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Abstract

We introduce a novel regularization method for detecting differential item functioning (DIF) in two-
parameter logistic (2PL) models. Existing regularization methods require choosing a reference group and
using an L; penalty (LP) to shrink the item parameters of focal groups toward those of the reference. This
approach has two key limitations: (1) shrinking all focal groups toward a reference is inherently unfair, as
results are affected by the choice of reference and direct comparison among focal groups is unavailable and
(2) the LP leads to biased estimates because it overly shrinks large nonzero parameters toward zero. These
limitations are particularly problematic for intersectional DIF, where various identity aspects intersect to
create multiple smaller groups. Our method addresses these issues by penalizing item parameter differences
between all pairs of groups using a truncated LP, thereby treating groups equally and avoiding excessive
penalization of large differences. Simulations demonstrate that the proposed method outperforms existing
approaches by accurately identifying items exhibiting DIF even with multiple small groups. Application to
two real-world datasets further illustrates its utility. We recommend this method as a more equitable and
precise tool for DIF detection. The proposed method is available as D2PL. pair em() in the R package
VEMIRT (https://map-lab-uw.github.io/VEMIRT).

Keywords: regularization; differential item functioning; intersectionality; truncated L; penalty

1. Introduction

Differential item functioning (DIF) has long been a significant concern in psychometrics. In simple
terms, DIF occurs when individuals with the same ability level respond differently to a particular test
item. For instance, a math question might seem easier to a male student but more difficult to a female
student, despite both having the same overall math ability. Previous research has demonstrated that DIF
is prevalent across various educational and psychological assessments, possibly due to differences in sex,
ethnicity, language, culture, and curriculum (Huang et al., 2016; Taylor & Lee, 2011; Teresi et al., 2021;
Zenisky et al., 2004).
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Addressing DIF is crucial for ensuring measurement accuracy. Psychometric models typically
assume that test items function uniformly for all respondents. When this assumption is violated, it leads
to biased estimates of respondent and item parameters, rendering subsequent analyses and conclusions
questionable (Borsboom et al., 2002; Millsap, 2010). The biased estimates may lead to a significant
fairness issue, particularly in high-stakes testing scenarios. If an item disproportionately favors one
group of respondents, it artificially inflates their scores, thereby misrepresenting their true abilities and
creating an unfair advantage over others (Cole & Zieky, 2001; Zumbo, 2007).

Numerous approaches for detecting DIF have been proposed, many of which are based on item
response theory (IRT). When researchers have prior knowledge that certain items are definitely
DIF-free, these items can serve as anchors to help calibrate the parameter estimates of other items
(Kopf et al., 2015a). However, in practice, such prior knowledge is often unavailable, leading to the
development of DIF detection methods that automatically identify anchor items (Chen et al., 2023;
Cohen et al., 1996; Kopf et al., 2015b; Lyu et al., 2025; Tutz & Schauberger, 2015; Wang et al., 2023).
Among these, the regularization approach is particularly promising. This method involves estimating a
multiple-group IRT model while using the L; (lasso) penalty (Tibshirani, 1996) or its variants to shrink
group differences in item parameters toward zero. Previous studies have demonstrated its effectiveness
(Belzak & Bauer, 2020; Lyu et al., 2025; Magis et al., 2015; Schauberger & Mair, 2020; Tutz & Schauberger,
2015; Wang et al., 2023).

Despite its promise, the existing regularization approach has several limitations. Firstly, like lasso
regression with dummy variables, it requires researchers to specify a reference group and shrink the
differences between each focal group and this reference group toward zero. Researchers often choose a
large, advantaged group, such as White males, as the reference because the estimation for larger groups
tends to be more accurate, and comparisons between the advantaged group and others are often of
interest. However, this approach does not offer a direct comparison between focal groups, such as White
females and Black males. Instead, it requires re-estimating the model with one focal group as the new
reference. This not only increases computational time but also introduces asymmetry and potential
confusion: DIF found for group B when group A is the reference might not appear for group A when
group B is the reference. Moreover, selecting one group as the reference is inherently unfair to other
groups, as all focal groups are shrunk toward the reference group, disregarding differences among the
focal groups themselves.

A trickier and more subtle issue related to unfairness is model identification. When we allow groups
to differ in both ability distributions (i.e., impact) and item parameters (i.e., DIF), the IRT model is not
identified (Chen et al., 2014). That is, we cannot statistically distinguish between alternative explanations
for observed group differences. For instance, the same response pattern could be attributed either to (1)
Group A having a much lower mean ability than Group B with no DIF or to (2) the two groups having
equal mean ability but all items strongly favoring Group B. Intermediate cases, such as Group A having
slightly lower mean ability and all items slightly favoring Group B, are also statistically indistinguishable
from these two possibilities. While this is an extreme example, similar identification issues arise in
more realistic settings. For example, one cannot statistically distinguish between (1) Group A having
a lower mean ability with 40% of the items favoring Group A and (2) the groups having equal mean
ability with the remaining 60% of the items favoring Group B. Regularization methods address this
problem by automatically identifying anchor items through penalization (Wang et al., 2023), based on
the implicit sparsity assumption that most DIF parameters are zero (Chen et al., 2023). In other words,
group differences are primarily attributed to impact whenever possible, and only residual differences are
attributed to DIE Again, the automatic selection of anchor items depends on the choice of the reference
group because anchor items are chosen by minimizing DIF between focal groups and the reference,
while DIF among focal groups is not explicitly taken into account. As a result, existing regularized DIF
detection methods, which require a prespecified reference group, lead to a local rather than a global
optimum.
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Secondly, the L; penalty (LP) can produce biased estimates because it shrinks all parameter estimates
toward zero, even very large ones (Tibshirani, 1996). To address this, two-step estimation procedures
are often used in practice: a first step with the LP for variable selection and then a second debiasing
step. Building on this concept, for instance, Wang et al. (2023) extended the expectation-maximization
(EM) algorithm for IRT model estimation to the expectation-maximization-maximization (EMM)
algorithm. Although EMM has shown good performance in simulation studies, its theoretical perfor-
mance guarantee has yet to be established.

These limitations are particularly problematic when analyzing a large number of groups, especially
when intersectionality is involved. Intersectionality examines how various identity aspects intersect to
create multiple smaller groups (also known as social strata), which will further complicate DIF detection
(Cole, 2009). Although some existing approaches can handle multiple covariates (i.e., multiple axes
of identities), they mostly considered different aspects of identities as additive (Hancock, 2007). This
additive approach treats the advantages or disadvantages conferred through simultaneous possession
of multiple social positions as simply accumulated, whereas intersectionality theorists posit that
inequalities are generated by numerous interlocking systems of privilege and oppression, such as sexism
and ageism (Bowleg, 2012). Adding interaction terms helps address intersectionality, but inevitably
introduces computation challenges due to complex, saturated models that often require large sample
sizes.

Some other existing DIF methods have been adapted for intersectional DIF scenarios. In particular,
Russell et al. (2021) applied the standardized D-static method proposed by Dorans & Kulick (1986),
which estimates abilities using total scores and compares the percentage of correct responses across
groups, both of which can be contaminated by DIF. Their method may also lack statistical power when
the sample size is small. Belzak (2023) applied logistic regression with regularization to respondent-
level covariates and person ability measured by total scores. While this approach can accommodate
nonadditive effects of covariates, the total score is not an ideal proxy for ability because it may be
contaminated by DIF. Parker et al. (2024) recently explored intersectional DIF in an introductory com-
puting assessment using the item-focused tree approach proposed by Tutz & Berger (2016). However,
the recursive partitioning algorithm is computationally demanding, and as a greedy algorithm, it does
not guarantee a globally optimal solution. Other approaches, such as the likelihood ratio test introduced
by Thissen et al. (1988), may also be applicable to intersectional DIF detection, although significance
testing also often struggles with small sample sizes.

To overcome the limitations of current regularization approaches, this study proposes a new
regularization method for DIF detection in the context of the two-parameter logistic (2PL) model,
which is among the simplest and most widely used IRT models for dichotomous responses. To address
the first limitation, rather than shrinking each focal group toward the reference group, we shrink the
differences between every pair of groups toward zero, ensuring that no group is designated as a reference
or focal group. Instead, all groups are treated equally. To address the second limitation, instead of the
commonly used LP, we adopt a truncated LP (TLP) approach, which does not further penalize large
differences but remains constant when the difference exceeds a certain threshold. For the estimation, we
develop an efficient EM algorithm using the difference convex (DC) programming (Tao & Souad, 1986)
and the alternating direction method of multipliers (ADMM; Boyd et al., 2010). Our simulation study
demonstrates the clear advantages of the proposed method. The R code implementing the proposed
method is provided as the function D2PL._pair em() in the R package VEMIRT, which is publicly
available at https://map-lab-uw.github.io/VEMIRT. The source code for the function can be accessed
directly at https://github.com/MAP-LAB-UW/VEMIRT/blob/master/R/D2PL_pair_em.R.

The remainder of this article is organized as follows. First, we present our proposed method in detail.
Next, we describe the design of our simulation study and discuss the results. We then apply the proposed
method to real-world datasets to demonstrate its practical applicability. Finally, we conclude the article
with a discussion of our findings and suggestions for future research.
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2. Method
2.1. Overview

2.1.1. Model setting
Under the original 2PL framework, the probability that respondent i answers item j correctly is
modeled as

exp(a;6; — b))

P 'izl 6,' =T )
1‘()/] | ) 1+exp(aj6i—bj)

where 0; is respondent s latent trait, and a; and b; are item j’s slope and negative intercept, respectively.
Under this setting, all the items function in the same way across all the respondents. When respondents
come from § social strata or groups, we replace a;0; — b; with a;0;; — bjs for the ith respondent from
group s. Here, each group is allowed to have its own item parameters, and our goal is to decide whether
item parameters are different across groups.

Let N, N;, and ] denote the total number of respondents, the number of respondents in group s, and
the total number of items, respectively. The probability that the ith respondent of group s gives response

vector y; = (yiis, -, yis) € {0,1} is

exp|yjis (as0is — bjs) ]
1+ exp(ajseis - bjs) ’

J
Pr(y; | 60) =]

j=1

¢

and the method of marginal maximum likelihood estimation maximizes the log marginal likelihood
function

S N; oo
(8) =33 10g [ Pr(y,] 0:)9(6i | 0?64, @

s=1i=1

where

S J
A= UU{ﬂ37057aj5abj5}

s=1j=1

is the set of item and group parameters to estimate, and ¢(0; | 4s,07) is the probability density of
6is ~ M s,07 ). Even when there is only one group, the model in (1) is not identified because the metric
of the latent variable 6;; is not determined. The conventional way is to assume that 6;; follows a standard
normal distribution such that it has zero mean and unit variance (Bock & Aitkin, 1981). In this study,
we allow impact to be present, i.e., latent traits of respondents from different groups may have different
distributions. One possible way to fix the metric is to let 8;; ~ .4(0,1) and freely estimate y; and o; for
s=23...,S.

To detect item parameter heterogeneity among groups, we impose a penalty over item parameter
differences across groups and expect that small differences are shrunk to exactly zero. Existing regular-
ization methods require researchers to select one group as the reference, and all other groups become
focal groups. These focal groups are then shrunk toward the reference by penalizing the differences in
item parameters between each focal group and the reference. For example, Wang et al. (2023) and Lyu
et al. (2025) specified Group 1 as the reference and imposed the LP, i.e.,

S
Y- Uajm —ap| +[bjm = bi|],

j=1m=2

N

A

where A > 0 is a tuning parameter that controls the strength of regularization. As discussed in the
introduction, this LP approach has several limitations, such as inequity across groups, no direct
comparisons among focal groups, asymmetry of DIF detection, and bias caused by overshrinkage
of LP.
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Figure 1. L; truncated L; penalties.

2.1.2. Regularization with TLP

Ideally, we hope to impose the Ly penalty, A1{d # 0}, which leads to sparsity by penalizing all nonzero
differences equally. However, the Ly penalty presents computational challenges because it is neither
continuous nor convex. As a result, the LP is commonly adopted as a surrogate. Different from the Lo
penalty, LP penalizes more heavily when the magnitude of d gets greater, which is undesirable and leads
to biased estimates due to overshrinkage (Tibshirani, 1996). To solve this problem, it is required that
the penalty should work similarly to LP when d is close to zero but stay constant when |d| is large. In
this study, we propose using the TLP (Shen et al., 2012),

A+(d) = min(|d],7),

for regularization because its simple structure leads to a relatively simple optimization algorithm.

Figure 1 shows both LP and TLP. Note that TLP becomes LP as 7 — +oco. When |d| < 7, the two
penalties are the same, so both shrink small values to zero. When d is already large (i.e., |d| > 1), TLP is
capped at 7, i.e., it applies a constant penalty when d is too large to be shrunk to zero. As a result, TLP
has less bias than LP and is hence preferable. Moreover, when 7 — 0, _# (d)/7, a rescaled version of
the TLP, becomes the ideal Ly penalty, thus it performs the model selection task of the Lo function by
providing a computationally efficient surrogate (see Section 2.2 for computational details).

2.1.3. Group pairwise comparison and penalty
Existing regularization methods penalize differences between each focal group and the reference only,
while differences among focal groups are disregarded. Instead, our proposed penalty term is

w

-1

] s
(@A) =22 % ¥ [ =ap)+ 7 (bin=bn) ], (3)
j=1 =m+1

m=1n
which we call group pairwise TLP because we penalize the item parameter differences between every
pair of groups. Similar ideas have been adopted by previous studies, including the fused lasso (Tibshirani
et al,, 2005) and a grouping pursuit algorithm (Shen & Huang, 2010). In this study, we extend them to
accommodate TLP. It is worth noting that (3) imposes a common tuning parameter A for both the a and
b parameters, a choice also made in prior studies (Belzak & Bauer, 2020; Lyu et al., 2025; Wang et al,,
2023). While this approach simplifies the model and computation, it may not yield optimal performance
in practice because a and b have different scales. Using separate tuning parameters (i.e., Az and 1) could
potentially improve performance. However, in this study, we adopt a shared A for two reasons. First, it
offers greater computational efficiency. Equation (3) already involves two tuning parameters, A and 7,
requiring a two-dimensional grid search. Introducing a third parameter would increase the search space
to three dimensions, making computation substantially more intensive. Second, because the Ly penalty
is scale-invariant and TLP approximates the Lo penalty, TLP is less sensitive to variable scales than
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LP. Indeed, Shen et al. (2012) showed that under certain conditions, TLP achieves consistent variable
selection using a common tuning parameter, suggesting that using a common A in (3) remains effective
in large samples.

Multi-group IRT models with both impact and DIF are not identified, making DIF detection highly
dependent on identifying DIF-free items that serve as anchor items. By applying a pairwise penalty
across groups, the proposed method imposes stricter penalties on DIF parameters for DIF-free items
because it involves comparisons across (i) pairs, rather than the S—1 pairwise comparisons between
focal groups and a single reference group in traditional approaches. When item parameters among focal
groups differ only by a small amount in opposite directions relative to the reference group, existing
methods struggle to detect this subtle DIF, even though DIF among focal groups is more substantial. In
contrast, the pairwise penalty approach identifies and leverages these larger DIF parameters among focal
groups, resulting in more accurate detection. Consider a hypothetical case where there are four groups
and Item 1 is DIF-free. For simplicity, we use the LP and focus on the estimates of Item 1’s difficulty
parameters, bi,b,,bs, and bs. Traditional regularization methods penalize

1o = |b2—b1|+|b3—b1|+‘b4—bl|
if Group 1 is chosen to be the reference, while our proposed method penalizes
r = |b2—b1|+|b3—b1|+|b4—b1|+|b3—b2|+|b4—b2|+|b4—b3|.

Suppose that the estimates of by,b;,b3, and by by the traditional method are 0, - 0.1,0.1, and 0,
respectively. Since the penalty term ro = 0.1+0.1+0 = 0.2 is small, the traditional method fails to shrink
both b, and b3 to b;. In contrast, the group pairwise penaltyis r; =0.1+0.1+0+0.2+0.1+0.1 = 0.6,
where focal groups are also directly compared. This larger penalty is more likely to finally result in perfect
shrinkage, by = b, = b3 = bs. That is, Item 1 is more likely to be correctly identified as DIF-free and hence
work as an anchor under the proposed penalty. As the number of groups increases, the group pairwise
penalty will penalize item parameter differences in DIF-free items even more strongly, so our proposed
method is expected to have higher accuracy of DIF detection.

In addition, compared to existing DIF detection methods, this novel pairwise penalty is essential
for the method to work with small sample sizes. That is, the specific type of penalization encourages
similarity across groups, hence, a group with a small sample size (e.g., a certain unique intersectional
identity) can leverage data from other larger groups it shares common identities with. The idea also
bears resemblance to fair regression in machine learning (Berk et al., 2017).

2.1.4. Optimization problem for model estimation
Summarizing the discussions in Sections 2.1.1-2.1.3, our goal is to maximize the penalized log marginal
likelihood function £(A) —r(A), or equivalently to minimize

—0(A) +7(A).

Imposing penalties on differences between item parameters rather than parameters themselves makes
it challenging to directly solve the optimization problem, so we introduce the difference parameters

d - —a, and  dP =by—b

jmn jmn

as the item parameter differences to be penalized, and define
] s
- (a) 4(0)
d_U U U {djmn’djmn}'
Then, under the reparametrization, the penalty term becomes

WDAEY S [(d9)+ 7 (42)].

j=1m=1n=m+1
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and hence, we can estimate the same model by solving the constrained optimization problem

minimize S(A,d) = -4(A) +r(d)
(4)

subject to dj(mn = Ajm — Qjn, dj(,iz = bjm — bjn,

where £(A) is defined in (2). The optimization problem (4) presents two challenges: (a) the TLP term

7 .(d) is non-differentiable and non-convex and (b) the constraints defining d J(mzl and d ](,ZZ We address
these computational issues in the next section.

2.2. Computational algorithm

Although the TLP term _# (d) is not a convex function, it is piecewise linear and can be decomposed
into a difference of two convex functions as

#-(d) =min(|d],7)
= —max(—|d|, - 1)
= |d| - max(0, |d| - 7),

which allows us to use DC programming to gain computational advantage (Shen et al., 2012; Xu &
Shang, 2018). In particular, following Ma et al. (2023), we consider the following DC decomposition:

S(A,d) = $1(A,d) - S(d),

where
sad =Y S 3 [d]+[4)]
j=1m=1n=m+1
and
S:(d) = A}Z];mz:ln z;:ﬂ [max( d](,zz T,O) +max( d](mzl )]

During the estimation, we iteratively construct a sequence of upper approximations of S(A,d) by
replacing S, (d) at iteration ¢ + 1 with its minorization,

0@ =5 (40) A0 5 3 [(i0]-fa) 2 (1”])
(2 Jas?) 1 (4| )

which reduces the objective function to

S(A,d) < Si(A,d)-S (d)

J S-1 S (a)
=AY S 21[|d]mn
m+
S-1

(| <)+ i

1([d0] <7)]
)

whose last two terms can be omitted because they do not involve any parameters in A or d. Letting

530 [l (]| <o)+ s (as] <))

jmn jmn

j=1m=1ln=

5 (40)eay z (-2 (|deP] > 7) -1 (|

j=1 m=1n=m+1

-1

rO(d) =2

-
i M\‘
L
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Our objective function to be minimized at iteration ¢ + 1 becomes
S (A d) = —(A) +r ().

To deal with the constraints in (4), we apply ADMM (Boyd et al., 2010), which leads to the augmented
Lagrangian

$*V (A, dy) =" (Ad)

S5 S (0 -] A - -]

+]:1 1n=
2305 5 {[d0-@n-an] + [0~ -50] |
] n=

where y and y are dual variables (or Lagrange multipliers) of their corresponding constraints and
p>0isa penalty parameter. Letting u J(a) y]mzl /pand ](:,21 y]mzl /p be the scaled dual variables, ADMM
can be expressed as (Boyd et al., 2010, p. 15)

S-1

J S= S a, an]?
AU =argmin l —(A)+ g Z > {[ ](m”t) (ajm = ajn) + J(m"t)]
A j=1m=1n=m+

2
S
d(z+1) _ . (t)(d) P z]: Sf ES: [ (a) ( (t+1) (t+1)) ‘u (a, t)]
—argtrinm r B e imn a]n ]mn
(b) (t+1) (t+1) (h t)
[djmn (b]m - bjn ) ]mn ] }]7 (6)
(a t+1) (a t) (a,t+1) (t+1) (t+1)
]mn d]mn ( jm - ajn )’ (7)
(b,t+1) (b t) (b,t+1) (t+1) (t+1)
ujmn ]mn d]mn (b]m - bjn ) : (8)
Although (6) has closed-form solutions
(t 1) (t+1) (a t) (a,t)
S Vo A o
jmn t+ t+ a,t a,t
tSﬂ)t/f’ (ajm - ajn ]mn ) ) d]mn
(t+1) (t+1) (b t) (b,t)
At = {b + (bj"1+> (t"f'ﬁ ’ L0 d]<mn> "
jmn t+ + t a,t
=2 Mp (bjm - bjn Winn ) ’ d]mn

where
7y (d) = sign(d) max(|d| —7,0),

there is no closed-form solution for (5). Since (5) involves integration with respect to latent variables,
we use Gaussian quadrature to approximate the integrals and apply the EM algorithm for estimation.
In the E-step, we compute the posterior distribution of the latent variable 0 for each respondent. In the
M-step, we minimize the expectation of (5) with respect to A and update other parameters using (6), (7),
and (8). There are closed-form update rules for impact parameters ys and os, and the L-BFGS algorithm
(Liu & Nocedal, 1989) is applied for updating item parameters a;s and bj;. We fix y; = 0 and o1 = 1 for
model identification. Our final algorithm is shown in Algorithm 1, where the convergence criterion can
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be defined such that the absolute change in every parameter between the current and the last iterations
is smaller than some small value, such as ¢ = 0.001.

Algorithm 1 DIF detection using TLP via EM and ADMM.

Set hyperparameters A, p and 7
b' d_(“) d(b) u(“) u(b)

I % imn? ¥ jmn? “jmn ¥ jmn
Let @ = (61,...,0q) be a Gaussian-Hermite quadrature and ¢ = (cy,...,cq) be the corresponding
weights
#r<0
0] < 1
while not converged do
fors < 1toSdo D> E-step: for each 0;s compute weights on the Gaussian quadrature
0 < ps+0.0
for i < 1to Ns do
for g+ 1to Qdo
G Pr(yis | QqS)

Wgis < Q
L Z:q=1 Cq Pr(yis | 0‘15)
for s« 2to Sdo > M-step (part 1): update impact for each group

1 vN @ .0 )

Us < N, Z,‘:l Zqzl qus qs

1 N
Os < \/I\_Q 2ict ZqQ=1 Wais(Ogs — p15)?
while not converged do D> M-step (part 2): update item parameters

Initialize parameters ys, 05, ajm,

S N, Q
A <—argmax|: Zzwq,s logPr(y; | 04)
a,b s=1 i=1g=1
PLE S @ @7, [4® ®» 7
2S5 {[d9 - @ a) +u D]+ [0 - - ) + 4]}
j=1 m=1n=m+1

forj<« 1to]do
form< 1toS-1do

forn<m+1toSdo o @
R T ol
v (am—am—uli ), ldio| <<
d(nﬁze{bj ~ by =y, . \dﬁEMZT
j Sjp (bjm = b —u), 1] <
Uy < W i = (@ =)
L e d = (b by

To initialize the algorithm, we first run Algorithm 1 with 7 = +o0 to obtain initial values, where
TLP becomes LP in this case and the corresponding optimization problem is easier to solve due to the
convexity of LP.

When the algorithm converges, no DIF is detected between groups m and # on item j if and only if
d@ = 4®

onn = Ly = 0.1f dj(:lzl = dj(nbe) =0 for m < n </, then analytically b, = bj, = bjs because of the constraints

a®) )

ot - and dj(nbé) have already been

in (4), and hence = 0. Numerically, however, it is possible that both d f,fi

shrunk to zero while d];ﬁz still takes a small nonzero value because the algorithm does not explicitly
check the equality transitivity on the one hand, and on the other hand, the algorithm stops when the
convergence criterion is met, which only leads to an approximation of the true extreme point. To reduce
numerical error and guarantee the transitive property, we directly assign dj(riz < 0 in such cases. For
each item parameter, we initially let each group form a cluster, and then each pair of clusters with
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the same item parameter is collapsed into a bigger cluster. Finally, each cluster consists of groups that
share the same item parameter. This is implemented using the union-find data structure (Kleinberg
& Tardos, 2005), which is widely used in computer science literature. Figure 2 shows an example of
how the union-find data structure works. Each cluster is a tree whose root is its representative group
x, which satisfies that p. = x. Here, p, indicates the parent of x. In the beginning, each group forms
a single cluster. To collapse clusters, including Groups 1 and 2, we let p; « 2, so they form a bigger
cluster whose representative is Group 2. To collapse clusters, including Groups 2 and 5, we let p, < 5, so
Group 1 indirectly points to the new representative, Group 5, by going through Group 2. Therefore, the
representative of the cluster, including Group x = 1, can be obtained by going along the path indicated by
D> i.e., x < py repeatedly until x = p.. After we reach Group 5 from Group 1, we let p; < 5 because there
is no need to go through Group 2 again the next time we start from Group 1. That is, every group along
the path can point directly to the representative in order to save time for future operations, a technique
called path compression. The procedure for collapsing groups to guarantee the transitive property is
shown in Algorithm 2 and we apply it to both d® and d(*) after Algorithm 1 converges.

Algorithm 2 Collapsing non-DIF groups.

function FIND(m) > Find the cluster that group m belongs to
if pm #+ m then D> Group m is not the representative of the cluster
. pm < FIND(pm) > Recursively find the representative
return p,, D> pm now points to the representative
function UNION(m, 1) > Union the two clusters that m and n belong to
x < FIND(m)
y < Finp(n)
px+y > Let the representative of one cluster point to that of the other

forj<« 1to]do
for m < 1to Sdo > In the beginning, each group forms a separate cluster
. pmem
form < 1toS—1do
for n< m+1toSdo
L if djmn = 0 then
B . Union(m,n)
form < 1toS-1do

forn < m+1toSdo

L if FInD(m) = FIND(n) then
L L dme0

To select the model with the best tuning parameters A and 7, we try different values and then choose
the one with the lowest Bayesian information criterion (BIC),

0(A) + [k<“> +k(b)]logN7

where k(? and k() are the numbers of distinct ajs and bjs parameters. Note that the value p mainly
affects the convergence rate but has little effect on the accuracy (Boyd et al., 2010).
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Figure 2. An illustration of the union-find data structure.

3. Simulation study

We consider two cases with S = 3 and S = 10, respectively. In both cases, there are J = 10 items and the
item parameters for group 1 follow aj; ~ %(1.5,2.5) and bj; ~ A(0,1). Moreover, the first M = 2 or
M = 4 items have DIF. The simulation settings are shown in Tables 1 and 2. Besides DIF, the impact is
also simulated, although we assume equal variance and only vary means across groups.

We run 100 replications for each setting. For each replication, we fix p = ‘g, fit the model with
different combinations of A € { 0.1§/ﬁ7 0.2;/1?’ 0'3§m, . 1.5\;@} and 7€ {0.05,0.1,0.15,...,0.5}, and pick
the one that leads to the lowest BIC. The convergence criterion is that the absolute change in each
parameter is smaller than & = 0.001, and initial parameters are obtained by the proposed method with
LP (i.e., TLP with 7 = +00). The true and false positive rates among the (i) pairs of groups are computed
and summarized across replications.
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Table 1. Impact and DIF parameters for S = 3

groups
S 1 2 3

s 0 1 -1

s 1 1 1

as—ap (j=1,...,M) 0 1 =il

bs—by (j=1,...,M) 0 15 -5

Table 2. Impact and DIF parameters for S = 10 groups

S 1 2 3 4 5 6 7 8 9 10

Us 0 0 1 1 1 1 =il =il -1 -1

Os 1 1 1 1 1 1 1 1 1 1
as—ai (j=1,...,M) 0 0 0.5 0.5 -0.5 -0.5 1 1 -1 -1
b —bjy (j=1,...,M) 0 0 1 =il 1 =il 1.5 =5 1.5 -15

For comparison, we also apply two regularized DIF detection methods from the R packages VEMIRT
(Lyu et al.,, 2025) and regDIF (Belzak, 2023). The VEMIRT package implements the importance-
weighted Gaussian variational EMM (IW-GVEMM) algorithm with the LP, which has been shown
to achieve accurate DIF detection with efficient computation (Lyu et al., 2025). The regDIF package
supports both the LP and the minimax concave penalty (MCP), and we specify MCP for this simulation
study. MCP is an alternative to TLP for reducing the estimation bias of the LP by keeping the penalty
constant when the parameter value is large (Zhang, 2010). Similar to TLP, which includes a tuning
parameter 7, MCP has a tuning parameter y. We retain its default value of y = 3 because the algorithm
becomes computationally slow even without fine-tuning y. In a few replications, regDIF failed to fully
converge, suggesting that MCP’s performance could be improved with an optimal choice of y. Both
methods require a reference group; therefore, we run them S times, each time letting a different group
be the reference to allow pairwise comparisons. Then, an item is flagged as DIF between two groups if
DIF is detected for both groups when the other one is the reference group.'

3.1. Simulation I: Balanced design

Under the balanced design, each group has either n = 500 or 1000 respondents, and the total sample
size is N = nS. DIF detection results are shown in Tables 3 and 4, and Figures 3 and 4 provide
corresponding visualizations. DIF on a (slopes) generally has lower true and false positive rates than DIF
on b (intercepts), suggesting that all the methods are more sensitive to group differences in b. Fixing S
(number of groups), larger n (number of respondents in each group) leads to higher true positive rates,
which is expected. However, false positive rates also tend to increase as n increases for LP and IW-
GVEMM, while TLP and MCP consistently have better performance with larger sample sizes. Fixing ,
larger S leads to lower true positive rates. This is not surprising because we are conducting (g) group
pairwise comparisons. When the number of DIF items increases from M = 2 to M = 4, the performance
of all methods becomes worse, particularly due to higher false positive rates. When DIF items constitute
a large proportion, such as 40%, model identifiability becomes a greater concern. In such cases, DIF in
item parameters may instead be absorbed into impact to maximize the penalized marginal likelihood
function. This agrees with Wang et al. (2023), who found that the bias due to lasso gradually accumulates

'We also explored an alternative approach by flagging an item as DIF between two groups if DIF was detected when either
group served as the reference. However, this strategy resulted in too high false positive rates for both IW-GVEMM and MCP.
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Table 3. Means (standard deviations) of true positive rates across replications of Simulation |

TLP LP IW-GVEMM MCP
S n a b a b a b a b
500 0.713(0.155)  0.987(0.045)  0.715(0.099)  0.988 (0.043)  0.485(0.215)  0.852(0.153)  0.540(0.200)  0.968 (0.070)
1000 0.838(0.126)  1.000(0.000) 0.773(0.115)  1.000 (0.000)  0.698 (0.178)  0.905(0.109)  0.735(0.177)  0.992 (0.044)
’ 500 0.687 (0.146)  0.991(0.026)  0.733(0.117)  0.987(0.033)  0.438(0.169)  0.712(0.102)  0.559(0.189)  0.983(0.038)
1000  0.767(0.102)  1.000(0.000)  0.770(0.082)  0.993(0.035) 0.623(0.149) 0.755(0.083)  0.720(0.145)  0.997 (0.016)
500 0.430(0.220)  0.912(0.042)  0.524(0.189)  0.956 (0.020)  0.216 (0.059)  0.330(0.090)  0.101(0.073)  0.754 (0.069)
10 1000  0.681(0.159) 0.953(0.036)  0.743(0.153) 0.972(0.017) 0.474(0.100)  0.635(0.072)  0.264 (0.126)  0.833 (0.048)
500  0.350(0.197) 0.911(0.044) 0.490(0.153)  0.951(0.032) 0.244(0.039) 0.316 (0.059)  0.103(0.063)  0.727 (0.109)
1000 0.582(0.189) 0.943(0.041) 0.671(0.162) 0.964(0.017) 0.406(0.063) 0.501(0.048)  0.273(0.136)  0.797 (0.127)
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Table 4. Means (standard deviations) of false positive rates across replications of Simulation |

TLP LP IW-GVEMM MCP
S n a b a b a b a b
500 0.004 (0.022)  0.018(0.035)  0.023(0.049)  0.092(0.090)  0.051(0.053) 0.084(0.072)  0.005(0.020)  0.016 (0.040)
. 1000  0.001(0.008)  0.014(0.036)  0.028(0.051) 0.122(0.102)  0.106 (0.057)  0.142(0.085)  0.003(0.018)  0.022 (0.039)
500 0.015(0.042)  0.029(0.068)  0.151(0.133)  0.334(0.176)  0.017 (0.030)  0.428 (0.126)  0.017 (0.033)  0.028 (0.050)
1000  0.011(0.034) 0.021(0.049)  0.028 (0.051) 0.203 (0.153)  0.380(0.183)  0.593(0.127)  0.016 (0.040)  0.031 (0.048)
500  0.008 (0.005)  0.015(0.010) 0.038 (0.040)  0.076 (0.059)  0.031(0.025)  0.049 (0.040)  0.001(0.002)  0.007 (0.006)
1 1000  0.010(0.009) 0.016 (0.009)  0.055(0.042) 0.119(0.080)  0.193(0.036)  0.309 (0.060)  0.003 (0.003)  0.013 (0.010)
500 0.034(0.033)  0.056 (0.041)  0.140(0.085)  0.281(0.119)  0.080(0.023)  0.191(0.039)  0.007 (0.009)  0.018 (0.012)
1000  0.045(0.042)  0.064 (0.044) 0.211(0.100)  0.334(0.120)  0.189(0.034)  0.362(0.033)  0.019(0.016)  0.032 (0.020)
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Figure 3. Mean true positive rates across replications of Simulation I.
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Figure 4. Mean false positive rates across replications of Simulation I.

during the EM estimation process, and hence they proposed the EMM algorithm to reduce bias after
each EM iteration. Since TLP and MCP closely approximate the Ly penalty and do not strongly penalize
large DIF parameters, such issue is less likely to happen. As a result, TLP and MCP maintain reasonable
false positive rates, whereas LP and IW-GVEMM exhibit excessively high false positive rates, making
them impractical for reliable DIF detection.

LP has higher true positive rates than TLP in most cases, especially when there are more groups, at
the cost of much higher and almost unacceptable false positive rates. Since the LP shrinks all the DIF
parameters toward zero in a way that larger parameters are penalized more, DIF parameter estimates
are known to be biased (Wang et al., 2023). As a result, BIC, which is based on maximum likelihood, has
difficulty finding the best model under LP. In contrast, TLP becomes constant for large DIF parameters,
so they are not strongly biased toward zero. That is, parameter estimates by TLP are more accurate
and less biased. IW-GVEMM performs worse than both TLP and LP: it has the lowest true positive
rates and high false positive rates, suggesting that IW-GVEMM is not suitable for group pairwise DIF
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detection. As discussed earlier, this difference is mainly due to the differences in the ability to identify
DIF-free items that work as anchors for DIF detection. TLP and LP impose a stronger penalty on item
parameter differences in DIF-free items compared to IW-GVEMM, so they identify DIF-free items more
accurately. In addition, we notice that IW-GVEMM sometimes fails to find anchor items when impact
is large, but this model identifiability issue becomes less of a problem for IW-GVEMM when there
is less impact among the groups (Lyu et al., 2025). Among all methods, MCP yields the lowest false
positive rates. However, this comes at the cost of being conservative, as reflected in its lower true positive
rates compared to TLP and LP. In particular, MCP has difficulty in detecting DIF in slopes. Since both
TLP and MCP approximate the Ly penalty, these results suggest the importance of imposing a group
pairwise penalty, rather than shrinking all focal groups toward a prespecified reference. In summary;,
TLP demonstrates superior overall performance over LP, IW-GVEMM, and MCP.

3.2. Simulation Il: Unbalanced design

The simulation setting of the unbalanced design is the same as the balanced design except that groups
have different sizes. Tables 5 and 6 show the proportion of group sizes relative to N. DIF detection
results are shown in Tables 7 and 8, and Figures 5 and 6 provide corresponding visualizations. Basically,
they show the same patterns as Tables 3 and 4, but the unbalanced design results in lower true positive
rates than the balanced design for all the methods. The false positive rates of TLP, LP, and MCP tend to
become higher; those of IW-GVEMM are lower, although still too high to be useful. The reason is that
some groups are so small that their item parameters become very difficult to estimate and tend to be
shrunk toward other groups. Still, TLP turns out to work well, especially on detecting DIF on intercepts.

Table 5. Group sizes for S =3
groups under unbalanced
design

s 1 2 3

ns/N 0.6 0.2 0.2

Table 6. Group sizes for S = 10 groups under unbalanced design

s 1 2 3 4 5 6 7 8 9 10

ns/N 0.1 0.1 0.15 0.15 0.05 0.05 0.15 0.15 0.05 0.05
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Table 7. Means (standard deviations) of true positive rates across replications of Simulation Il

TLP LP IW-GVEMM MCP
S N a b a b a b a b
1500 0.575(0.261)  0.968 (0.070)  0.663(0.152)  0.958 (0.090)  0.252(0.246)  0.708 (0.194)  0.365(0.263)  0.920 (0.115)
3000  0.815(0.148) 0.998 (0.017) 0.707(0.092) 0.997 (0.023) 0.607 (0.266)  0.867(0.128)  0.602(0.271)  0.993 (0.033)
’ 1500 0.474(0.279)  0.966 (0.067)  0.637(0.194)  0.960 (0.060)  0.283(0.165) 0.670(0.117)  0.352(0.219)  0.969 (0.061)
3000 0.736 (0.174)  0.995(0.023)  0.743(0.091)  0.992(0.028)  0.560(0.160)  0.705(0.106)  0.586 (0.222)  0.993 (0.038)
5000 0.334(0.266)  0.899 (0.043)  0.442(0.199)  0.947 (0.024)  0.228 (0.044)  0.290(0.081)  0.060 (0.065)  0.717 (0.088)
1 10000  0.578(0.259)  0.936(0.036)  0.594 (0.216)  0.955(0.024)  0.396 (0.078)  0.589(0.080)  0.125(0.093)  0.785 (0.076)
5000  0.129(0.184) 0.902(0.033) 0.373(0.179) 0.946(0.026)  0.228 (0.040)  0.213(0.065)  0.048 (0.042)  0.636 (0.162)
10000 0.382(0.256)  0.935(0.032) 0.584 (0.156)  0.960 (0.016)  0.373(0.044)  0.460 (0.064) 0.131(0.097)  0.724 (0.165)
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Table 8. Means (standard deviations) of false positive rates across replications of Simulation Il

TLP LP IW-GVEMM MCP
S N a b a b a b a b
1500 0.003(0.014)  0.008 (0.028)  0.020 (0.045)  0.085(0.094) 0.077 (0.067)  0.023(0.033)  0.004 (0.012)  0.020 (0.039)
. 3000 0.003(0.014)  0.015(0.032)  0.022(0.040)  0.092(0.094) 0.188(0.069) 0.084(0.066)  0.002 (0.008)  0.023 (0.039)
1500 0.013(0.036)  0.033(0.062)  0.094 (0.112)  0.305(0.163)  0.028 (0.039)  0.366 (0.142)  0.029 (0.046)  0.052 (0.061)
3000  0.009 (0.033) 0.032(0.075) 0.128(0.153) 0.358(0.185)  0.048 (0.057)  0.565(0.161)  0.032(0.060)  0.035 (0.052)
5000  0.009 (0.011) 0.019(0.018)  0.042(0.036) 0.083(0.062)  0.029 (0.017)  0.049 (0.028)  0.002 (0.003)  0.009 (0.008)
1 10000 0.013(0.013)  0.025(0.027) 0.053(0.042)  0.090 (0.065)  0.145(0.029)  0.227 (0.047)  0.003 (0.003)  0.006 (0.007)
5000 0.019 (0.030)  0.069 (0.054)  0.159 (0.090)  0.430(0.155)  0.061(0.023)  0.140(0.035)  0.008 (0.009)  0.037 (0.037)
10000  0.049 (0.053)  0.082(0.064) 0.254(0.103)  0.430(0.140) 0.173(0.024) 0.325(0.039) 0.014(0.016)  0.035(0.027)
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Figure 5. Mean true positive rates across replications of Simulation II.
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Figure 6. Mean false positive rates across replications of Simulation II.

4. Applications

In this section, we apply our proposed methods to two real-world datasets, one from a large-scale
international assessment, and the other one from an adaptive language assessment.

4.1. Cross-economy data from PISA

The Programme for International Student Assessment (PISA) is an international large-scale assessment
for 15-year-old students created by OECD. A subset of PISA 2018 science data is analyzed, which
includes 6,319 students from ten countries or economies and 19 dichotomous items. We consider
countries and economies as groups for DIF detection because, in an international assessment like PISA,
it is crucial to ensure that test items function consistently and equitably for students across all countries
and economies. Failing to do so would render any international comparison based on the assessment
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results invalid. Table 9 shows these ten countries or economies. For simplicity, we will refer to both
countries and economies as “economies” throughout this discussion.

Table 9. Countries and economies in the PISA
analysis

Abbreviation ~ Country or Economy

1 EST Estonia

2 FIN Finland

3 FRA France

4 GBR United Kingdom
5 GEO Georgia

6 GRC Greece

7 HKG Hong Kong

8 HRV Croatia

9 HUN Hungary

10 IDN Indonesia

TLP suggests that all 19 items have some level of DIF i.e., all these items will have at least two
sets of different parameters. For each item, we collapse economies that do not have DIF among them
and compute the number of distinct groups, which are shown in Table 10. Most items divide the ten
economies into 3-6 homogeneous groups. Figure 7 shows the item characteristic curves (ICCs) of two
items that divide the ten economies into 3 and 5 groups, respectively. It is clear that the ICCs are quite
distinct across groups.

Table 10. Frequency table of numbers of distinct groups

Number of distinctgroups 2 3 4 5 6 7 8

Number of items 1 5 2 6 3 1 1

The sample size and estimated impact of each economy are shown in Table 11, and pairwise
comparison DIF results are shown in Figure 8. Most economy pairs have DIF in more than ten items,
which account for more than half of the total items. Economies 10 (Indonesia) and 4 (United Kingdom)
tend to have the most DIF items. As these are the two largest groups in the data, their item parameter
estimates tend to be more accurate and easier to separate from other groups. It is also worth noting
that the latent trait distributions differ a lot across economies. In particular, the mean math ability of
respondents from Economy 10 (Indonesia) is much lower than other economies.
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Table 11. Sample sizes and estimated impact of economies
S 1 2 3 4 5 6 7 8 9 10
ns 586 607 505 1347 237 404 512 401 471 1249
Us 0 —-0.20 —-0.30 —-0.36 -1.35 -1.01 —-0.08 —-0.63 —-0.64 -1.63
o’ 1 1.40 0.77 1.37 0.79 0.78 0.86 1.12 1.13 0.73
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Figure 8. Numbers of DIF items between pairs of economies using TLP with p = 0.5.

4.2. An adaptive language assessment

To demonstrate the flexibility of the proposed method, we also consider a data set from a large-scale
adaptive language assessment. Unlike the PISA data, these assessment data have a unique feature: a
large item bank relative to sample size per item because the items were generated with the assistance
of Al and the assessment is adaptive. As a result, the response matrix of respondent by item is very
sparse, and the overall sample size is large. Since this is a proprietary, high-stakes assessment, the data
were provided to us from the test owner, and they pulled the data in such a way that each item was
answered by at least 500 respondents. This ensures a sufficient sample size per item, especially when
we evaluate the DIF on multiple subgroups. However, this data extraction scheme results in incomplete
responses per respondent. Hence, latent ability estimates from a complete operational test, derived using
a proprietary psychometric model, are provided alongside the response data. Based on these estimates,
four respondents whose ability estimates were more than five standard deviations below the mean were
excluded. However, these ability estimates are not used in the subsequent DIF analysis. Instead, we apply
our proposed method to the response data without relying on the original ability estimates, as they may
have been contaminated by the presence of DIE

One specific item type was explored. For this type, respondents are asked to type the missing letters
to complete the text. That is, they will fill in the blanks of unfinished words in a passage. This item type
aims to measure reading, literacy, and comprehension. We analyze subtasks that are scored as 0 or 1.
Groups are formed by the interaction of self-reported native language and gender. We drop people from
the non-binary gender category because they only account for less than 0.1% of the respondents in the
data.
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Table 12. Groups in the language assessment

s Native language Gender N Us asz

1 Arabic Female 212 —-0.30 0.96

Arabic Male 223 -0.26 0.90

2
3 Chinese - Mandarin Female 502 0.57 1.37
4 Chinese - Mandarin Male 527 0.50 1.31

5 English Female 409 0.06 0.84
6 English Male 395 0.09 0.90
7 Hindi Female 152 -0.18 0.94
8 Hindi Male 238 -0.07 0.85
9 Portuguese Female 182 —-0.06 0.65
10 Portuguese Male 161 —-0.09 0.94
11 Spanish Female 370 -0.16 0.80
12 Spanish Male 363 —-0.03 0.83

Note: Group means (us) and variances (asz) are computed from the original ability
estimates, which are provided for reference only and not used in the DIF analysis.

The six largest native language groups (Chinese-Mandarin, English, Spanish, Arabic, Hindi, and
Portuguese) form 12 groups by interacting with gender. Table 12 shows the basic information for each
group. This subsample has 3,734 respondents and 234 items, each item is answered by at least 500
respondents. DIF is detected in 27 of 234 items and pairwise comparison results are shown in Figure 9.
The two Chinese (Mandarin) groups have the most DIF items compared to other linguistic groups, and
somewhat surprisingly, there are 21 DIF items between the Chinese female and Chinese male groups.
Besides, when each of the eight non-Chinese and non-Spanish groups is compared with the Spanish
groups, approximately four DIF items are consistently identified, whereas comparisons among these
eight groups themselves yield fewer DIF items overall.

There are potentially two caveats when interpreting the results. First, because the response data
matrix is sparse, meaning the number of items answered by each respondent varies and is sometimes
very small, directly estimating latent abilities from the data may lead to inaccurate results. Second,
we treat each subtask as independent, ignoring the innate nested structure (i.e., subtasks are nested
within a paragraph). Hence, we use this data set to demonstrate that our algorithm can work on
large sparse data sets, but the conclusions drawn therefrom should be further validated based on item
content.

To further verify the findings in Figure 9, we apply IW-GVEMM from the VEMIRT package to
the same data set for DIF detection. The IW-GVEMM algorithm is chosen as a reference because the
variational method avoids the reliance on quadrature-based integral (or Monte Carlo integral), and
since it only contains one tuning parameter, the IW-GVEMM method is computationally much faster
than many other methods. We are unable to apply the regDIF package because, as of version 1.1.1, it
does not work with item responses containing missing values. The results are shown in Figure 10. Unlike
the simulation study, the matrix here is not symmetrized for a more detailed view of the output from
IW-GVEMM. Each column indicates the numbers of DIF items when the group corresponding to this
column is the reference. While Figure 10 reveals certain similarities with Figure 9, noticeable differences
in the overall pattern are also evident. The most notable similarity is that both analyses indicate a high
number of DIF items between Groups 3 and 4 and the remaining groups. However, IW-GVEMM only
detects this pattern when groups other than Groups 3 and 4 serve as the reference. This observation
again emphasizes the key issue with the traditional approach, which relies on a reference group and
overlooks other group pairs: when either Group 3 or 4 is used as the reference, it tends to overly shrink
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Figure 9. Numbers of DIF items between pairs of groups in the language assessment using TLP with p = 0.25.

all other groups toward itself, leading to an underestimation of DIF effects. In general, there are fewer
DIF items detected in Figure 10 compared to Figure 9, which is consistent with the simulation finding
that the new method is more powerful in detecting DIFE, especially when there are multiple small groups.

5. Discussion

In this study, we propose a novel regularization approach for detecting DIF in 2PL models. The method
employs a TLP applied to the differences in item parameters across all group pairs, thereby addressing
several limitations of existing techniques. Standard L, penalties are known to overly shrink large
DIF parameters toward zero, leading to biased estimates. In contrast, the TLP is designed to remain
constant for large differences, effectively mitigating this bias and allowing for more accurate estimation
of substantial DIF effects. A key innovation of our approach lies in its treatment of group comparisons.
Traditional methods typically require the specification of a reference group and shrink all focal groups
toward it. This practice introduces asymmetry and may lead to unfair DIF detection, as it privileges the
reference group and prevents direct comparisons among focal groups. Our method avoids this issue by
applying a group pairwise penalty structure, enabling symmetric, interpretable, and direct comparisons
between all groups. These advantages make the proposed method particularly effective for detecting
DIF in settings involving a large number of small groups. Through simulations, we demonstrate that
the proposed method consistently outperforms existing approaches, particularly due to its ability to
correctly identify anchor items. This advantage arises from the design of the penalty.

Ensuring that test items are free from DIF is essential for maintaining fairness and validity in edu-
cational and psychological assessments. As the development and integration of information technology
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Figure 10. Numbers of DIF items between pairs of groups in the language assessment using IW-GVEMM.

continue to transform the field of assessment, increasingly large and diverse item response datasets are
becoming available. These data often come from large-scale testing programs involving wide-ranging
populations, and include items of growing complexity, some even generated by artificial intelligence.
In such data-rich environments, it becomes not only feasible but also valuable and necessary to detect
DIF in highly granular subgroup structures, such as those arising from intersectionality, where multiple
demographic or contextual variables interact to create numerous small subgroups. These challenges are
especially prominent in large-scale assessments and high-stakes testing contexts, including university
admissions, workforce certification exams, and psychological evaluations. In such settings, fairness
across subpopulations is a critical concern, and the consequences of unaddressed measurement bias
can be severe. Traditional DIF detection methods often struggle under these conditions due to limited
subgroup sizes and methodological asymmetries, such as the need to prespecify a reference group.
The proposed method addresses these limitations by enabling flexible, symmetric comparisons among
all group pairs, thereby improving the detection and correction of potential biases. In this way, our
approach supports ongoing efforts to enhance equity and accountability in assessment practices. Its
adoption can inform more inclusive and representative test development, contribute to fairer outcomes
for examinees, and help align measurement practices with broader societal goals related to justice,
diversity, and inclusion. As testing programs increasingly seek to serve heterogeneous populations, the
ability to detect subtle and complex forms of DIF will be critical to ensuring that assessments remain
defensible and ethically responsible.

To demonstrate the practical utility of the proposed method, we apply it to two real-world
datasets and find that, despite their long-standing and widespread use, these assessments continue
to exhibit notable DIE. However, detecting DIF is not the final goal; rather, it constitutes a crucial
first step in the broader process of building equitable assessments. Ultimately, psychometricians
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should collaborate with subject-matter experts to interpret the results, and to review, revise, or
remove flagged items as appropriate. Such interdisciplinary collaboration is key to promoting fairness,
reducing bias, and enhancing the interpretability, credibility, and validity of test scores across diverse
populations.

Although the proposed method demonstrates superior performance in terms of high true positive
rates and low false positive rates in simulation studies, it also presents several limitations that suggest
directions for future research. First, the method requires the specification of two tuning parameters: A,
which controls the overall strength of the penalty, and 7, which determines the truncation threshold in
the TLP. Fine-tuning these parameters via a two-dimensional grid search is computationally intensive,
particularly in large-scale applications. Future work could explore more efficient tuning strategies to
alleviate this computational burden. Second, model estimation is carried out using the EM algorithm
in conjunction with Gaussian quadrature. While effective, this approach can be computationally
demanding and is only practical for models with low-dimensional latent traits. A promising alternative
is the use of Gaussian variational estimation methods, which have demonstrated strong performance in
high-dimensional settings (Cho et al., 2021; Lyu et al., 2025; Ma et al., 2024). Adopting such approaches
could significantly improve scalability and broaden the method’s applicability to more complex testing
scenarios. Third, while the current approach is designed for the 2PL model, extending the approach
to accommodate other IRT models, such as the graded response model or the partial credit model,
would enhance its utility for polytomous items. Similarly, applications to assessments containing items
of mixed formats are increasingly relevant and warrant further investigation. Finally, although this study
employs the TLP to address the bias introduced by the LP, several alternative debiasing strategies exist.
These include the adaptive lasso (Schauberger & Mair, 2020; Wang et al., 2023; Zou, 2006), the MCP
(Belzak, 2023; Zhang, 2010), and the smoothly clipped absolute deviation (SCAD) penalty (Fan & Li,
2001). A comprehensive empirical comparison of these regularization techniques, considering both
computational efficiency and statistical accuracy, would provide valuable guidance for methodologists
and practitioners working on DIF detection.
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