Canad. J. Math. 2025, pp. 1-51

http://dx.doi.org/10.4153/S0008414X25101156

© The Author(s), 2025. Published by Cambridge University Press on behalf of
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Opposing average congruence class biases
in the cyclicity and Koblitz conjectures for
elliptic curves

Sung Min Lee®, Jacob Mayle®, and Tian Wang

Abstract. The cyclicity and Koblitz conjectures ask about the distribution of primes of cyclic and
prime-order reduction, respectively, for elliptic curves over Q. In 1976, Serre gave a conditional proof
of the cyclicity conjecture, but the Koblitz conjecture (refined by Zywina in 2011) remains open. The
conjectures are now known unconditionally “on average” due to work of Banks-Shparlinski and
Balog-Cojocaru-David. Recently, there has been a growing interest in the cyclicity conjecture for
primes in arithmetic progressions (AP), with relevant work by Akbal-Giiloglu and Wong. In this
article, we adapt Zywina’s method to formulate the Koblitz conjecture for AP and refine a theorem
of Jones to establish results on the moments of the constants in both the cyclicity and Koblitz
conjectures for AP. In doing so, we uncover a somewhat counterintuitive phenomenon: On average,
these two constants are oppositely biased over congruence classes. Finally, in an accompanying
repository, we give Magma code for computing the constants discussed in this article.

1 Introduction

Let E be an elliptic curve defined over the rationals, and let N denote the conductor
of E. For a prime p not dividing N (called a good prime for E), we write E,, to denote
the reduction of E modulo p. The curve E, » is an elliptic curve over the finite field IF,.
Hence, the set of IF,-points, denoted EP (Fp), forms a finite abelian group. It is well
known that

E,(F,) ~Z/d,(E)Z&®Z[e,(E)Z and p+1-2p<|E,(F,)|<p+1+2\/p
for some positive integers d,(E) and e, (E) such that d,(E) | e,(E).

There has been considerable interest, dating back to the 1970s, in studying the
distribution of primes p for which E, »(Fp) has certain properties. In particular, one
defines a good prime p to be of cyclic reduction for E if Ep(]Fp) is a cyclic group and
of Koblitz reduction for E if |E,(F,)| is a prime. It is worth noting that every prime
p of Koblitz reduction is also of cyclic reduction, since every group of prime order is
cyclic. Let X be either “cyc” or “prime” and Xg(p) be either “p is of cyclic reduction”
or “p is of Koblitz reduction” for E, respectively. Define the counting function
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mx (x) =#{p <x:p+ Ngand Xg(p) holds}.

The problem of determining asymptotics for 7y (x) is called the cyclicity problem or
Koblitz problem, depending on the context. As noted in [5, 34], the Koblitz problem
can be viewed as an elliptic curve analog of the twin prime conjecture.

It is natural to consider finer versions of the cyclicity and Koblitz problems which
restrict to primes lying in arithmetic progressions. To discuss this, fix integers n, k
with n > 1and define

mx(xsn k) =#{p<x:p=k (modn), p+ Ng, and Xg(p) holds}.

Note that if # and k are not coprime, then there is at most one prime congruent to k
modulo 1, 50 7y (x; 1, k) is trivially bounded. As such, we will always take the integers
n and k to be coprime. Broadly speaking, the goal of this article is to examine the
constants that appear in the conjectural asymptotics of 773 (x; 1, k) and explore how
they are influenced by the choice of k modulo . Before introducing our contributions,
we outline aspects of the rich history of the cyclicity and Koblitz problems relevant to
our work.

We begin with the cyclicity problem, which has its origin in 1975 when I. Borosh,
C. J. Moreno, and H. Porta [9, pp. 962-963] speculated that the density of primes
of cyclic reduction exists and can be expressed as an Euler product.' In 1976, J.-P.
Serre [51] observed that the cyclicity problem bears a resemblance to Artin’s primitive
root conjecture, which was proven under the Generalized Riemann hypothesis (GRH)
by C. Hooley [30] a decade prior. With this insight, Serre proposed the following
conjecture, which he proved as a theorem under GRH.

Conjecture 1.1 (Cyclicity conjecture [51, pp. 465-468]) If E/Q is an elliptic curve,
then

ey e (x) ~ O

logx’
as x — oo, where Cy < > 0 is the explicit constant defined in (18).

Serre noted that C;’* = 0 if and only if Q(E[2]) = Q, in which case we interpret (1)
as stating that 7,/ (x) is bounded as x — oo.

Conjecture 1.1 has been extensively studied by various mathematicians since then.
M. Ram Murty [46] proved that the conjecture holds unconditionally for CM curves.
Later, using a lower bound sieve method, Gupta and Murty [28] showed uncondition-
ally for non-CM curves that

cyc
Us

x
x) > ,
() > logzx

as x > oo unless Q(E[2]) = Q. See, for example, [6, 14-16, 24, 31, 59] for some recent
work on the problem.

'In 1977, S. Lang and H. Trotter [35] considered a related problem on the density of primes p for
which the reduction of a given rational point P on E generates E,(F)).
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In 2022, Y. Akbal and A. M. Giiloglu [1] studied the cyclicity problem for primes
lying in an arithmetic progression. They proved that, under GRH,

2 cyc k cre . X X
@ (k) ~ Cp i log x

as x — oo, where Czy:l Rt the explicit constant defined in (21). As before, if Ccyc =

0, then we interpret (2) as stating that 71y (x;n, k) is bounded as x - co. In 2015

J. Brau [12] obtained a formula for the constant C yn for all Serre curves outside of
a small class (see Remark 1.8). N. Jones and the first author [33] determined all the
possible scenarios in which the constant C} n.x Vanishes. Additionally, P. -J. Wong
[60] established (2) unconditionally for CM elhptlc curves.

While Conjecture 1 remains open without assuming GRH, researchers have found
success in proving the conjecture is true “on average” in various senses. As observed
in [8, Remark 7(v)], there are two broad approaches regarding the average results.
One approach is to compute the density of elliptic curves E over I, for which E(IF,)
is cyclic, and average it over all primes p. Another approach is to count the number
of primes for which an elliptic curve over Q has cyclic reduction and then average
over the family of elliptic curves ordered by height. The former is called the “local”
viewpoint while the latter is called the “global” viewpoint.

In 1999, S. G. Vliddut [57] obtained some statistics related to the cyclicity problem
for elliptic curves over finite fields. In particular, he determined the ratio

#{E e€J,: E(F,) is cyclic}

3) #7,

where J, denotes the set of isomorphism classes of elliptic curves over [F,. Later, E.-U.
Gekeler [26] built upon this result to obtain the local result for the average cyclicity
problem. He computed that the average of (3) over all primes p is C*Y¢, which is defined
in (20).

In 2009, building upon Vladu{’s work, W. D. Banks and I. E. Shparlinski [6] deduced
a global result for the average cyclicity problem and demonstrated that it aligns
with Gekeler’s local result. To set notation: For positive real numbers A and B, let
JF = F(A, B) denote the family of elliptic curves E/Q defined by a short Weierstrass
model

4) EY*=X’+aX+b,

for some a,b € Z satisfying |a| < A and |b| < B. Banks and Shparlinski proved the
following.

Theorem 1.2 [6, Theorem 18] Let x >0 and € > 0. Let A= A(x) and B = B(x) be
parameters satisfying x* < A, B < x'~¢, and AB > x'*¢. Then, we have

1

|?| EeTF

Later, the inequality conditions on A and B in the theorem above were significantly
relaxed by A. Akbary and A. T. Felix [2, Corollary 1.5].

x
my (x) ~ CY - ——,  asx - oo,
logx
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Building upon Banks and Shparlinski’s methods, the first author refined the results
to consider primes in arithmetic progressions [38, Theorem 1.3]. To summarize his
results, under the same assumptions of Theorem 1.2, for n < log x and k coprime to #,
there exists a positive constant C:ly; for which

1
|3~| EeF

The average constant C.”, is given explicitly in (23).
Related to the cychaty problem is the Koblitz problem, which seeks to understand

prime

X
wCam k)~ O o

s as X — 00.

the asymptotics of 7, (x) and has significance for elliptic curve cryptography
[47, 55]. In 1988, N. Koblitz [34] made a conjecture analogous to Conjecture L1
In particular, it follows from the conjecture that a non-CM elliptic curve E/Q has
infinitely many primes of Koblitz reduction unless E is rationally isogenous to an
elliptic curve with nontrivial rational torsion. The Koblitz conjecture remained open
for over 20 years until Jones gave a counterexample, which appears in [62, Section
1.1]. The fundamental issue with the conjecture, which the counterexample exploits,
is its failure to account for the possibility of entanglements of division fields. Properly
accounting for this possibility, D. Zywina [62] refined the Koblitz conjecture as follows.

Conjecture 1.3 (Refined Koblitz conjecture, [62, Conjecture 1.2])  IfE/Q is an elliptic
curve, then

(5) prlme (x) Cprlme X

(logx)?’

as x — oo, where Cprime > 0 is the explicit constant defined in (27).

Similar to the cydlicity case, the constant CP"™

prime

may vanish. In this case, we
interpret (5) as indicating that 7, (x) is bounded as x — co. Beyond the statement
of the conjecture provided above, Zywina made the conjecture more generally for
elliptic curves over number fields and allowed for a parameter f to consider primes
p for which |EP (Fp)|/t is prime.

Conjecture 1.3 is often referred to as an elliptic curve analog of the twin prime
conjecture. Assuming that the events “p is prime” and “|E, »(Fp)| is prime” are
independent, and applying the Hardy-Littlewood heuristic [29], one would expect
that 75"™¢ (x) should grow like a constant times x/log” x, unless E has an intrinsic
obstruct10n preventing the existence of primes of Koblitz reduction. Although Con-
jecture 1.3 remains open even under GRH, upper bounds for ﬂpnme (x) have been
studied by several authors. A notable result is due to A. C. Co]ocaru [18], who proved
that for a non-CM E/Q of conductor N, we have

(6) grlme(x) «<N, LZ

log” x

as x — oo, under the quasi-GRH. (See [18, p. 268].) For CM curves, she applied

Selberg’s sieve to prove that the upper bound holds unconditionally, independently

of the conductor. Later, C. David and ]. Wu [22] improved (6) into an effective

upper bound for non-CM curves under the quasi-GRH. However, a lower bound for
PEIME () remains unknown.
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A related problem is to understand how many prime factors the group order
|E, »(Fp)| has as p varies. One of the first major advances in this direction was made by
S. A. Miri and V. K. Murty [3]. Given a positive integer N, let v(N) denote the number
of prime factors of N, counted with multiplicity. They demonstrated that, assuming
GRH, for any non-CM elliptic curve E/Q,

#{p < x : v(|E,(F,)|) <16} >p —=

log” x

as x — oo. This line of research was continued by many mathematicians, leading to

successive improvements: the bound of 16 was reduced to 8 for non-CM curves under
GRH, and to 5 for CM curves unconditionally (see, for example, [18, 22, 54]).

In 2011, A. Balog, A. C. Cojocaru, and C. David obtained a local result for the

average version of the Koblitz problem and applied it to deduce the following global

results.

Theorem 1.4 [5, Theorem 1] Set x > 0 and € > 0. Let A= A(x) and B := B(x) be
parameters satisfying x* < A, B and AB > x1og'® x. There exists a constant CP'™¢ > 0
for which

1 x

L Z ﬂgrime(x) o Cprime C—, as x — 00.
7] £ log” x

The average constant CP"™¢ is defined in (33). The inequality conditions on A and
B can also be relaxed as in Akbary and Felix [2, Equation (1.8)].
A natural inquiry is whether each of these average results is consistent with the

corresponding conjectured outcomes on average. This question was answered by Jones
[31], assuming an affirmative answer to Serre’s uniformity question (Question 2.3).

Theorem 1.5 [31, Theorem 6] Assume an affirmative answer to Serre’s uniformity
question. Let X € {cyc, prime}. There exists an exponent y > 0 such that for any positive
integer t, we have

t/t+1 .
S |cE -t <« max{(10g3‘1°g7A) logy(mm{A,B})}

|5'~| EeF B \/min{A4, B}

as min{A, B} — co.

In particular, by taking ¢ = 1, Theorem 1.5 gives a result on the average value of
the constants Cy . Indeed, suppose that A := A(x) and B := B(x) tend to infinity as
x — oo and assume an affirmative answer to Serre’s uniformity question and that
(logBlog’ A)/B — 0 as x — oo. Then for X € {cyc, prime}, we have

S cy -t
|5t ‘ EeTF
This verifies that the average of the constants C aligns with the average constants C*.
In this article, we utilize Zywina’s approach to propose the Koblitz constant CPrlme
for primes in arithmetic progressions. Unlike the cyclicity problem, the average
version of the Koblitz constant C2"" has not yet been considered. We address this
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Cprlme Cpnme

gap in the literature by providing a candidate for the average version of C ',
in (42). We illustrate the suitability of these con]ectural constants by proving an
analogous version of Theorem 1.5 for them.

We start by formulating the Koblitz conjecture for primes in arithmetic progres-
sions.

Conjecture 1.6  IfE/Q is an elliptic curve, then there exists Cprlme > 0 for which

; X

prime prime
e (x5, k) ~ (O lod? %
og” x

as x — oo, where Cgr;m,f is the explicit constant defined in (35).

As before, if CPrlme =0, we interpret the above as saying that npnme (xsm, k) is
bounded as x — co. As one piece of evidence to suggest C}, | ™€ js the correct average
constant, we compare it with the constant C2""™¢ for Serre curves which, by Jones [32],
make up a density 1 set of elliptic curves when ordered by naive height.

To state our theorem, we first introduce some notation. Associated with E, we
define the constant

ve(n) ifl|n,
1 otherwise,

(7) L= H % where  ay = {
Lmg

where mg denotes the adelic level of E (defined in Sections 2.1 and 2.3) and v¢(n)

denotes the ¢-adic valuation of n. The constants mg and L play a crucial role in com-

puting sz’k and Cp ”me

formula for mg,

. For a Serre curve E, Proposition 2.4 gives a straightforward

{2|A’| ifA’=1 (mod 4),
mg =

4|A’|  otherwise,

where A’ denotes the squarefree part of the discriminant Ag of any Weierstrass model
of E.

Theorem 1.7 Let E/Q be a Serre curve and let mg, A, and L be as above. If mg + L,
then

Ccyc _ Ccyc and Cprime _ Cprime.

E,n,k n,k E,n,k n,k
Otherwise, if mg | L, then

CI 2|14 gore] ;11 !

E,n,k = “n,k @\L VA3 02401 5

L42n

Cprlme Cprlme 1+ Tprlme

E,n,k n,k %ﬁ_zgz_g.,_?)

£42n

where 79, TP"™¢ ¢ {11} are defined in Definition 5.1.
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Remark1.8 ForaSerre curve E, the constant C,"* .k Was previously obtained by Brau
[12, Proposition 2.5.8] under the assumption that ‘A" ¢ {~2,-1,2}. Our formula for
C;y:l « does not require this assumption and it aligns with Brau’s.

As another piece of evidence, we also consider the moments of the constants
cy & and Ch"¢ for E € F. Building upon Jones’s methods, we improve Theorem
L 5 uncondltlonally as follows.

Theorem 1.9 Let n be a positive integer and k be coprime to n. Then there exists an
exponent y > 0 such that for any positive integer t, we have

7 4\ .
|3r| Z|Ccyc _Ccyc|t<<tmax{(”logBl°gA) ]ogy(mln{AB})}

Emk B \/min{A, B}

Z |Cgr1mke _ Cpnme’ t <. MaAX M z:+1 ’
|§| EeTF " B

log” (min{A, B
(loglog(max{4*, 5} ))' 108 (min{A.B}) |

\/min{A, B}
as min{A, B} — oo.

Observe that as min{A, B} — oo, we have

‘y .
log" (min{A, B}) o
\/min{A, B}

This gives us the following corollary.

Corollary 1.10  Fix n € N. Let k be coprime to n. Let A = A(x) and B = B(x) both
tend to infinity as x — oo. With the same notation as in Theorem 1.9 and for X €
{cyc, prime}, we have that

C Kk k’
|£ﬂE§;¥ k= Cn

provided that as x — oo,

nlog Blog” A 0
B

in the cyclicity case and

( nlog Blog’ A) 0 (loglog(maX{A3, Bz}))t log” (min{A, B})

B \/min{A, B}

in the Koblitz case.

Based on the above considerations, the constant CP'}™ that we propose in this
| prime
E,n,k*
The average constants C', and C? P ¢ are given explicitly and we can compute their

values (to any given precmon) usmg the Magma [10] scripts available in this article’s

article appears to be a plausible candidate for the average counterpart of C
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n\k 1 2 3 4 5
2 0813752 - - - -
3 0398219 0.415533 - - -
4 0406876 -  0.406876 - -
5 0.202164 0.203863 0.203863 0.203863  —
6 0398219 - - - 0.415533

Table 1: The value of C’} to six decimal places.

n\k 1 2 3 4 5
2 0505166 - - - -
3 0.280648 0.224518 - - -
4 0252583 -  0.252583 - -
5 031482 0.124562 0.124562 0.124562 -
6 0280648 - - ~ 0.224518

Table 2: The value of Cﬁf]i(me to six decimal places.

GitHub repository [39]. Below are tables with the values of CZC, « for X € {cyc, prime}
and small moduli #.

From the table, we observe that C5'; = C*. Moreover, in each table, the sum of
the values across any given row yields CX. In Propositions 4.1 and 4.6, we prove
(reassuringly) that these simple checks hold for all moduli.

Let p be a good prime for E. As noted previously,

|E,(F,)|is prime == E,(F,) is cyclic.

Hence, for an arbitrary elliptic curve E/Q, one might suspect that if primes in a certain
congruence class are more likely to be primes of Koblitz reduction, then they are also
more likely to be primes of cyclic reduction. However, the tables above suggest that
the contrary holds on average. Indeed, it follows from the formulas (23) and (42) for
C ZC « that these two average constants are oppositely biased for any given modulus #.
More specifically, for any k coprime to n, we have

cyc cyc cyc : prime prime prime
C, < Cn’k <C, -, while C. 2 Cn,k >C, .

rime

Furthermore, we have C;)7 < C'° and C?'|™¢ > C*"'7° if and only if  is not a power
of two. The phenomenon of primes being statistically biased over congruence classes is
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referred to as the average congruence class bias and was first observed in the cyclicity
problem by the first author in [38].

Lastly, it is notable that in both tables, C5 ) = C5 3= Cg&. This is because, for a fixed
n, the value of Cn’ « depends solely on whether k is congruent to 1 or not modulo
each prime factor of n. Therefore, for a fixed modulus # that is supported by s distinct
odd primes, there are at most 2° distinct values of C¥,. Whether there are exactly 2°
distinct values is a question proposed by the first author in [38].

1.1 Outline of the article

Sections 2 and 3 provide the essential groundwork for proving the main results. In
Section 2, we introduce the properties of Galois representations of elliptic curves. In
particular, we introduce the definition of the adelic level and characterize the Galois
images of Serre curves and CM curves. In Section 3, we determine the sizes of certain
subsets of matrix groups that will be used in calculating the Euler factors of product
expansions of Cy;  and Cgr;m: .

Sections 4 and 5 are dedicated to the computation of the constants C%in’k for
X € {cyc, prime}. These computations extend Zywina’s approach (a method that
originates from Lang and Trotter’s work [37] on the Lang-Trotter conjecture) to obtain
C}’;rime. The general idea is to interpret the conditions for primes of Koblitz reduction
for E in terms of mod m Galois representations, establish the heuristic constant at
each level m, and then take the limit as m — oo. In Section 4, we apply this idea

ane in the form of an

p ime

to reformulate the constants Cy < and cy k and express Cp

almost Euler product. We also propose the average constant C as a complete
Euler product. In Section 5, we examine the special case where. E is a Serre curve,
proving Theorem 1.7 which gives explicit formulas for C”" .k and e ™€ in this case.
A critical aspect of these computations involves extractlng as many Euler factors as
possible from the limits (35) and (45), leading to the crucial definition of L in (7).
Sections 6 and 7 establish bounds for moments of C”" .k and Cp rime x for E€F.In

Section 6, we build on the work carried out in Section 5 to bound Cgf“?ke for non-
Serre, non-CM curves, and CM curves. Using a result due to D. W. Masser and G.
Wiistholz [41], we bound Cprlme for non-Serre, non-CM curves in terms of the naive
height of E. This approach allows us to avoid assuming an affirmative answer to Serre’s
uniformity question, in contrast to Jones. For CM elliptic curves, we first derive the
conjectural constant Cp k using a similar method to that of Sections 4 and 5 and
bound it directly from 1ts formula In Section 7, we adapt the method of Jones [31] to
complete the moments computations and prove Theorem 1.9.

Finally, in Section 8, we provide numerical examples that support our results. The
numerical examples are computed using the Magma code available in this article’s
GitHub repository [39]:

https://github.com/maylejacobj/CyclicityKoblitzAPs.

We now summarize the main functions of the repository. The functions
AvgCyclicityAP and AvgKoblitzAP allow one to compute C yk and Cpr;cme
for given coprime integers » and k, and were used to produce the tables above. Next,

the functions CyclicityAP and KoblitzAP allow one to compute the constants
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CEY; . and Cgr;m,f for any given non-CM elliptic curve E. These functions are based on
Propositions 4.10 and 4.4 and rely crucially on Zywina’s FindOpenImage function
[61] to compute the adelic image of E. The functions SerreCurveCyclicityAP
and SerreCurveKoblitzAP compute C}?";)k and Cgr;m,f for a given Serre curve
E using Theorem 1.7 and do not require Zywina’s FindOpenImage. Lastly, the

repository contains code for the examples in Section 8.

1.2 Notation and conventions

We now give a brief overview of the notation used throughout the article.

o For functions f, g:R — R, we write f << g or f = O(g) if there exists C > 0 and
X9 > 0 such that |f(x)| < Cg(x) for all x > xg. If C depends on a parameter m, we
write f <<, gor f = 0,,(g).

« In the same setting as above, we write f ~ g to denote that lim,_, f(x)/g(x) = 1.

o Let A and B be positive real numbers. Let F := F(A, B) denote the family of models
Y? = X3 + aX + b of elliptic curves for which |a| < A and |b| < B.

o Given a subfamily G € J of elliptic curves, let f and g be functions defined from §
to R. We write f <« g if there exists an absolute constant M > 0 for which |f(E)| <
Mg(E) for all E € §. When M depends on a parameter m, we write f <<,, g.

o pand ¢ denote rational primes, n a positive integer, and k an integer coprime to n.

« We write p? || nif p* | nand p**' + n. In this case, a is called the p-adic valuation
of n, and is denoted by v, (n).

+ Given a positive integer n, n°d4 denotes the odd partof n, i.e., podd = n/2v2(").

« We sometimes write (m, n) as shorthand for gcd(m, n).

o m* denotes an arbitrarily large power of m. Thus, ged(n,m™) denotes
ITpi(n,m) p**(" If every prime factor of n divides m, then we write n | m®.

. (2) denotes the Jacobi symbol.

o ¢ denotes the Euler totient function.

« u denotes the Mobius function.

« G(m) denotes the image of a subgroup G of GL,(Z) under the reduction modulo
m map.

o Given thatd | m and M € GL,(Z/mZ), M; denotes the reduction of M modulo d.

o If A is the empty set, then we take [] .4 a tobe 1.

2 Preliminaries
2.1 Galois representations and the adelic level

Let E/Q be an elliptic curve. Associated with E, we consider the adelic Tate module,
which is given by the inverse limit

T(E) =lim E[n],

where E[n] denotes the n-torsion subgroup of E (Q). Let Z denote the ring of profinite
integers. It is well known that T'(E) is a free Z-module of rank 2. The absolute Galois
group Gal(Q/Q) acts naturally on T (E), giving rise to the adelic Galois representation
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of E,
pp: Gal(Q/Q) — Aut(T(E)).
Upon fixing a Z-basis for T(E), we consider pg as a map
pr:Gal(Q/Q) — GLy(Z).

Let Gg denote the image of pg, which, because of the above choice of basis, is defined
only up to conjugacy in GL,(Z). With respect to the profinite topology on GL,(Z),
the subgroup Gy is necessarily closed since pg is a continuous map.

We now state a foundational result of Serre, known as Serre’s open image theorem.

Theorem 2.1 (Serre, [48, Théoréme 3])  IfE/Q is without complex multiplication, then
Gg is an open subgroup of GL,(Z). In particular, the index [GL,(Z) : Gg] is finite.

Suppose that E/Q is a non-CM elliptic curve. For each positive integer m, let 7,
be the natural reduction map

Tm: GLy(Z) — GLy(Z/mZ).
Let Gg(m) be the image of the mod m Galois representation
pEm:Gal(Q/Q) - GL,(Z/mZ),

defined by the composition 7, o pg. It follows from Theorem 2.1 that there exists a
positive integer m for which

() Gg = 11, (Gg(m)).
One may observe that (8) is equivalent to the statement that for every n € N,
©) Gg(n) = ' (Gg(ged(n, m))),

where m:GLy(Z/nZ) - GLy(Z/ gcd(n, m)Z) denotes the natural reduction map.
The least positive integer m with this property is called the adelic level of E, and is
denoted by mg. The constant mg accounts for both the nonsurjectivity of the /-adic
Galois representations of E as well as the entanglements between their images.

We now give a fundamental property of mg that we will use several times.

Lemma 2.2 Let E/Q be a non-CM elliptic curve of adelic level mg. For any dy, d, € N
with dy | my and (dy, mg) =1, we have

GE(d]dz) o GE(dl) X GLz(Z/dzz)
via the map GLZ(Z/dleZ) g GLz(Z/dIZ) X GLz(Z/dzz)

Proof By the given conditions, we have (d;,d;) =1. Set d’ = ged(d;, mg). Let
m:GLy(Z/d1d,Z) - GL,(Z/d'Z) and m: GLy(Z/dZ) - GL,(Z/d'Z) be the natu-
ral reduction maps. By the Chinese remainder theorem, 7 can be identified with

Ty X triv: GLz(Z/dIZ) X GLz(Z/dzz) i GLz(Z/d,Z) X {1}
By (9), we have that
Ge(didy) = 71 (Gg(d")) = (m x triv) (G (d")) = Ge(dy) x GL,(Z/d,Z). m
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We conclude this subsection by recalling Serre’s uniformity question.

Question 2.3 Does there exist an absolute constant ¢ such that for each elliptic curve

E/Q,
Ge(f) = GLy(Z/(Z)
holds for all rational primes £ > c?

While Question 2.3 remains open, it is widely conjectured to be true with ¢ = 37
[56, 63] and considerable partial progress has been made toward its resolution [4, 25,
40, 43, 48, 49].

2.2 Serre curves

In this subsection, we introduce the generic class of elliptic curves E/Q with maximal
adelic Galois image G, and provide an explicit description of Gg for curves in this
class.

Serre noted [48] that for an elliptic curve E/Q, the adelic Galois representation
pE cannot be surjective’, that is, the adelic level mp is never 1. We briefly give the
argument here. If E has complex multiplication, then [GL,(Z) : Gg] is necessarily
infinite [48], so we restrict our attention to the case that E is non-CM. Assume that E
is defined by the factored Weierstrass equation

Y= (X-e)(X-e)(X-e3)
with ey, e, e3 € Q. Then, the 2-torsion of E is given by
E[2] = {0, (e1,0), (e2,0), (e3,0)} = Z/2Z & 7,/ 2Z.
Consequently, Aut(E[2]) can be identified with S5. The discriminant Ag of E is given
by
(10) Ap =[(e1-e)(e2—e3)(es—e))].

Let A" denote the squarefree part of Ag, i.e., the unique squarefree integer such that
Ag/A’ € (Q*)% Note that the discriminant Ar depends on the Weierstrass model of
E, but A’ does not.

Let us first assume that Ap ¢ (Q*)2. Let dg be the conductor of Q(v/Ag), that
is, the smallest positive integer such that Q(v/Ag) € Q({4,). It is straightforward to
check that

P || ifA’=1 (mod 4),
F 4|A’|  otherwise.

Let us define the quadratic character associated with Q(\/Ag) as follows,

Xar: Gal(Q/Q) ™5 Gal(Q(v/Ag) /Q) —> {21}

20ver some number fields K + Q, there exist elliptic curves E/K for which pg is surjective [27].
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Fix 0 € Gal(Q/Q). Viewing pg,(0) € Gg(2) € Aut(E[2]) = S3, by (10), we notice

that
x8:(0) (V£ = e(pr.2(0) (V2e)

where &:S; — {+1} denotes the signature map.’ Hence, ya,(0) = e(pg,2(0)).

On the other hand, we have that Q(v/Ag) € Q({y,). Since Gal(Q({y,)/Q) =~
(Z/dgZ)™, there exists a unique quadratic character a: Gal(Q({y,)/Q) — {1} for
which ya, (0) = a(detopg 4,(a)) for any o € Gal(Q/Q). Therefore, we have

(1) e(pe,2(0)) = a(detopg,q,(0))

for any o € Gal(Q/Q).
Let Mg = lcm(2, dg ). Consider the subgroup

HE(ME) = {M € GLz(Z/MEZ) : S(Mz) = oc(dethE)},

where M, and M, denote the reductions of M modulo 2 and d, respectively. Note
that the index of Hg (Mg ) in GL,(Z/MgZ) is 2 and that Gg (Mg) € Hg(Mg) by (11).
We define

(12) Hg =n'(Hg(Mg)),

where 7: GL, (Z) — GL,(Z/MgZ) is the natural reduction map. Then H, is an index
2 subgroup of GL, (Z) that contains Gg. We say that E is a Serre curve if Hg = G, that
is, [GL,(Z) : Gg] = 2.

In the above discussion, we supposed that Ag ¢ (Q*)?. We now consider the
opposite case that Ap € (Q*)2. Let Q(E[2]) = Q(ey, e, e3) denote the 2-division
field of E. Observe that [Q(E[2]) : Q] divides 3, and hence [GL,(Z/27Z) : Gg(2)] is
divisible by 2. Thus, by [42, Proposition 2.14], [GL,(Z) : Gg] > 12, which follows by
considering the index of the commutator of Gg in SL, (Z). In particular, E cannot be
a Serre curve in this case.

Serre curves are useful for us for two key reasons. First, as mentioned in the
introduction, Jones [32] showed that they are “generic” in the sense that the density of
the subfamily of Serre curves among the family of all elliptic curves ordered by naive
height is 1. Second, the adelic image Gy of a Serre curve E can be explicitly described,
as we will now discuss.

Proposition 2.4  Let E|/Q be a Serre curve and write A’ to denote the squarefree part
of the discriminant of E. Then

21A'  ifA’=1 (mod 4),
Mg =
4|A'|  otherwise.

(13)

Furthermore, for any positive integer m,

GLo(Z[/mZ)  if mg + m,
Hg(m) ifmg | m,

GE(m) = {

3Note that the value of e(pg,2(0)) is independent of the choice of isomorphism Aut(E[2]) ~ Ss.
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where Hg(m) denotes the image of Hg, defined in (12), under the reduction modulo m
map.

Proof The proof of (13) can be found in [31, pp. 696-697]. Hence, mg = Mg where
Mg is defined as above. Now, let m be a positive integer. By [31, Equation (13)]
and (9), one may deduce that Gg(m) = GL,(Z/mZ) if mg + m. Suppose mg | m.
Then, Gg(m) € Hg(m). The containment must be equal; otherwise, the index of Gg
in GL,(Z) is greater than [GL,(Z/mZ) : Hg(m)] = [GLy(Z/mgZ) : Hg(mg)] = 2,
contradicting the assumption that E/Q is a Serre curve. ]

In order to compute C¥ ,, we need to know G (meaning we must know the
adelic level mg and the i 1mage of Gg modulo mg). For Serre curves, this is particularly
tractable, and was exploited in the work of Jones [31]. We now give the description of

Gg, for Serre curves.
First, we define y4: (Z/4Z)* — {1} and ys: (Z/8Z)* — {£1} as follows:

1 ifk=1 (mod4) 1 ifk=17 (mod8)
k) = , k) = .
xa(k) { 1 ifk=3 (mod 4) xs(k) { 1 ifk=3,5 (mod8)
We define the character y,,,: GL,(Z/mZ) — {£1} associated with E by

= I_I II/E“a

e ||m

where Wpo: GLy(Z/0*Z) — {1} is defined for M € GL,(Z/¢*7Z) by

(dethe) if £ is odd,

e(M;) iff=2,a>1,and A’=1 (mod 4),
Voo (M) = xa(det My)e(My) if¢=2,0>2,and A'=3 (mod 4),

xs(det Mg)e(M,) if¢=2,0>3, andA’'=2 (mod 8),

xs(det Mg) ya(det My)e(M,) if€=2,0>3, andA’ =6 (mod 8),

1 otherwise.

As noted in [31, p. 701], given mg | m, one may see that for M € GL,(Z/mZ), we have

<2>( y ):w,n(M).

det M,

In particular, we have Hg (m) = ker ,,. Thus G is the preimage of ker y,,, in GL,(Z).
2.3 Galois representations in the CM case

Having discussed Galois representations for non-CM elliptic curves, we now turn to
the CM case. Suppose that E has CM by an order O in an imaginary quadratic field K.
In this case, the absolute Galois group Gal(K/K) acts naturally on T(E), which is a
one-dimensional O-module, where O denotes the profinite completion of ©. Hence,
we can construct the adelic Galois representation associated with E,

pe:Gal(K/K) — Aut(T(E)) ~ GL;(0) ~ 0.

https://doi.org/10.4153/50008414X25101156 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101156

Opposing average congruence class biases in the cyclicity and Koblitz conjectures 15

Let Gg denote the image of pg. We now state Serre’s open image theorem for CM
elliptic curves.

Theorem 2.5 (Serre, [48, p. 302, Corollaire])  IfE/Q has CM by O, then G, is an open
subgroup of O*. In particular, the index [O* : Gg| is finite.
For each positive integer m, consider the natural reduction map
T: O > (O/mO)*.

Let Gg(m) denote the image of the modulo m Galois representation

pE.m : Gal(K/K) — (0/mO)*
defined by the composition 7,, o pg. It follows from Theorem 2.5 that
(14) Gg = 7,/ (Gg(m))

for some positive integer m. As in the non-CM case, (14) is equivalent to the statement
that for every n € N,

(15) Gg(n) :n_l(GE(gcd(n,m))),

where 7: (0/n0)* — (O gcd(n, m)0)* is the natural reduction map.
In the CM case, we follow [31, p. 693] to define mp, to be the smallest positive integer
m such that (15) holds and for which

(16) 4 ( I1 E) divides m.
£ ramifies in K
One can prove the following using the same argument sketched in the proof of
Lemma 2.2.

Lemma 2.6 Let E/Q be a CM elliptic curve of level mg. For any dy, d, € N with d; |
my and (dy, mg) =1, we have
GE(dldz) o GE(dl) X (O/dZO)X

Lemmas 2.2 and 2.6 are used to express the constants Cy, , and C} “mke as almost
Euler products. It is worth noting that both lemmas hold even if mp is replaced by
any positive multiple of it. Thus, the minimality condition in the definition of mg for
both non-CM and CM curves is not required from a theoretical perspective for us.
Nonetheless, the minimality of mg is useful for our computations as it allows us to
extract more Euler factors.

Let K/Q be an imaginary quadratic field. We denote its ring of integers by Ok.
Let O be an order of K. The index f =[Ok : O] is necessarily finite and is called the
conductor of O. Let yx be the Dirichlet character defined by

0 if £ ramifies in K,
(17) xx(f) =41  if £splitsin K,
-1 if/isinertin K.

https://doi.org/10.4153/50008414X25101156 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101156

16 S. M. Lee, J. Mayle, and T. Wang

Let dg be the discriminant of K. One can check that

wio- (%)

for each odd prime ¢. By [45, Theorem 9.13], we see that yx is a primitive quadratic
character.

We now state a lemma on the size of the image of mod ¢* Galois representation of
Efor ¢ + fmg.

Lemma 2.7 Let E/Q be a CM elliptic curve. For { + fmg, we have
|G (£%)] = 2D (L =1) (€ - x(0)).
Proof Since O is an order of class number 1, we have
O/(EOK n O) = O/EO ~ OK/EOK

for any ¢+ f. (See [21, Proposition 720].) By Lemma 2.6, we have Gg({%) ~
(Ok/0*Ok)™. Applying [13, Equation (4)], we obtain the desired results. ]

Moreover, we have the following uniformity result for CM elliptic curves over Q.
Proposition 2.8  There is an absolute constant C such that
fmg<C
holds for all CM elliptic curves E/Q.

Proof It suffices to show that the index [O* : Gg], the product of ramified primes
in (16), and the conductor f =[Ok : O] of the CM-order O are uniformly bounded
for E/Q. This follows from the fact that there are only finitely many endomorphism
rings for CM elliptic curves over Q and [11, Theorem 1.1]. In fact, for CM elliptic curves
E/Q, it is known that the conductor of O is at most 3. (See [52, Appendix C, Example
11.3.2].) -

3 Counting matrices

In this section, we will establish counting results that will play pivotal roles in
determining the cyclicity and Koblitz constants for arithmetic progressions. We first
outline the general strategy.

Let £ be a prime and P, be a property that certain matrices in GL,(Z/¢Z) satisfy.
Let m and » be positive integers and k be coprime to n. Suppose that we are interested
in counting the size of the set

X(m) = {M € GLy(Z/mZ) : M, satisfies P, for each ¢ | m, detM =k (mod gcd(n,m))},

where M, denotes the reduction of M modulo /. By the Chinese remainder theorem,
it suffices to count the size of X (¢*) for each £* || m. Also, note that the reduction map
7 : GLy(Z[0*Z) - GL,(Z/¢Z) induces a surjective map X (£*) - X(¢) and further
X(¢%) = 771(X(¢)). Consequently, the problem of counting the size of X (m) reduces
to counting the size of X (¢) for each £ | m.

The condition that £ is a prime of cyclic or Koblitz reduction for E can be interpreted
as a condition on matrices modulo primes. Thus, with the above strategy in mind, we
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give alemma and corollary that will be used to compute the cyclicity constant C”* |
for non-CM curves.

Lemma 3.1 Let { be a prime, a be a positive integer, and k be an integer coprime to (.
Fix M € GL,(Z/{Z) with det M = k (mod ¢). For any integer k with k = k (mod ¢),
we have

#{MeGLy(Z/t°Z): M=M (mod (),detM =k (mod )} = TG

Proof Let m:GL,(Z/(°Z) - GL,(Z/¢Z) denote the reduction modulo ¢ map,
which is a surjective group homomorphism. For any M € GL,(Z/{Z), we have that

' (M) = {1\71 € GLy(Z/(°Z) :M=M (mod 0)}.
The image of 77} (M) under det: GL,(Z/¢°Z) — (Z[(°Z)* is
det(n (M) = {k' € (Z/¢*Z)* : k' =k (mod ¢)}.

Hence, for any integer k with k = k (mod ), we have

#{M e GLo(Z/t°Z) : =M (mod (), det i =k (mode“)}:M'

Finally, we note that |77 (M)| = | ker(7)| = £4(4~D and | det(z~'(M))| = £+~ ]

Corollary 3.2  Fix a prime { and positive integer a. Let k be an integer coprime to (.
Then

#{M e GL(Z/t*Z) : M #1 (mod {),detM =k (mod ¢*)}

e (P -0-1) ifk=1 (mod ),
IR VAR ) ifk#1 (mod ¢).

Proof Let M e GLy(Z/(Z). If M#1 (mod /), then any lifting M of M in
GL,(Z/(°Z) satisfies M # I (mod ¢).If k # 1 (mod ¢), then det M = k (mod ¢) guar-
antees that M # I (mod £). Since the determinant map det: GL,(Z/(Z) — (Z/{Z)*
is a surjective group homomorphism, one can check that there are ¢*> — ¢ matrices M
in GL,(Z/¢Z) with det M = k (mod £). On the other hand, if k =1 (mod ¢), we have
one less choice for M. Along with Lemma 3.1, we obtain the desired results. [ ]

The next lemma gives a corollary that will be useful when computing the Koblitz
constant Cy" "¢ for non-CM curves.

Lemma 3.3 Let £ be an odd prime, t be an integer, and d be an integer coprime to £.
Then we have

2 _
#{MeGLy)(Z/VZ) :detM =d (mod £),tr M = t (modﬁ)}:€2+£.(t £4d),

where (7) denotes the Legendre symbol. If £ = 2, then we have

ift=0 (mod 2),

#{M e GL,(Z/2Z) : detM =1 (mod 2),trM =t (m0d2)}:{;1 Fi=1 (mod2)
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Proof The case when ¢ = 2 follows from a direct calculation. See [19, Lemma 2.7] for
the case when £ is odd. [

Corollary 3.4  Fix a prime ¢ and positive integer a. Let k be an integer coprime to .
Then

#{M € GLy(Z/t°Z) :det(M —I) #0 (mod ¢),detM =k (mod ¢*)}
) {e3<“-l> (B--0)  ifk=1 (mod?),
S| e (B -2 -20)  ifk#1  (mod £).
Proof Let M € GL,(Z/¢*Z) be such that det M = k (mod £%) and note that
det(M-1)=0 (mod/¢) < trM=k+1 (mod ).
Thus, if £ # 2, we have that

(k+1)>—4k\ ((k-1)*\ ]0o ifk=1 (mod?),
( ‘ )‘( ¢ )‘1 ifk#1 (mod ¢).

By Lemma 3.3, this completes the proof when ¢#2. When £=2 and a =1, it is
straightforward to check that the lemma holds. ]

Now, we turn our attention to the CM case. Let K be an imaginary quadratic field
and write Ok to denote the ring of integers of K. Then O is a free Z-module of
rank 2. Fixing a Z-basis, we can identify GL;(Og) = Ok as a subgroup of GL,(Z).
In the following discussion (and henceforth) the determinant of g for g € O means
the determinant of g considered as a matrix in GL,(Z). Moreover, we note that for any
odd rational prime ¢ and integer a > 1, the determinant of any element in £*O lies
in £°7Z, so we obtain the induced determinant map det: (Og/¢*Ok)* — (Z/(°Z)*,
which does not depend on the choice of the basis.

Lemma 3.5 Let K be an imaginary quadratic field and Ok be the ring of integers of K.
Let £ be an odd rational prime unramified in K and a be a positive integer. Let k be an
integer that is coprime to £ and fix g € (Og[lOk)* with detg = k (mod ¢). Then

#{3e(0g/l°0k) :g=g (mod (Ok),detg=k (mod (%)} =¢*"

Proof The reduction map 7: (Og/l?Ok)* — (Ox/lOk)* is a surjective group
homomorphism. Regardless of whether ¢ splits or is inert in K, we have |ker 71| =
¢2(¢=1) by Lemma 2.7. Therefore,

#{Ze (Ox/1P0K) :g=g (mod LOk)} = |77 (g)| = | kern| = 2@V,
The image of 77! (g) under det: (Ox/¢*Ok)* — (Z[0°Z)* is
det(n7'(g)) = {k' € (Z/0°Z)* : k' =k (mod £)}.
Thus, we have |det(77(g))| = £*~". Finally, note that

#{ge(0/t°0)" :g=g (mod (Ok),detg=k (mod (")} = % =0
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We now prove a corollary that will be used for the computation of the Koblitz
constant Cgr;m,f for CM curves.

Corollary 3.6  Let K be an imaginary quadratic field. Fix an odd rational prime ¢ that
is unramified in K. Let k be an integer that is coprime to £. If { splits in K, then

#{g e (0/l"O0k)* :det(g—1)#0 (mod¥),detg=k (mod ¢*)}

7Y -2) ifk=1 (mod?),
7Y -3) ifk#1 (mod?).

Ifis inert in K, then
#{g e (Ok/l"O0k)* :det(g—-1)#0 (mod¥),detg=k (mod ¢*)}
{é" ifk=1 (mod ),

7Y +1)  ifk#1 (mod /).

Proof By Lemma 3.5, it suffices to consider the case where a = 1. Suppose ¢ splits in
K. Then we have that Ox /(O =~ F; x Fy and the determinant map det: F; x F; — F}
is identified with the multiplication map (a, b) — ab. Thus, the set in question can be
expressed as

{(g1-82) e Fy xFy:q1-1, g2 -1€F;,gig2 =k (mod £)}.

Hence, any element in the set is of the form (g, kg™"') where both g and kg™ are not
congruent to 1 modulo £. Thus, the size of the setis £ -2 if k =1 (mod ¢) and £ -3
otherwise.

Now, suppose ¢ is inert in K. Then we have Ox/¢Ok ~ Fj2 and the determinant
map det: Fy» — Fy is identified with the norm map Ny, jr,: x — x“*1, Thus, the set in
question can be expressed as

{geFp:(g- D eFy, ¢ =k (mod 0)}.
For each k coprime to ¢, there are exactly ¢ +1 choices of g€ F}, with g""' =k
(mod ¢). In case k=1 (mod ¢), we have one less choice due to the constraint
(g-1)“1eFy. ]

4 Definitions of the constants

4.1 On the cyclicity constant

We keep the notation from Section 2.1. In this subsection, we introduce the definition
of the cyclicity constant C},’*, given by Serre, and its average counterpart C°. For
coprime integers # and k, we introduce the cyclicity constant for primes in arithmetic
progression Cy; |, given by Akbal and Giiloglu, and its average counterpart C,”;.

First of all, Serre [51, pp. 465-468] defined the cyclicity constant C“ to be

oye u(n)
(18) CE" = X Qi) )
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where y(-) denotes the Mobius function and Q(E[n]) is the nth division field of E.
He proved that, under GRH, C}“ is the density of primes of cyclic reduction for E; see
Conjecture 1.1.

For a non-CM elliptic curve E/Q, Jones [31, p. 692] observed that (18) can be
expressed as an almost Euler product involving the adelic level of E. Specifically, he
showed that

cyce _ & ( —1)
) o (EE [Q(E[d])i(@])egsl (GL.(Z/ D)) )

The average counterpart of C;’ is

1
cyc ._ _

. =11~ Tz
As mentioned in the introduction, Gekeler [26] demonstrated that C*Y“ represents the
average cyclicity constant from the local viewpoint. Later, Banks and Shparlinski [6]
verified that the constant also describes the density of primes of cyclic reduction on
average in the global sense. Furthermore, Jones [31] verified that the average of Czyc
coincides with C°.

Let {,, denote a primitive nth root of unity, and let o} € Gal(Q((,)/Q) map {, —
(k. Define

) ~ 0.813752.

1 if g fixes Q(E[d]) n Q({,) pointwise,
0 otherwise.

ynk(QE[d])) = {

Akbal and Giiloglu [1] defined the constant Czy:l . as follows,

cye .“(d))/n,k(Q(E[d]))
e = & (@D - Q)

They proved that this constant represents the density of primes p = k (mod n) of
cyclic reduction for E, under GRH. Recently, Jones and the first author [33] demon-
strated that for a non-CM elliptic curve E/Q), this density can be expressed as an almost
Euler product as follows,

(21)

(22)
e _ #(d)yn(Q(E[4])) 100 S S
CE,n)k (dlzm:E [Q(E[d])@((n) . Q] ) ZHE (1 |GL2(Z/ZZ)| ) ZJrIHnE(l |GL2(Z/ZZ)| ) .

£|(n,k-1)

Finally, the average counterpart of C}’; , is given by

eye ._ 1 _M) ( —1)
@) Cu ¢(”)é|(n,k_1)(1 | GLo(Z/(Z)] egz |GLZ/ )] )

Observe that (23) coincides with (22) if mp is taken to be 1. While mg = 1is impossible
for any given elliptic curve over Q, it is plausible to think that the role of mp is
inconsequential when considered over the family of all elliptic curves ordered by
height. Indeed, as mentioned in the introduction, the first author [38] demonstrated
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that C'"} represents the average density of primes p = k (mod n) of cyclic reduction
for the family of elliptic curves ordered by height.

We now prove a proposition that serves as a reasonableness check for C;Y; While
it can be derived from the main theorem of [38], we opt to include a self-contained
proof to draw a parallel with the upcoming Proposition 4.6.

Proposition 4.1 For any positive integer n, we have

> c-con
1<k<n
(n,k)=1

where CY¢ and C:ly,i are defined in (20) and (23), respectively.

Proof For notational convenience, we define

_ ¢(0)
1O fen,@m)
It suffices to verify that
1 1
e =gy 20T o)

(k,n)=1k=1(¢)

First, we prove that (24) holds for n = p?, a prime power. Observe that

Y I @

(/)(pu) I<k<p®  £|p*
(k,p*)=1k=1(£)

(P f(p)+p*(p-2)) =1

F(p*) =

B 1
o(p?)

Now, we prove that F is multiplicative. Let p® be a prime power and # be a positive
integer coprime to p. Then

1
~[GL(Z/pZ)]

1
F(p®n) = —— f(0)
(p(p 7’!) lgk%];“n Z|1;’[n
(k,p*n)=1k=1(¢)
1 1
= fe) 11 f(0)+ f()
¢(P) (/)(n) lskzz:a"n l\_} 131;7% El_tl
(k,pn)=1 k=1(£) (k,pn)=1k=1(£)
k=1(p) k#1(p)
(p*'+p'(p-2)) 1
= . )| =F(p®)-F(n).
o) 9|, LSOO
(ksn)=1k=1(0)
This completes the proof. L]
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4.2 On the Koblitz constant

We keep the notation from Section 2.1. Now we give the definition of the Koblitz

constant Cgrime defined by Zywina and its average counterpart C given by Balog,
Cojocaru, and David. Based on Zywinas method, for coprime integers n and k, we

prime

propose the Koblitz constant Cb" " for primes in arithmetic progression and its

average counterpart CZf,icme.

Let E/Q be a non-CM elliptic curve of conductor N and m be a positive integer.
For p + mNE, let Frob, be a Frobenius element at p in Gal(Q/Q) (see [50, Chapter
2.1,1-6] for the definition of Frob,). We have that

(25) |EP(IE‘P)| = det(I - pg,m(Frob,)) (mod m),

by [52, Chapter V. Theorem 2.3.1]. Thus, we see that an odd prime p is of Koblitz
reduction if and only if the right-hand side of (25) is invertible modulo m, for every
m < |E,(F,)| such that ged(p, m) = 1.* For such an integer m, we set

(26) ‘I’P“me(m) ={M e GLy(Z/mZ) : det(I - M) € (Z/mZ)*}.
Define the ratio
_ |Ga(m) WP ()|

aprime ( m) .
F |G (m))|
The Koblitz constant, proposed by Zywina [62], is defined by
) 6prime
(27) crrime .y 0z (")

m=—oo Hé\m (1 - 1/6) ,
where the limit is taken over all positive integers ordered by divisibility.

We start by proving some properties of 85"™¢(-), which were originally remarked
in [62].

Proposition 4.2 Let E/Q be a non-CM elliptic curve of adelic level mg. Then 6grime )
as an arithmetic function, satisfies the following properties:
(1) for any positive integer m, 85" (m) = 82" (rad(m));
(2) for any prime ¢+ mg and integer d coprime to {, 8grime(d€) = 6Erime(d) .
82rme ().
Therefore, (27) can be expressed as follows,
™ (rad(me)) o ()
s A=1/0)  pp, 1-1/0

Proof We first prove item (1). Let r =rad(m) and @:Gg(m) — Gg(r) be the
usual reduction map. In particular, @ is a surjective group homomorphism. We

(28) Cgrlme _

“This biconditional statement fails if |Ep(Fp)| = p" for some integer r > 2. However, this can only
happen if p = 2 due to the Hasse bound.
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will show that
(29) @ ! (GE(r) n ‘I’prime(r)) =Gg(m)n ‘I’Prime(m).

Let M € Gg(r) n WP ™¢(r) and M € @ '(M). Recall that det(M —1I) is invertible
modulo r and that m is only supported by the prime factors of r. Thus, det(M - 1)
is invertible modulo m and M € Gg(m) n WP"™¢ (). The other inclusion is obvious,
and hence (29) is obtained. Therefore,

) |GE(m) O‘I’P“me(m)| ~ |(D_1(G5(r) O\PP’ime(r))| ~

8prime(m) — _ 8prime(r)‘
* |G (m)| @71 (Ge(7))] t
We now prove item (2). By Lemma 2.2, we have an isomorphism,

It suffices to show that the isomorphism induces a bijection between the two sets

(31)
G (dl) 0 PP™e(de) and (Gg(d) nWP™ (d)) x (GLo(Z/(Z) N WP™ (1)).

Take M € Gg(dl) n\WPr™e(d(). By a similar argument to the proof of (1), we

have that M, € Gg(d) n'¥P"'™¢(d) and M, € GLy(Z/¢Z) nWP"™¢(¢). Now, let

M’ € Gg(d) n'YPme(d) and M" € GLy(Z/0Z) n¥P"™e({). Viewing (M',M") €

Gg(d) x GL,(Z/¢Z), there exists a unique element M € Gg(d{) with My = M’ and

M, = M" by (30). Sincedet(M’ — 1) € (Z/dZ)* and det(M" —I) € (Z/¢Z)*, we have

det(M - I) € (Z/d¢Z)*; in particular, M € WP ™m¢(d¢). Therefore, (31) is established.
Along with (30), we obtain

|G (de) nwprime(de)|

prime -
R AT}
_|Ge(d) n¥PI™e(d)| | GLy(Z/0Z) 0 YPT™e ()|
C Ge@l (Gl (Z/iz)
R COR S (OF
This completes the proof. [ ]

Remark 4.3 Suppose that ¢ + mg and M € GL,(Z/¢Z). Note that det(M —1) €
(Z/¢Z)* if and only if 1 is not an eigenvalue of M. One can check from Table 12.4
in [36, Chapter XVIII] that

P +0 ifk#1 (mod?),

#{M € GL,(Z/{Z) : M has eigenvalues 1 and k} = {62 ifk=1 (mod ¢)
1 = mo .

Thus, we see that

(32)
GO L (=@ rp e o el 1
A N R (2R B A A () R

and hence the infinite product in (28) converges absolutely.
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The average counterpart of Cgrime is given by

(33) crrime = TT[1 Lol ) b sesiss

Y (C-13(+1)) " '
As mentioned earlier, Balog, Cojocaru, and David [5] demonstrated that CPT™e
represents the average Koblitz constant, while Jones [31] verified that the average of

CP"™€ coincides with CP"™. Unlike for the cyclicity problem, the Koblitz problem

has not yet been studied for primes in arithmetic progressions. We construct Cgr;m]f

in a parallel way to Zywina’s method and propose a candidate for the average constant
prime
Cok -

Let E/Q be a non-CM elliptic curve of conductor Ng and m be a positive integer.

For a prime p + nNp, let Frob, be a Frobenius element lying above p in Gal(Q/Q).
We have that

det(pg,»(Frob,)) =p (mod n).
Along with (25), let us consider the set
(34)
‘I’E)r,i(me(m) = {M € GLy(Z/mZ) : det(I - M) € (Z/mZ)",det M = k (mod ged(m,n))}.
One may note that pg,,(Frob,) e Gg(m)n ‘{’E)r,i(me(m) if and only if p=k
(mod ged(n,m)) and |E,(IF, )| is invertible Z/mZ. For this reason, we consider the

ratio
grome oy o 1050) 0 2o
Bk Ge(m)|
Building upon Zywina’s approach, we are led to define
) 6prime m
(35) corime - g 28t ()

mk T o em 1-1/¢)’
where the limit is taken over all positive integers, ordered by divisibility.

Proposition 4.4 Let E/Q be a non-CM elliptic curve of adelic level mg and n be a

positive integer. Let L be defined as in (7). Then, 83 "((-), as an arithmetic function,

satisfies the following properties:

(1) Let L | L' | . Then, 65" (L) = 2™ (1/);

(2) Let £* be a prime power and d be a positive integer with (¢,Ld) =1. Then,
O (A€°) = O (d) - O (£, . |

(3) Let £ || nand (¢, L) = 1. Then, for any B > a, 85 (0F) = 8577 (£%). Further, if

: . E,n,k ok
( 4 nL, we have 82" (0F) = SHE(0).

E,n,k
Therefore, (35) can be expressed as follows,
. 8prime L 6prime VA (Sprime V4
(36) Cgr;mke _ E,n,k( ) . H E,n,k ( ) . H E ( )
o HZ|L(1_1/€) ZEtWE 1- 1/5 Linmg 1_1/5

and the infinite product converges absolutely.
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Proof Let us prove item (1). Consider the natural reduction map @:Gg(L') —
Gg/(L), which is a surjective group homomorphism. We will show that

(37) @' (Gp(L) n¥P™(L)) = Gg(L') n WP, (L),

Let M € Gg(L) n ‘ng;(me(L) and M € @' (M). Recall that det(M — I) is invertible
modulo L and that L' is only supported by the prime factors of L. Thus, det(Al\?I -1
is invertible modulo L’. Since gcd(n,L) = gcd(n,L’), we also have detM =k
(mod ged(n, L")). Thus, M € Gg(L') n ‘I’E)r,ime(L’). The other inclusion is obvious,
and hence (37) is obtained. Therefore, we have

() ] o7t (Ge(L) ()

o) -

_ prime
|Ge(L)] @ 1(Gg(L))| O n i (L)-

Let us prove item (2). By Lemma 2.2, we have an isomorphism,
(38) Gg(d(®) ~ Gg(d) x GL,(Z/¢°Z).
It suffices to show that the isomorphism induces a map between the sets

(39)

Gp(de®) n WP (de*) and (Gp(d) N PP (d)) x (GLy(Z/C*Z) 0 WP (£9)) .
Say M € Gg(d(*) n ‘I’E’rime(dﬂ“). By a similar argument to the proof of (1), one may
see that My € Gg(d) n ‘I’E)r,ime(d) and Mys € GL,(Z/0*Z) n ‘I’Ef,ime(ﬁ"‘). Now, let
M’ € Gg(d) NP ime(d) and M" € GLy(Z/0*Z) n PPrime (¢%). Viewing (M', M"") €
Gg(d) x GLy(Z/¢*Z), there exists a unique element M € Gg(d(*) with My = M’
and My« = M" by (38). Note that since det(M’ —1I) € (Z/dZ)* and det(M" - 1) €
(Z]*Z)*, we have det(M —I) € (Z/d¢*Z)*; in particular, M € \ng,ime(dﬁ"‘). There-
fore, (39) is established.

Along with (38), we obtain

|Ge(de®) n w2 (dee)]

6prime d[x —

i (46) Ge (A1)
_ |GE(d)n\Pprime(d)‘ |GL2(Z/Z“Z)Q\I’pﬂme(€a)‘ _ qprime prime / pa
T 1G] GLazezy - Obmk () Ok ().

Finally, let us prove item (3). Since £ + m, by Lemma 2.2, G (£*) and Gg(¢F) are
the full groups, GL,(Z/(*Z) and GL,(Z/¢*Z). Let @: GLy(Z/(PZ) - GL,(Z[(*7Z)
be the natural reduction map which is a surjective group homomorphism. By a similar
argument as in the proof of item (1), it suffices to check that

(40) o7 (")) = ().

Take M ¢ ‘I’Sf,ime(ﬁ“) and let M € @ '(M). By the same reasoning in the proof
of item (1), det(l\z— I) is invertible modulo ¢, Since gcd(n, %) = ged(n, £F) = 0%,
we also have det M = k (mod ¢%). The other inclusion is obvious, and hence (40) is
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obtained. Thus, we have

rlme ﬂ -1 rlme o
()] ot (e ()] grme e

Fk ) eL @ oD (L)

In case { + nL, let @: GL,(Z/(PZ) — GL,(Z/¢Z). 1t suffices to check
(41) @7t (WPIme(0)) = WL (0F).

Note that the condition det M = k (mod gecd(n, £)) is trivial, and hence ‘I’Epr;";f (0) =
‘Pprime(ﬁ). Let M« ‘{’Eprime(ﬂ). Note that every lifting M € @ '(M) belongs to

\}’gr;";f(ﬁﬁ ). The other inclusion is obvious, and hence (41) is obtained. Thus, we have
) \Pprlme gﬁ @71 (\pprime(p )
821::?;(6;3) — | ( )| _ | ( ( ))| _ 8pr1me(€).

(GL.(ZPZ)| [0 (GL(Z]iZ))]  °*

By grouping the prime factors of M in (35) according to whether they divide L or not,
we obtain (36). The absolute convergence of (36) follows from Remark 4.3. [ |

The following lemma allows us to express Cgrin'?,f more explicitly.
Lemma 4.5 Suppose (% || n and £ + mg. Then

rime / )q Y . B
Sk () _ {¢(2~) (1 fonigmy) k=1 (mod),

- 2+ ;
1-1/¢ (1- reciirmy)  ifk#1 (mod o).

1
B(€%)
Proof By the assumption, we have Gg(¢*) ~ GLy(Z/¢*Z). Recall that

‘{’E,r,ime(éu) ={M e GLy(Z/t"Z) : det(M — I) € (Z/¢*Z)",det M = k (mod ged(n, (%))},

whose cardinality was determined in Corollary 3.4. A brief calculation reveals the
desired result. ]

Let E/Q be a non-CM elliptic curve of adelic level mg. Let n = nyn, where n; =
ged(n, my) and (np, mg) = 1. By (32), (36), and Lemma 4.5, we have

SPme(L) 1 2y ¢
Cprlme: E,n,k . (_ ) (_ )
e = T, -0 90w A\ Tenzz) AL ' enam)

Ln £|(n,k-1)
Lk-1
I (1_ P2-0-1 )
Linmg (6_1)3(64_1) ‘
We now propose the average counterpart of CP ”me
(42)
prime __1 (1_ 2t ) (1_ ‘ ) (1_ i1 )
v =gy W tenam ), L\ fene ) I~ @way

O+k-1
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prime
E,n,k ’
for '} in (23). Parallel to Proposition 4.1, we show that CP",™ behaves as expected
when we sum over k.

The formula for Cgrime coincides with C if one takes mg = 1, similar to the case

Proposition 4.6  For any positive integer n, we have

prime _ prime
Z Cn,k =C >
1<k<n
(n,k)=1
where CP'™¢ gnd Cﬁrli(me are defined in (33) and (42), respectively.
Proof For notational convenience, we define

0+ l

MO Ly PO enamr
To show the desired equation, we need to verify that
1 0 —r-1
=— / f) = - .
W Fm=gay 2, ITAO T RO 1}(1 @)

(k,n)=1k1(¢) k=1(¢)

First, we prove that (43) is true for n = p*, a prime power. Observe that

ay _ 1 a-1 _
") = 0y (P (filp)(p-2) + £2(p)))
_ ! . Ptp ~ p
" 907 [“’ 2)(1 |GL2<Z/‘DZ>|)+(1 |GL2<Z/pZ>|)]
pPP-p-1

B TEETE

Let us prove that F is multiplicative. Let n be coprime to p“, a prime power. We see

that
F(p°n) = 1(¢ 5 (4
(p"n) ) 1g1§an KI‘} h(6) }J £(0)
(k,pn)=1 k#1(£) k=1(¢)
- 'S A I AO TI O+ £ 20 T 40 I A©
¢(P )¢(n) 1<k<p®n £ln £ln 1<k<p®n £ln £ln
(k,pn)=1 k£1(2) k=1(¢) (kypn)=1 k£1(¢) k=1(¢)
k#1(p) k=1(p)
A (p-2)p" 1
T e 2, 1RO TTAO
(k,n)=1k#1(¢) k=1(£)
L™ 1
T Ton e 2z, JAOITEO
(k,n)=1k#1(¢) k=1(2)
1 a—1 a
= 50 (P AP =2+ (p)) - F(m) = F(p") F(n).
This completes the proof. L]
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4.3 Applying Zywina’s approach for the cyclicity problem

Zywina [62] refined the Koblitz conjecture by improving the heuristic explanation for
the constant Cgrime. In essence, he interprets the desired property of a prime of Koblitz
reduction in terms of Galois representations, examines the ratio of elements with the
desired property in each finite level Gg(m), and considers the limit of that ratio as
m approaches infinity. In this subsection, we apply Zywinas approach to determine
the heuristic densities of primes of cyclic reduction for E and verify their concurrence
with the densities proposed by Serre and Akbal-Giiloglu.

Let E/Q be a non-CM elliptic curve and fix a good prime p # 2. We now give a
criterion for p to be a prime of cyclic reduction for E.” Let Frob, denote a Frobenius

element in Gal(Q/Q) at p. By [20, Lemma 2.1], we have that
E,(F,) is cyclic <= V primes # p, E,(F,)
does not contain a subgroup isomorphic to Z/¢Z & Z[{Z
<= V primes ¢ # p, pge(Frob,) #1 (mod ¢)
<= Vm e Nwith p + mand V prime ¢ | m, pg ¢(Frob,) #1 (mod ¢).

Drawing a parallel to (26), we consider the set
YY(m) ={MeGLy(Z/mZ):M#1 (mod/) foralll|m},

and the ratio

ep o 1Ge(m) 0¥ ()
% (m) = G )]

Taking the limit of 6 (m) over all positive integers, ordered by divisibility, we expect
to obtain the heuristic density of primes of cyclic reduction.

Proposition 4.7 Let E/Q be a non-CM elliptic curve of adelic level mg. Then 83(-),
as an arithmetic function, satisfies the following properties:

(1) for any positive integer m, 85 (m) = 65 (rad(m));
(2) for any prime { + mg and integer d coprime to ¢, 87 (dl) = 67°(d) - 6 (¢).

Therefore, the heuristic density of primes of cyclic reduction can be expressed as follows,

Jim 85 (m) = 8 (rad(me)) - TT 87°(0).
limg

Proof Follows similarly to the proof of Proposition 4.2. ]
Remark 4.8 One can easily check that for ¢ | mg,

1 L
Lz~

and hence the infinite product converges absolutely.

(44) 87 (0) =1-

as { — oo

We now verify that the limit lim,,_,. 87 (m) appearing in Proposition 4.7 coin-
cides with the cyclicity constant C;'* originally defined by Serre [51, pp. 465-468].

5Note that if p = 2is a prime of good reduction for E, then E, () is necessarily cyclic.
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Proposition 4.9  Let E/Q be a non-CM elliptic curve. Then we have
1
C.c =67 (rad(mg)) - (1—).
Por zgf |GL2(Z/4Z)]

Proof Let R =rad(mg). By (19) and (44), it suffices to check

u(d) _ sCyc
Z o) % @

Let m be a positive integer and d | m. We define
Sg(m)={MeGg(m): M#1 (mod¢)forall?|m}
S (m)={MeGg(m):M=1 (modd)}.
From the definition, one may observe that Gg(R) N ¥<'(R) = S;(R). Thus, we have

e ISH(R)
o ()= G

Also, note that Séd) (d) = {I}. Let ®: Gg(m) — Gg(d) be the natural reduction map.
Then,

SOy e s @] [stP @]
Ge(m) ~ [07(Ge(@)]  1Ge(d)]  [Ge(d)]

Observe that Sp(R) = Ge(R) — Uyr S}(f) (R). By the principle of inclusion-exclusion,

we obtain
everpy L SR pd) u(d)
)= 6,)1 " 16~ 5, [QCEL]) Q)
This completes the proof. [ ]

Now, we construct a heuristic density of primes of cyclic reduction that lie in an
arithmetic progression. Consider

‘P;y;(m) ={MeGL(Z/mZ): M#1 (mod{)forall?|m,detM =k (mod ged(m,n))}.
We define
cyc
o o o [GE0D 0 On)
|G (m)|

E,n,k
Drawing parallels from Zywina/s approach, we consider the limit

(45) lim 82;, L (m),

m— oo

where the limit is taken over all positive integers, ordered by divisibility. We'll prove
in Proposition 4.12 that (45) coincides with C}", | as defined in [1]. To do so, we'll first

give some properties of 8"} (-).
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Proposition 4.10  Let E/Q be a non-CM elliptic curve of adelic level mg. Fix a positive
integer n. Set L asin (7). Then, 8y, , (-), as an arithmetic function, satisfies the following
properties:

(1) Let L| L"| L. Then, &, (L) = &, (L');

(2) Let £* be a prime power and d be a positive integer with (¢,Ld) =1. Then,
cyc k(déa) 8cyc k(d) (SCYC k(ga)
(3) Let 0% || nand (K,L) =1 Then,for any B> a, 8,7 (£F) = 877 (€%). Further, if
(4 nlL, we have 8,5 (£F) = 67°(0).

Therefore, (45) can be expressed as follows,

a0 Jim 07 n) =875, (1) TT 875,00+ T &%)
/+mg fnmpg
£%|n

and the product converges absolutely.

Proof One can argue similarly to the proof of Proposition 4.4 to obtain the desired
results. The absolute convergence of (46) follows from Remark 4.8. ]

The next lemma allows us to describe (46) explicitly.

Lemma 4.11 Let E/Q be a non-CM elliptic curve of adelic level mg. Suppose £* || n
and £ + mg. For any k coprime to n, we have

1 .
R NG VA
¢(e2) (1 - \GLz(Z/ZZ)\) ift|(n,k-1).

Proof Since ¢ + mg, we have Gg(¢*) ~ GLy(Z/¢*Z), and hence |Gg(¢?)| = (£* -
1)(£2 - £)¢4(+=D) Applying Corollary 3.2, we obtain the desired results. |

Let E/Q be a non-CM elliptic curve of adelic level mg. Let n = nyn, where n; =
ged(n, my) and (np, mg) = 1. By (44), (46), and Lemma 4.11, we obtain
(47)
O (L)

O IS S
o) AL (1 |GL2<Z/EZ))Z+1}M(I |GL2<Z/fZ>|)'

|(n,k-1)

hm 8?; ((m) = ——2———

We now prove that (47) equals the cyclicity constant proposed by Akbal and Giilglu.

Proposition 4.12  Let E/Q be a non-CM elliptic curve of adelic level mg and n be a
positive integer. Let n = nin, where ny = gcd(n, my) and (np, mg) = 1. Then we have

cyc :Zy:lk(L) ¢(£) 1
Chnk = p(m) ZHE (1_|GL2(Z/€Z)) 1 (1_|GL2(Z/£Z)|).

Linmg
£|(n,k-1)

Proof Define
Sk (m) = {0 € Gal(Q(E[m])Q({x)/Q) : algz,) = 0k Tlgerey) F1forall €| m}.
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Let R = rad(mg). By [33, p. 13], (22) can be expressed as follows,

(48)
S0 (R) ( 8(0) ) ( ! )
ey A \Uenam)) L\ enam)

£(n,k-1)

Thus, it suffices to verify that

Spa® 8D
GQERDQG)A  ¢(m)

By the Weil pairing, we have Q({,,) € Q(E[#n,]). Thus, we see that Q(E[R])Q({y,)
and Q({,,) must be linearly disjoint by Lemma 2.2, and hence

Gal(Q(E[R])Q(¢n)/Q) = Gal(Q(E[R]Q((n,))/Q) x Gal(Q(Er,)/Q).

Under the isomorphism, the set Si, ,  (R) can be identified as Sp, , ;(R) x {04}, and

hence [S% ,, ; (R)| = [SE ., x (R)|- Thus, we have

|S,E,n,k(R)| _ 1 . |S%,n1,k(R)|
| Gal(Q(E[R)Q((n)/Q)|  ¢(n2) [ Gal(Q(E[R]DQ(Cn)/Q)]
Remark that Q(E[R]) € Q(E[L]) and Q({,,) € Q(E[L]) by the definition of L. Thus,
the usual restriction @: Gg(L) — Gal(Q(E[R])Q({y,)/Q) gives a surjective group

homomorphism.
Viewing Gg (L) as a subgroup of GL,(Z/LZ), we may observe that

@7 (S, k() = {7 € Gu(L) : Glo(,,) = 0 Flereny #1 (mod £) forall ¢| L}
=Gg(L)N{M € GLy(Z/LZ) : detM =k (mod m),M#1 (mod¥)forall¢|L}
=Gg(L)nY, (L)

Therefore,

Seas® o (S ®)] _femowia)] o
| Gal(Q(E[RDQ(n,)/Q)|  [@(Gal(Q(E[R])Q(¢r,)/Q))] |Ge(L)] Bk
This completes the proof. u

Remark 4.13 As one may have observed from Conjectures 1.1 and 1.3, the conjectural
growth rates of 7(x) and 7%"™¢(x) are different. Thus, there is an intrinsic
difference between C§'° and CE"™. In particular, C{’° can be interpreted as the
(conjectural) density of primes of cyclic reduction for E whereas C2"™™ should not be

interpreted analogously. A similar remark holds for 75 (x; n, k) and 72"™ (x; n, k)
and their respective constants.

5 On the cyclicity and Koblitz constants for Serre curves

We begin by fixing some notation that will hold throughout the section. Let E/Q be a
Serre curve of discriminant Ag, n be a positive integer, and k be an integer coprime to
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n. Let A’ be the squarefree part of Ag. By Proposition 2.4, we have

Mg =

21A'] ifA'=1 (mod 4),
4|A’|  otherwise.

Let L be defined as in (7). The goal of this section is to develop formulas for C;”* ,
and Cgr;mke with our assumption that E is a Serre curve. By Propositions 4.4 and 4.10,

it suffices to compute &, | (L) and SEer; (L).

For an integer n, we set n = njn, where n; = (n, mg’) and (n,, mg) = 1. There are
two cases to consider: mg + L and mg | L. The former occurs if and only if one of the
following holds:

o A'=3(mod 4)and2 ¢+ n;
o« A'=2(mod 4)and 4 { n.

We write L = 2% - L°3 where L°% is an odd integer; observe that |A’| divides L°%4. We
now define two sign functions that depend on A’, k and appear in Theorem 1.7.
Definition 5.1 Let E/Q be a Serre curve of discriminant Ag. Let A’ and k defined as
above. Assume mg | L. We define 7 = 7(A’, k) as follows.
o If A’ =1(mod 4), we define 7 = -1.
o If A’ =3 (mod 4), then 4 | n. We define

-1 ifk=1 (mod 4),

T=
1  ifk=3 (mod4).

o If A" =2 (mod 8), then 8 | n. We define
.- -1 ifk=17 (mod8),
|1 ifk=3,5 (mod38).

o If A" =6 (mod 8), then 8 | n. We define

.- -1 ifk=13 (mod8),
|1 ifk=5,7 (modS8).

Finally, we define 7% := 7°(A/, n, k) € {«1} as follows,

k
e 1 1 (3):
ZILOdd é‘(ﬂ,LOdd)
Ltn 2+k—1

TPrime =7 H (%)
(n,L°%)
L+k-1

Having defined 77 and 7P"'™¢, the rest of the section is devoted to proving
Theorem 1.7. First, suppose mg + L. Then, by Proposition 2.4, we have Gg(L) ~
GLy(Z/LZ) = 14w GL2(Z[€*Z). One can check that the isomorphism induces
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bijections between the sets,

(49) k(L) and [] ¥, k(é“

|| L

for X € {cyc, prime}. Let £ be a prime factor of L. If £ 4 n, then we have a = 1by (7).
The condition det M = k (mod gcd(n, £)) becomes trivial, and hence we have

() = (0)
for X € {cyc, prime}.
On the other hand, suppose ¢ || n. We have already determined the size of
‘{’26 (£%) in Corollaries 3.2 and 3.4. Based on those counts, we obtain the following.

Lemma 5.2 We have

M) v =T1 ((132 —1)(£*-0) —1) I (23("“1)(23 —e—l)) II (e“‘"‘”(e3 —z)).

oL (L) i (Lm)
n 2)k—-1 £4k—1
(2) wrime(n) =TT (e - 26 -0+ 3)) [1 (f“P@-2-0) I1 (¢ -7-20).
’ oL £ (Lm) (L)
2kn 2lk—1 2hk—1

Based on Lemma 5.2.(1), we obtain

cyc (L) ~ H Z.’)(afl) (ZS - 1) é3(0¢*1)(£3 _ é) 1—[ ( - 1 )
E ok 2%/ (n,L) |GL2 (Z/Z“ZN 2%\ (n,L) |GL2(Z/€“Z)| lL |GL2(Z/£Z)‘
£lk-1 L+k-1 Lin
1 1 1 1 1
0 1, ) G )
Z“HI(_nI,L) £ é\(IZIL) -1 |GLo(Z/tZ)] é\(l_n,[L) -1 lﬂ_l,[ |GL2(Z/Z)]
k-1 L4k-1 L4n

1 R0 .
50 L (1 |GL (Z/1Z)] ) Il (1 |GL (Z/1Z)] ) '

£lk—1 2

Thus, (47) and (50) give

cyc 1 _ (/5(6) ) ( _ 1 )
Comk = gy 1] (1 .z ) L\ Ten@im)

k=1(¢) ln
R _W)) (_1)
“’("2)@(%)(1 anzm) ) L\ Tenam

o (e I g
‘¢<n>a(n,k_l>(1 |GL2<Z/€Z>|)}1(1 |GL2(Z/KZ>|) Cne

Hence, we obtain that CCyc = C;Y; ifmg 4+ L.
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Similarly, for the Koblitz case, applying Lemma 5.2.(2), we see

(51)
O 263D (3 _ g2 20) 083D (o2 _p) (1 G )
Do =170 ajinsy E-DIGLZED)  ajr,y E-DIGLEZIED)] 15\ (-1 (C+1D)
£+k—1 £]k=1 Lin
1 e L -1
= L - 1-— .
¢(n1) z|(1:,11_)( ‘GLZ(Z/ZZ)‘)H(I:,[L)( ‘GLZ(ZMZ”)%( (5—1)3(5*'1))
L4k—1 £|k-1 Lin

Thus, Proposition 4.4, Lemma 4.5, and (51) give

prime _ 1 (_ 14 ) (_ 2+ ) (_ P2-0-1 )
ek 5t 1L U Ten@m) 1L\ Tee ) I ey

£]k-1 £4k—1 Otn
1 £ ) ( 2+e ) ( 2-1-1 )
—_— R — 1-— 1-—
$(n2) egE ( | GL2 (Z/4Z)] egE | GLa2(Z/LZ)] ugnf (-13(¢+1)
Ln Ln
pr P
o

This completes the proof of the theorem for the case where mg + L.

Now, suppose that mg | L. This case is a bit more involved. First, we recall from
Section 2.2 the definition of ¥y« and the fact that Gg(L) = ker ;.. By [31, Lemma 16]
and (49) we have

1
@ o] -3 (el I 0] D)
L
for X € {cyc, prime}, where
Y0, = {M € GLy(Z/€"Z) : youe (M) = £1, M # I (mod £),detM =k (mod ged(£%,n))},

Y;:,i:e = {Me GLy(Z[t"Z) : yo= (M) = £ 1,det(M — 1) #0 (mod ¢),det M=k (mod gcd(¢*,n))}.

The sets Yecay C+, Y;,,Y ‘, Y;,rifle, and Ygiine all depend on n and k, though we do not

include this dependence in the notation for brevity. We first focus on the size of

|Y;f) s |Y£§)_| for primes ¢ dividing L°%9.
Lemma 5.3 We have
@)

[T (vsl-1vie)) =

VL ”Lodd

[y I f“D@-e-1n J] (%) 3D (B - y).

E‘L‘)dd Za”(n’Lodd) Za“(n)Lndd)
Lin £)k—-1 L+k—-1
2)
prime| _ |y/prime ) _
TT (et = pvme) =
£%|| Lo

H ¢ H £3(a—1)(€3 _62 —f) H (%) 3(a-1) (@3 _(2 _ 2@).

Z|L°dd VL H(l’l,LOdd) - "(n,LOdd)
£4n fk-1 £4k—1
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Proof From the definition of y. for an odd prime ¢ | L, we have

M
YZ}’; :#{MGGLZ(Z/Z“Z):(det ):il,M#I (mod ¢),detM = k (modé“)},
prime " det M «
I =#{M6GL2(Z/Z Z):( - ):il,det(M—I)#O (mod £),det M=k (mod £ )}.

By Corollaries 3.2 and 3.4, it is easy to check that

p3(a-1) (#-¢-1) iff|nandk=1 (mod¥¢),
B (3 p) if¢|n,k#1 (mod /), and (%)

YCYC —

[vee = 0 if 0| n,(%)=-1,
(£*-0)(£*-1) .
f _1 lfg ‘i’ n,
0 if¢| nand (%) ,

V2| =3 -¢) ift|nand (§)=-1,
(£2-0)(£*-1)
T — if ¢ 4 n,
DB 2 -¢)  iff|nandk=1 (mod ¢)

| = GEDBP—2-20) if¢|nandk#1 (mod¢), and (¥)=1,

0 if¢| n and (%)——1,

D20 Ly ifg g,

0 1f€|nand( ) ,

k
z
YR = 43D (2 2 20)  if €] nand (%) =1,
(4-1)(£>-1>-20) W0} n.

2

The result now follows from some simple computations. [ ]
Finally, we evaluate |Y;¥ || - |Y;x _| when ¢ = 2.
Lemma 5.4  For fixed A" and k, let T be defined as in Definition 5.1. Then

(1) |YCYC | _ |YCY<37| . 23(¢x—1)
(@) [V~ Y| - ~(2r) 220D,

Proof First, we assume A’ =1 (mod 4). Then, by the definition of ¥« (-),
V75 = {MeGLy(Z[2°Z) : e(M3) =+, M # 1 (mod 2),detM =k (mod 2%)},
Y;;"‘;“e ={M e GLy(Z/2°Z) : e(M;) = 1, det(M -1) #0 (mod 2),detM =k (mod 2%)}.
Let h'® = |Y,"7|. In the case where a = 1, it is clear that h'“ = 2 and h™ = 3. For
a > 2, by Lemma 3.1, we obtain

|chc | _ cyc . 23(oc—1)

PASES

Ccyc Ccyc —
and hence |V, | - |V,0 < | = —23(«~D),
Yprime

Let us check the size of Y, , . In the case where « = 1, we have that

i 1 1 0 1 i
prime _ prime _
Y, = {(1 0) , (1 1)} and Y, =@
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Setting h2"™ := |YP™| we see that h2"™ = 2 and h®""™ = 0. By Lemma 3.1, we

obtain

|Ypr1me| _ hprlme 23(0¢ 1)

and hence |Y2Pf,“ine| - |YP“fle| 2 .93(a-1)
Next, we assume A’ = 3 (mod 4). Then, by the definition of ,«(+), we have

CYC ={M e GL(Z/2°Z) : e(M2) xa(k) =1, M #I (mod 2),detM =k (mod 2%)},
Y;;j;ne ={M e GLy(Z/2°Z) : e(M3) xa(k) = 1, det(M —1) # 0 (mod 2),detM =k (mod 2%)}.

Then

|chc |chc | 23(0(71) ifk=1 (mod 4),
22D ifk=3  (mod 4).

2%*2  ifk=1 (mod 4),

Yprlme Yprlme _
| | -23%72  ifk=3 (mod 4).

Similar arguments can be applied to deduce the results for A’ = 2 (mod 8) and A’ =
(mod 8). [ ]

With the results of the above lemmas in hand, we now determine |Gg(L) N ‘I’ff K-
Let us treat the cyclicity case first. By Lemma 5.4 and (52), we find that

IGe(L) n ¥l = - (\‘Y”’C(L)I + H (v, l- Iinf,\))

1 _ _
=-| I “V@-e-1) [T £ -0 ](6L(z/ez)|-1)
L% (L) o~ u(L n) 7L

£lk=1 +k-1 Otn

220D T 2N -y ] (%)f““‘”(f -0 I1 (=1

YL ||(n,L°dd) VL H(n,LOdd) Z\LOdd
£]k-1 £+k-1 L4n

1 _
== I 2 I ¢-e-1) I ®-0]5 [I (IGL(Z/€Z)|-1) +
2 %) (Lm) 2)(L°94 ) 0)(£°94 ) L09d
£lk-1 £4k—1 Lin

Since we are assuming that mg | L, Gg(L) must be an index 2 subgroup of
GL,(Z/LZ). Thus, we have

53)  |Ge(L)| = % 1 IGL(Z/e°2)| = £ - [T ¢V GLy(z/ez)|.

i 2 oL
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Along with Proposition 4.10 and Lemma 4.11, a short computation reveals that

Gp(L) n ¥, c(L)]

Chmk = — T 82(¢") TT 87°(0)
” |GE(L)| Lrmg Linmg
£%||n
= CY| 14 e !
m 5 T] (1GL(2/tZ)] -1)

ZlLOdd

lin
Now we move on to the Koblitz case. By Lemma 5.4, we have |Y;f,ife| - |Y2p:)if16| =
~72°*"2. Hence, by (52), a simple calculation reveals that |Gg(L) n ¥}, (L) equals

1 ri i ri
2 (lw:,k"“(m + TT (v - Y;L,‘“en)

24| L

SN e @ ey T PN @ - 20 T - 20 - 04 3)
2% (Ln) 2% (Lyn) oL
£lk-1 L+k-1 28
2 [ POV -f-r) ] (%)ES(tx—l)(ZS oy T[] ¢
Z"‘\(n,L"dd) Eal(ﬂ,LOdd) E‘LOdd
k-1 Lrk-1 C4n

1 [T T (@--0) TT (-0 —20)| TTe( 26 - £+3) + 7™ []¢|.
2 0%|L 2/(L,n) 2(L,n) oL 7L
£|k-1 L+k—-1 Lin Lin

Finally, by Proposition 4.4, Lemma 4.5, (51), and (53), we get

cprime _ |G2(1) NI (L) II G &
Enk T 1Gg(L) - Tge(1=1/0) gy, 1= gpm, 1-1/¢
£ n
Tprime . H /
i rime
_ (brime 1 Lin _ (prime 1+ TP
ok Hé(fs—2€2—€+3) n.k H(€3_2€2_€+3)
4L oL
Lin ohn

This completes the proof of Theorem 1.7.

6 On the Koblitz constant for non-Serre curves
6.1 Bounding the Koblitz constant for non-CM, non-Serre curves

In this subsection, we will determine an upper bound for Cgr;m,f in the case of non-

CM, non-Serre curves.
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Let E/Q be a non-CM, non-Serre curve, defined by the model (4), of adelic
level mg. Let L be defined as in (7). Then we write L = L;L, such that L, is the
product of prime powers £ || L with £ ¢ {2,3,5} and Gg(¢) ~ GL,(Z/¢Z). By [17,
Appendix, Theorem 1], Gg(Ly) ~ GLy(Z/L,Z). Let @:GLy(Z/LZ) - GL,(Z]L,7Z)
be the natural reduction map. Note that

@ (Ge(L) n P ™ (L)) € Gp(Ly) n WP, (Ly).

Since @ is a surjective group homomorphism, we have

(54)
8Prime(L) _ |GE(L) n \Prlf,rllcme(l‘)|
Bk |G (L)|
@7 (Ge(La) n W™ (L)) [Ge(L2) 0 W™ (La)| i
< 1 = = 8E n.k (Lz)
@' (GE(L2)) |GE(L2)| "

Since pg,1, is surjective, we apply the same argument as in the proof of Lemma 4.5
and obtain
prime
8E,n,k (Lz) <1
Mo, (1-1/6) ~

prime

Before proceeding to bound the constant CE)n)k,

result.

we first state a standard analytic

Lemma 6.1 For any positive integer M, we have

1 _1
I1 (1 - 7) « max{1,loglog M }.
oM t

Proof Follows from Mertens' theorem [44, p. 53, (15)]. See [62, p. 767] for the
argument. u

From Lemma 4.5, Lemma 6.1, (32), (36), and (54), we obtain

(55)
Cprime: (Sgl:lnrflke(L) 623:1:((06) H 6%1:1:1:(6)
Bk Mg (U=1/6) gy 1= (o, 1-1/C
Limg

< ! O (L) I 1
Mo, (1=1/0) g, (1-1/6) = 1-1/¢

<« max{1,loglograd(L,)}.

Our next task is to bound rad(L;) in terms of a and b appearing in the short
Weierstrass model (4) of E. Write jr € Q to denote the j-invariant of E and & = h(jE)
for the Weil height of jg. If £ | Ly, then either £ < 5 or pg ¢ is not surjective. By the main
theorem of [41], there exist absolute constant x and A for which pg ¢ is surjective for
all £ > k(max{1, h})*. Since rad(L,) is squarefree, we have
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rad(L,) < 30 [1 1
¢<r(max{1,h})*
(56) = lograd(L;) <« > log ¢ <« (max{1, h})* logmax{1, h}.
0<r(max{1,h})*

Since E is given by the model (4), we have that
(57) h = h(jg) < logmax{|a|’, |b]*}.
Combining (55), (56), and (57), we obtain the following result.
Proposition 6.2 Let E/Q be a non-CM, non-Serre curve given by (4). Then we have
Cgr;m]f <« loglog max{|al?, |b|*}.
6.2 Bounding the Koblitz constant for CM curves

In this subsection, we focus on CM elliptic curves E/Q. The goal is to show that the
constant Cg';m,f is bounded independent of the choice of the CM curve (Proposition
6.7). We keep the notation from Section 2.3.

Let E/Q be an elliptic curve with CM by an order O in an imaginary quadratic field
K = Q(+/-D). Let p be a prime of Koblitz reduction for E/Q. Since [K : Q] = 2, the
prime p either splits completely, stays inert, or ramifies over K/Q.

If p does not split over K/Q, then by Deuring’s criterion [23], p is a supersingular

prime for E and we have a, (E) = 0. Therefore,

|Ep(Fp)| =p+l

which is an even number if p > 2. Thus, an odd supersingular prime cannot be a prime
of Koblitz reduction for E.

Now suppose p splits completely in K and let p be a prime lying above p. We
consider two cases depending on the value of D modulo 4. Following the notation
of [58, Chapter 2.2], when D =1,2 (mod 4), let M, N € Z be such that p is generated
by M + N\/-D for some M, N € Z. In this case, the Frobenius trace satisfies a,(E) =
2M, 50 |E,(FF,)| = p + 1 - a,(E) is always even for odd primes p. Therefore, 75"™ (x)
is uniformly bounded.

On the other hand, if D = 3 (mod 4), then we can let M, N € Z be such that M +
N(1++/=D)/2 generates p. Let us define a binary quadratic form

1+D
fo(x,y) = X2+ Xy + (+T)y2 e Z[x, y].
Then, one can check

p=Njo(p) = fo(M,N) and |E,(F,)| = fo(M-1,N).

Thus, we see that this is related to studying integer pairs (M, N) € Z?* for which both
fp(M,N)and fp(M -1, N) are primes. This setup is a special case of the multivariate
Bateman-Horn conjecture [7], which generalizes the Hardy-Littlewood conjecture to
the setting of several variables [29].
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This idea can be used to note additional CM curves for which ﬂpnme (x) isbounded.
Suppose D =7 (mod 8). (In fact, K = Q(v/=7) is the only CM field satisfying the
property.) A direct calculation shows that there are no integer pairs (M, N) for which
both fD(M N) and fp(M -1,N) are odd, and thus prime. Consequently, for this
curve 7b""(x) is uniformly bounded. An alternative way to see this is to observe
that every elliptic curve E with CM field Q(1/~7) has torsion subgroup Z/27.

We now turn to our original formulation of the prime-counting function. Note
that Fj, ~ F;, and the E » is isomorphic to fp as an elliptic curve over the base field. In
particular,

‘Ep(FpN = |EP(FP)|'
Thus, we obtain
prlme(x nk)=#{p<x:p+ Ng|E,(F,)|is prime,p=k (mod n)}

=#{p<x:p+ Ng, |Ep(]Fp)| is prime,
p splits over K/Q, p=k (mod n)} + O(1)

1 =~ L
= 5#{1’ : Ni/o(P) < x, Nijg(P) + Ng, [Ep(Fp)| is prime,
Nkjo(p) is a rational prime, Ng/qo(p) =k (mod n)} + O(1).

The Koblitz conjecture in arithmetic progressions for CM elliptic curves can be
formulated as follows.

Conjecture 6.3 Let E/Q be an elliptic curve with CM by an order O in an imaginary
quadratic field K. Let mg be as in Lemma 2.6, n be a positive integer, and k be an integer

coprime to n. Then there exists a constant Cgr/ll?:, . defined in (62) such that

prime
(58) prlme( .n, k) N E/K,n,k ) X

5 as x — oo.
2 log” x

If the constant vanishes, we interpret (58) as stating that there are only finitely many
primes p = k (mod n) of Koblitz reduction for E.

Comparing with Conjecture 1.6, we have

prime
prime _ _E/K,nk
(59) Chrime = Lk,

where C}’;r/?(ni , is defined in (60).

We now introduce some notation used to determine the constant CE"™¢

E/K,n,k*
For a positive integer m, let us fix a Z/mZ-basis of O/m0. This allows us to

view GL(0/m0O) = (0/mO)* a subgroup of GL,(Z/mZ). Let det: (O/mO)* -
(Z/mZ)* be the determinant map, defined in the natural way. Fixing a standard
orthogonal basis of O/mO, N is identified with the determinant map. Thus, drawing
a parallel from (34), we are led to define

I‘;”nm,f(m) {ge(0/mO)” :det(g-1) € (Z/mZ)",detg=k (mod ged(m,n))}.
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Observe that pg, ,, (Froby) € Gg(m) n ‘Pllznnm,:(m) if and only if |E, (I, )| is invertible
in Z/mZ and det(pg,m (Frob,)) = k (mod gcd(m, n)). Hence, we are led to define
_|Gr(m) n R (m)]

é\prime — K,n,k
E/K,n,k(m) |GE(m)|

Drawing a parallel from (35), we set

8prime (m)

i . E/K,n,k

(60) Cpr mi = lim —————,
Ik = 0 Tl (1-1/0)

where the limit is taken over all positive integers ordered by divisibility.

Lemma 6.4 Let E/Q be an elliptic curve with CM by an order O of conductor f in an
imaginary quadratic field K. Let mg be as in Lemma 2.6. and y := yx be given as in (17).
For each rational prime { + fmg and 0 + n, we have

O pcni(O) _ cor-

g_
IS A R () (B

For each prime ¢ + fmg and (% || n, we have

1 1

prime ——|1-x(O)———————= ift*|nandk=1 (mod¥),

e [ (1O @es) (mod 0

1-1/¢ 1 £+1

1-x(l)

s O @@y

Proof First, we consider the case where £ + nfmg. By Lemma 2.6, we have Gg(£) ~
(Ok/€Ok)* and the condition det g = k (mod gcd(¥, n)) trivially holds. Hence

Gp(£) nWRITE(0) = {g € (0x/tOk)* : det(g=1) #0 (mod £)}.
Therefore, by Corollary 3.6, we get

R (0)| = (€~ 2)2 or [WRITE(0)] = £ -2

ift* | nandk#1 (mod ¢).

depending on whether ¢ splits or is inert in K.
Now we assume ¢ || #. Similarly, we have Gg(£%) ~ (Og/¢*Ok)* and hence

G(£%) N WL (0) = YT (6%).

Then the condition det ¢ = k (mod gcd(¢%, n)) becomes det g = k (mod ¢%). So we
get

‘P;r;m,f(f"‘) ={ge(Ok/t*Ok)* :det(g-1)#0 (mod ¢),detg=k (mod¢*)}.

If k =1 (mod ¢), then by Corollary 3.6,

) = (0 -2) or 1R =

depending on whether ¢ splits or is inert in K. If k # 1 (mod £), then
|‘I’Iﬂr;m,f (%) =471 -3) or |‘P£r;m,f(£“)| =070+ 1),

depending on whether ¢ splits or is inert in K. [ ]
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For a CM elliptic curve E/Q with CM by an order O of conductor f, we set

if | n,
(61) L= [] ¢*, wherea;= ve(n) L] )
tifmy 1 otherwise.

To save notation, we will write /% instead of £%¢.

Proposition 6.5 Let E/Q have a CM by an order O of conductor f in an imaginary
quadratic field K. Let x = xx be as given in (17). Let mg be as in Lemma 2.6. Let L be
defined as in (61). Fix a positive integer n. Then, 827;‘;*(.), as an arithmetic function,
satisfies the following properties:

(1) Let L| L' | L*. Then, &5, (L) = 85, ((L);

(2) Let (* be a prime power and d be a positive integer with ({,Ld) =1. Then,
6pr1me k(dga) — 6pr1me k(d) . 6pr1me k(f‘x).

E/K,n, E/K,n, E/K,n, . _
(3) Let £* || n and (¢,L) = 1. Then, for any > a, (Sgr/';;k(éﬁ) = 82‘}?;]((5“). Fur-
ther, if ¢ + nL, we have 827;2;),{(#) = 82?;?;,{(6).
Therefore, (60) can be expressed as
(62)
cprime _ ‘Sgr/iI?,Z,k(L) I 8gr/ill<ll,i,k(£a) I (1 (D) 2 —-r-1 )
EIomk = Ty (1-1/6) tifms -1 nfme (€= x(0)(£-1)?

Proof One can prove (1)-(3) following the same strategy as in the proof of Propo-
sition 4.4. One only needs to replace mg by fmg and GLy(Z/¢*Z) by (0/¢*O)*.
Therefore, from these results, we get

Cprime _ 61?371]2;%([') . l—I 627112:1,k(£“) . 1—[ 6271122,k (E)
E/Km.k H€|L(1_l/€) Lt fmg l—l/f Linfmg l—l/f
£%|n
Now, we see that (62) follows from Lemma 6.4. ]

Remark 6.6 Given that ¢ + nfmg, we observe that

85;22,1((6) - y(£) ?-l-1
SRR T gk
(€= xx(0))(£-1)?

1-1/¢
(290 (1)

:(1_XK€(€))(1+0(;2)).

201 i x(®) 1
eﬂm(l‘““)(f—m( ))<6—1>2)‘“ﬂm(1 ) (-0(5)):

Thus, we have
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Note that this is a product of an Euler factorization of L(s, yx) ™' at s = 1 (with some
correction factor) and an absolutely convergent product. Since L(1, yx) # 0 for anon-
trivial character yg, the infinite product in (62) is conditionally convergent.

By (58), (59), Lemma 6.4, and Proposition 6.5, we can explicitly formulate the
conjectural Koblitz constant for CM elliptic curves. Let n = nyn, where ny | (fmg)™
and (n,, fmg) = 1. (In particular, n, is the product of £* for which £* || n with £ 4 L.)

We have
' 8prime (L)
- s e (1O )
w2 §0n) M-8 A, = ()(E-1)
253
£k-1

?+1
) A (1 O G- 1))
ys

P -r-1
s (“"K“) (e—w»(e—w)‘

Proposition 6.7  For any CM elliptic curve E[/Q, we have

prime
Cppx <nl
Proof Note that the finite product terms in (63) are all bounded by 1. By definition,

we have

prime
6E/K’n’k(L) <1,

and hence,

prime
8E/K,n,k(L)

[T (1-1/6)

by Proposition 2.8 and Lemma 6.1. Finally, the infinite product, up to a correction
factor depending on n, is universally bounded, since there are only finitely many
possibilities for K. [ ]

« max{l,loglograd(fmg)} <« 1,

7 Moments

The goal of this section is to complete the proof of Theorem 1.9. We begin by setting
forth the general strategy. Let x >0 and A = A(x) and B = B(x) be positive real-
valued functions such that A(x) — co and B(x) — oo asx — co. Let E*? be an elliptic
curve given by the model

E“: Y2 = X3+ aX +b,
for some a,b € Z and 4a® + 27b% # 0. Define

F = F(x) = {E*":|a| < A,|b] < B}.
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Our objective is to compute, for any positive integer ¢, the fth moment

(64) > |CEax—Cor

|?| Ee’f

where X denotes either “cyc” or “prime.” We know that (64) can be expressed as

1 X |t x X |t X
? |CE n,k — Cn,k‘ + Z ‘CE,n,k - Cn,k + ‘CE n,k — Cn k >
| | Eef EeF Ee.f
E is Serre E is non-CM E is CM

E is non-Serre

where “E is Serre” indicates that “E is a Serre curve,” etc. In order to bound (64), we
are going to bound each of the three sums separately.

For the first sum, recall that we proved explicit formulas for the constants C?EC) ok
for Serre curves in Section 5 and found that these constants closely align with their
average counterparts C.\ . For the second and third sums, we will use the fact due
to Jones [32] that non-Serre curves are rare. For the cyclicity case, we will use the fact
that C;y; . is bounded above by 1/¢(n), which follows from (48) (and is sensible, since
under GRH, Czy:l . describes the density of some subset of the primes congruent to k

modulo n). However, for the Koblitz case it is not clear that Cp rime « should be bounded
by a constant independent of E, so we will instead employ the bounds of Propositions
6.2 and 6.7.

We first deal with the moments computation for Serre curves. Let E** /Q be a Serre
curve defined by the model

E*?: Y2 = X3+ aX + b,

of adelic level mgas. Let A/, denote the squarefree part of the discriminant of E*?.
Recall that mp..» is only supported by 2 and the prime factors of A7, , (see Proposition

(2.4)). Set
.
T ged (1], L)
By Theorem 1.7, we have
1 1 1 1
cre - Cc<-C < < ,
‘ E®b,n,k mk| = 5 Tnk Z|nl1_[,, \ -0 -0 +0-1  rad(mges)? L%a,,
tt2n
‘Cprime _ Cprime < Cprime H 1 « 1 « 1
Eebumk Tk |7 Tk tinsg, £ =20 —L+3  rad(mpas)? L2,

£+2n

Let us set rcyc = 3 and rprime = 2. Then, we obtain

/ rx
|CIE“"nk C?f,k|<< 1 :(ng(|Aab| ”)) ’

A% ]

given that E? /Q is a Serre curve.
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Observing that |F| ~ 4AB as x — oo, we have forany A,B,Z >2and t > 1,

1 x v, 1 1 1
(65) — Y Chk -G <= Y 1+ — > :
|F] L B ! ! AB  i2a P A
is Serre |b|<B |b|<B
Al ,#0 Al ,#0
Bap Ap
> <Z >7Z
(%) (%)
Lemma 7.1 With the notation above, we have
Z 1<<nlogB-A-log7A-Z+B.
laj<A
|b|<B
Al %0
|a%,0]
bz
([27.) )
Proof It follows similarly to the argument given in [31, Section 4.2]. u
1/(roct+1
Let Z = (B/nlogB log’ A) [rctn) By (65) and Lemma 7.1, we see that
(66)
ryct
1 1 nZlogBlog’ A 1 log Blog’ A\ "x*
— ‘CEnk Cﬁckt« —+n 98> 08 + < 1708 P08 ) .
o & NV B T B
E is Serre

By [31, Theorem 25] and (66), there exists y > 0 such that for any positive integer t,

7 ANTH (o
|3"| Z |CCYC —Ccyc|t ¢ max{(nlogBIOg A) ’log (mm{A,B})}.

Emk B \/min{A, B}

This completes the proof for the cyclicity case.
For primes of Koblitz reduction, by Propositions 6.2 6.7 and [31, Theorem 25], there
exists y > 0 such that for any positive integer ¢,

1 log” (min{A, B
z |CPr1me _CPrlme|t<<t loglog(max{As,Bz})t 0og (mln{ })

1Fl i Famk \/min{A4, B}
E is non-CM
E is non-Serre

L Z (CPrime Cpnme| » logy (min{A’ B})

|3|~| & E n,k m
Therefore, we obtain the inequality claimed in the statement of Theorem 1.9.
8 Numerical examples
8.1 Example 1

Let E be the elliptic curve with LMFDB [53] label 1728 . w1, which is given by
E:y* =x’ +6x - 2.
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From the curve’s LMFDB page, we note that it is a Serre curve with adelic level mg = 6.
Zywina [62, Section 5] computed the Koblitz constant of E,

CP™™€ % 0.561296.

Running either our Magma functions KoblitzAP or SerreCurveKoblitzAP
[39] on E with modulus #n = 6, we find that

prime _ ~prime prime _
Crer =Cg and Cp,5 =0.

This result can be verified “manually” by studying the mod 6 Galois image of E, as we
now discuss.
The mod 6 Galois image Gg(6) is an index 2 subgroup of GL,(Z/6Z) generated

by
ox=((o 3} 560
From this description, we compute that
{trM (mod 6): M e Gg(6)and detM =5 (mod 6)} ={0,2,4}.
Thus, if p is a good prime for E that is congruent to 5 modulo 6, then
|E,(F,)|=p+1-trpge(Frob,) =1+1-0=0 (mod 2).
Hence |E,(F,)| is even for all good primes p congruent to 5 Elodulo 6. By Hasse's
bound and computing a few values of |E,(F, )|, we find that |E,(IF, )| is never 2 for

such primes p. Thus, the only good primes p for which |E »(Fp)|is prime are congruent
to 1 modulo 6.

8.2 Example 2

Let E be the elliptic curve with LMFDB label 200 . e1, which is given by
E:y2 = x> +5x - 10.
From this curve’s LMFDB page, we learn that E is a Serre curve with adelic level mg =

8. Running our Magma function SerreCurveKoblitzAP on Ewith n = 8, we find
that

prime _ ~prime _ 1 ~prime prime _ ~prime _
Ces1 =Crs3 =3CE and Cpgs =Cpgy =0,

where

CP™ & 0.505166.

Running our Magma function SerreCurveCyclicityAP on E with n =8, we

find that
cye  _ ~cye 1 cye cyc  _ Cyc 3 ~cyc
Cpg1=Crg3=5C; and Cpos=Cpg,=3Cp
where

Cy ~0.813752.
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The values obtained above align well with numerical data for the curve. Among
all primes of Koblitz reduction for E up to 107, 11114 are congruent to 1 modulo 8 and
11259 are congruent to 3 modulo 8; none are congruent to 5 or 7 modulo 8. Among
all primes of cyclic reduction for E up to 107, 108096 are congruent to 1 modulo 8,
108251 are congruent to 3 modulo 8, 162234 are congruent to 5 modulo 8, and 162286
are congruent to 7 modulo 8.

8.3 Example 3

Let E be the elliptic curve with LMFDB label 864 . a1, which is given by
E:y* = x* - 216x — 1296.

This curve does not have complex multiplication and is not a Serre curve. Its adelic
index is 24 and adelic level is mg = 12. Running our Magma function KoblitzAP
on E with n = 12, we find that

Chby =3CE™ CRis =0 Py =7C5"™ Chnn =0,
where
CP™€ 5 0.785814.
Running our Magma function CyclicityAP on E with n = 12, we find that
C?:fz,l = %C?’C> C?:fz,s = %CJCEYC’ Clcs},,fzj = %CJCBYC> C}?,Tz,u = %CJCEYC’
where
Cy* ~0.789512.

As with the previous example, these values agree well with the numerical data for the
curve, which is available through our GitHub repository [39].

8.4 Example 4

Let n = 6 and E be the CM elliptic curve with LMFDB label 432 . d1 defined by
(67) y2 =x>-4.

We keep the notation from Section 2.3. From the LMFDB, we know that

(1) E has CM by the maximal order O = Z [@] of the CM field K = Q(v/-3).

(2) E has discriminant A = =283, So 2 and 3 are the only primes of bad reduction
for E.
(3) The map

pEe: Gal(K/K) — (0/0)"
is surjective for all primes .

Invoking the proof of [62, Proposition 2.7], we see that mp is only supported by 2 and
3. Further,

le,L:I’llzi’l:6, 1’12:1.
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Therefore, for k coprime to 6, by (63),

e 3 1GE(6) N WE (6)]

Z-0-1
ESk T3 [Ga(o) ﬂ(l‘"K“)w—mw)(z—ly)'

By adapting Suther land’s Galrep code [56], we compute Gg(6) in Magma and find
that
2 ifk=1 (mod6),

|\yPr1me(6) al GE(6)| = 0 ifk=s (mod 6)'

K,6,k

Thus, we conclude that

Cprime — Cgrime and Cprime — 0’

E,6,1 E,6,5
where
ime _ 1 r-r-1
cPrme = ~. (1 - xx(0) ) ~ 0.505448.
} 2 ell (0= xx(£))(£-1)?
In fact, we can verify that Cgtiﬁr";e = 0 using Deuring’s criterion. If p is a rational

prime such that p = 5 (mod 6), then p is inert in the CM field Q(v/~3). By Deuring’s
criterion, p is supersingular, and hence |E,(F,)| = p + 1. Since p is an odd prime, we
see that p cannot be a prime of Koblitz reduction for E.
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