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Abstract. We show that «-stable Lévy motions can be simulated by any ergodic and
aperiodic probability-preserving transformation. Namely we show that: for 0 <o < 1
and every «-stable Lévy motion W, there exists a function f whose partial sum process
converges in distribution to W; for | < o < 2 and every symmetric «-stable Lévy motion,
there exists a function f whose partial sum process converges in distribution to W; for
1 <a <2andevery —1 < B < 1 there exists a function f whose associated time series is
in the classical domain of attraction of an S, (In(2), 8, 0) random variable.
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1. Introduction

Thouvenot and Weiss showed in [12] that for every aperiodic, probability-preserving
system (X, B, m, T') and for a random variable Y, there exist a function f : X — Rand a
sequence a, — oo such that

n—1
Z fo T* converges in distribution to Y.
k=0

1

an

This result means that any distribution can be approximated by observations of an
aperiodic, probability-preserving system. See also [1] for a refinement of this distributional
convergence result for positive random variables and the subsequent [6] which is concerned
with the possible growth rate of the normalizing constants a,,. The results mentioned above
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were preceded by research into central limit theorems (CLTs) in dynamical systems with
convergence towards a normal law; see, for example, [4, 13].

Given a stochastic process Y = (Y (#));er wWhose sample paths are in a Polish
space D, a natural question that arises is whether we can simulate it using our
prescribed dynamical system. That is, do there exist a measurable function f: X — R
and normalizing constants a, and b, such that the processes Y, : X — D defined by
Y,(t)(x) = (l/an)(zl[:ﬁ) fo T* (x) — byus)) converge in distribution to Y?

As noted by Gouézel in [6], by a famous result of Lamperti (see [3, Theorem 8.5.3]), any
process Y which can be simulated in this manner must be self-similar and the normalizing
constants need to be of the form @, = n*L(n) where L(n) is a slowly varying function
and « is the self-similarity index of the process. Perhaps due to this, results about the
simulation of processes are rather scarce; to the best of our knowledge the only such result
is [13], where the second author has answered a question of Burton and Denker [4] and
shown that every aperiodic, probability-preserving system can simulate a Brownian motion
with classical normalizing constants a, = +/n.

An important subclass of self-similar processes is the class of «a-stable Lévy motions
which we describe in the next subsection. These include Brownian motion (o = 2) and
Cauchy-Lévy motion (¢ = 1) which is a process with independent increments which are
Cauchy-distributed and are often used to model heavy-tailed phenomena.

In this work we show that given an aperiodic, ergodic, probability-preserving transfor-
mation (X, B, m, T):

e every «-stable Lévy motion with « € (0, 1) can be simulated by this transformation;
e every symmetric a-stable Lévy motion can be simulated using this transformation.
One may ask about general «-stable Lévy motions when « € [1, 2). In this regard we
extend the results of [9] and show a classical CLT result for any «-stable distribution when
o # 1.

From a bird’s-eye view, the methods are similar to those in [9, 13] in the sense that
the process is constructed by a sum of coboundaries and that in any ergodic and aperiodic
dynamical system and for a natural number rn there is a function f such that the sequence
of f, foT,..., foT" has a given distribution of a discrete-valued independent and
identically distributed (i.i.d.) sequence Xy, . . . , X, (Proposition 2 in [8]). We remark that
our work shows that any ergodic dynamical system can simulate these «-stable processes
but in order to have algorithms which converge fast one may want to choose a special
dynamical system; such works in the context of a-stable processes were carried out, for
example, in [5, 14].

The coboundaries used in the preceding papers naturally lead to a convergence towards
symmetric laws. A natural challenge, which is treated in full generality in this work, is to
get CLT convergence with i.i.d. scaling towards skewed stable limits. We note that the case
where 1 < o < 2 (Theorem 2.10) is especially challenging.

The invariance principle was studied in [13] only where the structure of Hilbert spaces
could be used and the convergence is with respect to the metric of uniform convergence
in the space of continuous functions. The methods of this paper are different, and even in
the case of a symmetric stable process limit the function here is different and makes use of
linear combinations of skewed stable functions.
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1.1. Definitions and statement of the theorems. A random variable Y is stable if there
exist a sequence Z1, Zj, . . . of i.i.d. random variables and sequences a,, b, such that

ZZ:] Zk — dan . . . .
T converges in distributionto Y asn — oo.
n

In other words, Y arises as a distributional limit of a CLT; see [7]. Furthermore, in this
case b, is regularly varying of index 1/« which implies that b, = n'/%L(n), where L(n)
is a slowly varying function. A stable distribution is uniquely defined by its characteristic
function (Fourier transform). Namely, a random variable is a-stable, 0 < o < 2, if there
existo > 0, 8 € [—1, 1] and 1 € R such that for all 6 € R,

exp {(— G“IGI“(l — ifsign(6) tan (j%y))) + iMQ}, a# 1,
E(exp(ifY)) = iB
exp {(_O.ot|0|c{<1 + TSIgH(G) 111(0))) +1M9}’ o= 1

The constant o > 0 is the dispersion parameter and f is the skewness parameter. In this
case we will say that Y is an «-stable random variable with dispersion parameter o,
skewness parameter § and shift parameter w, or in short Y is an Sy (o, B, u) random
variable. If w = 8 = 0 and o > 0 then the random variable is symmetric «-stable and we
will say that Y is SaS(o).

A probability-preserving dynamical system is a quadruplet (X, B, m,T) where
(X, B,m) is a standard probability space, T is a measurable self-map of X and
m o T~! = m. The system is aperiodic if the collection of all periodic points is a null
set. It is ergodic if every T-invariant set is either a null or a conull set. Given a function
f:X = R, wewrite S,,(f) := Zz;é f o T for the corresponding random walk.

Recall that if ¥}, and Y are random variables taking values in a Polish space X, then Y,
converges to Y in distribution if for every continuous function G : X — R,

Jm E(G(Yy)) = E(G(X)).

Here E denotes the expectation with respect to the relevant probability measure of the
space on which the random variable is defined on.

THEOREM L.1. (See Theorem 2.10) For every ergodic and aperiodic probability-preserving
system (X,B,m,T), a >1 and B € [—1, 1], there exist a function f :X — R and
B, — oo such that

S B
% converges in distribution to S, (/1n(2), 8, 0).
n

A process W = (WS)S €[0.1] is an Sy (o, B,0) Lévy motion if it has independent
increments and for all 0 <s <t <1, W, — Wy is So(c%¥/t —s, B,0) distributed. The
existence of an S, (o, B, 0)-stable motion can be demonstrated via a functional CLT (also
called a weak invariance principle); the details given below appear in [10].

Consider the vector space D([0, 1]) of functions f :[0,1] - R which are
right-continuous with left limits, also known as cadlag functions. Equipped with the
Skorohod J; topology, D([0, 1]) is a Polish space. Now a natural construction of a
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distribution on D([0, 1]) is to take X1, X», ..., an i.i.d. sequence of random variables
and a,, > 0 and define a D ([0, 1])-valued random variable W,, via

W, () = anS[nt] (X)

where S, (X) := ZZZI X and [-] is the floor function. By [10, Corollary 7.1.], if X; are
Se (o, B,0) and a, = n~1/% then W, converges in distribution (as a sequence of random
variables on the Polish space D([0, 1]) with the J; topology), its limit being an S, (o, 8, 0)
Lévy motion. The main result of this work is such functional CLT results in the setting of
dynamical systems.

THEOREM 1.2. Let (X, B, m,T) be an ergodic and aperiodic probability-preserving

system.

(Theorem 2.5)  For every o € (0,1), 0 > 0 and B € [—1, 1], there exists f : X - R
such that W, (f)(t) := (l/nl/“)S[m](f) converges in distribution to an
Sq (0, B, 0) Lévy motion.

(Theorem 2.6)  For every a € [1,2) and o > 0, there exists f: X — R such that
WL (f)(@) = (l/nl/“)S[m](f) converges in distribution to an SyS(0)
Lévy motion.

We remark that while the results in Theorem 2.5 provide a function f whose partial
sum process W, (f) converges to an S, (¢/In(2), B, 0) Lévy motion, the scaling property
of a-stable distributions gives that, writing ¢ := o /¢/In(2), W, (cf) converges to an
S« (o, B, 0) Lévy motion. A similar remark is true with regard to Theorem 2.6.

1.2. Notation. Here and throughout, log(x) denotes the logarithm of x in base 2, and
similarly In(x) is the natural logarithm of x.

Given two non-negative sequences a, and b,, we write a, < b, if there exists C > 0
such that a,, < Cb,, for all n € N; and if, in addition, b,, > 0 for all n then we write a, ~ b,
if lim,— 00 (an/bn) = 1,

For a function f : X — Rand p > 0, | fll, := ([ |f|? dm)'/P.

2. Construction of the function
2.1. Target distributions. Let (2, F, IP) be a probability space. Let {X;(m) : k, m € N}
be independent random variables so that for every k € N, X (1), Xx(2), Xx(3), ... are
i.id. Sy (o%, 1, 0) random variables with o = 1/k.

For every k, m € N, define Yi(m) = Xx(m)1 ot <x, ;n)<4t) and its discretization on a
grid of scale 4% defined by

42k

J
Zemy =) <4_k)1[(j/4k>sYk(m)<<j+1)/4k1-
j=2k4k

The following fact easily follows from the definitions.
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Fact 2.1. Forevery k € N, Z; (1), Zy(2), . . . are i.i.d. random variables supported on the
finite set {2]‘, 2k pa=k 4"}, and forall m € N,

0 < Yi(m) — Zi(m) <47

The construction of the cocycle will hinge on realizing a triangular array of the Z
random variables in a dynamical system.

2.2. Construction of the function. Let (X,B,m,T) be an ergodic, aperiodic,
probability-preserving system. We first recall some definitions and the copying lemma
of [8] and its application as in [9].

A finite partition of X is measurable if all of its pieces (atoms) are Borel-measurable.

Recall that a finite sequence of random variables Xi,..., X, : X — R, each taking
finitely many values, is independent of a finite partition P = (P)pcp if for all s € R”
and P € P,

m((X))I_; = 5|P) = m((X;)'_; = ).
We will embed the triangular array using the following key proposition.

PROPOSITION 2.2. [8, Proposition 2] Let (X,B,m,T) be an aperiodic, ergodic,
probability-preserving transformation and P a finite-measurable partition of X. For

every finite set A and Uy, Uy, . .., U, an i.i.d. sequence of A-valued random variables,
there exists f : X — A such that (f o Tj)'j’;(l) is distributed as (Uj)';_ and (f o Tj)';;(l)
is independent of P.

Using this, we deduce the following corollary.

COROLLARY 2.3. Let (X, B,m,T) be an aperiodic, ergodic, probability-preserving
transformation and (Z(j)) (keN.1< <4 ée the triangular array from §2.1 . There exist
functions fi, gk : X — R such that (fy o Tj_l){kEN,1§j§4k2} and (gr o T/~
are independent and each is distributed as (Zy(j )){

1){keN,1§j§4k2}
keN,1<j<ak?}
Proof. The sequence (Zk(m))neN’1<m<2. 42 18 a sequence of independent random vari-
ables and for each k, (Z(m)) | <m<n.4k2 A€ i.i.d. random variables which take finitely many
values.

Proceeding verbatim as in the proof of [9, Corollary 4], one obtains a sequence

of functions fr: X — R such that (f;o TJ'_l){keN 1< j<2.412) is distributed as
. . K2 T
(Zk(])){keN,1§j§2~4k2}' Setting gx = fx o T* concludes the proof. O

From now on let (X, B, m, T) be an aperiodic, ergodic dynamical system and ( fk),fil
and (gx);- ; the functions from Corollary 2.3.

LEMMA 2.4. We have that #{k € N : fi # 0 or gx # 0} < oo, m-almost everywhere.

Proof. Since fi and gp are Z;(1) distributed and X (1) is Sy (0%, 1, 0) distributed, it
follows from Proposition A.l that
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m(fi #0orgr #0) <m(fi #0) +m(gk #0)
=2P(Zk(1) #0)

2—ak
<2P(Xx(1) > 25 <C o

where C is a global constant which does not depend on k. Using the union bound and
stationarity, the right-hand side being summable, the claim follows from the Borel-Cantelli
lemma. N

In what follows, we assume that o € (0, 2) is fixed and f; and gi correspond to the
functions in Corollary 2.3. In addition, we write for 4 : X — Randn € N,

n—1

S (h) = Z hoTk.

k=0
Define

f

o o0
Z Jk and g = Z 8k-
k=1

k=1
Note that by Lemma 2.4, f and g are well defined as the sum in their definition is almost

surely a sum of finitely many functions. Recall that the (rescaled) partial sum process of a
function s : X — Ris

1
W, (h)(@) = ms[nt](h)’ 0<r=<1

THEOREM 2.5. Assume 0 < « < 1. Fix B € [—1, 1] and define

1+ 8 1/a 1-8 1/a
hy = —— - —
k < > ) Tk > 8k
1+/3 1/a 1— :3 1/a o0
hi=|— - — = .
< > ) f 5 g=Y hi
k=1
W, (h) =¢ W where W is an S, (In(2), B, 0) Lévy stable motion.

We also have a functional CLT version for general @ € (0, 2) when the limit is SaS.

2
Recall that the functions f; and g are related by g = fi o T4
THEOREM 2.6. Assume o € [1, 2). Define

hic:= fi — 8k
o0
hi=f—g=>Y h.
k=1
W, (h) = W where W is an S S(%/2n(2)) Lévy motion.

2.3. General CLT for a > 1. Recall that a coboundary for a measure-preserving
transformation is a function H such that there exists a function G, called a transfer function,
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such that H = G — G o T. The resulting cocycle (sum process) of the coboundaries
Jfx — gk from the proof of Theorem 2.6 converges to a symmetric «-stable distribution.
To get a skewed «-stable limit we thus use a different kind of coboundaries as described
below. Set Dy 1= 4ok

1 Dy—1
— J
Ok 1= Dr ZO feoT
j:

and hy := fx — ¢r. We note that the i and & in this subsection denote different functions
than in the previous subsection.

LEMMA 2.7. If o € (1,2), then Z,ivzl hy converges in LY(m) and almost surely as
N — oo.

Proof. By Fubini’s theorem it suffices to show that Y p> | [ || dm < oo.
To that end, for a fixed k£ we have

Dp—1

1 .
[tan < [igiam+ 53 [1neriian=2 [ inian.
Dy s

where the last equality is true as T preserves m. Next f; and Z; (1) are equally distributed
and

Zi(1) = Yie(1) < Xe(D11x, (1)>24-

As o > 1, it follows from this and Corollary A.3 that there exists C > 0 such that for all
k eN,

/ | fxl dm = E(Zx (1))
Sk(1—a)

<SEXcM1x, ys2t) = C r

‘We conclude that
X Hk(l1—a)

o0
k;/mkmmgck; — <00 O

Following this, we write h = Z,fil hj and throughout this subsection and §5, & always
corresponds to this function. Note that for every k € N, E(Xx(1)1{x, (1)<2+7) exists, and
write

(1/a) log(n)

Bn =n Z E(Xk(l)][xk(l)fzk])
k=(1/2a) log(n)

THEOREM 2.8. Assume o € (1,2). (Sy(h) + B,)/n'/* converges in distribution to an
Se(n(2), 1, 0)) random variable.

The following claim gives the asymptotics of B,,.
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CLAIM 2.9. For every a € (1, 2), there exists cq > 0 such that B, = can(log(n))lfl/“
(I+o(l))asn — oc.

Proof. Recall that oy = k=Y Since Zk/ak — 00 as k — oo, it follows from the
monotone convergence theorem that if Z is an S (1, 1, 0) random variable, then

lim E(Z1, z<0k) = E(Z) =: 0y > 0.
k— 00
Now for every k, Xi(j) and oy Z are equally distributed. Consequently,

]E(Xk(l)l[xk(l)gzk]) = akE(Zl[ngSZk]) = okNe (1 + 0k—oo(1)).

The claimed asymptotics now follows from this and

(1/a) log(n) 1 1-1/a
Yo a~ (- 10g(n)> (1=2Y¢"1y asn - 0. 0O
k=(1/2a) log(n) o
Now write
Dy—1
D o j
hy == gk Dy X(:) gkoT
j:

~ ~ ~ ~ 2
and h := Z,fil hy. Note that & is well defined as for all k, hy = hj o T4k so & is a limit
in L' by Lemma 2.7.

THEOREM 2.10. Assume o > 1. Fix B € [—1, 1] and define

1/a _ 1/
H o= (@) h (M) .
2 2

Then 1/nY*(S,(H) 4+ B,((1 + B)/2)V* — (1 — B)/2)'/%)) converges in distribution to
S, (In(2), B, 0).

2.4. Strategy of the proof of Theorems 2.5 and 2.6. The proof starts by writing for

v e ih, f,gh
Wa(y) =W @) + WM ) + Wl (y) (1)
where
(1/a) log(n)
WMy = Y W@,

k=(1/2a) log(n)+1
(1/2a) log(n)

WY@ = Y Wa,
k=1

WPy = > Wi

k=(1/a) log n+1
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Writing || - ||eo for the supremum norm, we first show that ||W,SS) (h)]|co and ||W,(,L) M)l oo
converge to 0 in probability, hence the two processes converge to the zero function in the
uniform (and consequently the J;) topology.

Next we show that Wf,M) (h) converges in distribution (in the Jj topology) to the correct
limiting process.

Finally, we use Slutsky’s theorem, also known as the convergence together lemma, in
the (Polish) Skorohod J; topology, to deduce the weak convergence result for W,, (h).

LEMMA 2.11. Let A,, B, and W be DI[0, 1]-valued processes such that A, =40 in
the uniform topology and B, = W in the Ji topology. Then A, + B, =% W in the J;

topology.

We remark that Lemma 2.11 follows from [2, Theorem 3.1.] and the fact that the uniform
topology is stronger than the J; topology on DIO0, 1].

3. Proof of Theorem 2.5

We carry out the proof strategy as stated in §2.4. In what follows (X, B, m, T) is an
ergodic, aperiodic probability-preserving system, 8 € [—1, 1], @ € (0, 1) is fixed and the
functions f; are as in Theorem 2.5.

This section has two subsections. In the first we prove results on Wfls)( ), W;M) and
Wf,L)( f). These results combined prove Theorem 2.5 in the totally skewed to the right
(B = 1) case. In the second subsection we show how to deduce Theorem 2.5 from these
results.

3.1. Casepf =1.
LEMMA 3.1. We have lim,_, oo m(|W (£)]loo # 0) = 0.

Proof. The statement follows from the inclusion

00 n—1

IWP Al 201 | YlfoT! £01.

k=(1/a) log(n)+1 j=0

Therefore,

oo n—1
mIWP (Do 20 < D D m(fioT/ #£0)
k=(1/a) log(n)+1 j=0

= > nm(fi#0)

k=(1/a) log(n)+1

Cn Z k’

k=(1/a) log(n)+1

IA

https://doi.org/10.1017/etds.2025.17 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.17

Stable functional CLT for deterministic systems 3201

where the last inequality is from the proof of Lemma 2.4. The result now follows since

> 2—ak 1

n Z < 0, O
k=(1/a) log(n)+1 k log(n) oo

LEMMA 3.2. The random variable |IW£,S) (H)lloo converges to 0 in measure.

Proof. Recall that for all k € N, f; is distributed as Zx (1), whence f; > 0 and

1 (1/2a) log(n) , [nt]—1
- J
/e ) ( > JfeoT )‘
j=0

WS (f)lloo = max

0<r<1

k=1
(1/2a) log(n) n—1

1 .
= Ll Z (kaOTj)
=0

k=1

Forevery k, j € Z, fx o T/ is distributed as Zx (1) and
0 < Zk(1) < Xe(Wp<x, (1)<ak-
By Corollary A.2, there exists C > 0 such that for all k, j € N,

| fi o T/ [l1 = E(Zk(1))

4k(1—-a)
=< E(Xk(l)l[osxk(1)54k]) <C T
Consequently,
(1/2a) log(n) n—1
WS Plloslls <n™ 37 Y fio T
k=1 =0
(1/2a) log(n) 1—a)k
4= 1
<n V3 Cn < 0
k log(n) n—o0

k=1

A standard application of the Markov inequality shows that ||W§LS)( oo converges to 0
in measure, concluding the proof. O

The rest of this subsection is concerned with the proof of the following result for
W (f).

PROPOSITION 3.3. The random variable W;M)( f) converges in distribution to W, an
Se W 1n(2), 1, 0) Lévy motion.

ForV e {X,Y, Z} and k, n € N, define

Sa(Vi) =Y Vi(i)-
j=1
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We introduce the following D[0, 1]-valued processes on (€2, F, P):

(1/e) log(n)

W) = S Sz
k=(1/2a) log(n)+1
1 (1/e) log(n)
WM ) = > S (),
k=(1/2a) log(n)+1
1 (1/ex) log(n)
WM )@ = 7 > Sun(Xe()).

S

k=(1/2a) log(n)+1

The reason for their definition is the following lemma.
LEMMA 3.4. The random variables W;M) (f) and W;M) (Z) are equally distributed.

Proof. By the definition of fi, {froT/7': ke N, 1< j <4 and {Zy(j): k e N,
1 < j < 4%} are equally distributed.
The function G, : erN R“k — DJ[0,1] defined for all 0<¢t<1 and
. Ak
k() ke, 1<j<at € [Treny R** by
(1/a) log(n) [n1]

1
Gk () kem, 12j<a) () = — S > a()

k=(1/2e) log(m)+1 j=1
is continuous.
AS G ((fi o TIY) pen, 1<j<at) = WP (f) and similarly Gy (Zk () gen, 1<j<4t) =
Wf,M) (Z), the claim follows from the continuous mapping theorem. O

Using this equality of distributions, it suffices to show that WE,M)(Z) converges in
distribution to an Sy (1, 1, 0) Lévy motion. This follows from the convergence together
lemma (Lemma 2.11) and the following result.

LEMMA 3.5. The following two properties are satisfied.
(@) The sequence of random variables ||W,EM)(X) — W,EM)(Z)HOO converges to 0 in

measure.
(b)  The sequence of D|0, 1] valued random variables W,EM)(X ) converges in distribu-
tion to an Sq(/In(2), 1, 0) Lévy motion.

Proof of Lemma 3.5(a). For every k, m € N (noting here that as o < 1, a skewed «-stable
random variable is non-negative),

0 < Zi(m) < Yi(m) < Xy (m).

We deduce from this and the triangle inequality that

(1/a) log(n)
WM (X) = WM (Z)[loo < n™ !/ Do (Sa(Xp) = Su(Z0).
k=(1/2a) log(n)+1

We will show that the right-hand side converges to 0 in probability.
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Firstly 0 < o < 1, hence for all k > (1/2a) log(n), n < 4*. Consequently, by Fact 2.1,
0<S(Yx) — Sp(Zy) <nd™F < 1.

‘We conclude that

(1/a) log(n) log ()

I i=n"/" > (S (V) = $u(Z) S — 57 )

k=(1/2a) log(n)+1
Secondly,
(1/a) log(n)
n” ! Yo (Su(Xp) = Sy (Ye)) =11, +1II,
k=(1/2a) log(n)+1
where
Vk(m) = Xk(m)l[Xk(m)>4k]’ f/\k(m) = Xk(m)l[xk(m)§2k]’
and

(1/a) log(n)
my=n~'* 3" SV,
k=(1/2a) log(n)+1
(1/a) log(m) _
L, :=n~1/* > S (Vi).
k=(1/2a) log(n)+1
Similarly to the proof of Lemma 3.1,
(1/a) log(n) n

PAL £0) < Y. Y PXG() > 45

k=(1/2e) log(n)+1 j=1
(1/a) log(n) 4—ker 1

<Cn > < ,
k=(1/2a) log(n)+1 k log(n)

showing that [T, —— 0 in probability.
n—oo
We now fix ¢ <r < 1 and ¢ > 0. Note that by Corollary A.2 there exists a global
constant C so that for every k and m,

N Zk(r—a)
E((Vk(m))") < C P

By Markov’s inequality and the triangle inequality for the r’th moments,

P(L, > &) < E((L,) )"
(1/a) log(n) n

s N Y EG))

k=(1/2a) log(n)+1 j=1

(1/a) log(n) k(r—
Ss—rnl—r/a 2 (= < o7 1

k=(1/2a) log(n)+1 log(n)
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We conclude that II, —— 0 in probability. Finally, we conclude the proof as we have
n—od

WM™ (X) — WM (Z)lo <1, + 11, + 111,

and each of the terms on the right-hand side converges to O in probability. O

Proof of Lemma 3.5(b). Forall0 <t <1
WM X)) = n* Sy (Vi)
where for j € N,

(1/a) log(n)
Va(j) = > X

k=(1/2a) log(n)+1

We claim that V,(1), V,(2),..., V,(n) are i.id. Sy(A,, 1,0) random variables with
lim; 50 (A,)* = In(2).

Indeed, since o < 1, we deduce that for all £ > (1/2«) log(n), we have 4k > .
The independence of V,,(1), V,,(2), . . ., V,,(n) readily follows from the independence of
{Xe(m) ik e N, m < 4F).

Now forall 1 < j <nandk € ((1/2) log(n), (1/a) log(n)], Xx(j) is an Sy (0%, 1, 0)
random variable with (o3)* = 1/k. As V,,(j) is a sum of independent S, (o%, 1, 0) random
variables (and « # 1), it follows from [11, Properties 1.2.1 and 1.2.3] that V,,(j) is
Sy (Ay, 1, 0) distributed with

(1/@) log(n)
(A)* = Z - ~1InQ2) asn — oo.
k=(1/2a) log(n)

We will now conclude the proof. Write a, := (ln(2))1/“/An and define W,(¢) :=
a,,Wf,M) (X)(t) so that W, is the partial sum process driven by the random variables,
a,V,(1),...,a,V,(n).

As the latter are i.i.d. Sy (In(2), B, 0) random variables, this shows that W,, is equally
distributed as W, (V) where (V (j ))?‘;1 are i.i.d. S, (In(2), 1, 0) random variables.

By [10, Corollary 7.1] W, (V) (and hence W,) converges in distribution to an
Sy (In(2), 1, 0) Lévy motion.

Since WflM)(X ) = (ap)~'W, with a, — 1, we conclude that WE,M) (X) converges in
distribution to an S, (¢/In(2), 1, 0) Lévy motion. O

3.2. Concluding the proof of Theorem 2.5. We now fix @ € (0, 1) and 8 € [—1, 1] and
set hy, h as the functions from Theorem 2.5 corresponding to 8. We claim that W, (h)
converges in distribution to an Sy (In(2), 8, 0) Lévy motion.

We deduce this claim from the results on the skewed 8 = 1 case via the following
lemma.
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LEMMA 3.6.

(@) The sequence of D[O0, 1] x D[O0, 1] valued random variables (Wf,s) ), W,(,S) (2)
converges in distribution (in the uniform topology) to (0, 0).

(b) The sequence of D|0, 1] x D[O0, 1] valued random variables (W,gM)(f), Wf,M) (2)
converges in distribution to (W, W) where W, W’ are independent S, (¢/In(2), 1, 0)
Lévy motions.

(¢) The sequence of DIO0, 1] x D[0, 1] valued random variables (W,(}‘)(f), W,(}‘) (2)
converges in distribution (in the uniform topology) to (0, 0).

Proof. For all k € N, fi and gr are equally distributed. Following the proofs of
Lemmas 3.1 and 3.2 we see that || W,§S) (g)lloo and || W,gL) (2)]loo tend to O in probability as
n — oo. Parts (a) and (c) follow from this and Lemmas 3.1 and 3.2.

Now for all n € N, W,gM)( f) and WE,M) (g) are independent and equally distributed.
Part (b) follows from this and Proposition 3.3. O

We have the following immediate corollary.

COROLLARY 3.7. The following three properties are satisfied:

@ WS )]s — 0 converges in measure;
(b) W,gM) (h) converges in distribution to an S, (¥/In(2), B, 0) Lévy motion;
© W) oo — 0 in measure.

B l+}3 1/a l—ﬁ 1/a
SO(X,)’)—(T) X—<T) y

and write cg := (((B + D/2)Ve — (1 = g)y/2)l /).
ForeachD € {S,M, L},and alln € N,

Proof. Set

e(WP (), WP (g)) = WP (hn).

Parts (a) and (c) follow from Lemma 3.6(a) and (c) since for all x, y € R, |p(x, y)| <
lx| + [yl.

Let W, W’ be two independent S, (¢/In(2),1,0) Lévy motions. It follows that
W= = (W, W ) is a process with independent increments. By [11, Property 1.2.13],
for all s <t, W) —W(s) is Su (&) — ), 1,0) distributed, whence W is an

Se W 1n(2), B, 0) Lévy motion.

Since ¢ is continuous, Lemma 3.6 and the continuous mapping theorem imply that
WM (), WM (9)) = WM ()
converges in distribution to W and the proof is concluded. O

Proof of Theorem 2.5. By Corollary 3.7(a) and (c), W (h) + W (h) converge in
distribution to the zero function. The theorem then follows from (1), Corollary 3.7(b) and
Lemma 2.11. O
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4. Proof of Theorem 2.6

Let o > 1. The strategy of the proof goes along similar lines. However, there is a major

difference in the treatment of Wfls) as the L' norm does not decay to 0. For this reason we

retort to a more sophisticated L? estimate and make use of the fact that for all k, Ay is a

T4k2 coboundary.

In what follows, 1 < @ < 2 is fixed, h; and & are as in the statement of Theorem 2.6
and the decomposition of W,, (/) to a sum of Wﬁ,s) (h), W,(qM) (h) and W;L) (h) is as before.
We write di, := 4"2.

LEMMA 4.1. We have limy— oo m(|W (h)]lco # 0) = 0.

Proof. The statement follows from the inclusion

00 n—1
HWS Ml £01c | UlhoT/ #£0 or fioT%H 0],
k=(1/a) log(n)+1 j=0
In a similar way to the proof of Lemma 3.1, we have

e¢]

PAWE Wl 200 < > 2n-m(fi #0) S

k=(1/a) log(n)+1

SN
log(n) n—oo

As before, we also have the following lemma.
LEMMA 4.2. The random variable ||W£,S)(f) lloo converges to 0 in measure.

The proof of this lemma when 1 <o <2 is more difficult than the analogous
Lemma 3.2. It is given in §4.2.

PROPOSITION 4.3. The sequence of D[0, 1] valued random variables W,SM) (h) converges
in distribution to W, an So S(¥/1In(2)) Lévy motion.

Assuming the previous claims, we can complete the proof of Theorem 2.6.

Proof of Theorem 2.6. By Lemmas 4.1 and 4.2, ||W,(18) + W;L) |loo converges in probability
to 0. The claim now follows from Proposition 4.3 and Lemma 2.11. O

In the next two subsections we prove Proposition 4.3 and Lemma 4.2.

4.1. Proof of Proposition 4.3.  We introduce the following DJ[O0, 1]-valued processes on

(Q, F,P):
1 (1/a) log(n)
W (@@ =~ > Stnl(Zi () = Zi(- + di)),
k=(1/2a) log(n)+1
1 (1/a) log(n)
W)@ = — > Start (Y () = Yi(- + di)),

k=(1/2) log(n)+1
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(1/a) log(n)
WM 0@ = — Do Sun(X() = Xkl + du).
k=(1/2a) log(n)+1

The following is the analogue of Lemma 3.4 for the current case.
LEMMA 4.4. The random variables W,(QM) (h) and WflM) (Z) are equally distributed.

The proof of Lemma 4.4 is similar to the proof of Lemma 3.4, with obvious
modifications. We leave it to the reader. Proposition 4.3 follows from Lemma 4.4 and
the following result.

LEMMA 4.5. The following two properties are satisfied.

(@) The sequence of random variables ||W,(1M) (X)) — (WfZM)(Z))HOO converges to 0 in
measure.
(b)  The sequence of D|0, 1] valued random variables W,gM) (X) converges in distribution

to an Sy S(/2 In(2)) Lévy motion.
Consequently, W,(QM) (Z) converges in distribution to an S, S(3/2 In(2)) Lévy motion.

Proof of Lemma 4.5(b). Forall0 <t <1,
WM X) (1) = n S (Vi)

where for j € N,

(1/a) log(n)
Vi) = ) (Xk() = Xa(J + di)).
k=(1/2a) log(n)+1
We claim that for all but finitely many n, V,,(1), V,(2), ..., V,(n) are i.i.d. S¢S(A,)

random variables with lim,, _, 5o (A4,)% = In(2).

Foralln > 2% ifk > (1/2w) log(n), we have dy > n. For all such n, the independence
of V,(1), ..., V,(n) follows from the independence of {Xi(j): ke N, 1 < j <2-di}.
We will now calculate its distributions.

Forall 1 < j <mnand k > (1/2a) log(n), Xx(j) — Xk(j + dk) is a difference of two
independent S, (k=2 1, 0) random variables. By [11, Properties 1.2.1 and 1.2.3], it is
SaS((2/ k)l/ %) distributed. As V,,(j) is a sum of independent S, S random variables, we
see that V,,(j) is S¢S(A,) distributed with

(1/a) log(n)
(Ap)Y = Z £ =2l +o(1) asn— oo
k=(1/2a) log(n)
This concludes the claim on V,,(1), . . ., V,(n). The conclusion of the statement from here
is similar to the end of the proof of Lemma 4.5(b). ]

Proof of Lemma 4.5(a). We assume n > 2% so that for all k > (1/2) log(n), dy > n.
Firstly, since for all k € N and j < 24y,

0 < Yi(j) — Zi(j) <47%,
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we have

(1/a) log(n)
n WM () — (WM(2)) oo < > Su(Yi() = Zi ()
k=(1/2a) log(n)+1
(1/a) log(n)
+ > Sp(Yi (- 4 di) = Zi (- + dy))
k=(1/2a) log(n)+1

(1/a) log(n)
<2n Z 471{5,117]/0[.
k=(1/2a) log(n)+1
Consequently,
WM™ (1) = WM (Z) oo < n' =2 — 0. 3)
n—oo

We now look at W™ (x) — W™ (y) Forall0 <t < 1,

WM (X)(r) = WM (Y)(r) = 1L, (1) + 1ML, (),

where
Vim) = Xi(m)1x omy»aty = Xic(m +di) 1 (m+di)>441°
(1/e) log(n)
V(m) := Z (Xi(m) Ly, omy<at) — X (m + dk)l[xk(n1+dk)<2k]),
k=(1/2a) log(n)+1 -
and

I, (1) := n~ oSy (V),
(1/a) log(n)

W, =n" 5 S
k=(1/2e) log(n)+1

Similarly to the proof of Lemma 3.1,

(1/a) log(n) n
P(there exists 7 : 11T, () # 0) < Z Z P(Vi(j) # 0)
k=(1/2a) log(n)+1 j=1
(1/a) log(n) n

< D D PXam) > 45

k=(1/2a) log(n)+1 j=1
+P(Xi(m + di) > 45))
(1/a) log(n)

<2c < .
~ o 2. Kk~ log(n)
k=(1/2a) log(n)+1
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Now V( j), 1 < j < n, are zero-mean, independent random variables. By Proposition A.4,
they also have second moment and forall 1 < j <n,

(1/a) log(n)
EV(HHS2 > B Ly <o)
k=(1/2a) log(n)+1

(/o) logm) 5 2—a)k - p2/e—1

S  ~ . “)
k=(1/2a) log(n)+1 Og(n)
It follows from Kolmogorov’s maximal inequality that for every € > 0,
P(max |IL,(1)] > €) = P( max |S,,(V)| > en'/%)
0<t<l I<m=n
< e 2 n RS, (V)P
_ 20 -2/ T1y2
=¢e “n nEV (1 i
GEVON S o
Here the first equality of the last line is true as \7(1), R V(n) are independent, zero-mean

random variables with finite variance. This concludes the proof that
[, llcc ——> O in probability.
n—>oo

The claim now follows from (3) and the convergence in probability of II,, III,, to the zero
function. O

4.2. Proof of Lemma 4.2. We first write
WS (h) = WV (n) + WIS ()

where

4/ log(n)
WY h) = Y W,
k=1

(1/2) log(m)
WSm = Y W
k=4/log(n)+1
The reason for this further decomposition is that di > n if and only if £ > /log(n) so
that only in the very small (VS) terms do we no longer have full independence in the
summands. The proof that W,(,LS) (h) tends to the zero function is quite similar to the proof

of the last part in Lemma 4.5(a) while the proof of the other term makes use of the fact
that we are dealing with coboundaries.

LEMMA 4.6. The random variable ||W,(,LS) (h)|loo converges in measure to 0.
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Proof. Write

(1/2a) log(n)
Yni= Y. (fi— fuoT%).
k=4/log(n)+1

‘We have that:

e Y,oT/, 1<j<n, are independent (since dy > n for all k in the range of
summation), bounded and f Y, dm = 0;

o forall £, WS> () (r) = n="/% S (Yrn).
By Kolmogorov’s maximal inequality, for all € > 0,

m(JWES ()| > €) = m( max |Si ()| > enl/®)
<k=<n

_ IS5 _

-2 1-2/a 2
=€ n N
62n2/a ||wn||2

where the last equality follows from S, (/,,) being a sum of zero mean, square integrable,
independent random variables. We will now give an upper bound for ||1,D,,||%. Firstly,

{fi — fko T% : k> Jlog(n)} is distributed as {Zy(1) — Zx(dr + 1) : k > /log(n)}.
Using in addition that for all k € N,

Zi(1) < Yi(1) < [ Xe(D)l1x, 1y <at),
we observe that
(1/2a) log(n) 2
A =1E<< Y (@) -z +dk>>) )
k=1/log(n)+1
(1/2a) log(n)
= Y E(Z() - Ze(1 +dp))
k=+/log(m)+1
(1/2a) log(n)
<4 ) E(Z))
k=4/log(m)+1
(1/2¢) log(n)
<4 Z ]E(le(l)|21[Xk(1)§4k]) (by Proposition A.4)
k=4/log(n)+1

(1/20) o) 2k _ e

k"~ log(n)’

<4
k=4+/log(n)+1

Plugging this into the previous upper bound, we see that for all € > 0,

-2

m(IWES () [l oo > €) < e 20! 72y |13 <

)

—
log(n) n—oo

proving the claim. O
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‘We now treat WS,VS) (h). As before, we define

+/log(n)
oni= Y (fi— fioT™,

k=1

so that for all ¢ € [0, 1], Wf,vs) (h) = Sn (<.0n). It is no longer guaranteed that
Ons - -, @p o T are independent. For this reason we can no longer bound the maximum
using the Lévy inequality and we will make use of a more general maximal inequality.
The first step involves bounding the square moments of random variables and we make
repetitive use of the following most crude bound.

CLAM 4.7. Let Uy, U, . .., Uy be square integrable random variables. Then

N N
EO)"UpH <N Y E(U)D.

j=1 j=1

LEMMA 4.8. There exists a global constant C > 0 such that for all 1 <1 < j <n and

I <k < /log(n),

d din 2 42—k
1S;(fk = fko T™) = Si(fi — fu o T™)|I3 < C(j = 1)

k'

Proof. Let uy = f fx dm and write Fy := f; — uk. Forevery j <n,
Sj(fi = fi o T%) = Sj(Fx = Fro T%)
= Smin(j.de) (Fk) — Smin(j ) (Fic) o T3040,
Consequently, forevery 1 </ < j <n,

Si(fe — feo T%) — Si(f — fuo T%) = A + B,

where
SIT BT, 1< <ds.
A=\ FooTr, I<di <,
0, otherwise.
and
= Xl Feo T, I<=d
S FeoTr = Sl Feo T, l<di<j<l+d,
T Z;lleOTr_Z(rj:zriZ;l]FkoTr’ Jj—l=dc <l <],
ZZ:gfa;(lj,dk) FeoT" =Y M RooTr, j—1> dy.

https://doi.org/10.1017/etds.2025.17 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.17

3212 Z. Kosloff and D. Volny

We will next show that there exists a constant C such that
2—a)k

IAIZ, 1Bl <4C(j — 1) —

&)
The statement follows from this and Claim 4.7.
Recall that forall0 < L <dpand M € N,

M+L—1
Sp(F)oTY = Z FroT"
r=M

is a sum of i.i.d. zero-mean square integrable random variables. We deduce that so long as
L < dy,
ISL(Fi) o T3 = LI Fill3.

A similar argument as in the proof of Lemma 4.6 shows that there exists ¢ > 0 so that

5 —a)k
| Fillz o< Nl fll2 < ¢

We conclude that there exists ¢; > 0 such that forall L < d; and M € N,

4(2701)1(
ISL(Fi) o TY |3 < oL — (6)

Noting that in the definition of A all terms on the right are of the form Sy (F¢) o TM with
L < di, we observe that

5 2—a)k ] — L l < ] = dk,
Ally < c2 di —j, l<dp <},
0, otherwise,
and thus
5 . 42—k
IAl; < e2( =D ——
Now by Claim 4.7,
I1Sj—i(Fy) o T%]|3, I <j<d,
1812 < | 2USi-aFO o THIR +18j 1 (Fiy o T™HIE). - I <dy < j <1+ dy.
2 = . .
2018 —1(Fi) o THI3 + 1I1Sj—1(Fx) o T%H|3), j-l<di<l<]j,

2| Smin(t,dy) (Fx) © T4 2 4|18y (F) o THI3),  j —1 > di.

A similar argument to that for || A ||% shows that

(=D, Il <j<d,
1BIE < ot |2 —d) + (G = D), IS de<j <+ de,
T 4G =1 j-l<di<l<],

2(min(l, di) + di), Jj—1>d,
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and
4(2—a)k

IBI3 < 4e2(j — 1)
This concludes the proof. O

COROLLARY 4.9. For every k > 0, there exists C > 0 such that forall 1 <1 < j <n,
1S (¢n) = Si()3 < € = D"
Proof. By Claim 4.7,

+/log(n)
15 (@n) = Si(@a) 13 < Viog(m) D ISj(fi — fi o T%) = Si(fx — fi o T™)II3.
k=1

Plugging in the bound of Lemma 4.8 on the right-hand side we see that there exists C > 0

such that
A/ log(n) 4(2—a)k
15 (@n) — Si(@a)ll3 < C(j — Dy/logn) > —
k=1
Since
e 4wk 424/log(n) K
S < ,
ok Jlog(n) — \/log(n)
the claim follows. O

LEMMA 4.10. The random variable ||W,(1VS) (h)||co converges in measure to 0.
Proof. Let e > 0. We have

(VS) _ . 1/a
m(IW (h>||oo>e>—m(1§f§n|s,(<pn)|>en ).

Fix k¥ > 0 small enough so that « + 1 < (2/«). By Corollary 4.9 and Markov’s inequality,
foralll </ < j<n,

m(|S;(¢n) = Si(en)l > en'/®) < Ce2(j — Dn 2.
By [2, Theorem 10.2] with 8 = % and u; := +/Cn*/?71/2,

m( max |S;(¢n)| > en'/?) < Ce2plte2e 0. O
l<j=n n—>oo

Proof of Lemma 4.2. The conclusion follows from Lemmas 4.6 and 4.10 and the triangle
inequality. O

5. Skewed CLT for a € (1, 2)

Assume o« € (1,2) and (f;)72, are the functions from Corollary 2.3 where Xy (j) are
Se /171, 1,0) random variables and Z(j) is the corresponding discretization of the
truncation Yz (j). Recall that Dy := 4ok
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1 Dy—1
@k = —— Z fioT/,
Dy, =0

hy := fx —grand h = Z,fil hi. The function % is well defined by Lemma 2.7.
We aim to show that

Su(h) + By

e = Sn(2), 1,0),

where

(1/a) log(n)

Byi=n Y EXDIgm<):
k=(1/2a) log(n)

5.1. Proof of Theorem 2.8. The strategy of the proof starts with the decomposition,
Su(h) + By = S2 (1) + S () + SE () = Valp) (7

where

(1/2a) log(n)
SO = Y Sulh),
k=1
(1/a) log(n)
SM(f) =8B+ Y, Sulfi— f fidm),
k=(1/2a) log(n)+1
o0

sPH= Y  Sufi— / fidm),
k=(1/c) log(n)+1
Valp) = > Sulgk— j i dm).

k=(1/2a) log(n)+1

Note that in deriving (7) we used that for all k € N, [ fy dm = [ ¢xdm and that both
Z,](v:l fx and Z,]CVZI ¢ converge in L' (m) as N — oo.

The proof of Theorem 2.8 is by showing that when normalized, three of the four
terms converge to 0 in probability and the remaining one converges in distribution to an
S« (n(2), 0, 0) random variable.

LEMMA 5.1. We have
lim m(S{P(f) #0) = 0.
The proof of Lemma 5.1 is similar to the proof of Lemma 3.1 and is thus omitted.
LEMMA 5.2. The sequence of random variables n='/*V, (¢) converges to 0 in probability.

The proof of Lemma 5.2 begins with the following easy calculation.
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Fact 5.3. If n < Dy then

. Dp—1
Sn(‘Pk)—Z] fkon+— Z fkon+Z fkoTDk+f—1. (8)
j=n—1
If D; < n then
j Dy—1
Sa(pr) = Z fk o o™= (9)
j Dk 1

Since f; and Zi(1) are equally distributed and Z; (1) < Y (1), the next claim follows
easily from Proposition A 4.

Claim 5.4. Forevery k € N,

4(2—a)k

Var(fi) < E@i(D)) < €
Using (8) and this claim we obtain the following lemma.
LEMMA 5.5. We have Var(V,(¢)) < (n*/*/log(n)).

Proof. For all k > (1/2«) log(n), Dy > n and (up to finitely many n) Dy < 4 Since
{froT/:0<j < 2-4k2} is equally distributed as {Z;(j):j<1<j < 2~4k2}, we
deduce from (8) and the fact that the f; are the functions from Corollary 2.3 that:
(a) forall k > (1/2a) log(n), S,(¢x) is a sum of independent random variables;
(b)  Su(gx), k= (1/2x) log(n) are independent.

By item (a),

1 2 _
Var(Sy (gr)) = Var(fk)( Z vrbm, (Dk —n+ 1)+ Z (= ))? >
i Di j=1 D;
< ﬁVar(fk) as Dy >n
= Dk P -
4(2—2a)k
k

Here the last inequality follows from Claim 5.4 and 42~k D = 4220k,
Finally, by item (b),

<3Cn?.

o0
Var(V, (¢)) = Yo Var(Su(e)
k=(1/2a) log(n)+1
x —
4(2 20)k n2/a
<3Cn? < .
=onn 2. K~ log(n) =

k=(1/2a) log(n)+1

Applying Markov’s inequality we obtain the following corollary.
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COROLLARY 5.6. The sequence of random variables V,(¢)/n'/* —— 0 in probability.
n—oQ

We now show that n~1/¢ S,SS) (h) tends to O in probability. The first step is the following
simple claim. Recall the notation Fy = fi — [ fi dm.

CLAIM 5.7. For every k < (1/2a) log(n),

2 pi—j-1 R (D—j-1
_ Yk—J 71 i_pn kI 0 J
Sn(hk)_Z( B )FkoT U<Z( B )FkoT>.
J=0 Jj=0
Proof. As Dy <n and hy = fr — ¢, it follows from (9) that
Dy—2 . Dp—2 .
Dp—j—1 j . Dy —j—1 j
Su(hy) = Z (D—k>fk°T -U Z D fioT
j=0 j=0
Dy—2 . Dy—2 .
Di—j—1 . Di—j—1 <
:Z (L)FkOT]—U”(Z <L>FkoTj>. O
j=0 Di j=0 Dy

LEMMA 5.8. The sequence of random variables n’l/"‘S,ES)(h) converges to 0 in
probability.

Proof. By Claim 5.7,
SS(h) = A — U™(An), (10)

where
(1/2a) log(n) Dy—2

Ay = Z Z( )FkoTj.

As A, is a sum of independent random variables,

(1/2a) log(n) Dy

Var(A,) = Z Z(D" >VaI(FkoTj)

(1/2e) log(n)
< Y DyVar(Fp).
k=0
Noting that for all k € N, Var(Fy) = Var(f), we deduce from the last inequality and
Claim 5.4 that
(1/2a) log(n)
Var(A,) = Y DiVar(fi)
k=0
(1/2a) log(n) o 2/
4 n
< — <

k=0

log(n)’
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Next, as [ A, dm = 0, it follows from Chebyshev’s inequality that for every € > 0,

Var(A,) < 1

—1/a
m(|n An' > E) S nz/(xez ~ 1Og(n)€2

This shows that n~1/¢ A,, tends to 0 in probability.
Since A, and U"(A,) are equally distributed, n~1*yn(A,) also tends to O in
probability. The claim now follows from the converging together lemma. O

PROPOSITION 5.9. The sequence of random variables S,SM)( f) converges in distribution
to an Sy (o, 1, 0) random variable with 6% = In 2.

‘We postpone the proof of this proposition to §5.2, but if we assume it here we can now
prove Theorem 2.8.

Proof of Theorem 2.8. 'We deduce from Lemmas 5.8, 5.1 and 5.2 that
SO (h) + V(@) + ST (f) —— 0 in probability.
n—oo

The result now follows from (7), Corollary 5.6, Proposition 5.9 and the converging together
lemma. &

5.2. Proof of Proposition 5.9. The proof of this proposition goes along similar lines to
the proof of Proposition 3.3, with some (rather) obvious modifications. We first define

(1/a) log(n)
sSMzy:= Y Su(Z()),
k=(1/2a) log(n)+1
(1/a) log(n)
sSWyy:= Y S0,
k=(1/2a) log(n)+1
(1/e) log(n)
sSMX) = > SuXi()).

k=(1/2a) log(n)+1

The following result is the analogue of Lemma 3.4 for the current case.
LEMMA 5.10. The random variables S,(lM) (f) and S,(IM)(Z) + B, are equally distributed.

The proof of Lemma 5.10 is similar to the proof of Lemma 3.4 with obvious
modifications. We leave it to the reader. Proposition 5.9 follows from Lemma 5.10 and
the following result.

LEMMA 5.11.

(@) The random variables l/nl/"‘ (S,SM)(X) — S,(,M)(Z) — B,)) converge to 0 in measure.

(b)  The random variables 1 /n'/® S,(,M) (X) converge in distribution to an S, (¢/In(2), 1, 0)
random variable.

Consequently S,(lM) (Z) + B,, converges in distribution to an S, S(¥/In(2)) random variable
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Proof of Lemma 5.11(b). For all n € N, S,(,M) (X) is a sum of independent totally skewed
a-stable random variables. By [11, Property 1.2.1], n-les, (X)is Sy (Z,, 1, 0) distributed
with
(1/a) log(n)
()% = — D % ~Tn@2) asn — oo,
k=(1/2a) log(n)+1

The result follows from the fact that if B, is S, (X,, 1, 0) distributed and X,, — ¥/In(2)
then B, converges to an S, (¥/1n(2), 1, 0) random variable. O]

Proof of Lemma 5.11(a). We assume n is large enough so that if k > (1/2«) log(n) then
n < 4k

Firstly, since for all k € N and j < dy,

0 < Yie(j) — Zi(j) <47F,

we have
(1/«) log(n)
ISMy) - sz < Y SO = Zi)
k=(1/2a) log(n)+1
(1/«) log(n)
< Z 47kp Snl_l/“.
k=(1/2a) log(n)+1
Consequently,
1 _
W|S,(,M)(Y) —SM(z)| <! — 0. 11)
n n—o00

We now look at S,SM)(X) — S,(,M)(Y) — B,. For all n,

SM (x) - WM (y) — B, =11, +1II,,

where
Vi(m) := Xie(m)1x, (m)=at7>
(1/a) log(n)
Vi (m) := Y Xem)x <ok — EXr(m) Ly, gy <2t)-
k=(1/2) log(n)+1
and

10, :=n~ %S, (V,)
(1/a) log(n)

m, =" 3 5.
k=(1/2a) log(n)+1
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Similarly to the proof of Lemma 3.1,

(1/a) log(n) n

P(IlL, # 0) < Yo DY PG #0)
k=(1/2a) log(n)+1 j=1
(1/a) log(n) n

< ) D P(Xam) > 4Y

k=(1/20) log(n)+1 j=1
SR R— |

< 2Cn Z <

k=(1/2a) log(n)+1 log(n)

Now \7(m), 1 < m < n, are zero-mean, independent random variables. By Proposition A .4,
they also have second moment and forall 1 < j < n,

(1/a) log(n)

EVa(DHS2 D EXen) Ly, my<aty)
k=(1/2a) log(n)+1

(1/a) log(n) 2Q-a)k  p2/a—1
<

< .
~ k7 log(n)

(12)
k=(1/2a) log(n)+1

It follows from Markov’s inequality that for every € > 0,
P(T,| > €) < € 2n 2 *B(S, (V)"
= n T BV (DY) § 5.
€~ log(n)
This concludes the proof that I, —— 0 in probability.
n— oo

The claim now follows from (11) and the convergence in probability of II, 4 III,
to 0. O

5.3. Deducing Theorem 2.10 from Theorem 2.8.  This is similar to the strategy and steps
which were carried out in §3.2.

Recall the notation @y := (1/Dy) Z]Di(;l groT/ and hy := gr — ¢x. Since for all
k €N, ¢ and ¢ are equally distributed, by mimicking the proof of Lemma 5.2 and
Corollary 5.6 we obtain the following result.

LEMMA 5.12. The random variables n='/*V,,(¢) converge to 0 in probability.
Next we have the following analogue of Lemma 3.6.

LEMMA 5.13.

(a) The random variables 1/n'/® (S,(ls) (h), S,(LS) (fl)) converge in probability to (0, 0).

(b) The random variables l/nl/“(S,(,M)(f) + By, S,EM) (g) + By) converge in distribu-
tionto (W, W) where W, W' are independent S, (¢/In(2), 1, 0) random variables.

(¢) The random variables l/nl/“(S,(lL)(f), S,(lL) (g)) converge in probability to (0, 0).
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Proof. As for all k, hy and hy are equally distributed, by mimicking the proof of
Lemma 5.8 one proves that

1 .
v S®) (h) —— 0 in probability.
n n—00

Part (a) follows from this and Lemma 5.8.

The deduction of part (c) from Lemma 5.1 and its proof is similar.

Part (b) follows from Proposition 5.9 as S,(,M) (f) and S,SM) (g) are independent and
equally distributed. 0

Now fix B € [—1, 1] and recall that H = ®g(h, ﬁ) where ®g is the linear function
defined for all x, y € R by

1 1/a 1— 1/
Dp(x, y) = (%) x— (Tﬂ> y.

Proof of Theorem 2.10. Writing

1 ~ ~
An = = SV W) + Vale) + S (), S () + Va(9) + 5P (2,
we have for all n € N,
Sp(H) = ®g(An) + @pn V2SI (1), n= 12 5M (g)). (13)

By Lemma 5.12 and parts (a) and (c) of Lemma 5.13, A,, — (0, 0) in probability. Since
®g is continuous with ®g(0, 0) = 0, it follows that ®g (A,,) converges to 0 in probability
asn — 0o.

By Lemma 5.13(b) and the continuous mapping theorem,

Dp(n Ve SM (), n= 12 sM (g)) =4 dp(W, W),

where W, W' are independent S, (¢/In(2), 1, 0) distributed random variables. By [11,
Property 1.2.13], ®g(W, W’) is S (¢/In(2), B, 0) distributed.
The conclusion now follows from (13) and the converging together lemma. O

Acknowledgements. The research of Z.K. was partially supported by ISF grant no.
1180/22.

A. Appendix. Estimates on moments of truncated stable random variables
The following tail bound follows easily from [11, Property 1.2.15]

PROPOSITION A.l. There exists C > 0 such that if Y is Sy(o, 1,0) distributed with
0O<o <land K > 1 then

P(Y > K) < Co“K™“.

In a similar way to the appendix in [9],the tail bound implies the following two estimates
on moments of truncated S, (o, 1, 0) random variables.
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COROLLARY A.2. For every r > «, there exists C > 0 such that if Y is Sq(o,1,0)
distributed with0) <o < land K > 1,

E(Yr 1 [OSYSK]) < Co“K"™“.

Proof. The bound follows from
o0
E(le[OSYSK]) = f ]P(le[OSYSK] > t) dt
0
Kr
= / P(Y > /") dt
0
K
=r / W IP(Y > u) du
0
1 K
=r/ W IPY > u)du—l—r/ u'P(Y > u) du
0 1

K
5r+Co°‘rf W1 gy,
1

Here the last inequality follows from Proposition A.1. O

COROLLARY A.3. For every r < «a, there exists C > 0 such that if Y is Sy(0,1,0)
distributed with0 < o < 1las K — oo,

E(le[YzK]) < Co“K'™™.

The proof of Corollary A.3 is similar to the proof of Corollary A.2. The following
proposition is important in the proofs of Theorems 2.6 and 2.10.

PROPOSITION A4. For every K,o > 0, if X is S,(0, 1, 0) distributed then X1x -k is
square integrable. Furthermore, there exists C > 0 such that for every Sy (o, 1, 0) random
variable X with) < o < land K > 1,

E((X1ix<x))?) < Ca® K>,

Proof. Let Y be an S,(1, 1,0) random variable and note that oY and X are equally
distributed. By [15, Theorems 2.5.3 and 2.5.4] (see also equations (1.2.11) and (1.2.12)
in [11]), P(Y < —A) decays faster than any polynomial as A — oco. This implies that
Y 1y -0 has moments of all orders and

E((X1x<0)®) = 0*E(Y* 11y <)) < D,
where D = E(Yzl[y<0]). Now by this and Corollary A.2, we have

E((X1x<x))?) < 4E(X1jo<x<x)?) + E(X1x<0)?))
<4(Co%K*® + D) ~4Co%K*™™ as K — oo.

The claim follows from this upper bound. O
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