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Abstract

Reasoning about dynamic systems with a fine-grained temporal and numeric resolution presents
significant challenges for logic-based approaches like Answer Set Programming (ASP). To
address this, we introduce and elaborate upon a novel temporal and constraint-based extension
of the logic of Here-and-There and its nonmonotonic equilibrium extension, representing, to the
best of our knowledge, the first approach to nonmonotonic temporal reasoning with constraints
specifically tailored for ASP. This expressive system is achieved by a synergistic combination of
two foundational ASP extensions: the linear-time logic of Here-and-There, providing robust non-
monotonic temporal reasoning capabilities, and the logic of Here-and-There with constraints,
enabling the direct integration and manipulation of numeric constraints, among others. This
work establishes the foundational logical framework for tackling complex dynamic systems with
high resolution within the ASP paradigm.

KEYWORDS: temporal logic programming, nonmonotonic reasoning, knowledge representation,
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1 Introduction

Reasoning about action and change is crucial for understanding how dynamic systems
evolve over time and how actions influence those changes. Representing dynamic systems
with higher resolution, such as by employing finer time units and more precise numeric
variables, significantly increases the complexity of reasoning about them, posing partic-
ular challenges for logic-based approaches like Answer Set Programming (ASP; Lifschitz
2008). To illustrate this, consider the following scenario: “A radar is positioned at the 400
km mark on a road with a speed limit of 90 km/h. A car is initially traveling at 80 km/h.
At time instant 4, the car accelerates by 11.35 km/h. Subsequently, at time instant 6, it
decelerates by 2.301 km/h. The problem is to determine whether the car will exceed the
speed limit and thus incur a fine.” A closer look reveals several key numeric entities: the
car’s position and speed, the radar’s position and speed limit, and the car’s acceleration
and deceleration.

Our objective is to provide the logical foundations for extending ASP to effectively
model such scenarios involving changing numeric values over time. To achieve this, we
integrate two key logical formalisms that extend ASP: the linear-time logic of Here-and-
There (THT; Aguado et al. 2023), with its ability to handle nonmonotonic temporal
reasoning, and the logic of Here-and-There with constraints (HT.; Cabalar et al. 2016),
which allows us to incorporate and reason about numeric constraints, among others.
Building upon standard linear temporal logic, THT and its nonmonotonic equilibrium
extension, TEL, enable the expression of sophisticated temporal behaviors in dynamic
systems through features like inertia and default reasoning. HT. complements this by
allowing us to directly reason with numeric and other constraints. Furthermore, its
equilibrium extension provides solid logical foundations for tackling nonmonotonic con-
straint satisfaction problems, elegantly handling situations with incomplete information
by using default values. With this motivation established, we now proceed to introduce
the combined logical framework.

2 Temporal here-and-there with constraints

The syntax of the logic Temporal Here-and-There with constraints (THT.) relies on
a signature (X, D, A), akin to constraint satisfaction problems (CSPs; Dechter 2003).
Specifically, X denotes a set of variables and D represents the domain of values, often
identified with their corresponding constants. The set A comprises temporal constraint
atoms (or simply atoms), which are defined over temporal terms.

A temporal term (or simply term) is fundamental to THT, and is intended to represent
the value of a variable at past, present, or future time points. We represent such a term by
an expression o’z where x € X and i € Z, while overloading the temporal modal operator
for “next”, viz. o. The integer ¢ indicates a temporal offset: a positive ¢ signifies @ steps
forward in time to retrieve the value of z, a negative ¢ signifies || steps backward, and
1 =0 refers to the value of x in the current state. For notational convenience, we use x
and ox as shorthand for 0%z and o'z, respectively. Furthermore, we overload the operator
e for “previous” to represent past variable values. That is, e’z stands for o’z for offset
i. For example, the constraint ox + ey < z is equivalent to o'z + o 1y < 0%%.
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Accordingly, an n-ary temporal constraint atom cé€.4 is often represented as
c(0®xy,...,0%x,) where oz, ..., 0%z, are (possibly identical) temporal terms. To
further illustrate, the atom (e3z =4) can be read as “z had value 4 three states ago”,
and (ox =) as “the value of = in the next state is identical to its current value”.

Then, temporal constraint formulas (or just formulas) are defined as follows:

pu=ce€ Al L|loANp|loVeleo—9|0p|oUp|oRp|0p|pSe|pTyp

Connectives L, A, V and — are Boolean, while the remaining connectives are temporal
modalities. We use outlined operators to refer to future modalities and solid ones for
past modalities. Accordingly, o, U, R represent the future modalities next, until, release,
respectively, while o, S, T reflect their past counterparts: previous, since, trigger.

. . . . d
We also define several derived operators, including the Boolean connectives T &) -1,

- o p—=Ll, oy = (¢ =) A (¢ = ), and the following temporal operators:

1% T o, Y epvi oY Ty ¢ TSy

Fi —oT Op X opVE Op% 1 R Op ¥ TUe

Specifically, | and F refer to the “initial” and “final” state, respectively; e (8¢) refers
to ¢ at the previous (next) state in case that it exists; By (Cyp) is read as “p has always
been true” (“p will always be true”), and 4¢ (Qp) is read as “p has been true” (“p will
eventually be true”). For instance, ((ox > x) allows us to express informally that “the
value of variable x is increasing over time”.

We define the semantics of THT, in terms of HT, traces, which are sequences of HT,
interpretations (Cabalar et al. 2016). We first present the necessary semantic concepts
of HT, before further elaborating on these traces. HT, relies on partial valuations, that
is, functions v: X — DU {u}, where the range is augmented by the special value u ¢ D

representing “undefined”. We define D,, = DU{u} and denote such valuations also by
v: X — D,. Given two partial valuations v and v’, we define v C v’ if v(z) =d implies
v'(z)=d for all z € X and d € D. Similarly, we say that v=v" if v C v’ and v’ C v, and
vC v if vEv and v #£v'. An HT, interpretation is a pair (vp,, v;) of valuations such that
v C vg.

Building upon this, we define a trace v of length X as a sequence v = (v;);c[o..n) of
partial valuations v; for ¢ €[0..A). For instance, the sequence v/ ={x— 4} -{z+— u}-
{x — 5} represents a finite trace with three valuations (separated by ”-”) that assign
different values to x except at the second state where z is undefined. The C relation can
be extended to cope with traces in the following way: given two traces vy = (Vn,i)ic[o..))
and v = (vt,i)igfo..n) of length A, we define vy Ev; if vp; Evgy for all 4€[0..)). For
instance, our previous example trace v’ satisfies v’ C {z— 4} - {x — 1} - {x — 5} because
both traces coincide in the variables defined in v’, but the new trace assigns z— 1 at
the second state, while v’ left it undefined. As before, we say vj, = vy if vy ; = vy for all
i €[0..)\) and vy C v if v, C vy and vy, # vy, All this allows us to define an hHT, trace
of length X as a pair (vj, v;) of traces v, and v; of length A such that vy, C ;.
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HT, evaluates constraint atoms using denotations, a mechanism that abstracts from
the syntax and semantics of expressions originating from external theories. In HT,,
a valuation can be seen as a solution of a constraint. For instance the denotation
[z +y <5] contains all valuations v such that v(z) 4+ v(y) <5. Also, the satisfaction of
a constraint atom corresponds in HT. to checking whether a valuation belongs to a
denotation or not. In THT,, however, time-varying variables are handled. For instance
the constraint x + oz <5 is satisfied at time point ¢ when the addition of the val-
ues of z at ¢t and ¢+ 2 is smaller or equal to 5. In the temporal case, evaluating a
temporal constraint atom requires the use of a finite number of valuations, for which
we would need a more complex denotational approach. Therefore, we adopt a simpler
approach, associating each constraint atom with a relation, where each tuple signifies
a valid value assignment, as is standard in CSPs: Given a temporal constraint atom c
of arity n, we define its solution relation as [c] C Dj;. Note that this definition tolerates
undefined variables. Given a constraint atom c of arity n, [¢] is said to be strict when-
ever [c] C D", that is, if it leaves no variables undefined. Otherwise, we say that [c] is
non-strict.

For instance, to satisfy the atom x + o®x < 5 neither term z nor o
A natural choice for its (strict) solution relation is thus

[+ 0%z <5]={(a,b) €Z*|a+b< 5}.

5z can be undefined.

As an example of an atom with a non-strict solution, we could define an atom such as
some_zero(ex, x, ox) requiring that x equals zero at the previous, current, or next state,
but allowing for x to be undefined in some of those states:

[some_zero(ex, z, 0x)] = {(a, b, c) € (ZU{u})* |a=0 or b=0 or c=0}.

Given a trace v = (v;);e[o..») of length A, the value of a term o°z at time point i € [0..1)
is defined as

o~ def | Vigo(z) ifi4+0€[0..X)
v;(0%x) =
U otherwise.

Given an HT, trace M = (vp,, v;) and a time point i € [0..)), we define the satisfaction
of a formula in THT, as follows:

1. M,ifEc(o® 2y, ...,0%mx,) if for all we {h,t} (vysi(0®z1),..., V(0 xy,)) €
[e(c® 2y, ..., 0% zy)]

M,iEFpAY it M,ilEypand M,iEv¢

M,iEeVy it MilEpor M,iE

M, i@ = if (Ui, Vi), & @ or (U, v4),i = for all we {h,t}
M,iEFopifi<A—land M,i+1=¢p

M, ik ¢ U o if there exists k € [i..A) s.t. MykEv¥ and M, jEp foralli<j<k
M,iE ¢ R ¢ if for all k € [i..\), either M, k= or M, j = for some i <j <k
M,i=epifi>0and M,i—1=¢

M, i = ¢S if there exists k € [0..9] s.t. M,k =1 and M, j = for all k<j<i
M, i T if for all k € [0..7], either M, k =1 or M, j |= ¢ for some k< j <i

© 0N o N

[—Y
e
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In fact, given a constraint atom ¢ with a strict relation [c], the satisfaction of ¢ depends
solely on the “here” component of the trace (Cabalar et al. 2016). In this case, Condition
1 can be replaced by:

1" M,ilEc(o®z,...,0%mx,) if (vph,i(0%21), ..., v (0% @y)) € [c(0% 21, . .., 0%m2y)].

s

Proposition 1.
Given an HT, trace M= (vp,v,) and a time point i€ [0..X), we have the following
satisfaction relations for the derived operators:

M,i=My if for all € (0.4, M,jE ¢

M, i = & if there exists j € (0..i] such that M, j = ¢
M, ikl if i=0

M, i=ep if either i=0 or M,i—1FE¢

M, i =0y if for all j€[i.N), M, jl=¢

M, i = Qg if there exists j € [i..\) such that M, j = ¢
M,il=Fifi=A—1

M, i =03y if either i=A—1 or M,i+ 1=

O N oot W=

For illustration, consider the short HT, trace (v, v;) where
vp={z—4y—u} -{z—5y—u}l-{z—uy—u}l - {r—5y—6}
vi={x—4,y—6}-{x—5y—u} - {z—4,y—5} - {r—5y—6}

As a first example, consider the formula (z = 4) A (oz < 03y) whose atoms have the solu-
tion relations [z = 4] = {(4)} and [oz < 03y] = {(a, b) € Z* | a < b}. Note that each solution
relation above contains only the assignments that satisfy the constraint and they do not
depend on the “next” oF prefix that qualifies each variable inside a constraint. Broadly
speaking, a solution for (ox < o3y) consists of two assignments, one for x and one for
y that satisfy the constraint. The effect of using the term o3y is that the value for y is
given by the valuation placed three states ahead in the trace, that is, the valuation of o3y
depends on the sequence of valuations in the trace. Moreover, both [z = 4] and [ox < 03]
are strict, so we can use Condition 1’ to evaluate the constraint atoms. We have therefore
(v, ve), 0= (x =4). Also, we have (v, v), 0 (ox < 0%y) since vy, 3(y) =6, vp1(x) =5
and (5, 6) € [ox < o®y]. Therefore, (vy,,v;),0 = (z=4) A (oz <y).

Next, consider the formula (ex < 7) along with! [ex < 7] ={a€Z|a < T7}. Since there
is no time point before the initial state, we get vj, o(ex) =u. Hence, (vp,, v),0 = ex <7
because u ¢ [ex < 7]. However, if the constraint is evaluated at time point 1, we get
(vp,vy),lEEex<Tas v, (ex)=4and 4 € [ex < 7).

Finally, consider the equation y =y with [y = y] = Z. Clearly, we have (v, v;),3 Fy=
y since vy, 3(y) =6 and 6 € [y = y]. However, this is not the case at time point 0 because
Uno(y) =v and u ¢ [y =yl

Next, we show that THT, satisfies the characteristic properties of HT-based logics.

Proposition 2
(Persistence, Negation). For all HT, traces (vy,v:) of length X\, all formulas ¢, and all
i €[0..)\) we have:

1 We sometimes identify 1-tuples like (a) with the element itself a.
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(Vp, V1), 1 =@ implies (v, ve), 0 = p.
<vh,vt>7i ': - if <Uta vt>7i I#QD

Finally, temporal equilibrium models are defined in the traditional way.

Definition 1.
An HT, trace (v, v:) of length A is a temporal equilibrium model of a formula ¢ if

1. (v, v4),0 =@ and
2. there is no HT, trace (vy,vs) such that vy C vy and (vp,ve), 0 E .

Given that equilibrium models are the semantic counterpart of stable models in ASP,
we may thus refer to v, as a stable model of ¢ in THT..

2.1 THT. as a conservative extension of HT,

THT. can be viewed as a temporal extension of HT, (Cabalar et al. 2016). We support
this in what follows by showing that both coincide on non-temporal formulas.

To achieve this, we need to establish a correspondence between the semantic concepts
of denotations and solution relations. Given a signature (X, D, A), let V be the set of
all partial valuations from X to D,. A denotation is a function [-]: A — 2V assigning a
set of partial valuations to each atom. In HT,, one considers denotations with a closed
range: if a partial valuation v satisfies an atom ¢, v € [¢], then any partial valuation v’
that extends v, v E ', also satisfies c.

def

[z=y] = {veV]v(@)=v(y) #u}
[some_zero(X)] = {veV|v(z)=0 for some z € X}.

For a (non-temporal) constraint ¢(z1,-- - ,x,) in A, only referring to variable values
in the current state, we define

[C(l‘l,-” 7$n)]:{(v(x1)7"' ,U(l‘n)) |UEV}
[[C(ilv t 7xn)ﬂ = {U € V| (v(xl)’ t 7U(xn)) € [C(xlv T 7xn)]}

Given this correspondence, we can show the following result, where |=yy, and FErur
denote the satisfaction relation of HT, (Cabalar et al. 2016) and THT, (as given above).

Proposition 3.
For all formulas ¢ containing only Boolean connectives and all HT,. interpretations
(vn, ve), we have (vp, ve) Fur.@ if ((Vn,vr)), 0 Frur, -

Since HT, interpretations are simply HT, traces of length 1, it follows that HT, and THT,
coincide when restricted to the language of HT..

2.2 THT. as a conservative extension of THT}

THT. extends THT; (Aguado et al. 2023) by including constraints. Similar to the pre-
vious section, we confirm this relationship by showing that they coincide on temporal
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formulas without non-Boolean constraints. To proceed, we first need to introduce basic
concepts of THTY.

THT; employs the same syntax for temporal formulas as THT,, with the key distinction
that constraint atoms are replaced by Boolean atoms in 4. The semantics of THTy
relies on HT traces. An underlying (Boolean) trace of length X is a sequence (T5);c[o..))
where T; C A for all i € [0..A). An HT trace (H, T) is a pair of traces H= (H;);c[o..))
and T = (T});c[0..\) satisfying H; CT; for all i € [0..A). An HT trace (H, T) satisfies a
Boolean atom p € A at i € [0..)) if p € H;. The satisfaction conditions for more complex
formulas are identical to those of THT..

To encode THT; within THT,, we consider the signature (A, {t},{p=t|peA}),
where t is considered as true.? Accordingly, we set [p=1t]={t} for all p€ .A. Then,
we define the bijective mapping § from HT traces to HT, traces as follows.? Given an
HT trace (H, T) = ((Hi)ic[o..n), (T7)ico0..n)) of length A, we define the corresponding HT,
trace 6((H, T) = (vp, v4) of length A where for all i € [0..)\) and for all p € A, we have

on (p) . t 1fp€HZ v (p) . t lfPETZ
N - . t,i - .
‘ u  otherwise ‘ u  otherwise

Then, the following proposition can be easily proved via structural induction.

Proposition 4.

For any HT trace (H,T), we have for all temporal formulas ¢ and all i €[0..\) that
H, T),i=¢ if §(H, T)),ik=q¢, where ¢ is obtained from ¢ by replacing every atom
p by the constraint p=t.

Proposition 4 can be extended to the case of equilibrium models.

Proposition 5.
For any HT trace (H, T) and for any formula @, (v, v) is a temporal equilibrium model
of v if 6((H,T)) is a temporal equilibrium model (under THT, semantics) of .

3 From THT, to quantified HT with evaluable functions

Kamp’s translation (1968) is a cornerstone result that provides a fundamental link
between temporal and classical logic, offering deep theoretical insights and practical
implications for the study and application of temporal reasoning.

As a step towards a similar result in our non-classical context, we define a translation
from THT, into Quantified* HT with decidable equality, evaluable functions (Cabalar
2011), and an order relation. We consider a first-order language with signature (C, F, P),
where C and F are disjoint sets of uninterpreted and evaluable function names, respec-
tively, and P is a set of predicate names including equality (=) and a strict order relation
< (the non-strict version < is defined as usual). We assume that « ¢ CUF and + € F.
First-order formulas are built in the usual way, defining T, =, <+ as above.

2 In HT,, Boolean variables are already captured by truth values t and u (rather than f[alse]) (Cabalar
et al. 2016).

3 We demonstrate that § is a bijective function in the extended version of this paper (see
https://arxiv.org/abs/2507.13958).

4 “Quantified” is used synonymously with “First-order”.
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The difference of our translation to Kamp’s original one lies in the fact that our pred-
icate names are not monadic and that we allow (partial) function symbols for simulating
the valuation of a variable along time.

Given a temporal formula ¢ in THT,, we define the first-order formula () with the
only free variable t as follows. For constraint atoms, our translation is defined as

Te(e(0® 2y, ..., 0% 2y)) = De(fo, (E+01), ..oy fr, (E+0n)).

where p. is a predicate that simulates the behavior of ¢ and each f,, € F is a partial
evaluable function associated with the variable x; for 1 <¢ <mn. The value of a variable
x at a time point ¢ is given by f,(t). To capture the temporal offset i in o'z, we shift
the argument of f,, resulting in f,(t +14). Note that f, is partial because its argument
might extend beyond the defined time points in a trace.

The rest of the translation follows the one by Kamp (1968):

m(l)=1
Tt(p A ) = Te(0) A Te(¥)
T V) = T(p) V Te(¥)
(@ — ) = () — T (1)
T:(0p) = (' =t + 1) A1e(p)
T(pU) =Tt <t A () NV ((t <" A" <) — 10 ()
T RY) =V (t <t — (rv () V (3"t <" At <t AT (9)))))
T (@) = (t =t + 1) A1e(p)
Te(pSY) =3 (' <t AT () A(H((1' <t At < 1) — ()
Tl TY) =Vt <t = (rv(¥) vV (3" <t" At" <t AT (9)))))

The translation of derived operators can be done unfolding their definitions or using
the shorter, equivalent formulas:

(1) = -3t <t 7(F) =3t < t')
T(®Y) =Vt =t + 1 — () m(0y) =Vt'(t' =t +1— 7 (y))
T(OY) =3t < t' AT () T(#0) =3 (' <t ATe(¥))
w(09) =Vt'(t < t' — 7 (¥)) 7(Wy) = V' (1’ <t — 70 (1))

As an example, let us consider the formula [(14(c?x =) and the free variable ¢t. The
result 7, (CJ4 (o?z =x)) of translating this formula is as follows:

(O =2)) =V (t <t' = 7 (#(c’z =1)))
=V (<t — 3" <t A (0®x =1))))
=Vt <t'— 3" <A (f(t"+2) = f(1)))))
In our non-classical framework, the interpretation of first-order formulas requires
Quantified HT Logic with evaluable functions (Cabalar 2011). In preparation for estab-

lishing the correctness of our translation in Proposition 6, we proceed to introduce the
semantics of this logic. Given signature (C, F,P), we define:
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e T(C) as the set of all ground terms over C,
e T(CUF) as the set of all ground terms over C and F,
e A(C,P) as the set of all ground atoms over C and P.

A state over (C, F,P) is a pair (o, A), where AC A(C,P) and o: T(CUF)—=T(C)U
{u} is a function such that

1. o(s)=sfor all s€ T(C)
2. U(f(sl,...,sn)):{

u if o(s;) =wu for some i € {1,...,n}
o(f(o(s1),...,0(sn))) otherwise

Given two states S = (0, A) and S’ = (¢’, A’), we write S <.S" when both

1. AC A’ and
2. a(s)=0'(s) or o(s) =wu for all s€ T(CUF).

We also write S < S’ when S < S’ but S#5".

Following Cabalar (2011), a QHTZ(<) interpretation is a structure (S, S;), where
Sp=(on,I,) and Sy = (o, I;) such that Sp <S;. Given a first-order formula ¢ and a
QHTZ(<) interpretation M = (S, St), we define the satisfaction relation as follows:

MET and M }E L

MED(s1, ..., 8n) if plon(s1),. .., on(sn)) €1p
MEs=¢"if op(s)=on(s') #u

MEs<s ifuop(s) <op(s) #u

MEpAY it M =g and M =y

MEepVYit MEpor MEY

MEp—=¢if M'Epor M4 for all M € {M, (S, Si)}
METz ¢(z) if M E=¢(c) for some c€ T(C)

MEYz o(z) if MEg(c) for all ce T(C).

A QHTZ(<) interpretation M is a QHTZ(<) model of a formula ¢ when M . A
QHTZ(<) model (S, St) is an equilibrium model for a formula ¢, if there is no state Sy,
such that S, < S, and (S, S;) is a QHTZ(<) model of ¢.

We are now ready to define the model correspondence between HT. traces and
QHTZ(<) interpretations. An HT, trace M = (v}, v;) of length X for signature (X', D, A)
corresponds to a QHT Z (<) interpretation M = ((op, I1,), (04, I1)) if for each ¢ € [0..)) and
for each variable x € X', we get o (f(7)) =vn,i(z), 0¢(f2 (1)) = v (),

© NS otk W=

©

In={pc(ay,...,an) | c(c®xy,...,0%x,) € A,i €[0..\) and
(U itor (T1), -+ Vhjito, (Tn)) =c(a1, . .., an) € [c(0® 21, ..., 0%z, )|} and
I ={pc(ai,...,an) | c(c®xy,...,0"x,) € A i €[0..\) and
c(Vt,ito, (T1)s -+ Vtizo, (Tn)) = a1, . .., ap) € [e(0™ 21, ..., 0% xy)]},
where [c(ctzy, ..., 0% x,)] is strict.

This model correspondence allows us to translate THT, into QHTZ(<). We let ¢[t/q]
stand for the result of replacing each occurrence of variable ¢ in ¢ by <.
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Proposition 6.

Let M = (vp,v:) be a HT, trace and let M = ((on, 1), (01, I1)) be its corresponding
QHTZ(<) interpretation. For all i€[0..X) and every temporal formula ¢, we have
M, i = if MEr(p)[t/i].

In other words, we can consider THT, as a subclass of theories in the fragment of
QHTZ(<) with partial evaluable functions. We show next that this correspondence is
still valid when considering equilibrium models.

Proposition 7.

Let M= (v, v;) be a HT,. trace and let M= {(op,1I},), (o1, 1)) be its corresponding
QHTZ(<) interpretation. For every temporal formula ¢, M is an equilibrium model of
¢ if M is an equilibrium model of 1.(¢)[t/0].

An important consequence of our translation is that it opens the possibility of applying
first-order theorem provers for solving inference problems for THT.. For instance, one
salient THT, inference problem is deciding THT,-equivalence of two temporal theories
with constraints, I'y and I's, since it is a sufficient condition for their strong equivalence
(Lifschitz et al. 2007), something that guarantees a safe replacement of I'y by T's (or vise
versa) in any arbitrary context. The translation of the QHT 7 (<)-formula obtained from
7¢(+) into classical First-Order Logic can be done in two steps: first removing the partial
functions in favor of predicates (Cabalar 2011), and second passing from quantified HT
(without partial functions) into first-order classical logic (Pearce 2006).

4 Logic programs with temporal linear constraints

In this section, we consider the fragment of THT, interpreted over linear constraints
whose solution table is strict. We define a linear term as an expression of the form

dy -0z + - +dy 0%, (1)

where d; € Z, x; € X, and o; € Z for 0 <14 < n. Multiplication and addition are denoted by
“” and “+,”, respectively. An implicit multiplicative factor of 1 is assumed for standalone
numbers d;. Negative constants are represented using “—.”, and the “” symbol may be
omitted when contextually clear. Given a linear term « as in (1), we define terms(a) =
{o%x; |0 <i<mn}. For instance, terms(2- o 2x) = {0~ 22} = {eezx}.

A linear temporal constraint atom is a temporal constraint atom of the form a < f,
where o and [ are linear terms. We use the abbreviation a=p8, a<f, and a#p
for (a<B)N(B<a), (a<B)A-(8<a), and (a< )V (8 < ), respectively. Similarly,
terms(a ® B) = terms(a) U terms(B), for ® € {<, <, =, #}. Given our focus on strict solu-
tion tables, we have [a < 8] C D" for all a < 8, where n is the number of terms in o and
B. More generally, given a constraint atom ¢ with a strict relation, we define its comple-
ment constraint as [¢] = D™ \ [¢] (which is also strict). The interaction of complementary
constraints with logical negation is given in the next proposition.
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Proposition 8.

For any HT, trace M = (vp,vs) of length A and any pair ¢, © of complementary con-
straints, with both [c] and [¢] being strict, we have that M, i |= ¢ implies M, i = —¢ for all
i€[0..X).

We thus obtain that o= § implies =(« # ) but not necessarily vise versa.
For illustration, consider the atoms oz = x and ox # x, where x takes its values in N.
We define the solution relation for each constraint as

[ox =] ={(a1, a2) € N? | a1 = az # u}
[ox # x] = {(a1,a2) €N? | a; # ay and a; # v and ap # u}.

We have that [ox # x] = N? \ [oz = z], and therefore [ox # z] = [6Z = z]. By Proposition 8,
ox = x implies —(ox # x). Conversely, let Ml = (v, v¢) be an HT, trace of length 2 defined
as vy (x) =u for we {h,t} and i€{0,1}. Then, we have that M, 0= —(ox # ) but
M, 0 oz =1z

When HT, is extended with linear constraints, Cabalar et al. (2016) introduce an
interesting feature known as assignments. This assignment operator is a specialized form
of equality that allows us to check if a variable has a defined value. To illustrate this,
consider the two following formulas:®

(r=vy) and (p=t —y=10) (2)

The equality x = y implies that any assignment to  must also be an assignment to y, and
vise versa. Given that p=t is not derivable, y appears to be undefined in this context.
However, due to the strict nature of [x = y], this allows for both z and y to take on any
value, even if y seems undefined. To ensure that x is only assigned a value when y is
defined, we can replace z =y in (2) with:

y<y—r=y (3)

Because y <y cannot be established (due to the underivability of p =t making y unde-
fined), the resulting HT, model has z, y and p all undefined. Indeed, within HT,., the
modified formula in (3) effectively represents the assignment z :=y.

The remainder of this section focuses on extending this assignment mechanism of HT,
to our temporal setting in THT,. For any linear expression «, we define

def
df(a) = /\olIEterms(a) ola < ol.

The satisfiability of df («) necessitates that all its variables are defined, as shown next.

Proposition 9.
For all HT. traces M = ((vn,i)ic[o..)), (Vt,i)icjo..n)) and for all linear expressions «, the
following statements are equivalent for all i € [0..)\)

1. M,iEdf(a)

2. vpi(olx) = vy i(olz) #u for all o'z € terms(a)

In our context, an assignment for a variable z € X is an expression of the form o'z := a,
where « is a linear temporal term. The assignment operator can be seen as a derived

5 Recall that atom p =t is the constraint representation of variable p (see Section 2.2).
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operator defined as

With it, we now define a syntactic subclass that takes the form of a logic program. To

ease notation, we let (¢ <) o (v = ) and (v, ) Y (¥ A ). Then, a temporal linear

constraint rule (or just rule) is of the form:

olx::aeﬁl,...,ém,ﬁﬁmﬂ,...,—|£k (4)

g := o is an assignment and each /; is a linear temporal constraint atom for 0 <

where o
m < k. Placing Rule (4) under the O operator ensures its satisfaction across all temporal
states. As with HT,, assignments appearing in rule heads can be transformed into an

analogous logic programming representation.

Proposition 10.
A rule of form (4) is equivalent to the rule

olz=a 0%z <o%xy, ..., 0%, < xy, by, ... by gty - g

where o%x; € terms(a) for 0 <i<n=|terms(a)|.

The logicprogramming fragment of THT, offers a powerful approach to modeling vari-
ous aspects of dynamic systems, including the representation of inertia rules and default
values. To demonstrate the expressive power of our formalism, let us reconsider our
initial scenario: “A radar is positioned at the 400 km mark on a road with a speed limit of
90 km/h. A car is initially traveling at 80 km/h. At time instant 4, the car accelerates by
11.35 km/h. Subsequently, at time instant 6, it decelerates by 2.301 km/h. The problem
1s to determine whether the car will exceed the speed limit and thus incur a fine.”

To formalize this scenario within THT,, we introduce the following variables. The
numerical fluents p and s (ranging over N) represent the car’s position and speed,
respectively. The numerical variables rdpos and rdlimit (ranging over N) refer to the
radar’s position and speed limit. The numerical action acc (ranging over Z) models the
car’s acceleration (positive) or deceleration (negative). Lastly, the Boolean variable fine
indicates whether the car’s speed exceeded rdlimit at rdpos, leading to a fine.

The subsequent set of rules formalizes our scenario in THT,.6

p:=0 (5)

5:=80 (6)
O)(rdlimit == 90) (7)
O(rdpos := 400) (8)
O(os:= s + acc) (9)
O(os:=s< —(os#3)) (10)
O(op:=p+ ) (11)
O(ofine « p < rdpos, op > rdpos, os > rdlimit) (12)

6 To facilitate understanding, the values of s, acc, and pos are presented using decimal notation. In a
real-world implementation, speed and acceleration should be expressed in m/h, while position should
be expressed in meters.
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Rules preceded by the always operator [ in our THT, formalization are enforced through-
out the entire temporal evolution, contrasting with Rules (5) and (6), which are specific
to the initial state. Specifically, Rules (5) and (6) set the car’s initial position to 0 meters
and its speed to 80 km/h. The radar’s characteristics, its position at 400 km and a con-
stant speed limit of 90 km/h, are defined by Rules (7) and (8). The dynamics of the car’s
speed are captured by Rules (9) and (10): the speed remains unchanged unless an accel-
eration value (acc) is present, causing a corresponding adjustment. Rule (11) dictates
that the car’s position changes based on its speed. The condition for receiving a fine is
formalized in Rule (12): if the car’s speed (s) exceeds the radar’s speed limit (rdlimit)
at or after passing the radar’s position (rdpos) at any time, a fine is issued. Finally, to
model the acceleration of 11.350 km/h at time 4 and the deceleration of 2.301 km/h at
time 6, we include the following temporal assignments:

otace:=11.35 oSacc :=—2.301

These two rules for acceleration and deceleration are applied specifically at time points
4 and 6, respectively. Note that our formalization does not provide a value for acc in the
initial state. Since no value is provided, acc is left undefined at the initial state, Rule
(9) is inapplicable and the inertia rule in (10) keeps the speed (s) constant. However, at
time points 4 and 6, a value for acc is given, so Rule (9) applies and the value of s is
modified.

An alternative formalization could rely on the use of the default rule
O (acc: =0+ = (acc #£0))

to set the value of acc to 0 in the absence of information. Under the addition of such
a rule, inertia (10) could be removed, since it becomes redundant: when there is no
acceleration, acc =0 and we already derive os =s through (9).

The following table presents an equilibrium model that satisfies the representation of
our scenario. The values for rdlimit and rdpos are omitted from the table as they remain
constant over time. The evolution of the remaining fluents is as follows:

time s(km/h) p(km) acc(km/h)
0 80 0 U
1 80 80 U
2 80 160 U
3 80 240 U
4 80 320 11.35
5 91.35 400 U
6 91.35 491.35 —2.301
7 89.049 582.7 U
8 89.049 671.749 U

Between time points 4 and 5, the car’s speed exceeds the limit as it passes the radar’s
position, resulting in the fine atom becoming true at time point 5.
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5 Discussion

We have integrated two established extensions of HT, namely THT and HT. (along
with their equilibrium variants), into a unified framework for temporal (nonmonotonic)
reasoning with constraints. Our work is inspired by extensions of (monotonic) Linear
Temporal Logic (LTL) interpreted over constraint systems and first-order theories, in
particular the approaches taken by Demri (2006a) and Geatti et al. (2022), which apply
next and previous operators to non-Boolean variables. In many of these cases, the con-
straints considered are based on Presburger arithmetic (Demri 2006b) or qualitative
spatial formalisms (Vilain and Kautz 1986; Wolter and Zakharyaschev 2000; Balbiani
and Condotta 2001). Within the ASP paradigm, a significant early extension of tem-
poral answer sets with constraints was introduced by Giordano et al. (2013a), building
upon their earlier work (Giordano et al. 2013b). This approach utilizes logic program-
ming syntax and semantics, which differs from our HT-based approach. Furthermore,
their constraints typically refer to variables within individual states, unlike our approach
which allows for the combination of variables across multiple temporal states.

In addition to defining and formally elaborating on the semantics of THT,, we extended
Kamp’s translation (Kamp 1968) to our approach by mapping THT. formulas into
QHTZ(<), and notably demonstrated that this correspondence extends to the respective
equilibrium models. We further investigated the logic programming fragment of THT,,
illustrating its expressive power through modeling our initial scenario involving temporal
numeric constraints. This work lays the groundwork for the future integration of con-
straint reasoning into other HT-based temporal extensions, such as dynamic and metric
logics of HT (and their equilibrium variants) (Bosser et al. 2018; Becker et al. 2024b).
Advancing this line of research will necessitate adapting existing computational methods
(Becker et al. 2024a) to operate over constraints, extending beyond solely propositional
atoms.

As a first step, we have only considered linear constraints. Future work includes
studying the integration of periodicity constraints (Demri 2006b) and qualitative
spatial constraints (Wolter and Zakharyaschev 2000; Balbiani and Condotta 2001).
Periodicity constraints would allow for expressing congruence relations among different
variables, proving particularly useful for capturing cyclical behaviors or recurring events.
Integrating spatial constraints would enable us to assign spatial meaning to variables and
describe their dynamics, for instance, modeling objects that change their position or size
over time.

In the classical setting, the computational complexity of temporal logics interpreted
over constraint systems is often highly undecidable (Demri 2006a), with decidability
strongly depending on the specific constraint system. For example, the satisfiability
problem for LTL interpreted over constraint systems based on Presburger arithmetic
(including periodicity constraints) is in PSPACE under certain completion properties
(Balbiani and Condotta 2002; Demri 2006a). When considering qualitative spatial con-
straints expressed using the Region Connection Calculus, the problem is decidable, with
complexity ranging from NP to EXPSPACE, depending on the imposed restrictions
(Wolter and Zakharyaschev 2000). Following a strategy similar to (Cabalar and Demri
2011), it may be possible to establish a bijection between classical and equilibrium models,
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potentially allowing us to establish a lower bound on the complexity of the satisfiability
problem in THT,.. However, determining a corresponding upper bound remains an open
challenge.
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