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Abstract

Let β > 1 be a real number and define the β-transformation on [0, 1] by Tβ : x 7→ βx (mod 1). Let
f : [0, 1]→ [0, 1] and g : [0, 1]→ [0, 1] be two Lipschitz functions. The main result of the paper is the
determination of the Hausdorff dimension of the set

W( f , g, τ1, τ2) =
{
(x, y) ∈ [0, 1]2 : |T n

β x − f (x)| < β−nτ1(x), |T n
βy − g(y)| < β−nτ2(y) for infinitely many n ∈ N

}
,

where τ1, τ2 are two positive continuous functions with τ1(x) ≤ τ2(y) for all x, y ∈ [0, 1].
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1. Introduction

Let (X,B, µ,T ) be a measure-preserving dynamical system with a consistent metric d.
The orbit of a point x ∈ X is the sequence (x, T (x), T 2(x), . . .) of elements of X. If T
is ergodic with respect to the measure µ, Birkhoff’s ergodic theorem implies that, for
any x0 ∈ X, almost surely,

lim inf
n→∞

d(T nx, x0) = 0.

This result is qualitative in nature and hence a natural question is to investigate how
fast the lim inf tends to zero. To this end, the focus is on the size of the set

W(T, ψ) := {x ∈ X : d(T nx, x0) < ψ(n) for i.m. n ∈ N},

where ψ : N→ R+ is a positive function such that ψ(n)→ 0 as n→ ∞. Here and
throughout the paper, ‘i.m.’ stands for ‘infinitely many’. The set W(T, ψ) is the
dynamical analogue of the classical ψ-approximable set

W(ψ) := {x ∈ R : |x − p/q| < ψ(q) for i.m. (p, q) ∈ Z × N},
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which has been well studied (see [1, 2, 9]). It is easy to see that the set W(T, ψ) can
also be viewed as the collection of points in X whose T -orbit hits a shrinking target
infinitely often. For background and more results on shrinking target problems, the
reader is referred to [3, 4, 6, 7, 12–15].

We consider the beta-dynamical system ([0, 1], Tβ) for general β > 1. Define the
β-transformation on [0, 1] by Tβ : x 7→ βx (mod 1). It is well known that the beta-
dynamical system is, in general, not a subshift of finite type with mixing properties.
This causes difficulties in studying metrical questions related to β-expansions. The
one-dimensional metrical theory associated with the beta-dynamical system is well
studied, but hardly anything is known in higher dimensional settings.

Let f : [0, 1]→ [0, 1] and g : [0, 1]→ [0, 1] be two Lipschitz functions. Define the
set

W( f , g, τ1, τ2) =
{
(x, y) ∈ [0, 1]2 : |T n

β x − f (x)| < β−nτ1(x),

|T n
βy − g(y)| < β−nτ2(y) for i.m. n ∈ N

}
.

When the two Lipschitz functions take fixed values this is a shrinking target set and
if they are identity functions then it is a recurrence set. The aim of this note is to make
contributions in understanding the Diophantine properties in two-dimensional settings.
In particular, we treat the dimensional theory for shrinking target problems and
quantitative recurrence properties for β-expansions in a unified way, by investigating
the dimensions of the two sets{

(x, y) ∈ [0, 1]2 : |T n
β x − x0| < β

−nτ1(x), |T n
βy − y0| < β

−nτ2(y) for i.m. n ∈ N
}

and {
(x, y) ∈ [0, 1]2 : |T n

β x − x| < β−nτ1(x), |T n
βy − y| < β−nτ2(y) for i.m. n ∈ N

}
.

Throughout, we use the notation dimH to denote the Hausdorff dimension of a set.

Theorem 1.1. Let τ1, τ2 be two positive continuous functions on [0, 1] such that
τ1(x) ≤ τ2(y) for all x, y ∈ [0, 1] and let f , g : [0, 1]→ [0, 1] be two Lipschitz functions.
Then, for any β > 1,

dimH W( f , g, τ1, τ2) = min
{ 2

1 + τ1,min
,

2 + τ2,min − τ1,min

1 + τ2,min

}
,

where
τ1,min = min

x∈[0,1]
τ1(x), τ2,min = min

y∈[0,1]
τ2(y).

Remark 1.2. In case the functions τ1(x), τ2(y), f (x), f (y) are constants, τ1(x) = τ1,
τ2(y) = τ2, f (x) = x0, g(y) = y0 for any x, y ∈ [0, 1], the Hausdorff dimension of the
corresponding set has already been determined in [8, Theorem 1.2].

The paper is organised as follows. In the next section, we recall some elementary
properties of the β-expansion. The main theorem is proven in the Section 3.
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2. Preliminaries
The β-expansion of real numbers was introduced by Rényi [11] by the following

algorithm. For any β > 1, let

Tβ(0) := 0, Tβ(x) = βx − bβxc (x ∈ [0, 1)), (2.1)

where bξc is the integer part of ξ ∈ R. By taking

εn(x, β) = bβT n−1
β xc ∈ N

recursively for each n ≥ 1, every x ∈ [0, 1) can be uniquely expanded into a finite or
infinite sequence

x =
ε1(x, β)
β

+
ε2(x, β)
β2 + · · · +

εn(x, β)
βn +

T n
β x

βn ,

which is called the β-expansion of x, and the sequence {εn(x, β)}n≥1 is called the digit
sequence of x. We also write this sequence as ε(x, β) = (ε1(x, β), . . . , εn(x, β), . . .). The
system ([0, 1],Tβ) is called the β-dynamical system or just the β-system.

Definition 2.1. A finite or infinite sequence (w1,w2, . . .) is said to be admissible (with
respect to the base β) if there exists an x ∈ [0,1) such that the digit sequence of x equals
(w1,w2, . . .).

Let Σn
β denote the collection of all admissible sequences of length n and Σβ that of

all infinite admissible sequences.

Let us now turn to the infinite β-expansion of 1, which plays an important role in
the study of the β-expansion. Applying the algorithm (2.1) to the number x = 1 gives

1 =
ε1(1, β)
β

+
ε2(1, β)
β2 + · · · +

εn(1, β)
βn + · · · .

If the above series is finite, that is, there exists m ≥ 1 such that εm(1, β) , 0 but
εn(1, β) = 0 for n > m, then β is called a simple Parry number. In this case, we write

ε∗(1, β) := (ε∗1(β), ε∗2(β), . . .) = (ε1(1, β), . . . , εm−1(1, β), εm(1, β) − 1)∞,

where (w)∞ denotes the periodic sequence (w,w,w, . . .). If β is not a simple Parry
number, we write

ε∗(1, β) := (ε∗1(β), ε∗2(β), . . .) = (ε1(1, β), ε2(1, β), . . .).

In both cases, the sequence (ε∗1(β), ε∗2(β), . . .) is called the infinite β-expansion of 1 and

1 =
ε∗1(β)
β

+
ε∗2(β)
β2 + · · · +

ε∗n(β)
βn + · · · .

The lexicographical order ≺ between infinite sequences is defined as follows:

w = (w1,w2, . . . ,wn, . . .) ≺ w′ = (w′1,w
′
2, . . . ,w

′
n, . . .)

if there exists k ≥ 1 such that w j = w′j for 1 ≤ j < k, while wk < w′k. The notation
w � w′ means that w ≺ w′ or w = w′. This ordering can be extended to finite blocks by
identifying a finite block (w1,w2, . . . ,wn) with the sequence (w1,w2, . . . ,wn, 0, 0, . . .).

The following result due to Parry is a criterion for the admissibility of a sequence.
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Lemma 2.2 (Parry [10]). Let β > 1 be a real number. A nonnegative integer sequence
ε = (ε1, ε2, . . .) is admissible if and only if (εk, εk+1, . . .) ≺ (ε∗1(β), ε∗2(β), . . .) for any k ≥ 1.

Lemma 2.3 (Rényi [11]). Let β > 1. For any n ≥ 1,

βn ≤ #Σn
β ≤

βn+1

β − 1
,

where # denotes the cardinality of a finite set.

For any (ε1, . . . , εn) ∈ Σn
β with n ≥ 1, the set

In(ε1, . . . , εn) := {x ∈ [0, 1) : ε j(x, β) = ε j, 1 ≤ j ≤ n}

is called an nth-order cylinder (with respect to the base β). It is a left-closed and right-
open interval with the left end point

ε1

β
+
ε2

β2 + · · · +
εn

βn

and of length at most β−n. The unit interval can be naturally partitioned into a disjoint
union of cylinders: for any n ≥ 1,

[0, 1] =
⋃

(ε1,...,εn)∈Σn
β

In(ε1, . . . , εn). (2.2)

One difficulty in studying the metric properties of β-expansions is that the length
of a cylinder is not regular. It may happen that |In(ε1, . . . , εn)| � β−n. The following
notion plays an important role in overcoming this difficulty.

Definition 2.4 (Full cylinder). A cylinder In(ε1, . . . , εn) is called full if it has maximal
length, that is, if

|In(ε1, . . . , εn)| =
1
βn .

Correspondingly, we also call the word (ε1, . . . , εn) a full word.

We collect some results about the distribution of full cylinders.

Lemma 2.5 (Bugeaud and Wang [5]). For n ≥ 1, among every n + 1 consecutive
cylinders of order n, there exists at least one full cylinder.

Lemma 2.6 (Wang [17, Lemma 3.1]). For any full word (ε1, ε2, . . . , εn) ∈ Σn
β, there exists

a point x∗n(w) in the closure of In(ε1, . . . , εn) such that:

(1) T n
β x∗n(w) = f (x∗n(w)) when x∗n(w) ∈ In(ε1, ε2, . . . , εn);

(2) f (x∗n(w)) = 1 when

x∗n(w) =
ε1

β
+
ε2

β2 + · · · +
εn

βn +
1
βn .
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Proof. For any y0 ∈ [0, 1], define a sequence {yk}k≥1 recursively by

yk+1 = f
(
ε1

β
+
ε2

β2 + · · · +
εn

βn +
yk

βn

)
for all k ≥ 0.

Then

|yk+1 − yk| ≤
L
βn |yk − yk−1| ≤ · · · ≤

( L
βn

)k
|y1 − y0|.

Thus, {yk}k≥1 is a Cauchy sequence and its limit, y∗n(w) ∈ [0, 1], satisfies

y∗n(w) = f
(
ε1

β
+
ε2

β2 + · · · +
εn

βn +
y∗n(w)
βn

)
.

Let

x∗n(w) =
ε1

β
+
ε2

β2 + · · · +
εn

βn +
y∗n(w)
βn .

(1) When 0 ≤ y∗n(w) < 1,

x∗n(w) ∈ In(ε1, ε2, . . . , εn) and T n
β x∗n(w) = y∗n(w) = f (x∗n(w)).

(2) When y∗n(w) = 1,

x∗n(w) =
ε1

β
+
ε2

β2 + · · · +
εn

βn +
1
βn

is the right end point of In(ε1, . . . , εn) and f (x∗n(w)) = 1. �

The proof of Theorem 1.1 crucially relies on the following result, called the mass
transference principle for lim sup sets generated by rectangles.

Lemma 2.7 (Wang et al. [16]). Let {xn}n≥1 be a sequence of points in the unit cube
[0, 1]d with d ≥ 1 and {rn}n≥1 a sequence of positive numbers tending to zero. Denote
d-dimensional vectors by a = (a1, . . . , ad). Define

W1 := {x ∈ [0, 1]d : x ∈ B(xn, rn) for infinitely many n ∈ N}

and, for any a = (a1, . . . , ad) with 1 ≤ a1 ≤ · · · ≤ ad, define

Wa := {x ∈ [0, 1]d : x ∈ Ba(xn, rn) for infinitely many n ∈ N},

where Ba(x, r) denotes a rectangle with centre x and side lengths (ra1 , . . . , rad ). If W1

is of full Lebesgue measure, then

dimH Wa ≥ min
1≤ j≤d

d + ja j −
∑ j

i=1 a j

a j
.
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3. Proof of Theorem 1.1

3.1. The upper bound. As is common in obtaining upper bounds for the Hausdorff
dimension, we construct a natural cover for the lim sup set W( f , g, τ1, τ2) and then
show that the s-dimensional Hausdorff measure of this cover set is zero whenever
s > dimH W( f , g, τ1, τ2).

From (2.2), for any n ∈ N,

[0, 1] × [0, 1] =
⋃

w,v∈Σn
β

In(w) × In(v).

Obviously,

W( f , g, τ1, τ2) =

∞⋂
N=1

∞⋃
n=N

{
(x, y) ∈ [0, 1]2 : |T n

β x − f (x)| < β−nτ1(x), |T n
βy − g(y)| < β−nτ2(y)}

=

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β

Jn(w) × Jn(v),

where

Jn(w) × Jn(v) = {x ∈ In(w) : |T n
β x − f (x)| < β−nτ1(x)}

× {y ∈ In(v) : |T n
βy − g(y)| < β−nτ2(y)}.

For large n, the length of Jn(w) satisfies

|Jn(w)| ≤
4

βn(1+τ1,min) .

Denote by L the Lipschitz constant of f , that is,

| f (x) − f (y)| ≤ L|x − y| for x, y ∈ [0, 1].

Then, for any x, y ∈ Jn(w),

2β−n·τ1,min ≥ |(T n
β x − f (x)) − (T n

βy − f (y))|
≥ |T n

β x − T n
βy| − | f (x) − f (y)|

≥ βn|x − y| − L|x − y|
= (βn − L)|x − y|.

The same is true for Jn(v), in other words,

|Jn(v)| ≤
4

βn(1+τ2,min) .

The lim sup set W( f , g, τ1, τ2) is defined by a collection of rectangles and there are
two ways to cover a single rectangle Jn(w) × Jn(v).
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Case 1. Cover using balls with radius being the shorter side length 4/βn(1+τ2,min). Then
Jn(w) × Jn(v) can be covered by at most

βn(1+τ2,min)

βn(1+τ1,min) ≤ 2βn(τ2,min−τ1,min)

balls of radius 4/βn(1+τ2,min). Thus, for s > (2 + τ2,min − τ1,min)/(1 + τ2,min),

H s(W( f , g, τ1, τ2)) ≤ lim inf
N→∞

∞∑
n=N

∑
w,v∈Σn

β

2βn(τ2,min−τ1,min)
( 4
βn(1+τ2,min)

)s

≤ 32
(

β

β − 1

)2
lim inf

N→∞

∞∑
n=N

β2nβn(τ2,min−τ1,min−(1+τ2,min)s)

= 0.

This shows that

dimH W( f , g, τ1, τ2) ≤
2 + τ2,min − τ1,min

1 + τ2,min
.

Case 2. Cover using balls with radius being the longer side length 4/βn(1+τ1,min). Then
Jn(w) × Jn(v) can be covered by one ball. Thus, for s > 2/(1 + τ1,min),

H s(W( f , g, τ1, τ2)) ≤ lim inf
N→∞

∞∑
n=N

∑
w,v∈Σn

β

( 4
βn(1+τ1,min)

)s

≤ 16
(

β

β − 1

)2
lim inf

N→∞

∞∑
n=N

β2nβ−n(1+τ1,min)s

= 0.

This shows that
dimH W( f , g, τ1, τ2) ≤

2
1 + τ1,min

.

3.2. The lower bound. Fix ε > 0. Let n0 be an integer such that for all n ≥ n0,

(n + 1)β−n ≤ β−n(1−ε), 1
4 ≥ β

−nε/2.

For any w = (w1, . . . ,wn), v = (v1, . . . , vn) ∈ Σn
β, define

Jn( f , τ1,w) =
{
x ∈ In(w) : |T n

β (x) − f (x)| < β−nτ1(x)},
Jn(g, τ2, v) =

{
y ∈ In(v) : |T n

β (y) − g(y)| < β−nτ2(x)}.
Fix a w = (w1, . . . ,wn) ∈ Σn

β for which In(w) is full. Then

In(w) =

[w1

β
+ · · · +

wn

βn ,
w1

β
+ · · · +

wn + 1
βn

)
.
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By Lemma 2.6, there exists a point x∗n(w) in the closure of In(ε1, . . . , εn) such that

T n
β x∗n(w) = f (x∗n(w)).

For any x ∈ In(w) and for large n,

|T n
β x − f (x)| = |T n

β x − f (x) − (T n
β x∗n(w) − f (x∗n(w))|

≤ (βn + L)|x − x∗n(w)|
≤ 2βn|x − x∗n(w)|.

So,

Jn( f , τ1,w) ⊃ In(w) ∩ B
(
x∗n(w),

1
2βn(1+τ1(x))

)
.

Thus, Jn( f , τ1,w) contains an interval of length at least 1
2β
−n(1+τ1(x)). We denote this

interval by
B(x∗n

′(w), 1
4β
−n(1+τ1(x))) for some x∗n

′(w) ∈ In(w).

The same is true for Jn(g, τ2, v), in other words, again for large n,

Jn(g, τ2, v) ⊃ B(y∗n
′(v), 1

4β
−n(1+τ2(y))) for some y∗n

′(v) ∈ In(v).

So,

W( f , τ1, τ2)

=

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β

Jn( f , τ1,w) × Jn(g, τ2, v)

⊃

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β,In,β(w),In,β(v) full

B(x∗n
′(w), 1

4β
−n(1+τ1(x))) × B(y∗n

′(v), 1
4β
−n(1+τ2(y)))

⊃

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β,In,β(w),In,β(v) full

B(x∗n
′(w), β−n(1+τ1(x)+ε/2)) × B(y∗n

′(v), β−n(1+τ2(y)+ε/2))

:= Wa.

Since τ1, τ2 are two positive continuous functions on [0, 1], there exists a ball
B ⊂ [0, 1]2 such that

τ1(x1) ≤ τ1,min +
ε

2
, τ1(y1) ≤ τ2,min +

ε

2
for any (x1, y1) ∈ B. Therefore,

B ∩Wa ⊃ B ∩Wamin ,

where

Wamin =

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β,In,β(w),In,β(v) full

B(x∗n
′(w), β−n(1+τ1,min+ε)) × B(y∗n

′(v), β−n(1+τ2,min+ε))
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and
amin =

(1 + τ1,min + ε

1 − ε
,

1 + τ2,min + ε

1 − ε

)
.

On the other hand, the interval [0, 1] can be partitioned disjointly by (2.2) and, from
Lemma 2.5, for any x ∈ [0, 1], among n + 1 consecutive cylinders of order n, there is
at least one full cylinder of order n around x. So, there exists w ∈ Σn

β for which In(w) is
full such that

|x − x∗n
′(w)| ≤ (n + 1)β−n ≤ β−n(1−ε)

for any x∗n
′(w) ∈ In(w). Thus,

[0, 1] =
⋃

w∈Σn
β, In(w) full

B(x∗n
′(w), β−n(1−ε)).

Clearly, the set

W1 :=
∞⋂

N=1

∞⋃
n=N

⋃
w,v∈Σn

β,In(w),In(v) full

B(x∗n
′(w), β−n(1−ε)) × B(y∗n

′(v), β−n(1−ε))

equals [0, 1]2, so it is of full Lebesgue measure.
Now we use the mass transference principle generated by rectangles (Lemma 2.7)

to conclude that

dimH (B ∩Wamin ) ≥ min
{ 2

1 + τ1,min + ε
,

2 + τ2,min − τ1,min

1 + τ2,min + ε

}
.

By letting ε → 0,

dimH (B ∩Wamin ) ≥ min
{ 2

1 + τ1,min
,

2 + τ2,min − τ1,min

1 + τ2,min

}
.

It is clear that
W( f , g, τ1, τ2) ⊃ Wa ⊃ B ∩Wa ⊃ B ∩Wamin .

So,

dimH W( f , g, τ1, τ2) ≥ min
{ 2

1 + τ1,min
,

2 + τ2,min − τ1,min

1 + τ2,min

}
.
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