction. The high bidder in the second round then gets any leases they bid for at 
their bid price, and so on until all leases are sold.15 Finally, a third treatment imple-
ments a single-round sealed-bid auction. After the bids are submitted, the auction 
is cleared by going down the bid list from high to low and accepting bids until no 
leases remain unsold. Winning bidders pay their own bid amounts.

Table 6 shows average earnings over each of 4 sessions of each treatment. Since 
the costs of wind-energy generation are difficult to estimate precisely in advance, the 
experiment was structured so that each bidder received independent noisy signals of 
the underlying lease value. This common-value setting entails a risk that the win-
ning bidder might have bid high because they overestimated the lease value. This 
well-known “winner’s curse” effect is clearly indicated by the negative average earn-
ings for the UK auction treatment in the top row.

To illustrate how a permutation test could be applied to these data, consider a test 
of the null hypothesis of no difference between any of the auction formats, against 
the alternative of a locational difference between at least two of the mechanisms. 
The observed data yield an F statistic of 5.54. All that remains is to construct the 
null distribution and to see how the observed value of the test statistic compares 
with it.

As before, the null distribution can be derived from knowledge of the experimen-
tal design and the implications of the null hypothesis. If the null of no treatment 
effect were true, then all observations in the experiment would be equally likely to 
have been assigned to any of the treatments. If there are k > 2 treatments with 
n =

∑
nk total observations, then there are 

(
n

n1

)
 ways that observations could have 

been assigned to the first treatment. For each of these, there are 
(
n−n1
n2

)
 ways that 

observations could have been assigned to the second treatment. For each of these, 
there are 

(
n−n1−n2

n3

)
 ways that observations could have been assigned to the third treat-

ment. And so on, for a total of n!∕
(
n1! ×… × nk!

)
 equally likely permutations of the 

15  This description omits an important feature of the UK auction that permits lease winners to bid in a 
second-phase reverse auction (low bids win) to sell electricity back to a government agency at a guaran-
teed price corresponding to their successful reverse auction bid.
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sample data under the null. The p-value for a permutation-based test of the null 
hypothesis (equality of all samples) comes from computing the F statistic for every 
permutation of the data and counting the proportion of these F statistics that are 
greater than or equal to the observed value:

where N = n!∕
(
n1! × … × nk!

)
 . For the wind auction experiment, three groups 

of four observations yields N = 12!∕(4! × 4! × 4!) = 34, 650 possible permuta-
tions of the observed data. As noted above, the observed value of the test statistic 
is 5.54. Of the 34,650 possible permutations of the sample data, 642 yield F statis-
tics greater than or equal to 5.54, so the p-value for a permutation F test of the null 
hypothesis is about 0.019. This p-value is smaller than the p-value of 4∕70 ≈ 0.057 
that comes from pairwise comparison of even the highly contrasting US and UK 
treatments using the Pitman test discussed in Sect. 2.1. Of course, specific pairwise 
comparisons would be relevant for the actual choice of an auction format.

4.2 � Permuting ranked observations: the Kruskal–Wallis test

The above description of the permutation F test differs from the familiar 
Kruskal–Wallis test—the current default choice of most experimenters when seek-
ing a nonparametric test of locational difference among k samples (Kruskal & Wal-
lis, 1952). Like the Wilcoxon and Mann–Whitney tests, the Kruskal–Wallis test sta-
tistic is a function of rank-transformed observations:

where ri,j denotes the rank (among all observed values) of the ith observation in 
sample xj , rj and nj denote the mean rank and number of observations in sample xj , r 
denotes the average of all ranks, and N is the total number of observations.

How does the Kruskal–Wallis Test compare to the permutation F test? Consistent 
with our discussion in the two-sample context, rank-based tests make sense when 
the sample data are ordinal as measured, or when the experimenter has reason to be 
concerned about serious outliers not connected to fundamentals of the subject being 
investigated. There is, however, an important difference between the Kruskal–Wallis 
test and the previously discussed two-sample rank-based tests. Unlike its two-sample 
analogs, the Kruskal–Wallis test does not have an easily computed null distribution. 
Implementations in common statistics software substitute approximate null distribu-
tions, but these are known to be poor approximations for small sample sizes (Meyer 
& Seaman, 2013). The exact null distribution can be constructed by permutation, 
but then the Kruskal–Wallis test lacks any computational advantage over the per-
mutation F test. For these reasons, rote reliance on the Kruskal–Wallis test is not 
advisable.

(7)permutation F test, p-value =

∑N

i=1
1
�
Fi ≥ Fobs

�
N

(8)H = (N − 1)

∑k

j=1
nj
�
rj − r

�2
∑k

j=1

∑nj

i=1

�
ri,j − rj

�2
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To illustrate how these considerations play out in an actual example, return to 
the Wind Auction experiment and the null hypothesis of no difference in treat-
ment effect between any of the auction mechanisms. Recall that the permutation F 
test rejected the null hypothesis with a p-value of 0.019. An exact p-value for the 
Kruskal–Wallis test can be computed by following the same process, only replacing 
the F statistic with the H statistic. For the Wind Auction data, the observed value 
of the test statistic is H = 5.69 . Of the 34,650 possible permutations of the sample 
data, 1,686 yield H statistics greater than or equal to 5.69, making the exact p-value 
of the rank-based Kruskal–Wallis test 1, 686∕34, 650 ≈ 0.049.

5 � Permutation tests for k > 2 independent and ordered samples

In the previous discussion, the direction of the alternative hypothesis was left 
unspecified; the null hypothesis of no treatment effect was compared to the agnos-
tic alterative that at least two of the treatments differed from each other in central 
tendency. This alternative will often be appropriate, but sometimes experiments are 
designed so that treatments differ in intensity along a single dimension: for exam-
ple, group size or the incentive to defect from a cooperative outcome in a social 
dilemma. In these cases, a directional alternative hypothesis may be appropriate.

While something like the all-purpose permutation F test is sensitive to the pres-
ence of ordered treatment effects—and thus a valid test even when an ordered treat-
ment effect is expected—more powerful tests may be constructed to test for ordered 
effects. Much like the difference between one-sided and two-sided tests in the two-
treatment context, tests of ordered treatment effects are preferable when theory sug-
gests this hypothesis.

Where the relationship between treatments and hypothesized effects is approxi-
mately linear, correlation and regression methods provide an attractive basis for 
inference. We discuss the use of permutation methods in these models of association 
in Sect. 7. Here, we consider situations where linearity cannot be assumed. Exam-
ples include situations where treatments differ by broad, qualitative distinctions 
(such as when subjects are categorized into bins like risk averse, risk neutral, or risk 
seeking) or where experimenters expect to see ordered treatment effects but cannot 
predict more than the ordinal sequence of the relationship.

Table 6   Wind energy auction earnings

Holt & Sprott (2022): data on file with authors

Treatment Session-average earnings Average

UK (right to choose auctions) − 0.61 − 3.64 0.82 1.39 − 0.51
US (clock auctions) 3.84 1.04 3.17 3.97 3.00
Single-round pay-as-bid auction 0.22 − 0.24 0.42 1.13 0.38
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5.1 � Permuting ranked observations: the Jonckheere–Terpstra test

To ground discussion of ordered alternative hypotheses, consider the classic Smith 
(1964) experiment comparing three variations of the double-auction trading insti-
tution. Based on observations of a prior pilot experiment, Smith conjectured that 
prices would be lower when sellers competed against and undercut each other and 
that prices would be higher when buyers bid against each other to compete for pur-
chases. To test this, Smith ran two sessions for each of three treatments—each ses-
sion lasting 5 rounds—with infra-marginal buyer values and seller costs creating 
identical supply–demand arrays symmetrically configured around a unique equi-
librium price in every round. In a sellers-offer treatment, sellers could make price 
offers during a trading period, whereas buyers could only observe offers and decide 
whether to accept them. The situation was reversed in a buyers-bid treatment: only 
buyers could make bids to purchase, and sellers were constrained to observe and 
decide whether to accept bids. Finally, the double-auction treatment is symmetric: 
buyers could make bids, sellers could make offers, and either side could accept a 
bid or offer. Sessions in groups A and B were run with 20 and 24 traders, respec-
tively. Here, we rely on the theoretical invariance of equilibrium outcomes to group 
size to pool the two session-average prices in each column of Table 7 (yielding 2 
observations per treatment), but we will return to this group-size nuisance variable 
in Sect. 6.2.16 Table 7 shows average prices for the final two trading periods in each 
session. The null hypothesis is that the trading rules have no effect on price levels. 
The alternative hypothesis is that prices will be lowest in the sellers-offer treatment 
and highest in the buyers-bid treatment.

The most commonly used nonparametric test when testing for this type of ordered 
treatment effects is the Jonckheere–Terpstra test (Jonckheere, 1954; Terpstra, 1952. 
When treatment categories are ordered so that the predicted effect increases from 
left to right (as in Table 7), the test statistic J is the sum of all “binary wins” in the 
predicted direction. In other words, J is the total number of larger observations in 
columns to the right of each observation:

where xi,s is the ith observation in the sample data from ordered treatment s, xj,t is the 
jth observation in the sample data from ordered treatment t > s , 1(⋅) is the indicator 
function, and ns , and nt are respective sample sizes. Notice that the first summation, 
indexed by s, is over all columns except the final column, k. The second summation, 
indexed by t, is over all columns to the right of s, up to and including column k. The 
final two summations are over all pairs of observations in columns s and t, which are 
used to obtain a “less-than” count via the indicator function. Here, the average con-
tract price of 208 for the Group B session in the Seller Offers treatment is smaller 

(9)J =

k−1∑
s=1

k∑
t=s+1

ns∑
i=1

nt∑
j=1

1
(
xi,s < xj,t

)

16  The “extra” traders in the 24-person sessions had extra-marginal units to the right of the supply–
demand intersection. Equilibrium price and quantity predictions were thus unaffected by the presence of 
these traders.
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than all 4 numbers in columns to its right, so the first term in the sum for J would be 
a 4. Similarly, the contract price of 195 is smaller than all 4 numbers to its right, so 
the second term in the sum for J is also 4. In the middle column, the contract price 
of 209 is smaller than 2 numbers to its right, so the third term in the sum is 2, but the 
contract price of 213 in the middle column is only smaller than 1 number to its right, 
so the final term in the sum is 1. The sum of these 4 terms yields the test statistic, 
Jobs = 4 + 4 + 2 + 1 = 11.

For large sample sizes, approximate null distributions for J are available. For 
small samples like this, the researcher is left to search for a precomputed null dis-
tribution or to generate one via permutation. By the logic used in Sect.  4.1, the 
null hypothesis of no treatment effect implies that there are n!∕

(
n1! × … × nk!

)
 

equally likely permutations of the observed sample data. The permutation p-value 
for this test is thus computed the same way as the F test described in Eq. (7) but with 
Ji and Jobs substituted in place of Fi and Fobs . Here, the observed value of the test 
statistic is Jobs = 11 and, of the N = 6!∕(2!)3 = 90 possible permutations of the data, 
only 2 yield a value of J as or more extreme than the observed value of 11, so the 
p-value for the Jonckheere–Terpstra test is 2∕90 ≈ 0.022.

The Jonckheere–Terpstra test is an attractive option when sample data are meas-
ured as ordinal values. It is also a test that appears with some regularity in the lit-
erature. Smith (1964) used a Jonckheere–Terpstra test in his analysis of these data.17 
Other recent examples include Gürerk and Selten (2012) and Conrads et al. (2016). 
When sample data are interval as measured, however, the Jonckheere–Terpstra test 
operates like other rank-based tests in discarding sample information. The obvious 
question is whether a different test could be constructed that does not involve this 
loss of information.

5.2 � Permuting measured observations: a directional difference test

How might a magnitude-sensitive version of the Jonckheere–Terpstra test be con-
structed? A simple approach would be to replace the “binary win” count with a sum 
of differences.18 With the treatment vectors of observations still listed left to right 
in increasing order of predicted effect, let the test statistic D be the sum of all dif-
ferences between each observation and all observations in columns to the left in the 
ordered array:

where all terms are defined as above. For the Smith (1964) data, the observed test 
statistic is D = 108 , which is equaled or exceeded by only 2 test statistics in the 90 

(10)D =

k−1∑
s=1

k∑
t=s+1

ns∑
i=1

nt∑
j=1

(
xj,t − xi,s

)

17  Some of the reported tests were based in multiple price observations within a session. Here we stick 
to the more conservative practice of using session-level measurements to ensure that observations are 
independent.
18  An alternative is to construct a permutation test based on the ranks of binary differences (Shan, 
Young, & Kang, 2014).
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possible permutations of the data, for a p-value of 2∕90 ≈ 0.022 . Here, the Jonck-
heere–Terpstra test (based on binary win comparisons) and the Direction Difference 
test [based on calculated directional differences in (10)] yield the same p-values. 
This is a special case, however, and these tests will not generally yield the same 
results when applied to the same data. Rather than belabor this difference, which we 
have already seen in other applications, we note two points.

First, as in other comparisons, the availability of a test that operates on measured 
observations demands an explanation for preferring a rank-based test when sample 
data are interval as measured. Unless a precomputed null distribution is available, the 
computational cost of calculating exact p-values for the Jonckheere–Terpstra test is the 
same as for the Directional Difference test. We conjecture that the Jonckheere–Terpstra 
test could have superior properties when the samples contain outliers, though we are 
aware of no Monte Carlo analysis or proof to this effect. Absent special considerations, 
the Directional Difference test provides a more natural and intuitive basis for statistical 
inference.

Second, there is potentially great research value in designing experiments with the 
type of treatment variation illustrated in this example. Suppose that, instead of col-
lecting two data points from each of three treatments, the researchers had followed 
the more conservative approach of collecting three data points for each of two treat-
ments. The strongest possible rejection by a permutation test in the two-treatment con-
text would be at a p-value of 1∕20 = 0.05 for a one-tailed test, assuming no reversals 
between the treatments. In Table 7, with the same number of data points spread across 
three treatments, the p-value is smaller even in the presence of a tied “reversal” for the 
213 price in each of the double-auction and buyers-bid treatments.

Several generalizations of the Jonckheere–Terpstra test have been used for physical 
systems in which too much of a treatment may have a negative effect. The “umbrella 
test” is for the case where the alternative hypothesis involves a “hill-shaped” data pat-
tern as treatment intensity is increased (Mack & Wolfe, 1981). This test essentially 
combines two directional tests: one for data to the left of the mode, and one for data 
to the right. Analogous test statistics could be devised for the directional difference 
test. This illustrates an intriguing property of permutation testing. As Pearson (1937) 
observed at the dawn of this methodology, the permutation method’s decoupling of 
computation of the null distribution from choice of test statistic frees researchers to 
select whatever test statistic is most sensitive to a hypothesized relationship.

Table 7   Session-average 
contract price by trading 
condition

Smith (1964): selected data from Table 3

Group Sellers offer Double auction Buyers bid

Group A (20 traders) 208 213 217
Group B (24 traders) 195 209 213
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6 � Stratification and permutation tests for k > 2 dependent samples

Just like the independent-sample permutation procedures, matched-sample proce-
dures generalize in an intuitive way to higher order settings with k treatments per 
observational unit. In classical statistics texts, the study of treatment effects when 
the same subjects are exposed to multiple treatments in sequence is presented under 
the heading of two-way analysis of variance. In the permutation context, we find it 
easier to conceptualize the data generating process in terms of stratification. The fol-
lowing illustrates how stratified permutation approaches address common data chal-
lenges, first in a two-treatment context with discrete nuisance variables and then in 
the general case of multiple sample comparisons.

6.1 � Stratified permutation tests for k = 2 treatments with nuisance variables

A common problem in experimental data analysis is dealing with procedural differ-
ences in data groupings that are unrelated to the difference of interest. These proce-
dural groupings are essentially nuisance variables: secondary treatments that ideally 
would be held constant when evaluating the effects of the primary treatments. For 
example, suppose an experiment involves two treatments, each applied to subjects 
from two different pools. If the experimenter has reason to believe that these subject 
pools are interchangeable, then observations can be pooled by treatment and a sim-
ple two-sample test can be employed. If subject pools cannot be assumed to be inter-
changeable, however, then the need to perform separate tests for each subject pool 
can present both narrative and statistical challenges (a point we illustrate below).

Stratified permutation testing may be a more attractive option. To explain what 
we mean, let the primary treatments be indexed by j, and let the secondary group-
ings be indexed by g. Thus, xijg denotes experimental observation i taken when treat-
ment j is applied to subjects from group g. The idea behind stratified permutation 
testing is to construct the null sampling distribution by permuting the primary treat-
ment labels (j) within groups but not between groups. This procedure captures the 
null hypothesis—that observed measurements are equally likely to be seen under 
any treatment—without imposing the additional assumption that observed measure-
ments are equally likely to be seen under any secondary grouping.

As a concrete example, consider the two-treatment asset market experiment 
reported by Holt et  al. (2017). One treatment, applied to 14 sessions, involved a 
25-period trading sequence; the other treatment, applied to 10 sessions, involved a 
15-period trading sequence. These markets were blocked on gender: half of the ses-
sions in each treatment were female-only and half were male-only. In all treatments, 
the fundamental (present) value of asset shares was constant, at $28, for all trading 
periods. Price bubbles, with peaks well above $28, were observed in all sessions. 
Table 8 shows peak asset prices for female-only sessions (top row) and male-only 
sessions (bottom row). Shorter sessions afforded subjects less opportunity to accu-
mulate large cash balances, resulting in smaller cash-asset-value ratios. This differ-
ence in cash-asset values motivated a question whether the peak asset prices were 
also lower in the shorter markets. For purposes of testing the null hypothesis of no 
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trading-length effect, trading-length is the control variable of primary interest and 
gender groupings are a nuisance variable.19

In order to evaluate the effect of the number market periods, while controlling 
for gender, a stratified permutation test permutes peak price observations across 
session-length treatments (the columns of Table  8), but not across gender-groups 
(the rows of Table 8). A one-sided permutation test of the null of no treatment effect 
against the alternative of higher price peaks in longer markets can be based on the 
observed difference in the bottom row of the table, Tobs = 79.5 − 52.7 = 26.8. The 
null distribution of this test statistic is constructed by computing the test statistic 
over each of the constrained set of permutations in which observations are moved 
between market-length treatments but not across gender labels. There are 

(
12

5

)
= 792 

ways that treatment labels could be assigned to the numbers in the top row. For each 
of these top row permutations, there are another 792 ways that treatment labels could 
be reassigned in the bottom row. Thus, there are 627,264 total permutations to con-
sider. Of these, 6259 involve a treatment effect greater than or equal to the observed 
value, yielding a one-sided p-value of about 0.01. The exact same approach could 
be used with the Mann–Whitney test, in which case 11,577 permutations are greater 
than or equal to the observed test statistic, for a p-value of about 0.018.

How does this approach compare to conducting two separate tests, one for each 
gender group? Conducting separate Pitman tests for each gender group yields 
one-sided p-values of 0.12 for the male-only group, and 0.028 for the female-only 
group. This example illustrates the previously discussed problems with the multiple-
comparison approach. Can the experimenter conclude, in this multiple-comparison 
exercise, that the null hypothesis of no treatment effect is rejected? Moreover, if the 
experimenter really was seeking to test every combination of treatment effect and 
gender grouping simultaneously, then the testing procedure should be constructed in 
a way that controls the family-wise error rate of these tests (the probability of falsely 
rejecting at least one null hypothesis among the two tests). While a detailed treat-
ment of multiple-comparison adjustments is beyond the scope of this discussion, it 
is helpful to note that Bonferroni-adjusted p-values are 0.24 for the male-only group 
and 0.056 for the female-only group, substantially greater than the 0.01 value of the 
stratified test.20

Stratified permutation testing provides expositional simplicity and statistical 
power when nuisance variables are discrete. It does so by tailoring the permutation 
strategy to the underlying randomization of the experiment’s design. It bears empha-
sis that the null hypothesis for the stratified permutation test—that observations are 
drawn from the same distribution within strata—does not restrict observations to 
share a common distribution across strata. Distributions should be the same within 

19  Holt, Porzio, and Song (2017) employed a Pitman test, stratified by gender, to assess this treatment 
effect.
20  Bonferroni corrections are one of several possible strategies for addressing what is often called the 
“multiple comparisons problem.” Miller (1997: p. 75) provides a gentle introduction to the subject. List, 
Shaikh, and Xu (2019) provide a more detailed treatment in the experimental context. Example applica-
tions in experimental work include Holt et al. (2012) and Smerdon, Offerman, and Gneezy (2020).
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strata, though, apart from potential differences in location. Treatment effects should 
also be the same across strata; otherwise, separate tests would be appropriate.21

Before moving on, note that this stratification process generalizes easily to situa-
tions with multiple nuisance variables. A simple illustration is provided by Comeig 
et al. (2022), who report an experiment designed to study risk appetite as a function 
of framing (“downside risk” vs “upside risk”), payoff scale, and subject gender. The 
experiment involved 256 subjects, half male and half female, each tasked with mak-
ing a choice between a risky lottery and a safe lottery.22 Half of the subjects were 
exposed to treatments in which the risky option was presented as downside risk (a 
small probability of a low payoff); the other half were presented the risky option as 
upside risk (a small probability of a large payoff). If small probabilities are “over-
weighted,” as prospect theory predicts, then subjects would tend to shy away from 
the downside risk of a low payoff and be attracted to the upside risk of a low prob-
ability of a high payoff. In every pairwise choice, both experimental lotteries were 
constructed so that the expected payoff from the risky lottery exceeded the payoff 
from the safe lottery by the same fixed amount. The standard deviations of the two 
lotteries were also the same. Finally, these treatments were blocked on payoff scale, 
with half of subjects presented payoffs five times larger than the other half. Of the 
32 male and 32 female subjects exposed to each combination of risk profile and pay-
off scale, the number of subjects choosing the risky option is presented in Table 9, 
below.

While these data may be used to explore various hypotheses, perhaps the most 
interesting prediction is that subjects should be more willing to take upside risks 
than downside risks, even when the expected payoff and standard deviation of the 
safe and risky options are the same. In testing this hypothesis, both gender and pay-
off scale are nuisance variables.23

A stratified permutation test of the effect of risk type on lottery choice would 
involve permuting risk-type labels across each of the 256 lottery choices, sub-
ject to the constraint that labels are not reassigned across any of the strata in the 

Table 8   Peak prices by market with gender sorting

Holt et al. (2017): selected data from Tables 1 and 5

Market pool 25-period markets 15-period markets Mean

Female only 87  95  61  177.5  75.5  37  152 66  36  58  64  42 79.3
Male only 55  48  68 85 65 56.5  50 50  70  45  43  53 57.4
Mean 79.5 52.7 68.3

23  Comeig et  al. (2022) employed a Pitman permutation test, stratified by gender and payoff scale to 
assess this treatment effect.

22  The paper also contains other data for 10 choice pairs, with one selected at random ex post for pay-
ment. Here, we restrict attention to the single-choice data, i.e. a single pair of upside or downside risk 
choices that was used for the treatments in which each subject only made a single decision.

21  Put another way, the maintained assumption is that the shift model applies within each strata and that 
all shifts are of the same magnitude across strata.
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different rows of the table. With two crossed nuisance variables, this equates to 
preserving four separate strata during the permutation process: male/1×, male/5×, 
female/1×, and female/5×. Otherwise, the procedure is the same as with one nui-
sance parameter.

Given the large number of possible permutations for a sample of this size, an 
exact permutation test would be computationally costly. An approximate permuta-
tion test can be conducted by randomly sampling many possible permutations, sub-
ject to stratification constraints, and comparing the test statistic values of these ran-
dom draws against the observed value. Here, pooling across gender and payoff scale, 
49 more subjects selected the risky lottery in the case of upside risk than in the case 
of downside risk. Over 999,999 random permutations of risk-type labels within the 
respective strata, none yielded a pooled difference between the upside and downside 
risk treatments as extreme as the observed difference, implying a p-value of less 
than 0.001. Similar tests, omitted here, could be used to evaluate the effects of pay-
off scale or subject gender.

One of the most attractive properties of this stratified permutation approach is 
the intuitive nature of randomizing across only the dimension of the data at focus. 
Indeed, the stratification tests we consider in this section are really just generaliza-
tions of the matched-pairs permutation strategy. In the matched-pairs context, each 
pair of observations is treated as its own stratum. In the more general stratified per-
mutation testing  context, multiple observations may fall within each stratum, and 
different strata may have different numbers of observations. The intuition behind 
stratified permutation also generalizes to other influences that might be accounted 
for in the permutation process (Ehlert et al., 2020; Heß, 2017). As a general strategy 
for conducting statistical inference in the presence of nuisance variables, stratified 
permutation testing strikes an attractive balance of analytical flexibility and ease of 
presentation.

6.2 � Stratified permutation tests for k > 2 treatments with nuisance variables

The idea of stratified permutation testing generalizes in an intuitive way to higher 
order comparisons with k > 2 treatments. As a concrete example, return to the Smith 
(1964) experiment, selected data from which is reproduced in Table 7. When using 
the Jonckheere–Terpstra test to look for an ordered treatment effect in Sect. 5.1, we 
relied on economic theory to justify pooling results across sessions with different 
group sizes: 20 traders in Group A sessions versus 24 traders in Group B. Instead 
of combining the data for the two rows of each treatment column as was done in the 
prior section, an alternative would be to treat the presence of extra-marginal units as 
a nuisance variable.

In other words, the rows of Table 7 can be seen as strata with a one average price 
observation for each of three treatments. In general, a stratified Jonckheere–Terpstra 
test would involve permuting observations across treatments but not across strata. 
Here, since there are no ties or reversals for treatment comparisons within a row of 
the table, the p-value can be computed analytically. There are 3! ways to permute 
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the observations in each row, so there are (3!)2 = 36 possible permutations of the 
sample data that do not move observations across the separate strata. Since the most 
extreme outcome in the conjectured direction is what is observed, the p-value of a 
stratified Jonckheere–Terpstra test is 1∕36 ≈ 0.028 , only a little larger than the 0.022 
p-value obtained when ignoring the nuisance variable. In contrast, running separate 
tests for each row would limit the researcher to minimum p-values of 1∕3 ≈ 0.333 
for each test.

The similarity of the previous example to the analysis of matched-pairs data is 
no coincidence. The matched-pair design (in which each subject is exposed to two 
treatment conditions) is a special case of a more general design in which a subject, 
or group of subjects, is exposed to k > 2 treatment conditions. In the language of 
classical statistics, the resulting data invite two-way analysis of variance: the experi-
menter may be primarily interested in the k treatment effects, but analysis also needs 
to account for dependence relationships among the multiple measurements taken 
from each subject or group.

A clean example of this k-treatment data structure is provided by Ma et al. (2022), 
who report a laboratory experiment designed to measure valuation of paintings with 
6 different color configurations. In a laboratory setting, the authors showed 465 
unique subjects sets of 6 constructed Rothko-like paintings, each with a different 
primary color (blue, red, green, yellow, etc.). Subjects were given an opportunity to 
purchase each painting under a bidding process that incentivized private-value reve-
lation.24 Results indicated substantial differences in average valuation by color, with 
bids for red and blue paintings exceeding the average bid by about 17–19 percent.

With each subject viewing and bidding on multiple paintings, subject heteroge-
neity could be pronounced in this design. A subject who particularly liked art, or 
who happened to need a painting for decorative purposes, might bid higher on all 
6 colors than another subject. If this experiment had involved only a few subjects, 
then a stratified permutation test for differences in valuation by color could be based 
upon the two-way ANOVA F statistic. For the null hypothesis of no treatment effect 
between any of the 6 colors, the observed F statistic could be compared to a null 
distribution generated by permuting color labels within each subject’s bids (control-
ling heterogeneity by constraining permutations never to cross subject-strata in the 
sample data). With a sample consisting of the price bids of 465 subjects, however, 
standard parametric tests are a better option.

Table 9   Risky option choice 
proportions by treatment

Comeig et al. (2022): Table 2

Gender Payoff scale Downside risk (%) Upside risk (%)

Male 1× 25/32 = 78 30/32 = 94
Male 5× 17/32 = 53 28/32 = 88
Female 1× 19/32 = 59 29/32 = 91
Female 5× 4/32 = 13 27/32 = 84

24  Bids were solicited using the Becker, DeGroot, Marschak (1964) method.
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Interestingly, a rank-based analogue of the permutation ANOVA test just 
described was long ago proposed by economist Milton Friedman (1937, 1939, 
1940), who later won a Nobel Prize in Economics for other works. Friedman argued 
that normality is “likely to be the exception rather than the rule” when studying 
socio-economic data and devised a rank-based test because computations using 
ranks were “less arduous… requiring but a fraction of the time” when working 
with “large scale collections of social and economic data” in the years leading up to 
World War II. (Friedman, 1937: p. 675). Times have changed and, like other rank-
based tests, the advantages of the Friedman test are now limited. Importantly, the 
difficulty of computing exact p-values under the Friedman test is the same as the dif-
ficulty of computing exact p-values for analogous ANOVA models based on meas-
ured observations.

7 � Permutation tests for linear relationships

A final class of statistical tests arises in situations where the experimenter has rea-
son to expect a linear or linearizable relationship between the treatments and out-
comes of interest. Sometimes this involves statistical inference around a measure 
of correlation. Sometimes it involves the parameters of multiple regression models. 
In both cases, permutation methods can provide a basis for small-sample statistical 
inference.

7.1 � Tests of correlation coefficients

Correlation studies arise with some frequency in experimental settings. The data 
in a correlation study consist of n pairs of observations 

{(
x1, y1

)
,… ,

(
xn, yn

)}
 . As 

explained in every basic course on applied statistics, the Pearson correlation coef-
ficient, r , is a function of the products of deviations of the sample observations from 
their respective sample means:

The null hypothesis of no correlation corresponds to a situation in which there is no 
monotonic relationship between the x and y values.

In conventional hypothesis testing, the observed value of the correlation coeffi-
cient, robs , would be compared to the null distribution of this statistic—something 
that could be inferred from assumptions about the distributions of the x and y values 
under the null hypothesis, or approximated via reference to a limit theorem for large 
enough sample sizes. As in the previously discussed locational tests, however, these 
approaches are difficult to defend for the small samples typical of many experiments.

Fortunately, permutation tests can be constructed around correlation coefficients. 
If there were no association between the variables, as the null hypothesis insists, 

(11)r =

∑n

i=1

�
xi − x

��
yi − y

�
�∑n

i=1

�
xi − x

�2�∑n

i=1

�
yi − y

�2
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then observed covariation would reflect exchangeable error in the experimental 
design. Because each observed value of the measured outcome would be equally 
likely to have been observed under every value of the treatment variable, the null 
distribution of the correlation test-statistic can be constructed by computing the 
value of r under each of the n! ways that one of the two variables could be reordered, 
holding the order of the other variable constant. For a two-sided test, the permuta-
tion p-value would be computed as follows:

To illustrate, consider the traveler’s dilemma experiment reported by Capra 
et al. (1999). Subjects were randomly paired and tasked with making simultaneous 
“claims,” subject to the following rules. Each subject’s claim had to fall within the 
range from 80 to 200. After both claims were made, each subject would earn the 
smaller of the two claims, minus a penalty of R if the subject’s claim was the larger 
claim and plus a reward of R if the subject’s claim was the smaller claim. No pen-
alty or reward was applied if the two claims were equal. Since each subject has a 
unilateral incentive to undercut anything greater than the minimum in this game, the 
unique Nash equilibrium is for both players to make the minimum claim regardless 
of the size of the incentive parameter. This prediction is counterintuitive. Common 
sense suggests that claims should fall with increases in the size of the penalty (for 
being high) and reward (for being low).

The experiment was conducted with session groups of 9–12 subjects, randomly 
matched into pairs to play 10 rounds of the game with one incentive parameter in 
Part A, followed by additional rounds with a different incentive parameter in Part 
B. There was one session for each pair of A and B treatments, as shown in Table 10. 
Here, we focus on the Part A data; we will turn to Part B in Sect. 7.2.

The most salient feature of the Part A data in the top part of the table is the 
apparent sensitivity of claims to the size of the incentive parameter. Indeed, the 
Part A data appear more consistent with the intuitive prediction that average claims 
would vary inversely with the incentive parameter than with the Nash prediction 
of no effect. In fact, the observed value of the correlation between penalties and 
average claims in Part A is robs = −0.873 . To test whether that observation is sta-
tistically significant, the null distribution of the correlation coefficient can be con-
structed by computing the correlation coefficient under every possible permutation 
of the observed claims data. Of the 6! = 720 possible permutations to be considered 
in this way, only 3 result in a correlation coefficient equal to or smaller than the 
observed value. Thus, a one-sided p-value for a permutation test of negative correla-
tion against the null is 3∕720 ≈ 0.004, a significant rejection of the Nash hypothesis, 
despite the limited sample size.25

Before moving on, note that nothing about the permutation strategy just 
described depends on use of the Pearson correlation coefficient as the test statistic. 

(12)

permutation test of correlation, two-sided p-value =

∑n!

i=1
1
���ri�� ≥ ��robs��

�
n!

25  Capra et al. (1999) report the p-value of an improvised permutation test based on counts of possible 
reversals between treatments with adjacent incentive parameters.
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The Pearson statistic made sense for the theoretically continuous data under inves-
tigation, but other experimental contexts could motivate the use of other statistics. 
In an “bomb” risk aversion experiment (Crosetto & Filippin, 2013), for example, a 
subject is shown 12 boxes and allowed to check as many boxes as desired, under-
standing that each box checked earns the subject $1 unless and until a randomly 
hidden bomb is encountered—in which case nothing is earned. This setup can be 
used to elicit risk aversion, but the mapping from number-of-boxes-checked to 
some measure of risk aversion depends on the measure of risk aversion used (e.g., 
constant relative risk aversion) and is nonlinear in any event. In this application, 
it might make sense to rank subjects by the number of boxes they choose to check 
and by some other proxy for risk aversion, such as amount saved for retirement. In 
this ordinal context, a rank-based measure of association—such as Kendall’s � or 
Spearman’s � statistic—would be a better correlation concept. The same approach 
described above could be used to arrive at a permutation p-value in this setting. 
The only difference would be the measure of association used as the test statistic.

7.2 � Tests of linear regression models

Moving beyond correlation analysis of a bivariate pattern, permutation methods can 
also be used to conduct statistical inference for linear models with more independ-
ent variables. There are, however, significant limitations to permutation inference in 
this setting. Obvious permutation strategies are forthcoming only for a few special 
regression models. In most cases, the experimenter will face a choice of different 
permutation strategies, and effort may be required to identify the appropriate strat-
egy for the application. Standard parametric tests do not exhibit these difficulties 
and, for moderate sample sizes, may be robust enough to deviations from parametric 
assumptions to support credible inference. For small sample sizes, however, permu-
tation tests will still constitute a more reliable basis for inference.

Starting with one of the lucky special cases for permutation testing, consider the 
following bivariate data generating process:

For � a mean-zero error term unrelated to the value of the regressor z . Suppose inter-
est is in testing the null hypothesis � = 0. Under the null hypothesis, all variation in 
the elements of y is attributable to random error, y0 = � + � , so every element of the 
y vector is equally likely to have been paired with every element of the z vector. This 
observation suggests a simple permutation strategy: compare the observed t statistic 
for the least squares estimate of � against the set of t statistics calculated under all 
possible permutations of the order of elements in the y vector while holding fixed 
the order of elements in the z vector.26 This should look familiar. It is the permuta-
tion strategy for correlation coefficients described in Sect. 7.1.

(13)y = � + �z + �

26  In the one-regressor context, the value of the parameter estimate is also a suitable test statistic (instead 
of the t statistic). This does not hold true for more complicated models.
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As a concrete illustration, return to the Capra et  al. (1999) traveler’s dilemma 
experiment, with data reproduced in Table 10. First consider a simple linear regres-
sion of average claim ( y ) on penalty term ( z ) using data from Part A of the experi-
ment. Fitting the linear model y = � + �z + � via OLS yields the following param-
eter estimates and standard errors:

The t statistic for this estimate of � is tobs = −1.471∕0.411 = −3.581 . Under the 
null hypothesis that � = 0 (the size of the incentive parameter has no effect on aver-
age claims), all variation in the y vector is attributable to exchangeable error. This 
means that the null distribution of the t statistic can be computed by permuting the 
order of the y vector and recalculating the value of the t statistic at each permutation. 
With 6 observations, there are 6! = 720 ways to permutate the order of elements in 
the y vector under the null hypothesis. Of these 720 permutations, 12 yield t statistic 
values at least as extreme as tobs , yielding a two-sided p-value of 12∕720 ≈ 0.017 for 
the effect of the incentive parameter on average claims in Part A.

Next consider the same model applied to Part B. Fitting the same model via OLS 
when using the data from Part B of the experiment yields the following parameter 
estimates and standard errors:

The t statistic for this estimate of � is tobs = −1.642 and—by the same permuta-
tion process as above—a two-sided p-value for the effect of the incentive parameter 
on average claims in Part B is found to be 150∕720 ≈ 0.208.

Visual examination of the Part A and Part B outcomes in each treatment column 
of Table 10 suggests the presence of order effects—that is, experiences in Part A 
seem like they could be introducing confounding variation in the Part B data. To 
explore this possibility, consider the more complicated linear model that allows for 
average claims in Part B of the experiment ( y ) to depend on both the Part B incen-
tive parameter ( z ) and the nuisance influence captured by the average claim in Part 

𝛼̂ = 182.917 𝛿 = −1.4711

(16.814) (0.411)

𝛼̂ = 159.434 𝛿 = −0.977

(24.345) (0.595)

Table 10   Session-average 
claims for a traveler’s dilemma 
game

Capra et al. (1999): average claims over final 5 rounds of treatment

Treatments and results S1 S2 S3 S4 S5 S6

Part A
Incentive term (R) 80 10 50 20 25 5
Average claim 82 186 92 116 146 196
Part B
Incentive term (R) 10 80 20 50 5 25
Average claim 163 99 86 82 171 170

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:33:00, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


807

1 3

Permutation tests for experimental data﻿	

A ( x ). Fitting the multiple regression model y = � + �x + �z + � via OLS is trivial. 
Conducting permutation inference on this model is not.

To see why multiple regression with nuisance variables presents a harder prob-
lem, consider the general case of a data generating process with the following form:

For � an error term as before, X a matrix of nuisance variables which may include 
a constant term, and Z a matrix of regressors of interest. Under the null hypoth-
esis that � = 0 , each element of the response vector is now more than random error: 
y0 = X� + � . This connection makes the simple permutation strategy of reorder-
ing y generally indefensible. Variation in the y vector is partly attributable to the 
influence of the nuisance variables in X. One might initially think that this could be 
solved by either subtracting X� from both sides of the equation or by permuting the 
rows of the X matrix in lockstep with the rows of the y vector but neither of these 
strategies is attractive. The first requires knowledge of � , which is unavailable in 
most interesting cases; the second fails to preserve collinearity between X and Z.

In fact, while many permutation strategies have been suggested for the multiple 
regression context, there remains no generally accepted permutation approach for 
this problem. A full survey of this literature is beyond the scope of discussion, but 
helpful commentaries are provided by Kennedy (1995), Kennedy and Cade (1996), 
Manly (2007: ch. 8), Anderson and Robinson (2001), and Winkler et al. (2014). To 
illustrate one intuitive option, consider the following permutation strategy due to 
Freedman and Lane (1983):

1.	 Fit the full model by OLS, y = X� + Z� + � , and compute the observed F statistic 
for testing the null hypothesis that � = 0.

2.	 Fit the reduced model by OLS, y = X� + � , and use this model to compute a 
reduced-model prediction vector ŷ = X𝜷  and a reduced-model residual vector 
r = y − ŷ.27

3.	 Permute the order of the reduced-model residual vector r and add each permuta-
tion of the residual vector to the reduced-model prediction vector ŷ to generate 
a new permutation of the y vector. For the observed data, this reconstructs the 
observed y vector. For all other permutations, it constructs a new yp vector in 
which only the variation not explained by the nuisance variables is being per-
muted.

4.	 For each such permutation, fit the full model yp = X� + Z� + � and compute 
the F statistic for testing the null hypothesis that � = 0 . For testing individual 
parameters, t statistics could be used instead.

5.	 Compare the observed value of the F statistic (or t statistic) from step 1 to the 
permutation distribution from step 4 to compute a p-value for this test.

(14)y = X� + Z� + �

27  We abuse notation for simplicity in this section. The unobserved error vector (� ) and parameter values 
will differ between one specification of the model and the next.
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This procedure can be made concrete by applying it to the multiple regression 
model described above for Part B of the Capra et al. (1999) data. Specifically, con-
sider regressing average claim in Part B ( y ) on both average claim in Part A ( x ) and 
incentive term in Part B ( z ). Fitting the model y = � + �x + �z + � via OLS yields 
the following parameter estimates and standard errors:

For purposes of testing the joint null hypothesis that � = � = 0 , the simple 
approach used in univariate regression could be repeated using the F statistic as a 
test statistic. For testing the less restrictive null that � = 0, a more involved permuta-
tion scheme is needed.

Following the Freedman and Lane (1983) procedure outlined above, we can start 
by noting the observed t statistic value of tobs = −1.425∕0.514 = −2.773 for the 
estimate of � . Fitting the reduced model y = � + �x + � via OLS then yields the 
two components needed to construct approximate permutations of the y vector: (1) 
a vector of predicted values from this reduced regression and (2) a vector of residu-
als from the reduced regression. To construct the null distribution, we permute the 
order of elements in the residual vector, each time adding it to the predicted value 
vector to form a new permutation of the y vector, and then fit that new y vector to 
the full model, recording the t statistic associated with the estimated value of � . Of 
the 720 permutations of the t statistic computed in this manner, 35 yield t statistics 
with equal or greater absolute value than tobs , resulting in a two-sided test p-value of 
about 0.049 . This result is consistent with the guess that order effects could be mud-
dying relationships in the Part B data.

8 � Conclusion

Two themes have emerged throughout this survey of permutation methods. The first 
is that individual permutation tests are best understood not as idiosyncratic elements 
of a loosely related set of tests but as special cases of a general approach to conduct-
ing statistical inference when working with experimental data. The second theme is 
that permutation tests that operate on measured data will generally provide a more 
intuitive and defensible basis for inference than those based on rank-transformed 
data, at least where observations are measured as interval data. Both themes are 
reflected in the structure of Table 1.

The rows of Table  1 illustrate the common approach that underlies all permu-
tation tests. Starting from the experimental design and the null hypothesis, the 
researcher first locates the appropriate permutation strategy, then selects a test statis-
tic with power to detect the alternative hypothesis of interest. Statistical inference is 
conducted by comparing the observed value of the test statistic against the empirical 
null distribution of that test statistic under the permutation strategy. Every permuta-
tion test is an application of this same process.

𝛼̂ = 93.300 𝛽 = 0.589 𝛿 = −1.425

(39.033) (0.305) (0.514)
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The columns of Table 1 illustrate the opportunity cost of what we consider over-
reliance on familiar rank-based tests. Every popular rank-based test is simply the 
application of a more general test to rank-transformed values of the measured data. 
When applied to interval data, the rank transformation discards potentially impor-
tant sample information. While this may have consequences for statistical power in 
some applications, we rest our critique on the more basic point that the rank trans-
formation is unintuitive and unnecessary in most cases. Rank-based permutation 
tests may be justified by properties of the experimental design or the data that has 
been collected but should not be the unquestioned default choice that they are today.

Table  1 also illustrates how the appropriate choice of permutation approach 
depends on the treatment structure of the experiment. The flip side of this is the 
importance of designing an experiment to shine a bright light on the research ques-
tions of interest. Experimentalists should consider going beyond the standard treat-
ment-and-control framework. An attractive alternative is the use of intensity-based 
treatments to generate k ordered samples, which can be evaluated with the Direc-
tional Difference Test listed in the fourth row of Table 1. This approach can yield 
large gains in sensitivity to treatment effects even with small sample sizes.

In addition, the stratified permutation tests shown in the fifth row of Table 1 offer 
two important advantages. The first is an opportunity to eschew the complexity and 
power-loss of multiple-comparison corrections in some settings. The second is the 
ability to conduct coherent analysis of rich experiment designs by focusing on treat-
ment variations, one at a time, without losing track of nuisance variable differences 
between strata. Since the presence of nuisance variables (from procedural varia-
tions or secondary treatments) is more the rule than the exception for experiments in 
the social sciences, the ability of permutation tests to accommodate stratification is 
likely to be one of the most useful features of this methodology.

As our discussion illustrates, permutation testing moves fluidly between experimen-
tal design and data analysis. Experimenters can select and customize permutation tests 
to fit specific design choices and research goals, just as they can design experiments with 
expected permutation tests in mind. This type of bespoke hypothesis testing requires more 
thought—and often more application-by-application scripting—than conventional testing 
based on familiar, prepackaged routines. We think the game is worth the candle. Our hope 
is that this discussion inspires a richer use of the range of permutation tests available to 
experimental researchers, and a stronger and more efficient use of the data we collect.
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