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Abstract

Let B> 1 be a real number and define the S-transformation on [0, 1] by Tg : x — Sx (mod 1). Let
f:10,1] = [0,1] and g : [0, 1] — [0, 1] be two Lipschitz functions. The main result of the paper is the
determination of the Hausdorff dimension of the set

W(f. 8. 11.12) = {(x.y) € [0, 11 : [Tjx = f()] < B, [Tjy - g()| < B~ for infinitely many n € N},

where 71, T, are two positive continuous functions with 7;(x) < 7,(y) for all x,y € [0, 1].
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1. Introduction

Let (X, B, u, T) be a measure-preserving dynamical system with a consistent metric d.
The orbit of a point x € X is the sequence (x, T(x), T>(x),...) of elements of X. If T
is ergodic with respect to the measure u, Birkhoff’s ergodic theorem implies that, for
any xo € X, almost surely,

liminf d(T" x, xy) = 0.

n—o0

This result is qualitative in nature and hence a natural question is to investigate how
fast the lim inf tends to zero. To this end, the focus is on the size of the set

W(T,¢) :={x€ X :d(T"x, xo) < y(n) fori.m. n € N},

where ¢ : N — R* is a positive function such that y(n) — 0 as n — co. Here and
throughout the paper, ‘i.m.’ stands for ‘infinitely many’. The set W(T,y) is the
dynamical analogue of the classical y-approximable set

W) :={xeR:|x - p/ql <y(q) forim. (p,q) € ZX N},
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which has been well studied (see [1, 2, 9]). It is easy to see that the set W(T, ) can
also be viewed as the collection of points in X whose T-orbit hits a shrinking target
infinitely often. For background and more results on shrinking target problems, the
reader is referred to [3, 4, 6, 7, 12—15].

We consider the beta-dynamical system ([0, 1], T) for general g > 1. Define the
f-transformation on [0, 1] by T : x = Bx (mod 1). It is well known that the beta-
dynamical system is, in general, not a subshift of finite type with mixing properties.
This causes difficulties in studying metrical questions related to S-expansions. The
one-dimensional metrical theory associated with the beta-dynamical system is well
studied, but hardly anything is known in higher dimensional settings.

Let f:[0,1] — [0,1] and g : [0, 1] — [0, 1] be two Lipschitz functions. Define the
set

W(f,g71,72) = {(x,y) € [0, 11 : | Tjx = f(x0)l < g,
Thy — g < B forim. n € NJ.

When the two Lipschitz functions take fixed values this is a shrinking target set and
if they are identity functions then it is a recurrence set. The aim of this note is to make
contributions in understanding the Diophantine properties in two-dimensional settings.
In particular, we treat the dimensional theory for shrinking target problems and
quantitative recurrence properties for S-expansions in a unified way, by investigating
the dimensions of the two sets

{(x,y) €10, 177 2 [Tjx — xol < B, [Ty — yol < 7% for i.m. n € N}
and

() €10, 117 : [Tjx — x| < gD, |Tgy — 3] < 7™ forim. n € NJ.
Throughout, we use the notation dimg, to denote the Hausdorff dimension of a set.

Tueorem 1.1. Let 11,7y be two positive continuous functions on [0, 1] such that
T1(x) £ 12(y) forall x,y € [0, 1] and let f, g : [0,1] — [0, 1] be two Lipschitz functions.
Then, for any 8> 1,

2 2+ T2,min — Tl,min}
b

dimy W(f, g, 71,72) = min{ ,
1+ T1,min 1+ T2,min

where

Timin = min 7(x Tomin = min 72(y).
1,min €10.1] 1( )a 2,min Yel0.1] 2()’)

Remark 1.2. In case the functions 7i(x), T2(y), f(x), f(¥) are constants, 7{(x) = Ty,
T72(y) = 12, f(x) = x0, g(y) = yo for any x,y € [0, 1], the Hausdorff dimension of the
corresponding set has already been determined in [8, Theorem 1.2].

The paper is organised as follows. In the next section, we recall some elementary
properties of the S-expansion. The main theorem is proven in the Section 3.
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2. Preliminaries

The S-expansion of real numbers was introduced by Rényi [11] by the following
algorithm. For any 8 > 1, let

Tp(0):=0, Ts(x)=px—|px] (x€][0,1)), (2.1)
where |£] is the integer part of £ € R. By taking
&(x.B) = BT, 'x] €N

recursively for each n > 1, every x € [0, 1) can be uniquely expanded into a finite or
infinite sequence

_awp) ewp) . axp T

- 2 n + n
B B B B
which is called the S-expansion of x, and the sequence {€,(x,8)},>1 is called the digit
sequence of x. We also write this sequence as €(x, 8) = (€1(x, ), ..., &(x,5),...). The

system ([0, 1], Tp) is called the S-dynamical system or just the S-system.
DeriniTion 2.1. A finite or infinite sequence (wy, wo, .. .) is said to be admissible (with
respect to the base ) if there exists an x € [0, 1) such that the digit sequence of x equals

(Wi, wa,..).
Let X denote the collection of all admissible sequences of length n and X4 that of
all infinite admissible sequences.

Let us now turn to the infinite S-expansion of 1, which plays an important role in
the study of the B-expansion. Applying the algorithm (2.1) to the number x = 1 gives

1, 1, (1,

B B B"
If the above series is finite, that is, there exists m > 1 such that ¢,(1,8) # 0 but
€:,(1,8) = 0 for n > m, then B is called a simple Parry number. In this case, we write

€(Lp) = (B &P),..)=(a(Lp),....en1(1,5), (1,0 - D%,
where (w)* denotes the periodic sequence (w, w,w,...). If 8 is not a simple Parry
number, we write
6*(1’ﬁ) = (Ei}((ﬂ)’ 65(5)9 .. ) = (El(laﬁ)’ 62(lvﬂ)9 .. )

In both cases, the sequence (& (), € (f), . . .) is called the infinite S-expansion of 1 and

lzer(ﬂ)+€;(ﬁ)+...+6’:—(nﬂ)+...

B B B

The lexicographical order < between infinite sequences is defined as follows:

1=

w=Wi,Wa, .o Wy ) <W = (W, Wh, oo W), )

if there exists kK > 1 such that w; = w}. for 1 < j <k, while wi < w}. The notation

w < w’ means that w < w’ or w = w’. This ordering can be extended to finite blocks by

identifying a finite block (wy,ws, ..., w,) with the sequence (W, wy,...,w,,0,0,...).
The following result due to Parry is a criterion for the admissibility of a sequence.
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Lemma 2.2 (Parry [10]). Let 8> 1 be a real number. A nonnegative integer sequence
€ = (€1, &,...) is admissible if and only if (&, €41, . . .) < (6/(B), & (B),...) forany k > 1.

Lemma 2.3 (Rényi [11]). Let B> 1. Foranyn > 1,

ﬂn+l
g-1

B <#Zp <

where # denotes the cardinality of a finite set.
For any (€,...,€,) € EZ with n > 1, the set
Li(er,....6) ={x€[0,1):€(x,p) =€;,1 < j<n}
is called an nth-order cylinder (with respect to the base ). It is a left-closed and right-

open interval with the left end point

€ € €
_1 + _22 + cee + _r:l
B B B
and of length at most 87". The unit interval can be naturally partitioned into a disjoint
union of cylinders: for any n > 1,

[0,1] = U I(el,....6) 2.2)

One difficulty in studying the metric properties of S-expansions is that the length
of a cylinder is not regular. It may happen that |I,,(¢, ..., €,)| < 7. The following
notion plays an important role in overcoming this difficulty.

Derinition 2.4 (Full cylinder). A cylinder I,(ey, . . ., €,) is called full if it has maximal
length, that is, if

(€1, ... 6) = —.
ﬁn
Correspondingly, we also call the word (e, . . ., €,) a full word.

We collect some results about the distribution of full cylinders.

Lemma 2.5 (Bugeaud and Wang [5]). For n > 1, among every n + 1 consecutive
cylinders of order n, there exists at least one full cylinder.

LemMma 2.6 (Wang [17, Lemma 3.1]). For any full word (€}, €, ..., €,) € Zg, there exists
a point x,(w) in the closure of 1,(e, . . ., €,) such that:

(1) Thxaw) = fO(w) when x;(w) € (€1, €. &);

2) f(x;(w)) =1 when

€6 6 1
x,(w) = — +

_+...+&+_‘
B B BB
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Proor. For any yg € [0, 1], define a sequence {y;}i>1 recursively by

€ . ..+i+y—k) for all k > 0.

€
O L
+ 18 ﬁZ Bn ﬁn
Then
L Lk
Vi1 — vl < Elyk — Vi1l <00 < (B_”) [y1 = yol.

Thus, {yx}k>1 1s a Cauchy sequence and its limit, y;;(w) € [0, 1], satisfies

% € € € yZ(W)

yn(W):f(El+ﬁ—i+...+ﬁ_n+ = )
Let

pwy =Dy 2y e w)

B B BB
(1) When 0 <y (w) < 1,
x:l(w) € In(El, €,..., En) and T/r;‘x;;(w) = y:(W) = f(x:;(w))

(2) When y;(w) = 1,

*( ) €] 4 € 4 4 € T 1
xn w) = — —_ cee [ J—
ﬂ B2 ﬁn ﬁn
is the right end point of [,,(¢1, ..., €,) and f(x,(w)) = 1. O

The proof of Theorem 1.1 crucially relies on the following result, called the mass
transference principle for lim sup sets generated by rectangles.

Lemma 2.7 (Wang et al. [16]). Let {x,},>1 be a sequence of points in the unit cube
[0, 114 with d > 1 and {r,},s1 a sequence of positive numbers tending to zero. Denote
d-dimensional vectors by a = (ay, . . ., ay). Define

Wi = {x€[0,1]%: x € B(x,, ry) for infinitely many n € N}
and, for any a = (ay,...,ag) with 1 < a; < --- < ay, define
W, = {x€[0,11? : x € B*(x,,r,) for infinitely many n € N},

where B*(x, r) denotes a rectangle with centre x and side lengths (r™, ..., r%). If W,
is of full Lebesgue measure, then

. . d+jaj_2;=1 a;
dimgy W, > min —————,
1<j<d a;
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3. Proof of Theorem 1.1

3.1. The upper bound. As is common in obtaining upper bounds for the Hausdorff
dimension, we construct a natural cover for the limsup set W(f, g, 71, 72) and then
show that the s-dimensional Hausdorff measure of this cover set is zero whenever
s >dimy W(f, g, 71, T2).

From (2.2), for any n € N,

0,110, 11=|_J £w) X L.

w,vEZ;
Obviously,
W(f,gm,m) = ()G y) € 10,17 1T5x = (0l < g7, [Ty = g0)] < 7™}
N=1n=
= U m x 7.,
N=1n=Nw. veZ]’é
where

Jn(W) X Jn(V) = {X € In(W) : |T"x — f(x)l <ﬁ—n‘r1(x)}
x{yel,(v): y g(y)| < gy,

For large n, the length of J,(w) satisfies

[n(w)] < B0+ Timin)”

Denote by L the Lipschitz constant of f, that is,
[f(x) = fOI < Lix =yl forx,ye[0,1].
Then, for any x,y € J,(w),
27T > (Thx = f(x)) = (Thy = fG))
> [Tpx — Tjyl - 1f () — fO)I
> f'lx =yl = Lx -]
= (" = Dlx -yl

The same is true for J,(v), in other words,

4
()] < BT

The lim sup set W(f, g, 71, 7») is defined by a collection of rectangles and there are
two ways to cover a single rectangle J,(w) X J,,(v).
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Case 1. Cover using balls with radius being the shorter side length 4/8"(!+72min)_ Then
J,(w) X J,(v) can be covered by at most

ﬁn( 14+72,min)
- < zﬁn(TZ.min ~T1,min)
ﬂn( I+ min) —

balls of radius 4 /8" *72ai) Thus, for s > (2 + T2.min — T1.min)/(1 + T2.min)s

o0 4 s
s . o (T2 min=Timin)|
W, .71, 72) < ligning " 2 amnw )

n(1 +T2,min )
n=N w,vEZg B

B V. .., (4t s
< 32(_) llm lllf ﬁ nﬁn(TZ,mm T1min—(14+72,min)$)
ﬂ — 1 N—oo r;V
=0.

This shows that
+ T2,min — T1,min

2
dimy W(f, g, 71,72) <

1+ T2,min

Case 2. Cover using balls with radius being the longer side length 4/8"1*7.min) Then
Jn(w) X J,(v) can be covered by one ball. Thus, for s > 2/(1 + 7| min),

s T 4 s
H (W(f,g,71,12)) < hl{/rLlcEfZ Z (ﬁ—”(]+Tl,lnin))

— n
n=N W,VEZﬁ

ﬂ : CR N 21 —n(14+7| min)S
=0.

This shows that 5

dimy W(f, g, 71,72) < ———.
1+ T1,min

3.2. The lower bound. Fix € > 0. Let ny be an integer such that for all n > ny,
(e DF S, Lz
For any w = (wy,...,wp),v=(v1,...,v,) € X2, define
Ju(f.11,w) = {x € L,(w) : T (x) = f(x)l <gmWy,
Jn(8:72,v) = {y € L) : IT4(y) — gl < "™}

Fixaw=(w,...,wy) € Zg for which I,,(w) is full. Then

L,(w) = LR

B BB B

w, Wi ”+w,,+1)
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By Lemma 2.6, there exists a point x,(w) in the closure of (e, ... ., €,) such that
Tax,(w) = F(x,(w).
For any x € I,,(w) and for large n,
IThx — f0] = [Thx — f(x) = (Thxs(w) = Fw))]
< (B + L)lx — x;,(w)|
< 28" x = x,(w)|.
So,

. 1
J.(f,t1,w) D I,(w)N B(xn(W)a 2’8n(1+71 (%)) )

Thus, J,(f, 71, w) contains an interval of length at least 137"1*7)_ We denote this

interval by
B(x;' (w), 17"y for some x;(w) € I,(w).

The same is true for J,,(g, 72, v), in other words, again for large n,
Ju(g,72,v) D B (v), %ﬁ_"(l”zo’))) for some y;'(v) € I,(v).
So,
W(f,11,72)

00

(@

U i w) X Ju(g 72,v)

n
w,VeX 5

=
I
3
il
=z

B(x" (), %B—n(]wl(x))) x B (v), AlTIB—n(lJrrz(y)))

U
Dk
(s

=
I\
=
i
=2

w,vezz,lnﬁ(w),l,,ﬂ(v) full

B(.x:,(W),B_n(1+TI(x)+6/2)) X B(y:;'(v),ﬁ—n(1+T2(y)+€/2))

i1
=z

w,vezg,l,,ﬁ(w),l,,ﬁ(v) full

U
= e
T

Since 71, T, are two positive continuous functions on [0, 1], there exists a ball
B c [0, 1]? such that
€

€
D) Tl(yl) < T2,min + =

T](X]) < Timin + 3

for any (xi,y;) € B. Therefore,
BNWaD>BNW,_,

where

Wamm = ﬂ U U B()C:;’(W),ﬁ_n(l+rl'min+e)) x B(y:;/(v)’ﬁ—n(1+‘rz,min+£))

N=1 n=N w,vEZg,l,,ﬁ(w),[,,ﬁ(v) full
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and

>

1+Tl,min+€ 1+7-2,min+€
Apin = 1—e .

1-¢€

On the other hand, the interval [0, 1] can be partitioned disjointly by (2.2) and, from
Lemma 2.5, for any x € [0, 1], among n + 1 consecutive cylinders of order n, there is
at least one full cylinder of order n around x. So, there exists w € Zg for which 7,,(w) is
full such that

|x - x;/(w)| <(n+1)p™" S[g*n(l—e)

for any x;’(w) € I,(w). Thus,

0.1="|J B
weE;‘;, I,(w) full

Clearly, the set
wie= () | B(x (), 7"179) x By (v), B70179)
N=1 n=N w,vEZ;;,I,,(W),]n(v)full

equals [0, 113, so it is of full Lebesgue measure.
Now we use the mass transference principle generated by rectangles (Lemma 2.7)
to conclude that

2 2+ - )
dimg((B N W,,,) > min{ T2min = T1min }

1+ Timn+€ 1+ Tomn+e€

By letting € — 0,

2 2+ T min — Tl.mi
dlm(].((B N Wami“) > mln{ 2,min 1,min }

9
1+ T1,min 1+ T2,min

It is clear that
W(f,g.11,12) DWadDBNW,D>BNW,

min *

So,
. . 2 2"'7-21'nin_‘rlmin
dimy W(f, g, 71,72) > mln{ , }
1+ T1,min 1+ T2, min
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