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This paper is concerned with the boundary layer on the leading edge of an aerofoil
with the aerofoil surface sliding parallel to itself in the upstream direction. The flow
analysis is conducted in the framework of the classical Prandtl formulation with the
pressure distribution given by the solution for the outer inviscid flow. Since a reverse
flow region is always present near the wall, a numerical method, where the derivatives
were approximated by the windward finite differences, was used to solve the boundary-
layer equations. We were interested in the flow behaviour on the upper surface of the
aerofoil, but to calculate the boundary-layer equations, we had to extend the computational
domain from the upper surface of the aerofoil to the lower surface. The calculations were
performed for a range of angles of attack, and it is found that there exists a critical
value of the angle of attack for which the Moore–Rott–Sears singularity forms in the
flow. This is accompanied by an abrupt thickening of the boundary layer at the singular
point and the formation of a recirculation region with closed streamlines behind this
point. We further found that the flow immediately behind the singular point and in the
recirculation region could be treated as inviscid, which allowed us to use the Prandtl–
Batchelor theorem for theoretical modelling of the flow. A similar formulation was used
earlier by Bezrodnykh et al. (Comput. Maths Math. Phys. vol. 63, 2023, pp. 2359–2371).
These authors considered the boundary-layer flow on a flat plate with the pressure gradient
created by a dipole situated some distance from the plate. They also found that there exists
a critical value of the dipole strength for which a singularity forms in the boundary layer.
However, their interpretation of the flow behaviour differs significantly from what we
observe in our study.

Key words: high-speed flow, boundary layer separation

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1011 A49-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-8853-8160
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.377&domain=pdf
https://doi.org/10.1017/jfm.2025.377


A.I. Ruban and M.A. Kravtsova

S

y

u

Figure 1. Boundary-layer separation in a steady flow.

1. Introduction
The study presented in this paper is performed in the framework of the asymptotic theory
of separated flows. This theory has been reviewed numerous times by different authors.
For a short review relevant to the present study, the reader is referred to the Introduction
in the paper by Ruban et al. (2020). Detailed description of the theory may be found in
monographs by Sychev et al. (1998) and Neiland et al. (2007).

The notion of the boundary layer was first introduced by Prandtl (1904) who realised
that in a high-Reynolds-number fluid flow past a solid body, a thin viscous layer always
forms on the body surface. He called it the boundary layer. According to Prandtl, this is
due to a specific behaviour of the flow in the boundary layer where separation takes place.
Assuming the flow is steady, Prandtl described the separation process as follows.

Since the flow in the boundary layer has to satisfy the no-slip condition on the body
surface, the fluid velocity decreases from the value dictated by the inviscid theory at the
outer edge of the boundary layer to zero on the body surface. The slow-moving fluid near
the body surface is very sensitive to the pressure variations. On the front part of the body,
the pressure normally decreases in the downstream direction which makes the pressure
gradient negative. It is referred to as the favourable pressure gradient because it acts to
accelerate the flow keeping the boundary layer attached to the body surface. However,
further downstream, the pressure starts to rise, and the boundary layer finds itself under
the action of a positive (adverse) pressure gradient. In these conditions, the boundary layer
tends to separate from the body surface. To explain the reason for the separation, one can
think of the pressure rise as a potential energy barier. The kinetic energy of fluid particles
near the outer edge of the boundary layer is large enough to overcome this barier, but at
the bottom of the boundary layer, the fluid velocity is small. The rising pressure causes
the fluid particles near the wall to stop and then turn back to form a reverse flow region
characteristic of separated flows, as shown in figure 1.

The separation point S may be identified as a point on the body contour where the skin
friction becomes zero:

τw = μ
∂u

∂y

∣∣∣∣
y=0

= 0. (1.1)

Here, we denote the longitudinal velocity by u, the distance from the body surface by y and
μ is the viscosity coefficient. Indeed, with τw being positive upstream of the separation
point, the longitudinal velocity u stays positive, which means that the fluid particles in the
boundary layer move downstream along the wall and the flow appears to be attached to
the body surface. However, once the skin friction turns negative, a layer of reversed flow
(u < 0) forms near the wall, giving rise to a recirculation region.

The situation with unsteady flow separation is more complex. The fact is that the
unsteady separation may assume different forms depending on the flow considered.
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Figure 2. Boundary-layer separation on downstream moving wall.

A classical example is the flow past a circular cylinder with the Kármán vortex street
in its wake. In this flow, each individual vortex forms near the cylinder surface through
accumulation of vorticity in the boundary layer. Once the circulation around the vortex
reaches a critical value, it is shed downstream and another one starts to form in its
place. During this cycle, the separation point moves up and down the cylinder surface.
An important observation concerning this type of flows was made by Sears (1956) and
Moore (1958). They noticed that the flow near the separation may be treated as quasi-
steady, namely, it is described by the steady equations of motion if considered in the
coordinate frame moving with the separation point. Of course, the fact that the flow near
the separation point is governed by the steady equations does not mean that the theory of
steady separation becomes applicable. Indeed, in the frame moving with the separation
point, the body surface no longer remains motionless. Figure 2 shows what happens when
the separation point moves upstream along the cylinder surface and, correspondingly, for
an ‘observer’ in the moving frame, the cylinder surface moves downstream. Due to the
action of viscous forces, the fluid particles adjacent to the wall will be involved in the
downstream motion, which precludes the recirculation region to start from a point on the
body surface, as it happens in the case of steady flow separation. Instead, the separation
now takes place from a point that lies in the middle of the boundary layer, as was first
suggested by Rott (1956), Sears (1956) and Moore (1958). To explain how it happens, let us
consider a sequence of cross-sections of the boundary layer corresponding to progressively
larger values of the longitudinal coordinate x . In each cross-section, the fluid velocity u
is a function of the normal coordinate y. If the boundary layer is exposed to an adverse
pressure gradient, then the fluid will experience a deceleration. As a result, the velocity
profile will have a minimum that lies some distance ymin(x) from the wall. If the pressure
gradient is strong enough, then the minimal velocity will continue to decrease with x ,
leading to the separation point (xs, ymin(xs)), where u is zero. At this point, the so-called
Moore–Rott–Sears condition holds.

u = ∂u

∂y
= 0 (1.2)

Behind this point, two recirculation regions form in the boundary layer.
In both situations depicted in figures 1 and 2, the point of separation may be identified

with the onset of the flow reversal in the boundary layer. The case of an upstream moving
wall is more difficult, as due to the no-slip requirement, the fluid adjacent to the wall is
involved in upstream motion even before separation. Our objective in the present paper
is to clarify the topology of the boundary layer separating on the upstream moving wall.
We shall use as an example the flow near the leading edge of an aerofoil. The problem
is formulated in § 2 based on the classical Prandtl boundary-layer theory. In § 3, we
describe the numerical technique that solves the boundary-layer equations. The results of
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Figure 3. Flow near the leading edge of a thin aerofoil. Here, we use two coordinate systems: Cartesian
coordinates (X ′, Y ′) and body-fitted coordinates (x, y). The position of the front stagnation point O is given
by Y ′ = −k, where k is the angle of attack parameter.

the calculations are presented in § 4. We found that there exists a critical value of the angle
of attack. Before it is reached, the solution proves to be regular, which tells us that the
boundary layer remains attached to the aerofoil surface. However, at the critical value of
the angle of attack, a Moore–Rott–Sears singularity develops (most notably) in the reverse
flow region. This is accompanied by an abrupt thickening of the boundary layer at the
singular point and the formation of a recirculation region with closed streamlines behind
this point. We further find that the flow immediately behind the singular point and in the
recirculation region could be treated as inviscid. Using this observation, we offer in § 5 a
rather simple theoretical description of the flow. Finally, in the Appendix, we show how
the exact solution of Hiemenz (1911) for the front stagnation point may be extended for the
flow on a moving wall.

A similar flow was earlier studied by Bezrodnykh, Zametaev & Chzhun (2023). These
authors considered the boundary layer on a flat plate with the pressure gradient created by
a dipole situated some distance from the plate. They found that there exists a critical value
of the dipole strength for which a singularity forms in the boundary layer. It was identified
as a Moore–Rott–Sears singularity. However, the flow behaviour near the singular point
appeared to be rather different from what we see in our calculations.

2. Problem formulation
We shall consider an incompressible fluid flow near the leading edge of a thin aerofoil.
To analyse this flow, we shall use Cartesian coordinates (X ′, Y ′) with the origin situated
at the leading edge and the X ′-axis drawn parallel to the middle line of the aerofoil. We
shall assume that in the leading-edge region, the aerofoil contour may be represented by
the infinite parabola Y ′ = ±√

2X ′; see figure 3.

2.1. Inviscid flow
The solution of the Euler equations for the inviscid flow past the parabola allows us to find
that the tangential velocity on the surface of the parabola is given by

Ue = Y ′ + k√
Y ′2 + 1

. (2.1)
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Here, Y ′ has to be thought of as the distance from the point on the surface of the parabola,
where Ue is to be found, to the axis of symmetry of the parabola. Parameter k represents
the degree of non-symmetry of the flow and may be called the angle of attack parameter.
Notice that the stagnation point O , where Ue = 0, is the point with Y ′ = −k; see figure 3.
By differentiating (2.1) with respect to Y ′ and setting the derivative to zero, we can find
that the maximum of Ue is achieved at point M , where Y ′ = 1/k. At this point,

Ue

∣∣∣
M

=
√

1 + k2. (2.2)

Downstream of point M , the tangential velocity Ue(x) shows monotonic decay and tends
to unity as x → ∞.

For further use, we need to know Ue as a function of the distance x measured along the
parabola contour from the stagnation point O . We notice that

dx =
√

(dX ′)2 + (dY ′)2 = dY ′
√(

dX ′
dY ′

)2

+ 1. (2.3)

This means that the sought function Y ′(x) may be found by solving the differential
equation

dY ′

dx
= 1√

1 + Y ′2 (2.4a)

with the initial condition

Y ′ = −k at x = 0. (2.4b)

This is done numerically. With known solution to (2.4), the velocity at the outer edge of
the boundary layer is obtained with the help of (2.1).

2.2. Boundary layer
Our task is to solve the classical boundary-layer equations

u
∂u

∂x
+ V

∂u

∂Y
= Ue

dUe

dx
+ ∂2u

∂Y 2 , (2.5a)

∂u

∂x
+ ∂V

∂Y
= 0. (2.5b)

We shall impose the usual boundary conditions at the outer edge of the boundary layer and
on the body surface:

u = Ue(x) at Y = ∞, (2.6a)
u = Uw, V = 0 at Y = 0. (2.6b)

In this study, we assume that Uw is negative.
In addition to (2.6), (2.5) requires the boundary conditions that specify the behaviour

of u as x → ∞ and x → −∞. The first of these corresponds to the upper surface of the
aerofoil and the second to the lower. When formulating these conditions, it is convenient
to introduce the stream function Ψ (x, Y ) such that

∂Ψ

∂x
= −V,

∂Ψ

∂Y
= u. (2.7)

It follows from (2.1) that

Ue → 1 as x → ∞. (2.8)
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Figure 4. Velocity profile for the Blasius flow on a moving wall with Uw = −0.1.

Keeping this in mind, we seek the solution to (2.5) in the form

Ψ = √
x f (η) + · · · as x → ∞, (2.9)

where

η = Y√
x
. (2.10)

Substitution of (2.9) into (2.7) yields

u = f ′(η), V = − 1
2
√

x
( f − η f ′). (2.11)

If we now substitute (2.11) into (2.5a), then we will have the Blasius equation for f (η):

f ′′′ + 1
2

f f ′′ = 0. (2.12)

The boundary conditions for (2.12) are

f (0) = 0, f ′(0) = Uw, f ′(∞) = 1. (2.13)

The boundary-value problem (2.12), (2.13) can be solved numerically for different values
of the wall velocity Uw. As an example, in figure 4, we show the velocity profile f ′(η) for
Uw = −0.1. Interestingly enough, we found that the solution of (2.12), (2.13) only exists
for Uw > −0.354 and shows a ‘hysteresis behaviour’ displayed in figure 5.

The boundary condition for the lower surface of the aerofoil is formulated in the same
way. It follows from (2.1) that

Ue → −1 as x → −∞. (2.14)

Keeping this in mind, we seek the solution to (2.5) in the form

Ψ = −√−x f (η) + · · · as x → ∞, (2.15)
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Figure 5. Skin friction f ′′(0) as a function of the wall speed Uw .

where

η = Y√−x
. (2.16)

Substitution of (2.15) into (2.7) yields

u = − f ′(η), V = − 1
2
√−x

( f − η f ′). (2.17)

If we now substitute (2.17) into (2.5a), we will see that f (η) satisfies the Blasius equation:

f ′′′ + 1
2

f f ′′ = 0. (2.18)

The boundary conditions for (2.18) are

f (0) = 0, f ′(0) = −Uw, f ′(∞) = 1. (2.19)

We found that the solution to (2.18), (2.19) exists for all negative values of Uw.

3. Computation technique
The numerical solution of the boundary-layer equations (2.5) was performed in the
rectangular computational domain

x ∈ [−xmax , xmax ], Y ∈ [0, Ymax ], (3.1)

using the uniform mesh

xi = i�x, i = −M, . . . , 0, . . . , M,

Y j = j�Y, J = 0, . . . , L , (3.2)

where �x and �Y are the mesh steps in the longitudinal and transverse directions. In the
internal points of the domain, namely, for i = −M + 1, . . . , M − 1, j = 1, . . . , L − 1, the
derivatives in (2.5) are approximated as
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∂u

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

ui, j − ui−1, j

�x
if ui, j > 0,

ui+1, j − ui, j

�x
if ui, j < 0,

∂u

∂Y
= ui, j+1 − ui, j−1

2�Y
,

∂2u

∂Y 2 = ui, j+1 − 2ui, j + ui, j−1

(�Y )2 . (3.3)

This results in the following set of algebraic equations for ui, j on the mesh line x = xi :

a jτi, j+1 + b jτi, j + c jτi, j−1 = d j , j = 1, . . . , L − 1, (3.4)

with

a j = 1
(�Y )2 − Vi, j

2�Y
,

b j = − 2
(�Y )2 − |ui, j |

�x
,

c j = 1
(�Y )2 + Vi, j

2�Y
,

d j =

⎧⎪⎨
⎪⎩

πi − ui, j
ui−1, j

�x
if ui, j ≥ 0,

πi + ui, j
ui+1, j

�x
if ui, j < 0.

(3.5)

Here, πi is the negative pressure gradient −dp/dx = UedUe/dx at point xi .
The set of (3.4) is solved using the Thomas technique. We write

ui, j = R j ui, j−1 + Q j , j = 1, . . . , L . (3.6)

The Thomas coefficients, R j , Q j are calculated using the recurrent equations

R j = − c j

b j + a j R j+1
, Q j = d j − a j Q j+1

b j + a j R j+1
j = L − 1, . . . , 1. (3.7)

To satisfy the condition ui,L = Ue(xi ), we set

RL = 0, QL = Ue(xi ). (3.8)

Then, (3.6) is used to update the longitudinal velocity ui, j on the mesh line xi . To satisfy
the no-slip condition, we set ui,0 = Uw. An improved approximation to the transverse
velocity Vi, j is then obtained with the help of the continuity equation (2.5b). This
procedure is repeated for all mesh lines xi sweeping the computational domain as many
times as it requires to achieve the convergence of the iteration process, which is facilitated
by making use of an under-relaxation.

4. Computational results
When performing the calculations, we chose the wall speed to be Uw = −0.35, which
is smaller (by absolute value) than the critical velocity Uw = −0.354. To enhance the
convergence of the iteration process, we started with symmetric flow (k = 0) past the
parabola (see figure 3) and then the angle of attack parameter k was increased step-by-
step with the results for the previous value of k used as an initial guess for a new k.
The behaviour of the flow is illustrated in figure 6, where we show how the streamline
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Figure 6. Streamline pattern for the flow in the boundary layer for different values of the angle of attack
parameter k.

pattern changes with increasing k. Remember that we are using the body-fitted coordinates
with x measured along the aerofoil surface and Y in the perpendicular direction. The
streamline O ′O that passes through the front stagnation point O (see figure 3) appears
to be vertical in figure 6 and, together with the neighbouring streamlines, forms a
characteristic ‘spike’ near x = 0. The region to the right of this ‘spike’ represents the flow
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Figure 7. Shear stress distribution along the Zero-u-Line.

on the upper surface of the aerofoil, while the region on the left-hand side corresponds to
the flow on the lower surface.

We found that the boundary layer on the lower side of the aerofoils stays free of
singularities, and hence, remains well attached to the aerofoil surface. The behaviour of
the boundary layer on the upper surface depends on the angle of attack parameter k. Up to
k = 0.55, the streamline pattern does not change much and has an open reverse flow region,
as shown in figure 6(a). However, then a bulge starts to grow on the ‘nose’ of this region.
Its size increases rather fast as k becomes larger. This is accompanied by the formation of
a recirculation region with closed streamlines; see figure 6(b–d).

The results of the calculations further suggest that there exists a critical value kc of
parameter k, slightly larger than k = 0.73, for which the solution develops a singularity.
The singular point S lies on the line of zero longitudinal velocity u, which is shown in
figure 6(e) as a dashed line SC ; in what follows, we shall call it the ‘Zero-u-Line’, and
define its position as Y = Z(x). The singularity manifests itself by convergence of the
streamlines at point S as k → kc. The formation of the singularity is illustrated in figure 7,
where we show the distribution of the shear stress ∂u/∂Y along the Zero-u-Line for k <

kc. Notice that the corresponding graphs are extended into a region before the singular
point whose coordinate is xs ≈ 1.6. We see that ∂u/∂Y develops a characteristic minimum,
the value of which becomes smaller as k increases, and finally becomes zero at k = kc.
This confirms that the singular point S is in fact a Moore–Rott–Sears point; see conditions
(1.2). Interestingly enough, at this point, the pressure gradient is favourable (dp/dx < 0)
as first predicted by Ruban et al. (2020) and then confirmed by Bezrodnykh et al. (2023).

The shape of the Zero-u-Line, Y = Z(x), obtained in the course of our calculations for
Uw = −0.35 and k = 0.73, is shown in figure 8(a). In figure 8(b), we show again the shear
stress ∂u/∂Y distribution along this line, this time for a larger range of x . It is interesting
to notice that the shear stress remains almost constant over the recirculation region. This is
because, in the boundary-layer approximation, ∂u/∂Y coincides with the vorticity which,
according to the Prandtl–Batchelor theorem, should be constant inside a region with closed
streamlines (see Batchelor 1956).
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Figure 8. Shape of the Zero-u-Line, and the shear stress distribution along this line for Uw = −0.35 and
k = 0.73.

To clarify what happens near point S, where the shear stress becomes zero, we notice
that at any point on the Zero-u-Line SC , the momentum equation (2.5a) reduces to

V
∂u

∂Y
= −dp

dx
. (4.1)

Here, it is taken into account that the recirculation region is much thicker than the original
boundary layer, which allows us to disregard the viscous term on the right-hand side of
(2.5a). In § 5.2, we shall show that the flow remains inviscid in the vicinity of point S. The
observed convergence of the streamlines on approach to point S tells us that V becomes
infinitely large and it follows from (4.1) that ∂u/∂Y does indeed tend to zero, which means
that point S cannot be inside the Prandtl–Batchelor recirculation region. Instead, it lies in
front of this region.

If we take a point just above the line SC , then we can see from figure 6(e) that the
longitudinal velocity u is positive. It is, of course, zero on SC and becomes negative
below SC . Therefore, ∂u/∂Y is positive on the line SC . Taking further into account that
the vertical velocity V is positive on SC , we can conclude that the left-hand side of (4.1)
is positive which is only possible if the pressure gradient is favourable, i.e. dp/dx < 0.

Of course, the Zero-u-Line can be extended to the right of the centre C of the
recirculation region; see figure 6(e). On this extension, ∂u/∂Y remains positive, but V is
now negative, which requires the pressure gradient to be adverse, that is, dp/dx > 0. Thus,
the centre C of the recirculation region coincides with the position of the zero pressure
gradient.

5. Theoretical modelling
A distinctive feature of the flow studied here is the formation of a large recirculation
region inside the boundary layer. In this region, the fluid close to the wall moves upstream
against growing pressure. It decelerates, turns upwards and then, after reaching the Zero-
u-Line, starts to move downstream under the action of a favourable pressure gradient. The
fluid velocity in the recirculation region is rather small compared with the velocity at the
outer edge of the boundary layer, and the thickness of the recirculation region is large
compared with that near the front stagnation point. This recirculation region poses an
obstacle for the boundary layer flowing towards it from the front stagnation point. Instead
of penetrating the recirculation region, this boundary layer climbs on top of it, adding
very little to the displacement thickness of the entire boundary layer. Our goal now will
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be to describe theoretically the flow in the recirculation region and to find the shape of its
outer boundary. We shall first consider the main body of the recirculation region where
the Prandtl–Batchelor theorem holds. Then, a close vicinity of the singular point S will be
analysed.

5.1. Prandtl–Batchelor region
We shall start with the following comment. Strictly speaking, for the Prandtl–Batchelor
theorem to be valid, the recirculation region has to be asymptotically large on the
boundary-layer scale. Our calculations alone cannot prove this, which means that for now,
the analysis in § 5.1 should be interpreted as an ‘approximation’.

Assuming that the flow in this region may be treated as inviscid, we use the Bernoulli
equation. In the boundary-layer approximation, it is written as

1
2

u2 + p = H(Ψ ). (5.1)

Here, H(Ψ ) is the Bernoulli function which depends on the stream function Ψ only.
Differentiation of (5.1) with respect to Y shows that

u
∂u

∂Y
= dH

dΨ

∂Ψ

∂Y
. (5.2)

Since ∂Ψ/∂Y = u, we can conclude that

dH

dΨ
= ∂u

∂Y
= ω. (5.3)

Here, ω is the vorticity. In the region considered, it is constant being equal to
approximately 0.0255; see figure 8(b). Integrating (5.3), we have

H = ωΨ + C. (5.4)

To find constant C, we consider a point that lies on the Zero-u-Line and assume that this
point tends to the singular point S. In this limit, u stays zero and p tends to ps . Therefore,
it follows from (5.1) that H(Ψs) = ps , where Ψs is the value of the stream function Ψ at
point S. Using (5.4), we can now see that C = ps − ωΨs . Hence, we can conclude that

H = ps + ω(Ψ − Ψs). (5.5)

Substituting (5.5) into (5.1) and solving the resulting equation for u, we have

u = ±√2ω(Ψ − Ψs) + 2ps − 2p(x). (5.6)

Let us first consider the flow region below the Zero-u-Line. In this region, u < 0, and
using the fact that u = ∂Ψ/∂Y , we can write (5.6) as

∂Ψ

∂Y
= −√2ω(Ψ − Ψs) + 2ps − 2p(x). (5.7)

Equation (5.7) is easily integrated with respect to Y to yield

− 1
ω

√
2ω(Ψ − Ψs) + 2ps − 2p(x) = Y + Φ, (5.8)

where Φ is an arbitrary function of x . To find this function, we notice that (5.8) may be
written as

u

ω
= Y + Φ. (5.9)
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Figure 9. Zero-u-line. Comparison of the numerical results (solid line) with theoretical predictions
(dashed line).

Therefore, if we consider the Zero-u-Line, Y = Z(x), then we can easily see that Φ =
−Z(x) which, being substituted into (5.8), yields

Y = Z(x) − 1
ω

√
2ω(Ψ − Ψs) + 2ps − 2p(x). (5.10)

Let us now consider the streamline that passes through the singular point S; see
figure 6(e). This streamline represents the boundary between the recirculation and the flow
approaching point S from the left. We shall call it the ‘dividing streamline’ and define it by
the equation Y = D(x). First, we look at the lower branch of the dividing streamline. After
emerging from point S, it goes down almost vertically, and then turns and extends parallel
to the body surface lying at the outer edge of the viscous near-wall layer. Assuming that
the thickness of the viscous layer is small compared with the distance from the Zero-u-
Line SC to the wall, we shall set Y = 0 on the left-hand side of (5.10). Keeping further in
mind that on the streamline considered, Ψ = Ψs , we have

Z(x) = 1
ω

√
2ps − 2p(x). (5.11)

In figure 9, we compare the theoretical predictions (5.11) with numerical results shown
earlier in figure 8(a). We see that on the interval x ∈ [1.9, 4.0], the theoretical curve
reproduces the shape of the numerical curve perfectly well, but lies below it. This situation
can be improved if one takes into account the existence of the viscous layer and adds
its thickness to the right-hand side of (5.11). No such easy correction is possible in the
region x ∈ [1.6, 1.9] that lies immediately behind the singular point S. The reason is that
point S lies outside the Prandtl–Batchelor recirculation region making (5.5) inapplicable.
Figure 9 shows that behind point S, the Zero-u-Line first goes down sharply, then reaches
a minimum and only after that starts to repeat the theoretical prediction (5.11). A detailed
analysis of the flow in the vicinity of point S will be presented in § 5.2. Before this, we
shall continue with the study of the flow in the Prandtl–Batchelor region and apply our
theory to the upper half of the recirculation region.

1011 A49-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.377


A.I. Ruban and M.A. Kravtsova

In the flow above the Zero-u-Line, the longitudinal velocity u is positive, and therefore,
instead of (5.7), we have to write

∂Ψ

∂Y
=√

2ω(Ψ − Ψs) + 2ps − 2p(x). (5.12)

Integration of (5.12) yields

1
ω

√
2ω(Ψ − Ψs) + 2ps − 2p(x) = Y + Φ̆(x). (5.13)

To find the function Φ̆(x), we write (5.13) in the form
u

ω
= Y + Φ̆(x), (5.14)

and consider the Zero-u-Line, Y = Z(x). We see that Φ̆ = −Z(x) which, being substituted
into (5.13), allows us to conclude that

Y = Z(x) + 1
ω

√
2ω(Ψ − Ψs) + 2ps − 2p(x). (5.15)

The outer boundary of the recirculation region, Y = D(x), can now be found by setting
Ψ = Ψs in (5.15). We have

D(x) = Z(x) + 1
ω

√
2ps − 2p(x) = 2

ω

√
2ps − 2p(x). (5.16)

5.2. Flow immediately behind the singularity
When dealing with the flow in the vicinity of point S, it is convenient to use the
coordinate system (x̆, Y̆ ) with x̆ measured from point S along the Zero-u-Line and Y̆
in the perpendicular direction. These ‘new’ coordinates are given by

x̆ = x − xs, Y̆ = Y − Z(x). (5.17)

If we define the stream function Ψ̆ and the velocity components (Ŭ , V̆ ) in the new
coordinates via the Prandtl transposition

Ψ̆ = Ψ, ŭ = u, V̆ = V − u
dZ

dx
, (5.18)

then the boundary layer (2.5) will remain unchanged. We seek the solution to these
equations in the form

Ψ̆ = Ψs + x̆α f (η) + · · · as x̆ → 0+, (5.19)

with

η = Y̆

x̆β
. (5.20)

Here, parameters α, β and function f (η) are to be found in the course of the flow analysis.
Using (5.19), (5.20), we find that the velocity components

ŭ = ∂Ψ̆

∂Y̆
= x̆α−β f ′(η) + · · · , (5.21a)

V̆ = −∂Ψ̆

∂ x̆
= −x̆α−1 [α f − βη f ′]+ · · · . (5.21b)
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We further find that

ŭ
∂ ŭ

∂ x̆
= x̆2α−2β−1

[
(α − β)

(
f ′)2 − βη f ′ f ′′]+ · · · , (5.22a)

V̆
∂ ŭ

∂Y̆
= x̆2α−2β−1 [−α f f ′′ + βη f ′ f ′′]+ · · · , (5.22b)

∂2ŭ

∂Y̆ 2
= x̆α−3β f ′′′ + · · · , (5.22c)

and since at point S the pressure gradient is favourable, we shall write

dp

dx̆
= −λ+ · · · , (5.22d)

where λ is a known positive constant.
In the flow considered, the fluid particles accelerate, decelerate and change their

direction under the action of the pressure gradient. This means that the pressure gradient
(5.22d) should be the same order quantity as the convective terms (5.22a), (5.22b).
Consequently, we have to set

2α − 2β − 1 = 0. (5.23)

To evaluate the importance of the viscous forces, we consider the vertical velocity
component given by the second equation in (5.21). On the Zero-u-Line, where η = 0, we
have

V̆ = x̆α−1 [−α f (0)
]
. (5.24)

We know that V̆ is positive on the Zero-u-Line, which means that f (0) is negative. Taking
logarithms on both sides of (5.24) yields

ln V̆ = (α − 1) ln x̆ + ln
[−α f (0)

]
. (5.25)

In figure 10, we compare the theoretical prediction (5.25) with the results of the numerical
analysis of the flow. The latter is represented by the black curve. The theoretical red curve
is a straight line

ln V̆ = −0.82 ln x̆ + C, (5.26)

with C being a constant. The coefficient −0.82 is chosen to make this line parallel to the
black line for small values of x̆ . Comparing (5.26) with (5.25), we can see that

α ≈ 1
5
, (5.27)

and then it follows from (5.23) that

β ≈ − 3
10

. (5.28)

In § 5.3, the numerical prediction (5.27) for α will be confirmed analytically.
With (5.27) and (5.28), the viscous term (5.22c) tends to zero as x̆ → 0+, while the

convective terms (5.22a), (5.22b) and the pressure gradient (5.22d) remain finite. Hence,
we can conclude that the flow considered is predominantly inviscid. Substitution of (5.22)
into (2.5a) results in the following equation for f (η):

1
2

f ′2 − α f f ′′ = λ. (5.29)
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Figure 10. Calculation of the parameter α.

This equation should be solved with the initial conditions

f = f (0),

f ′ = 0,

}
at η = 0. (5.30)

Remember that f (0) in the first condition is negative. The second condition is deduced
using the first equation in (5.21) and the fact that the longitudinal velocity u is zero on
Zero-u-Line, SC ; see figure 6(e).

The affine transformations

f = | f (0)| f̃ , η = | f (0)|√
λ

η̃ (5.31)

turn (5.29), (5.30) into

1
2

(
d f̃

dη̃

)2

− α f̃
d2 f̃

dη̃2 = 1, (5.32)

f̃ = −1,

d f̃

dη̃
= 0,

⎫⎪⎬
⎪⎭ at η̃ = 0. (5.33)

Using the substitution

d f̃

dη̃
= F

[
f̃ (η̃)

]
, (5.34)

we reduce (5.32) to the first-order differential equation

G − α f̃
dG

d f̃
= 2, (5.35)

where G = F2.
The general solution of (5.35) is written as

G = 2 + C| f̃ |1/α. (5.36)
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Figure 11. Function f̃ (η̃).

To find constant C, we use the boundary conditions (5.33), from which it follows that

G = 0 at f̃ = −1. (5.37)

We see that C = −2. Hence, (
d f̃

dη̃

)2

= 2
(

1 − | f̃ |1/α
)

, (5.38)

and we can conclude that

d f̃

dη̃
= ±

√
2
(

1 − | f̃ |1/α
)
. (5.39)

The choice of sign on the right-hand side of (5.39) depends on the flow region
considered. We start with the flow below the Zero-u-Line. In this region, ŭ is negative,
and it follows from (5.21a) and (5.31) that d f̃ /dη̃ is also negative. Hence, we write

d f̃

dη̃
= −

√
2
(

1 − | f̃ |1/α
)
. (5.40)

The initial condition for this equation is

f̃ = −1 at η̃ = 0. (5.41)

The results of the numerical solution of the initial-value problem (5.40), (5.41) with
α = 1/5 are displayed in figure 11. Remember that the region below the Zero-u-Line
corresponds to negative η̃. The solution may be formally extended from f̃ = −1 up
to f̃ = 1. However, only half of this solution with f̃ ∈ [−1, 0] is relevant to the flow
considered here. Indeed, it follows from (5.19) that once f turns zero, the stream function
Ψ appears to be constant and equals its value Ψs at the singular point S, thus giving us
the lower boundary of the recirculation region. To deduce an explicit formula for the lower
boundary, we denote the value of η̃ at the point where f̃ = 0 as

η̃ = −η̃d , (5.42)
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with η̃d ≈ 0.8797. Then, it follows from (5.31) that at this point,

η = −| f (0)|√
λ

η̃d . (5.43)

Using (5.20), we further have

Y̆ = −| f (0)|√
λ

η̃d x̆β. (5.44)

It remains to return to the original coordinates (5.17) and we can conclude that

Y = Z(x) − | f (0)|√
λ

η̃d(x − xs)
β. (5.45)

If, as before, we disregard the existence of the near-wall viscous layer and assume that the
lower boundary of the reverse flow region lies along the body surface, then we can set
Y = 0 in (5.45). As a result, we will find that the Zero-u-Line is given by

Z(x) = | f (0)|√
λ

η̃d(x − xs)
β. (5.46)

The region above the Zero-u-Line is studied in the same way and, in fact, the flow
appears to be symmetric if considered in the coordinates (x̆, Y̆ ). More precisely, the stream
function Ψ̆ is symmetric, while the longitudinal velocity components ŭ is anti-symmetric.
The outer edge of the recirculation region in (x, Y )-coordinates is given by

D(x) = 2
| f (0)|√
λ

η̃d(x − xs)
β. (5.47)

Remember that β is negative, which means that Z(x), as well as D(x), decrease with x .
This is in line with the numerical results shown in figure 9, where we observe a sharp
drop of Z behind the singular point S. Of course, the singularity predicted by (5.46) at
x = xs could not be reproduced in the numerical solution (figure 9) as our finite-difference
technique looses its accuracy near the singular point.

5.3. Von Mises variables
To confirm the numerical prediction (5.27) for parameter α, it is convenient to use the von
Mises variables. The momentum equation (2.5a) is written in von Mises variables as

ŭ
∂ ŭ

∂ x̆
= −dp

dx̆
+ ŭ

∂

∂Ψ̆

(
ŭ

∂ ŭ

∂Ψ̆

)
. (5.48)

It follows from (5.19), (5.21a) that the solution to (5.48) immediately behind singular point
S should be sought in the form

ŭ = x̆1/2 F(ξ) + · · · as x̆ → 0+, (5.49)

where

ξ = Ψ̆ − Ψs

x̆α
. (5.50)
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Using (5.49), (5.50), we calculate the inertia and viscous terms in (5.48):

ŭ
∂ ŭ

∂ x̆
= 1

2
F2 − αξ F F ′ + · · · ,

ŭ
∂

∂Ψ̆

(
ŭ

∂ ŭ

∂Ψ̆

)
= x̆3/2−2α F(F F ′)′ + · · · . (5.51)

If we assume, subject to subsequent confirmation, that

α <
3
4
, (5.52)

then we shall see that the viscous term in (5.48) may be disregarded. Keeping further in
mind that the pressure gradient is given by (5.22d), we can conclude that function F(ξ)

satisfies the equation

1
2

F2 − αξ F F ′ = λ. (5.53)

The general solution of this equation is written as

1
2

F2 = λ+ C|ξ |1/α, (5.54)

where C is an arbitrary constant. If we denote the value of ξ on the Zero-u-Line by ξ0, then
we can see that C = −λ/|ξ0|1/α , and therefore,

F = ±
√

2λ
(

1 − |ξ |1/α

|ξ0|1/α

)
. (5.55)

The solution (5.55) applies to the flow on the right-hand side of the dividing streamline
that passes through the singular point S. On this streamline, Ψ̆ = Ψs , while in the region
considered, Ψ̆ < Ψs , which means that ξ , as defined by (5.50), is negative.

Let us start with the flow below the Zero-u-Line where u is negative, and therefore,

F = −
√

2λ
(

1 − |ξ |1/α

|ξ0|1/α

)
. (5.56)

To study the flow behaviour close to the dividing streamline, we set |ξ | → 0 in (5.56). We
find

F = −√
2λ
(

1 − |ξ |1/α

2|ξ0|1/α
+ · · ·

)
. (5.57)

Here,

|ξ | = −ξ = Ψs − Ψ̆

x̆α
, (5.58)

which, being substituted into (5.57), yields

F = −√
2λ+

√
λ

2
1

|ξ0|1/α

(Ψs − Ψ̆ )1/α

x̆
+ · · · . (5.59)

It remains to substitute (5.59) into (5.49) and we find that the longitudinal velocity

ŭ = −√
2λ x̆1/2 +

√
λ

2
1

|ξ0|1/α

(Ψs − Ψ̆ )1/α

x̆1/2 + · · · . (5.60)

1011 A49-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.377


A.I. Ruban and M.A. Kravtsova

Using (5.60), one can see that the viscous term on the right-hand side of the momentum
equation (5.48) is estimated as

ŭ
∂

∂Ψ̆

(
ŭ

∂ ŭ

∂Ψ̆

)
= O

[
x̆1/2(Ψs − Ψ̆ )1/α−2

]
, (5.61)

while the inertia term on the left-hand side of this equation

ŭ
∂ ŭ

∂ x̆
= λ+ O

[
(Ψs − Ψ̆ )1/α

x̆

]
. (5.62)

Comparing (5.61) with (5.62), we can see that when Ψs − Ψ̆ becomes an order O(x̆3/4)
quantity, the viscous term can no longer be disregarded, and a new viscous region should
be introduced. Guided by (5.60), we seek the solution in this region in the form

ŭ(x̆, Ψ̆ ) = −√
2λ x̆1/2 + x̆3/4α−1/2 Q(ζ ) + · · · as x̆ → 0, (5.63)

with

ζ = Ψs − Ψ̆

x̆3/4 . (5.64)

The condition of matching of (5.63) with (5.60) is written as

Q =
√
λ

2
ζ 1/α

|ξ0|1/α
+ · · · as ζ → ∞. (5.65)

Substitution of (5.63) into (5.48) yields the following equation for U (ζ ):

− 3
4α

Q + 3
4
ζ Q′ = √

2λ Q′′. (5.66)

To study the properties of this equation, it is convenient to perform the following
substitution of variables:

Q = ζ W (z), z = Bζ 2. (5.67)

If we choose constant B = 3/8
√

2λ, then the equation for W (z) takes the form

z
d2W

dz2 +
(

3
2

− z

)
dW

dz
− 1

2

(
1 − 1

α

)
W = 0. (5.68)

This is a confluent hypergeometric equation (see, for example, Abramowitz & Stegun
1965) with parameters

a = 1
2

(
1 − 1

α

)
, b = 3

2
. (5.69)

Choosing two complementary solutions of (5.68) to be Kummer’s function w1 =
M(a, b, z) and w2 = z1−b M(1 + a − b, 2 − b, z), we can write the general solution as

W = C1 M(a, b, z) + C2z1−b M(1 + a − b, 2 − b, z). (5.70)

Kummer’s function M(a, b, z) is known to remain regular in the entire complex z-plane.
In fact, it may be represented by the Taylor series

M(a, b, z) =
∞∑

n=0

(a)n

(b)nn! zn + · · · , (5.71)
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where (a)n denotes a quantity defined as

(a)0 = 1, (a)n = (a + n − 1)(a)n−1. (5.72)

Clearly, the second complementary solution develops a singularity as z → 0, namely, w2 =
O(z−1/2), and has to be disregarded since point z = 0 lies in the viscous region where the
fluid dynamic functions should be smooth. Thus, we set C2 = 0, which reduces (5.70) to

W = C1 M(a, b, z). (5.73)

Now, we need to look at the matching condition (5.65). Kummer’s function is known to
exhibit the following behaviour:

M(a, b, z) = Γ (b)

Γ (a)
ezza−b + · · · (5.74)

as z tends to infinity along a ray that lies in the right half (	{z} > 0) of the complex
plane z. In our case, z lies on the real positive semi-axis, making Q(ζ ) exponentially large
for ζ → ∞. This contradicts the matching condition (5.65) which requires Q(ζ ) to grow
algebraically. The contradiction is resolved by the fact that (5.74) cannot be used for

a = −m, m = 0, 1, 2 . . . , (5.75)

when Gamma function Γ (a) turns zero. If a assumes one of the values in (5.75), then
(a)m+1 and all the subsequent members of the sequence (5.72) vanish, reducing the Taylor
series (5.70) to a polynomial of degree m.

Remember that parameter a is given by the first equation in (5.69). Using it on the
left-hand side of (5.75), we find that for the problem considered, the set of eigenvalues is

α = 1
2m + 1

, m = 0, 1, 2 . . . . (5.76)

The first of these, α = 1, does not satisfy restriction (5.52) and should be discarded. Thus,
the permissable eigenvalues are

α = 1
3
,

1
5
,

1
7
, · · · . (5.77)

Returning back to the numerical evaluation (5.27) of α, we can see that in the flow
considered,

α = 1
5
. (5.78)

6. Concluding remarks
This paper is concerned with a long-standing unresolved problem of the asymptotic theory
of separated flow, the problem of the boundary-layer separation from an upstream moving
wall. A major difficulty proved to be an unclear topology of the flow near the separation.
To better understand what happens when the boundary layer separates on an upstream
moving wall, we consider, as an example, the fluid flow on the leading edge of an aerofoil.
Flow analysis is conducted in the framework of the classical Prandtl formulation. We
first solve the boundary-layer equations numerically, for which purpose a new numerical
technique was developed. The calculations were performed for a range of angles of attack
and it was found that there exists a critical value of the angle of attack for which a Moore–
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Figure 12. Longitudinal velocity profiles, u(Y ), near the singularity.

Rott–Sears singularity forms in the flow. This is accompanied by an abrupt thickening of
the boundary layer at the singular point and the formation of a recirculation region with
closed streamlines behind this point. We found that the flow in this region may be treated
as ‘almost inviscid’, which makes the Prandtl–Batchelor theorem applicable. Using this
theorem, a rather simple theoretical model was offered to describe the flow.

We further found that the singular point does not belong to the Prandtl–Batchelor
region but lies in front of it. The flow in the immediate vicinity of the singular point
was studied in detail, first, using traditional formulation of the boundary-layer equations
and then using von Mises variables. The solution with both formulations was obtained
analytically in a self-similar form for the flow behind the singular point. Unfortunately, we
still do not know how this solution can be extended to the region before the singularity.
To demonstrate what happens with the boundary layer near singular point S, we show in
figure 12 the longitudinal velocity profiles, u(Y ), in a number of cross-sections on both
sides of this point. One can see that u experiences a sharp change, perhaps a discontinuity,
between cross-sections x = 1.58 and x = 1.6. The existence of discontinuous solutions
of the classical boundary-layer equations was first demonstrated by Ruban & Vonatsos
(2008).

A similar problem was studied earlier by Bezrodnykh et al. (2023). These authors
considered the boundary layer on a flat plate with upstream moving surface. The pressure
perturbations in the boundary layer were produced by a dipole placed some distance above
the plate. The solution of the boundary-layer equations were obtained using a numerical
technique that was different from the one presented here. Of course, direct comparison of
their results with the results presented in this paper is not possible. Still, we can see various
qualitative similarities in the computational results, but there are significant differences in
the theoretical description of the flows. In particular, Bezrodnykh et al. (2023) found that
parameter β in (5.20) is positive, namely, β = 1/6.

Declaration of interests. The authors report no conflict of interest.
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Appendix. Exact solution for the front stagnation point
In the case of a motionless wall, the flow near the stagnation point is described by one of
the exact solutions of the boundary-layer equations as well as of the full Navier–Stokes
equations, known as the Hiemenz (1911) solution. Here, we shall generalise this solution
to the case of a moving wall.

It follows from inviscid flow solution (2.1) that

dUe

dx
= dUe

dY ′
dY ′

dx
= 1

1 + Y ′2 − Y ′(Y ′ + k)

(1 + Y ′2)2 . (A1)

In particular, at the front stagnation point,
dUe

dx

∣∣∣
Y ′=−k

= 1
1 + k2 , (A2)

which means that near this point,

Ue = 1
1 + k2 x + · · · as x → 0. (A3)

The flow in the boundary layer is described by (2.5), which should be solved with
the boundary conditions (2.6). Let us assume that (A3) is valid for all finite values of
x . We then seek the stream function in the boundary layer in the form

Ψ (x, Y ) = x f0(Y ) + f1(Y ). (A4)

Substitution of (A4) into (2.7) yields

u = x f ′
0(Y ) + f ′

1(Y ), V = − f0(Y ). (A5)

Now, we substitute (A5) together with (A3) into (2.5a). We find that (2.5a) is satisfied
provided that the functions f0(Y ), f1(Y ) satisfy the equations

f ′′′
0 + f0 f ′′

0 − (
f ′
0
)2 + 1

(1 + k2)2 = 0, (A6a)

f ′′′
1 + f0 f ′′

1 − f ′
0 f ′

1 = 0. (A6b)
The boundary conditions for these equations are obtained by substituting (A5) into (2.6).
We have

f0(0) = f ′
0(0) = 0, f ′

0(∞) = 1
1 + k2 , (A7a)

f ′
1(0) = Uw, f ′

1(∞) = 0. (A7b)
Equation (A6a) considered with boundary conditions (A7a) represents the classical

Hiemenz problem for the flow near the front stagnation on a motionless wall. The solution
of this boundary-value problem may be found numerically. With known f0(Y ), (A6b) may
be thought of as a second-order differential equation for f ′

1(Y ). Its solution satisfying the
boundary conditions (A7b) can be written as

f ′
1 = λ f ′′

0 (Y ), (A8)

where constant λ is given by

λ= Uw

f ′′
0 (0)

. (A9)

Indeed, substitution of (A8) into (A6b) results in

f (iv)
0 + f0 f ′′′

0 − f ′
0 f ′′

0 = 0. (A10)
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Figure 13. Flow visualisation.

We know that f0(Y ) satisfies (A6a) which, being differentiated with respect to Y , leads to
(A10), which proves that the latter is indeed satisfied. The boundary conditions (A7b) are
verified by simply setting Y = 0 and Y = ∞ in (A8), (A9).

Integration of (A8) results in

f1 = λ f ′
0(Y ) + C, (A11)

where C is a constant. Substitution of (A11) into (A4) allows us to express the stream
function in the form

Ψ = x f0(Y ) + λ f ′
0(Y ) + C. (A12)

Of course, the stream function is defined to within an arbitrary constant. It is convenient
to set C = 0 and then we will have

Ψ = x f0(Y ) + λ f ′
0(Y ), (A13)

making Ψ zero on the body surface.
We found f0(Y ) numerically. Once this was done, we used (A13) to determine the

distribution of the stream function in the flow field. This allowed us to plot the streamline
pattern for chosen values of k and Uw. As an example, in figure 13, we show the streamline
pattern for k = 0 and Uw = 2. It is interesting to notice that with the wall moving to the
right, the fluid is not dragged directly to the right. Instead, a flow region is created where
the fluid moves first to the left and then, closer to the wall, turns and starts moving to the
right.

The streamline pattern for the wall moving to the left (Uw < 0) is obtained by a simple
mirror-reflection in the Y -axis.
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