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Abstract

Reasoning about dynamic systems with a fine-grained temporal and numeric resolution presents
significant challenges for logic-based approaches like Answer Set Programming (ASP). To
address this, we introduce and elaborate upon a novel temporal and constraint-based extension
of the logic of Here-and-There and its nonmonotonic equilibrium extension, representing, to the
best of our knowledge, the first approach to nonmonotonic temporal reasoning with constraints
specifically tailored for ASP. This expressive system is achieved by a synergistic combination of
two foundational ASP extensions: the linear-time logic of Here-and-There, providing robust non-
monotonic temporal reasoning capabilities, and the logic of Here-and-There with constraints,
enabling the direct integration and manipulation of numeric constraints, among others. This
work establishes the foundational logical framework for tackling complex dynamic systems with
high resolution within the ASP paradigm.
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1 Introduction

Reasoning about action and change is crucial for understanding how dynamic systems

evolve over time and how actions influence those changes. Representing dynamic systems

with higher resolution, such as by employing finer time units and more precise numeric

variables, significantly increases the complexity of reasoning about them, posing partic-

ular challenges for logic-based approaches like Answer Set Programming (ASP; Lifschitz

2008). To illustrate this, consider the following scenario: “A radar is positioned at the 400

km mark on a road with a speed limit of 90 km/h. A car is initially traveling at 80 km/h.

At time instant 4, the car accelerates by 11.35 km/h. Subsequently, at time instant 6, it

decelerates by 2.301 km/h. The problem is to determine whether the car will exceed the

speed limit and thus incur a fine.” A closer look reveals several key numeric entities: the

car’s position and speed, the radar’s position and speed limit, and the car’s acceleration

and deceleration.

Our objective is to provide the logical foundations for extending ASP to effectively

model such scenarios involving changing numeric values over time. To achieve this, we

integrate two key logical formalisms that extend ASP: the linear-time logic of Here-and-

There (THT; Aguado et al . 2023), with its ability to handle nonmonotonic temporal

reasoning, and the logic of Here-and-There with constraints (HTc; Cabalar et al . 2016),

which allows us to incorporate and reason about numeric constraints, among others.

Building upon standard linear temporal logic, THT and its nonmonotonic equilibrium

extension, TEL, enable the expression of sophisticated temporal behaviors in dynamic

systems through features like inertia and default reasoning. HTc complements this by

allowing us to directly reason with numeric and other constraints. Furthermore, its

equilibrium extension provides solid logical foundations for tackling nonmonotonic con-

straint satisfaction problems, elegantly handling situations with incomplete information

by using default values. With this motivation established, we now proceed to introduce

the combined logical framework.

2 Temporal here-and-there with constraints

The syntax of the logic Temporal Here-and-There with constraints (THTc) relies on

a signature 〈X ,D,A〉, akin to constraint satisfaction problems (CSPs; Dechter 2003).

Specifically, X denotes a set of variables and D represents the domain of values, often

identified with their corresponding constants. The set A comprises temporal constraint

atoms (or simply atoms), which are defined over temporal terms.

A temporal term (or simply term) is fundamental to THTc and is intended to represent

the value of a variable at past, present, or future time points. We represent such a term by

an expression ◦ix where x∈X and i∈Z, while overloading the temporal modal operator

for “next”, viz. ◦. The integer i indicates a temporal offset: a positive i signifies i steps

forward in time to retrieve the value of x, a negative i signifies |i| steps backward, and

i= 0 refers to the value of x in the current state. For notational convenience, we use x

and ◦x as shorthand for ◦0x and ◦1x, respectively. Furthermore, we overload the operator

• for “previous” to represent past variable values. That is, •ix stands for ◦−ix for offset

i. For example, the constraint ◦x+ •y≤ z is equivalent to ◦1x+ ◦−1y≤ ◦0z.
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Accordingly, an n-ary temporal constraint atom c∈A is often represented as

c(◦o1x1, . . . , ◦onxn) where ◦o1x1, . . . , ◦onxn are (possibly identical) temporal terms. To

further illustrate, the atom (•3x= 4) can be read as “x had value 4 three states ago”,

and (◦x= x) as “the value of x in the next state is identical to its current value”.

Then, temporal constraint formulas (or just formulas) are defined as follows:

ϕ ::= c ∈ A | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ◦ϕ | ϕ UU ϕ | ϕ RR ϕ | •ϕ | ϕ S ϕ | ϕ T ϕ

Connectives ⊥, ∧, ∨ and→ are Boolean, while the remaining connectives are temporal

modalities. We use outlined operators to refer to future modalities and solid ones for

past modalities. Accordingly, ◦, U, R represent the future modalities next , until , release,

respectively, while •, S, T reflect their past counterparts: previous , since, trigger .

We also define several derived operators, including the Boolean connectives � def
= ¬⊥,

¬ϕ def
= ϕ→⊥, ϕ↔ψ

def
= (ϕ→ψ)∧ (ψ→ϕ), and the following temporal operators:

I def
= ¬•� ̂•ϕ

def
= •ϕ ∨ I �ϕ

def
= ⊥ T ϕ �ϕ

def
= � S ϕ

FF def
= ¬◦� ̂◦ϕ

def
= ◦ϕ ∨ FF �ϕ

def
= ⊥ RR ϕ ♦ϕ

def
= � UU ϕ

Specifically, I and F refer to the “initial” and “final” state, respectively; •̂ϕ (•̂ϕ) refers
to ϕ at the previous (next) state in case that it exists; �ϕ (�ϕ) is read as “ϕ has always

been true” (“ϕ will always be true”), and �ϕ (♦ϕ) is read as “ϕ has been true” (“ϕ will

eventually be true”). For instance, �(◦x> x) allows us to express informally that “the

value of variable x is increasing over time”.

We define the semantics of THTc in terms of HTc traces, which are sequences of HTc

interpretations (Cabalar et al . 2016). We first present the necessary semantic concepts

of HTc before further elaborating on these traces. HTc relies on partial valuations, that

is, functions v :X →D∪ {u}, where the range is augmented by the special value u �∈ D
representing “undefined”. We define Du

def
= D ∪ {u} and denote such valuations also by

v :X →Du. Given two partial valuations v and v′, we define v� v′ if v(x) = d implies

v′(x) = d for all x∈X and d∈D. Similarly, we say that v= v′ if v� v′ and v′ � v, and
v� v′ if v� v′ and v �= v′. An HTc interpretation is a pair 〈vh, vt〉 of valuations such that

vh � vt.
Building upon this, we define a trace v of length λ as a sequence v= (vi)i∈[0..λ) of

partial valuations vi for i∈ [0..λ). For instance, the sequence v′ = {x �→ 4} · {x �→ u} ·
{x �→ 5} represents a finite trace with three valuations (separated by ”·”) that assign

different values to x except at the second state where x is undefined. The � relation can

be extended to cope with traces in the following way: given two traces vh = (vh,i)i∈[0..λ)

and vt = (vt,i)i∈[0..λ) of length λ, we define vh � vt if vh,i � vt,i for all i∈ [0..λ). For
instance, our previous example trace v′ satisfies v′ � {x �→ 4} · {x �→ 1} · {x �→ 5} because
both traces coincide in the variables defined in v′, but the new trace assigns x �→ 1 at

the second state, while v′ left it undefined. As before, we say vh = vt if vh,i = vt,i for all

i∈ [0..λ) and vh � vt if vh � vt and vh �= vt. All this allows us to define an hHTc trace

of length λ as a pair 〈vh, vt〉 of traces vh and vt of length λ such that vh � vt.
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HTc evaluates constraint atoms using denotations, a mechanism that abstracts from

the syntax and semantics of expressions originating from external theories. In HTc,

a valuation can be seen as a solution of a constraint. For instance the denotation

[[x+ y≤ 5]] contains all valuations v such that v(x) + v(y)≤ 5. Also, the satisfaction of

a constraint atom corresponds in HTc to checking whether a valuation belongs to a

denotation or not. In THTc, however, time-varying variables are handled. For instance

the constraint x+ ◦5x≤ 5 is satisfied at time point t when the addition of the val-

ues of x at t and t+ 2 is smaller or equal to 5. In the temporal case, evaluating a

temporal constraint atom requires the use of a finite number of valuations, for which

we would need a more complex denotational approach. Therefore, we adopt a simpler

approach, associating each constraint atom with a relation, where each tuple signifies

a valid value assignment, as is standard in CSPs: Given a temporal constraint atom c

of arity n, we define its solution relation as [c]⊆Dn
u . Note that this definition tolerates

undefined variables. Given a constraint atom c of arity n, [c] is said to be strict when-

ever [c]⊆Dn, that is, if it leaves no variables undefined. Otherwise, we say that [c] is

non-strict .

For instance, to satisfy the atom x+ ◦5x≤ 5 neither term x nor ◦5x can be undefined.

A natural choice for its (strict) solution relation is thus

[x+ ◦5x≤ 5] = {(a, b)∈Z2 | a+ b≤ 5}.

As an example of an atom with a non-strict solution, we could define an atom such as

some zero(•x, x, ◦x) requiring that x equals zero at the previous, current, or next state,

but allowing for x to be undefined in some of those states:

[some zero(•x, x, ◦x)] = {(a, b, c)∈ (Z∪ {u})3 | a= 0 or b= 0 or c= 0}.

Given a trace v= (vi)i∈[0..λ) of length λ, the value of a term ◦ox at time point i∈ [0..λ)
is defined as

vi(◦ox)
def
=

{
vi+o(x) if i+ o∈ [0..λ)
u otherwise.

Given an HTc trace M= 〈vh, vt〉 and a time point i∈ [0..λ), we define the satisfaction

of a formula in THTc as follows:

1. M, i |= c(◦o1x1, . . . , ◦onxn) if for all w ∈ {h, t} (vw,i(◦o1x1), . . . , vw,i(◦onxn))∈
[c(◦o1x1, . . . , ◦onxn)]

2. M, i |=ϕ∧ψ if M, i |=ϕ and M, i |=ψ

3. M, i |=ϕ∨ψ if M, i |=ϕ or M, i |=ψ

4. M, i |=ϕ→ψ if 〈vw, vt〉, i �|=ϕ or 〈vw, vt〉, i |= ψ for all w ∈ {h, t}
5. M, i |= ◦ϕ if i < λ− 1 and M, i+ 1 |=ϕ

6. M, i |=ϕ U ψ if there exists k ∈ [i..λ) s.t. M, k |= ψ and M, j |=ϕ for all i≤ j < k
7. M, i |=ϕ R ψ if for all k ∈ [i..λ), either M, k |= ψ or M, j |=ϕ for some i≤ j < k
8. M, i |= •ϕ if i > 0 and M, i− 1 |=ϕ

9. M, i |=ϕ Sψ if there exists k ∈ [0..i] s.t. M, k |=ψ and M, j |=ϕ for all k < j ≤ i
10. M, i |=ϕTψ if for all k ∈ [0..i], either M, k |=ψ or M, j |=ϕ for some k < j ≤ i
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In fact, given a constraint atom c with a strict relation [c], the satisfaction of c depends

solely on the “here” component of the trace (Cabalar et al . 2016). In this case, Condition

1 can be replaced by:

1’ M, i |= c(◦o1x1, . . . , ◦onxn) if (vh,i(◦o1x1), . . . , vh,i(◦onxn))∈ [c(◦o1x1, . . . , ◦onxn)].

Proposition 1.

Given an HTc trace M= 〈vh, vt〉 and a time point i∈ [0..λ), we have the following

satisfaction relations for the derived operators:

1. M, i |=�ϕ if for all j ∈ (0..i], M, j |=ϕ

2. M, i |=�ϕ if there exists j ∈ (0..i] such that M, j |=ϕ

3. M, i |= I if i= 0

4. M, i |= •̂ϕ if either i= 0 or M, i− 1 |=ϕ

5. M, i |=�ϕ if for all j ∈ [i..λ), M, j |=ϕ

6. M, i |=♦ϕ if there exists j ∈ [i..λ) such that M, j |=ϕ

7. M, i |= FF if i= λ− 1

8. M, i |= ◦̂ϕ if either i= λ− 1 or M, i+ 1 |=ϕ

For illustration, consider the short HTc trace 〈vh, vt〉 where

vh = {x �→ 4, y �→ u} · {x �→ 5, y �→ u} · {x �→ u, y �→ u} · {x �→ 5, y �→ 6}
vt = {x �→ 4, y �→ 6} · {x �→ 5, y �→ u} · {x �→ 4, y �→ 5} · {x �→ 5, y �→ 6}

As a first example, consider the formula (x= 4)∧ (◦x< ◦3y) whose atoms have the solu-

tion relations [x= 4] = {(4)} and [◦x< ◦3y] = {(a, b)∈Z2 | a< b}. Note that each solution

relation above contains only the assignments that satisfy the constraint and they do not

depend on the “next” ◦k prefix that qualifies each variable inside a constraint. Broadly

speaking, a solution for (◦x< ◦3y) consists of two assignments, one for x and one for

y that satisfy the constraint. The effect of using the term ◦3y is that the value for y is

given by the valuation placed three states ahead in the trace, that is, the valuation of ◦3y
depends on the sequence of valuations in the trace. Moreover, both [x= 4] and [◦x< ◦3y]
are strict, so we can use Condition 1’ to evaluate the constraint atoms. We have therefore

〈vh, vt〉, 0 |= (x= 4). Also, we have 〈vh, vt〉, 0 |= (◦x< ◦3y) since vh,3(y) = 6, vh,1(x) = 5

and (5, 6)∈ [◦x< ◦3y]. Therefore, 〈vh, vt〉, 0 |= (x= 4)∧ (◦x< y).
Next, consider the formula (•x< 7) along with1 [•x< 7] = {a∈Z | a< 7}. Since there

is no time point before the initial state, we get vh,0(•x) = u. Hence, 〈vh, vt〉, 0 �|= •x< 7

because u /∈ [•x< 7]. However, if the constraint is evaluated at time point 1, we get

〈vh, vt〉, 1 |= •x< 7 as vh,1(•x) = 4 and 4∈ [•x< 7].

Finally, consider the equation y= y with [y= y] =Z. Clearly, we have 〈vh, vt〉, 3 |= y=

y since vh,3(y) = 6 and 6∈ [y= y]. However, this is not the case at time point 0 because

vh,0(y) = u and u /∈ [y= y].

Next, we show that THTc satisfies the characteristic properties of HT-based logics.

Proposition 2

(Persistence, Negation). For all HTc traces 〈vh, vt〉 of length λ, all formulas ϕ, and all

i∈ [0..λ) we have:

1 We sometimes identify 1-tuples like 〈a〉 with the element itself a.
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〈vh, vt〉, i |=ϕ implies 〈vt, vt〉, i |=ϕ.

〈vh, vt〉, i |=¬ϕ if 〈vt, vt〉, i �|=ϕ.

Finally, temporal equilibrium models are defined in the traditional way.

Definition 1.

An HTc trace 〈vt, vt〉 of length λ is a temporal equilibrium model of a formula ϕ if

1. 〈vt, vt〉, 0 |=ϕ and

2. there is no HTc trace 〈vh, vt〉 such that vh � vt and 〈vh, vt〉, 0 |=ϕ.

Given that equilibrium models are the semantic counterpart of stable models in ASP,

we may thus refer to vt as a stable model of ϕ in THTc.

2.1 THTc as a conservative extension of HTc

THTc can be viewed as a temporal extension of HTc (Cabalar et al . 2016). We support

this in what follows by showing that both coincide on non-temporal formulas.

To achieve this, we need to establish a correspondence between the semantic concepts

of denotations and solution relations. Given a signature 〈X ,D,A〉, let V be the set of

all partial valuations from X to Du. A denotation is a function [[·]] :A→ 2V assigning a

set of partial valuations to each atom. In HTc, one considers denotations with a closed

range: if a partial valuation v satisfies an atom c, v ∈ [[c]], then any partial valuation v′

that extends v, v� v′, also satisfies c.

[[x= y]]
def
= {v ∈ V | v(x) = v(y) �= u}

[[some zero(X)]]
def
= {v ∈ V | v(x) = 0 for some x∈X}.

For a (non-temporal) constraint c(x1, · · · , xn) in A, only referring to variable values

in the current state, we define

[c(x1, · · · , xn)] = {(v(x1), · · · , v(xn)) | v ∈ V}
[[c(x1, · · · , xn)]] = {v ∈ V | (v(x1), · · · , v(xn))∈ [c(x1, · · · , xn)]}.

Given this correspondence, we can show the following result, where |=HTc and |=THTc

denote the satisfaction relation of HTc (Cabalar et al . 2016) and THTc (as given above).

Proposition 3.

For all formulas ϕ containing only Boolean connectives and all HTc interpretations

〈vh, vt〉, we have 〈vh, vt〉|=HTc
ϕ if (〈vh, vt〉), 0 |=THTc

ϕ.

Since HTc interpretations are simply HTc traces of length 1, it follows that HTc and THTc

coincide when restricted to the language of HTc.

2.2 THTc as a conservative extension of THTf

THTc extends THTf (Aguado et al . 2023) by including constraints. Similar to the pre-

vious section, we confirm this relationship by showing that they coincide on temporal
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formulas without non-Boolean constraints. To proceed, we first need to introduce basic

concepts of THTf .

THTf employs the same syntax for temporal formulas as THTc, with the key distinction

that constraint atoms are replaced by Boolean atoms in A. The semantics of THTf

relies on HT traces. An underlying (Boolean) trace of length λ is a sequence (Ti)i∈[0..λ)

where Ti ⊆A for all i∈ [0..λ). An HT trace 〈H,T〉 is a pair of traces H= (Hi)i∈[0..λ)

and T= (Ti)i∈[0..λ) satisfying Hi ⊆ Ti for all i∈ [0..λ). An HT trace 〈H,T〉 satisfies a

Boolean atom p∈A at i∈ [0..λ) if p∈Hi. The satisfaction conditions for more complex

formulas are identical to those of THTc.

To encode THTf within THTc, we consider the signature 〈A, {t}, {p= t | p∈A}〉,
where t is considered as true.2 Accordingly, we set [p= t] = {t} for all p∈A. Then,
we define the bijective mapping δ from HT traces to HTc traces as follows.3 Given an

HT trace 〈H,T〉= 〈(Hi)i∈[0..λ), (Ti)i∈[0..λ)〉 of length λ, we define the corresponding HTc

trace δ(〈H,T〉= 〈vh, vt〉 of length λ where for all i∈ [0..λ) and for all p∈A, we have

vh,i(p) =

{
t if p∈Hi

u otherwise
vt,i(p) =

{
t if p∈ Ti
u otherwise

Then, the following proposition can be easily proved via structural induction.

Proposition 4.

For any HT trace 〈H,T〉, we have for all temporal formulas ϕ and all i∈ [0..λ) that

〈H,T〉, i |=ϕ if δ(〈H,T〉), i |=ϕ′, where ϕ′ is obtained from ϕ by replacing every atom

p by the constraint p= t.

Proposition 4 can be extended to the case of equilibrium models.

Proposition 5.

For any HT trace 〈H,T〉 and for any formula ϕ, 〈vh, vt〉 is a temporal equilibrium model

of ϕ if δ(〈H,T〉) is a temporal equilibrium model (under THTc semantics) of ϕ.

3 From THTc to quantified HT with evaluable functions

Kamp’s translation (1968) is a cornerstone result that provides a fundamental link

between temporal and classical logic, offering deep theoretical insights and practical

implications for the study and application of temporal reasoning.

As a step towards a similar result in our non-classical context, we define a translation

from THTc into Quantified4 HT with decidable equality, evaluable functions (Cabalar

2011), and an order relation. We consider a first-order language with signature 〈C,F ,P〉,
where C and F are disjoint sets of uninterpreted and evaluable function names, respec-

tively, and P is a set of predicate names including equality (=) and a strict order relation

< (the non-strict version ≤ is defined as usual). We assume that u /∈ C ∪F and +∈F .
First-order formulas are built in the usual way, defining �, ¬, ↔ as above.

2 In HTc, Boolean variables are already captured by truth values t and u (rather than f[alse]) (Cabalar
et al . 2016).

3 We demonstrate that δ is a bijective function in the extended version of this paper (see
https://arxiv.org/abs/2507.13958).

4 “Quantified” is used synonymously with “First-order”.
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The difference of our translation to Kamp’s original one lies in the fact that our pred-

icate names are not monadic and that we allow (partial) function symbols for simulating

the valuation of a variable along time.

Given a temporal formula ϕ in THTc, we define the first-order formula τt(ϕ) with the

only free variable t as follows. For constraint atoms, our translation is defined as

τt(c(◦o1x1, . . . , ◦onxn)) = pc(fx1
(t+ o1), . . . , fxn

(t+ on)).

where pc is a predicate that simulates the behavior of c and each fxi
∈F is a partial

evaluable function associated with the variable xi for 1≤ i≤ n. The value of a variable

x at a time point t is given by fx(t). To capture the temporal offset i in ◦ix, we shift

the argument of fx, resulting in fx(t+ i). Note that fx is partial because its argument

might extend beyond the defined time points in a trace.

The rest of the translation follows the one by Kamp (1968):

τt(⊥) = ⊥
τt(ϕ ∧ ψ) = τt(ϕ) ∧ τt(ψ)

τt(ϕ ∨ ψ) = τt(ϕ) ∨ τt(ψ)

τt(ϕ → ψ) = τt(ϕ) → τt(ψ)

τt(◦ϕ) = ∃t′(t′ = t + 1) ∧ τt(ϕ)

τt(ϕ UU ψ) = ∃t′(t ≤ t′ ∧ τt′(ψ) ∧ (∀t′′((t ≤ t′′ ∧ t′′ < t′) → τt′′(ϕ))))

τt(ϕ RR ψ) = ∀t′(t ≤ t′ → (τt′(ψ) ∨ (∃t′′(t ≤ t′′ ∧ t′′ < t′ ∧ τt′′(ϕ)))))

τt(•ϕ) = ∃t′(t = t′ + 1) ∧ τt(ϕ)

τt(ϕ S ψ) = ∃t′(t′ ≤ t ∧ τt′(ψ) ∧ (∀t′′((t′ < t′′ ∧ t′′ ≤ t) → τt′′(ϕ))))

τt(ϕ T ψ) = ∀t′(t′ ≤ t → (τt′(ψ) ∨ (∃t′′(t′ < t′′ ∧ t′′ ≤ t ∧ τt′′(ϕ)))))

The translation of derived operators can be done unfolding their definitions or using

the shorter, equivalent formulas:

τt(I) = ¬∃t′(t′ < t) τt(FF) = ¬∃t′(t < t′)

τt(̂•ψ) = ∀t′(t = t′ + 1 → τt′(ψ)) τt(̂◦ψ) = ∀t′(t′ = t + 1 → τt′(ψ))

τt(♦ψ) = ∃t′(t ≤ t′ ∧ τt′(ψ)) τt(�ψ) = ∃t′(t′ ≤ t ∧ τt′(ψ))

τt(�ψ) = ∀t′(t ≤ t′ → τt′(ψ)) τt(�ψ) = ∀t′(t′ ≤ t → τt′(ψ))

As an example, let us consider the formula ��(◦2x= x) and the free variable t. The

result τt(��
(
◦2x= x

)
) of translating this formula is as follows:

τt(��(◦2x= x)) = ∀t′(t≤ t′→ τt′(�(◦2x= x)))

= ∀t′(t≤ t′→ (∃t′′(t′′ ≤ t′ ∧ τt′′(◦2x= x))))

= ∀t′(t≤ t′→ (∃t′′(t′′ ≤ t′ ∧ (fx(t′′ + 2) = fx(t
′′)))))

In our non-classical framework, the interpretation of first-order formulas requires

Quantified HT Logic with evaluable functions (Cabalar 2011). In preparation for estab-

lishing the correctness of our translation in Proposition 6, we proceed to introduce the

semantics of this logic. Given signature 〈C,F ,P〉, we define:
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• T (C) as the set of all ground terms over C,
• T (C ∪F) as the set of all ground terms over C and F ,
• A(C,P) as the set of all ground atoms over C and P.

A state over 〈C,F ,P〉 is a pair (σ, A), where A⊆A(C,P) and σ : T (C ∪F)→T (C)∪
{u} is a function such that

1. σ(s) = s for all s∈ T (C)

2. σ(f(s1, . . . , sn)) =

{
u if σ(si) = u for some i∈ {1, . . . , n}
σ(f(σ(s1), . . . , σ(sn))) otherwise

Given two states S = (σ, A) and S′ = (σ′, A′), we write S � S′ when both

1. A⊆A′ and
2. σ(s) = σ′(s) or σ(s) = u for all s∈ T (C ∪F).

We also write S ≺ S′ when S � S′ but S �= S′.
Following Cabalar (2011), a QHT=

F (<) interpretation is a structure 〈Sh, St〉, where
Sh = (σh, Ih) and St = (σt, It) such that Sh � St. Given a first-order formula ϕ and a

QHT=
F (<) interpretationM= 〈Sh, St〉, we define the satisfaction relation as follows:

1. M|=� andM �|=⊥
2. M|= p(s1, . . . , sn) if p(σh(s1), . . . , σh(sn))∈ Ih
3. M|= s= s′ if σh(s) = σh(s

′) �= u

4. M|= s < s′ if u �= σh(s)<σh(s
′) �= u

5. M|=ϕ∧ψ ifM|=ϕ andM|= ψ

6. M|=ϕ∨ψ ifM|=ϕ orM|=ψ

7. M|=ϕ→ψ ifM′ �|=ϕ orM′ |=ψ for allM′ ∈ {M, (St, St)}
8. M|= ∃ x ϕ(x) ifM|=ϕ(c) for some c∈ T (C)
9. M|= ∀ x ϕ(x) ifM|=ϕ(c) for all c∈ T (C).

A QHT=
F (<) interpretation M is a QHT=

F (<) model of a formula ϕ when M|=ϕ. A

QHT=
F (<) model 〈St, St〉 is an equilibrium model for a formula ϕ, if there is no state Sh

such that Sh ≺ St and 〈Sh, St〉 is a QHT=
F (<) model of ϕ.

We are now ready to define the model correspondence between HTc traces and

QHT=
F (<) interpretations. An HTc trace M= 〈vh, vt〉 of length λ for signature 〈X ,D,A〉

corresponds to a QHT=
F (<) interpretationM= 〈(σh, Ih), (σt, It)〉 if for each i∈ [0..λ) and

for each variable x∈X , we get σh(fx(i)) = vh,i(x), σt(fx(i)) = vt,i(x),

Ih = {pc(a1, . . . , an) | c(◦o1x1, . . . , ◦onxn)∈A, i∈ [0..λ) and
c(vh,i+o1(x1), . . . , vh,i+on(xn)) = c(a1, . . . , an)∈ [c(◦o1x1, . . . , ◦onxn)]} and

It = {pc(a1, . . . , an) | c(◦o1x1, . . . , ◦onxn)∈A, i∈ [0..λ) and
c(vt,i+o1(x1), . . . , vt,i+on(xn)) = c(a1, . . . , an)∈ [c(◦o1x1, . . . , ◦onxn)]},

where [c(◦o1x1, . . . , ◦onxn)] is strict.
This model correspondence allows us to translate THTc into QHT=

F (<). We let ϕ[t/i]

stand for the result of replacing each occurrence of variable t in ϕ by i.
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Proposition 6.

Let M= 〈vh, vt〉 be a HTc trace and let M= 〈(σh, Ih), (σt, It)〉 be its corresponding

QHT=
F (<) interpretation. For all i∈ [0..λ) and every temporal formula ϕ, we have

M, i |=ϕ if M|= τt(ϕ)[t/i].

In other words, we can consider THTc as a subclass of theories in the fragment of

QHT=
F (<) with partial evaluable functions. We show next that this correspondence is

still valid when considering equilibrium models.

Proposition 7.

Let M= 〈vh, vt〉 be a HTc trace and let M= 〈(σh, Ih), (σt, It)〉 be its corresponding

QHT=
F (<) interpretation. For every temporal formula ϕ, M is an equilibrium model of

ϕ if M is an equilibrium model of τt(ϕ)[t/0].

An important consequence of our translation is that it opens the possibility of applying

first-order theorem provers for solving inference problems for THTc. For instance, one

salient THTc inference problem is deciding THTc-equivalence of two temporal theories

with constraints, Γ1 and Γ2, since it is a sufficient condition for their strong equivalence

(Lifschitz et al . 2007), something that guarantees a safe replacement of Γ1 by Γ2 (or vise

versa) in any arbitrary context. The translation of the QHT=
F (<)-formula obtained from

τt(·) into classical First-Order Logic can be done in two steps: first removing the partial

functions in favor of predicates (Cabalar 2011), and second passing from quantified HT

(without partial functions) into first-order classical logic (Pearce 2006).

4 Logic programs with temporal linear constraints

In this section, we consider the fragment of THTc interpreted over linear constraints

whose solution table is strict. We define a linear term as an expression of the form

d1 · ◦o1x1 + · · ·+ dn · ◦onxn (1)

where di ∈Z, xi ∈X , and oi ∈Z for 0≤ i≤ n. Multiplication and addition are denoted by

“·” and “+,”, respectively. An implicit multiplicative factor of 1 is assumed for standalone

numbers di. Negative constants are represented using “−,”, and the “·” symbol may be

omitted when contextually clear. Given a linear term α as in (1), we define terms(α) =

{◦oixi | 0≤ i≤ n}. For instance, terms(2 · ◦−2x) = {◦−2x}= {••x}.
A linear temporal constraint atom is a temporal constraint atom of the form α≤ β,

where α and β are linear terms. We use the abbreviation α= β, α< β, and α �= β

for (α≤ β)∧ (β ≤ α), (α≤ β)∧¬(β ≤ α), and (α< β)∨ (β <α), respectively. Similarly,

terms(α⊗ β) = terms(α)∪ terms(β), for⊗∈ {≤, <,=, �=}. Given our focus on strict solu-

tion tables, we have [α≤ β]⊆Dn for all α≤ β, where n is the number of terms in α and

β. More generally, given a constraint atom c with a strict relation, we define its comple-

ment constraint as [c] =Dn \ [c] (which is also strict). The interaction of complementary

constraints with logical negation is given in the next proposition.
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Proposition 8.

For any HTc trace M= 〈vh, vt〉 of length λ and any pair c, c of complementary con-

straints, with both [c] and [c] being strict, we have that M, i |= c implies M, i |=¬c for all
i∈ [0..λ).

We thus obtain that α= β implies ¬(α �= β) but not necessarily vise versa.

For illustration, consider the atoms ◦x= x and ◦x �= x, where x takes its values in N.

We define the solution relation for each constraint as

[◦x= x] = {(a1, a2)∈N2 | a1 = a2 �= u}
[◦x �= x] = {(a1, a2)∈N2 | a1 �= a2 and a1 �= u and a2 �= u}.

We have that [◦x �= x] =N
2 \ [◦x= x], and therefore [◦x �= x] = [◦x= x]. By Proposition 8,

◦x= x implies ¬(◦x �= x). Conversely, let M= 〈vh, vt〉 be an HTc trace of length 2 defined

as vw,i(x) = u for w ∈ {h, t} and i∈ {0, 1}. Then, we have that M, 0 |=¬(◦x �= x) but

M, 0 �|= ◦x= x.

When HTc is extended with linear constraints, Cabalar et al . (2016) introduce an

interesting feature known as assignments. This assignment operator is a specialized form

of equality that allows us to check if a variable has a defined value. To illustrate this,

consider the two following formulas:5

(x= y) and (p= t→ y= 10) (2)

The equality x= y implies that any assignment to x must also be an assignment to y, and

vise versa. Given that p= t is not derivable, y appears to be undefined in this context.

However, due to the strict nature of [x= y], this allows for both x and y to take on any

value, even if y seems undefined. To ensure that x is only assigned a value when y is

defined, we can replace x= y in (2) with:

y≤ y→ x= y (3)

Because y≤ y cannot be established (due to the underivability of p= t making y unde-

fined), the resulting HTc model has x, y and p all undefined. Indeed, within HTc, the

modified formula in (3) effectively represents the assignment x := y.

The remainder of this section focuses on extending this assignment mechanism of HTc

to our temporal setting in THTc. For any linear expression α, we define

df (α)
def
=

∧
◦lx∈terms(α) ◦lx≤ ◦lx.

The satisfiability of df (α) necessitates that all its variables are defined, as shown next.

Proposition 9.

For all HTc traces M= 〈(vh,i)i∈[0..λ), (vt,i)i∈[0..λ)〉 and for all linear expressions α, the

following statements are equivalent for all i∈ [0..λ)

1. M, i |= df (α)

2. vh,i(◦lx) = vt,i(◦lx) �= u for all ◦lx∈ terms(α)

In our context, an assignment for a variable x∈X is an expression of the form ◦lx := α,

where α is a linear temporal term. The assignment operator can be seen as a derived

5 Recall that atom p= t is the constraint representation of variable p (see Section 2.2).
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operator defined as

◦lx := α
def
= (df (α)→◦lx= α).

With it, we now define a syntactic subclass that takes the form of a logic program. To

ease notation, we let (ϕ←ψ)
def
= (ψ→ϕ) and (ϕ, ψ)

def
= (ψ ∧ϕ). Then, a temporal linear

constraint rule (or just rule) is of the form:

◦lx := α← 
1, . . . , 
m,¬
m+1, . . . ,¬
k (4)

where ◦lx := α is an assignment and each 
i is a linear temporal constraint atom for 0≤
m≤ k. Placing Rule (4) under the � operator ensures its satisfaction across all temporal

states. As with HTc, assignments appearing in rule heads can be transformed into an

analogous logic programming representation.

Proposition 10.

A rule of form (4) is equivalent to the rule

◦lx= α ← ◦o1x1 ≤ ◦o1x1, . . . , ◦onxn ≤ ◦onxn, 
1, . . . , 
m,¬
m+1, . . . ,¬
k.

where ◦oixi ∈ terms(α) for 0≤ i≤ n= |terms(α)|.

The logicprogramming fragment of THTc offers a powerful approach to modeling vari-

ous aspects of dynamic systems, including the representation of inertia rules and default

values. To demonstrate the expressive power of our formalism, let us reconsider our

initial scenario: “A radar is positioned at the 400 km mark on a road with a speed limit of

90 km/h. A car is initially traveling at 80 km/h. At time instant 4, the car accelerates by

11.35 km/h. Subsequently, at time instant 6, it decelerates by 2.301 km/h. The problem

is to determine whether the car will exceed the speed limit and thus incur a fine.”

To formalize this scenario within THTc, we introduce the following variables. The

numerical fluents p and s (ranging over N) represent the car’s position and speed,

respectively. The numerical variables rdpos and rdlimit (ranging over N) refer to the

radar’s position and speed limit. The numerical action acc (ranging over Z) models the

car’s acceleration (positive) or deceleration (negative). Lastly, the Boolean variable fine

indicates whether the car’s speed exceeded rdlimit at rdpos , leading to a fine.

The subsequent set of rules formalizes our scenario in THTc.
6

p := 0 (5)

s := 80 (6)

�(rdlimit := 90) (7)

�(rdpos := 400) (8)

�(◦s := s+ acc) (9)

�(◦s := s←¬(◦s �= s)) (10)

�(◦p := p+ s) (11)

�(◦fine← p < rdpos, ◦p≥ rdpos, ◦s > rdlimit) (12)

6 To facilitate understanding, the values of s, acc, and pos are presented using decimal notation. In a
real-world implementation, speed and acceleration should be expressed in m/h, while position should
be expressed in meters.
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Rules preceded by the always operator � in our THTc formalization are enforced through-

out the entire temporal evolution, contrasting with Rules (5) and (6), which are specific

to the initial state. Specifically, Rules (5) and (6) set the car’s initial position to 0 meters

and its speed to 80 km/h. The radar’s characteristics, its position at 400 km and a con-

stant speed limit of 90 km/h, are defined by Rules (7) and (8). The dynamics of the car’s

speed are captured by Rules (9) and (10): the speed remains unchanged unless an accel-

eration value (acc) is present, causing a corresponding adjustment. Rule (11) dictates

that the car’s position changes based on its speed. The condition for receiving a fine is

formalized in Rule (12): if the car’s speed (s) exceeds the radar’s speed limit (rdlimit)

at or after passing the radar’s position (rdpos) at any time, a fine is issued. Finally, to

model the acceleration of 11.350 km/h at time 4 and the deceleration of 2.301 km/h at

time 6, we include the following temporal assignments:

◦4acc := 11.35 ◦6acc :=−2.301

These two rules for acceleration and deceleration are applied specifically at time points

4 and 6, respectively. Note that our formalization does not provide a value for acc in the

initial state. Since no value is provided, acc is left undefined at the initial state, Rule

(9) is inapplicable and the inertia rule in (10) keeps the speed (s) constant. However, at

time points 4 and 6, a value for acc is given, so Rule (9) applies and the value of s is

modified.

An alternative formalization could rely on the use of the default rule

� (acc := 0←¬ (acc �= 0))

to set the value of acc to 0 in the absence of information. Under the addition of such

a rule, inertia (10) could be removed, since it becomes redundant: when there is no

acceleration, acc= 0 and we already derive ◦s= s through (9).

The following table presents an equilibrium model that satisfies the representation of

our scenario. The values for rdlimit and rdpos are omitted from the table as they remain

constant over time. The evolution of the remaining fluents is as follows:

time s(km/h) p(km) acc(km/h)
0 80 0 u
1 80 80 u
2 80 160 u
3 80 240 u
4 80 320 11.35
5 91.35 400 u
6 91.35 491.35 −2.301
7 89.049 582.7 u
8 89.049 671.749 u

Between time points 4 and 5, the car’s speed exceeds the limit as it passes the radar’s

position, resulting in the fine atom becoming true at time point 5.
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5 Discussion

We have integrated two established extensions of HT, namely THT and HTc (along

with their equilibrium variants), into a unified framework for temporal (nonmonotonic)

reasoning with constraints. Our work is inspired by extensions of (monotonic) Linear

Temporal Logic (LTL) interpreted over constraint systems and first-order theories, in

particular the approaches taken by Demri (2006a) and Geatti et al . (2022), which apply

next and previous operators to non-Boolean variables. In many of these cases, the con-

straints considered are based on Presburger arithmetic (Demri 2006b) or qualitative

spatial formalisms (Vilain and Kautz 1986; Wolter and Zakharyaschev 2000; Balbiani

and Condotta 2001). Within the ASP paradigm, a significant early extension of tem-

poral answer sets with constraints was introduced by Giordano et al . (2013a), building

upon their earlier work (Giordano et al . 2013b). This approach utilizes logic program-

ming syntax and semantics, which differs from our HT-based approach. Furthermore,

their constraints typically refer to variables within individual states, unlike our approach

which allows for the combination of variables across multiple temporal states.

In addition to defining and formally elaborating on the semantics of THTc, we extended

Kamp’s translation (Kamp 1968) to our approach by mapping THTc formulas into

QHT=
F (<), and notably demonstrated that this correspondence extends to the respective

equilibrium models. We further investigated the logic programming fragment of THTc,

illustrating its expressive power through modeling our initial scenario involving temporal

numeric constraints. This work lays the groundwork for the future integration of con-

straint reasoning into other HT-based temporal extensions, such as dynamic and metric

logics of HT (and their equilibrium variants) (Bosser et al . 2018; Becker et al . 2024b).

Advancing this line of research will necessitate adapting existing computational methods

(Becker et al . 2024a) to operate over constraints, extending beyond solely propositional

atoms.

As a first step, we have only considered linear constraints. Future work includes

studying the integration of periodicity constraints (Demri 2006b) and qualitative

spatial constraints (Wolter and Zakharyaschev 2000; Balbiani and Condotta 2001).

Periodicity constraints would allow for expressing congruence relations among different

variables, proving particularly useful for capturing cyclical behaviors or recurring events.

Integrating spatial constraints would enable us to assign spatial meaning to variables and

describe their dynamics, for instance, modeling objects that change their position or size

over time.

In the classical setting, the computational complexity of temporal logics interpreted

over constraint systems is often highly undecidable (Demri 2006a), with decidability

strongly depending on the specific constraint system. For example, the satisfiability

problem for LTL interpreted over constraint systems based on Presburger arithmetic

(including periodicity constraints) is in PSPACE under certain completion properties

(Balbiani and Condotta 2002; Demri 2006a). When considering qualitative spatial con-

straints expressed using the Region Connection Calculus, the problem is decidable, with

complexity ranging from NP to EXPSPACE, depending on the imposed restrictions

(Wolter and Zakharyaschev 2000). Following a strategy similar to (Cabalar and Demri

2011), it may be possible to establish a bijection between classical and equilibrium models,
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potentially allowing us to establish a lower bound on the complexity of the satisfiability

problem in THTc. However, determining a corresponding upper bound remains an open

challenge.
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