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Abstract
In this paper we prove a general uniqueness result in the inverse boundary value problem for the weighted p-Laplace
equation in the plane, with smooth weights. We also prove a uniqueness result in dimension 3 and higher, for real
analytic weights that are subject to a smallness condition on one of their directional derivatives. Both results are
obtained by linearizing the equation at a solution without critical points. This unknown solution is then recovered,
together with the unknown weight.

1. Introduction

Let Ω ⊂ R𝑛, 𝑛 ≥ 2, be a compact connected set with nonempty interior and a smooth boundary, let
𝛾 ∈ 𝐶∞(Ω) be a positive function1, and finally let 𝑝 ∈ (1, 2) ∪ (2,∞). We consider the boundary value
problem {

∇ · (𝛾 |∇𝑢 |𝑝−2∇𝑢) = 0,

𝑢 |𝜕Ω = 𝑓 ,
(1)

where f, u are real-valued functions. Equation (1) is known as the weighted p-Laplace equation and it
is a quasilinear, degenerate elliptic equation. The forward problem for this equation is well studied and
we have
Theorem 1.1 (e.g., [33, Theorem 1]). Let 𝑓 ∈ 𝐶1,𝛼 (𝜕Ω) for some 𝛼 ∈ (0, 1]. There exist 𝛽 ∈ (0, 1) and
𝐶 (‖ 𝑓 ‖𝐶1,𝛼 (𝜕Ω) ) > 0 nondecreasing such that equation (1) has a unique weak solution 𝑢 ∈ 𝐶1,𝛽 (Ω) and

‖𝑢‖𝐶1,𝛽 (Ω) ≤ 𝐶 (‖ 𝑓 ‖𝐶1,𝛼 (𝜕Ω) ). (2)

It is therefore possible to define the Dirichlet-to-Neumann map associated to (1) by

Λ𝛾 ( 𝑓 ) =
(
𝛾 |∇𝑢 |𝑝−2𝜕𝜈𝑢

)���
𝜕Ω

, ∀ 𝑓 ∈ 𝐶1,𝛼 (𝜕Ω), (3)

where u is the unique solution to (1) and 𝜈 is the exterior normal unit vector on 𝜕Ω.

1Note on notation: since we choose Ω to denote a closed set, 𝐶∞(Ω) is the space that other works might be denoted by 𝐶∞(Ω̄) ,
i.e. the space of restrictions of 𝐶∞(R𝑛) functions to Ω = Ω̄.
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In [7], Calderón proposed the following question/inverse problem: Can an elliptic coefficient 𝛾 be
recovered from the Dirichlet-to-Neumann map associated to the equation ∇ · (𝛾∇𝑢) = 0? A positive
answer for general smooth coefficients 𝛾 was first provided in [42] in dimension 3 or higher and by [35]
in the plane. In the intervening decades, similar questions for other equations have been investigated in
a large number of papers. It is beyond the purposes of our work to give a full account of the existing
inverse problems literature. We will reference below those works that are most closely related to our
own, in terms of subject matter or technique.

In this paper we are interested in the inverse problem of recovering the a priori unknown coefficient
𝛾 in (1), given the knowledge of Λ𝛾 . This is a natural analogue of the original problem of Calderón. We
will prove two results. The first is the following general uniqueness result in the plane.
Theorem 1.2. Let 𝑛 = 2 and let 𝛾, 𝛾̃ ∈ 𝐶∞(Ω) be strictly positive functions. If Λ𝛾 = Λ𝛾̃ , then 𝛾 = 𝛾̃.

In dimensions 3 and higher we prove the following uniqueness result for weights belonging to 𝐶𝜔 (Ω),
the space of real-analytic functions on Ω.
Theorem 1.3. Let 𝑛 ≥ 3 and let 𝜁 ∈ R𝑛 be a unit vector. Suppose there exists a point 𝑧 ∈ 𝜕Ω in
a neighborhood of which 𝜕Ω is flat. There exists 𝜇 > 0, depending only on Ω and n, such that if
𝛾, 𝛾̃ ∈ 𝐶𝜔 (Ω) are strictly positive functions with ‖𝜁 · ∇𝛾‖𝐶0,𝛼 (Ω) , ‖𝜁 · ∇𝛾̃‖𝐶0,𝛼 (Ω) < 𝜇, then Λ𝛾 = Λ𝛾̃

implies 𝛾 = 𝛾̃.
The study of inverse problems for nonlinear equations is not new, but in recent years there has been

a considerable increase in the interest for this topic. As examples, we can cite the papers [17], [21],
[23], [24], [28], [29], [31], [30], [40] on semilinear equations, and [10], [9], [11], [14], [15], [8], [16],
[20], [22], [25], [34], [37], [38], [39], [41] on quasilinear equations. By and large, all these works rely
on a so-called second/higher linearization method. These ideas go back to [21], where what one may
call a first-order linearization method was used. As commonly employed, the method consists of using
Dirichlet data that depends on a small (or large) parameter 𝜖 , typically of the form 𝜖𝜙 (or 𝜆 + 𝜖𝜙, with
𝜆 a constant, if constants are a solution to the linear part of the equation). One then uses the asymptotic
expansion of the Dirichlet-to-Neumann map in terms of the parameter 𝜖 to obtain information about the
coefficients of the equation. Sometimes this is presented as differentiating the equation with respect to
the small parameter, then setting it to zero.

Our paper is not the first to take up the inverse boundary value problem for the weighted p-Laplacian.
The works [6], [3], [4], [5], [19], [27], [36] all address aspects of the same problem. We note that
a uniqueness result without additional constraints, such as monotonicity, has not yet been previously
derived for the weighted p-Laplacian. Also, past boundary determination results have only yielded 𝛾 |𝜕Ω
and 𝜕𝜈𝛾 |𝜕Ω, but not the rest of the derivatives of 𝛾 on the boundary (see [36], [3]). For other degenerate
equations, the only known results are those of [12], [13], where general uniqueness results are derived
for the coefficients of porous medium equations.

The approach to the proofs of Theorems 1.2 and 1.3 also makes use of a linearization method. In
equation (1) we use Dirichlet data of the form 𝑓 = 𝜙0 + 𝜖𝜙, with 𝜖 a small parameter. Let 𝑢𝜖 be the
corresponding solution and, assuming that we are justified in taking the derivative, let �𝑢 = d

d𝜖 𝑢𝜖

��
𝜖=0.

Further assuming we can differentiate the equation, it is not hard to see that �𝑢 should satisfy the
anisotropic linear equation {

∇ · (𝐴∇ �𝑢) = 0,

�𝑢 |𝜕Ω = 𝜙,
(4)

where A is the matrix with the 𝑢0-dependent coefficients

𝐴 𝑗𝑘 = 𝛾 |∇𝑢0 |
𝑝−2

(
𝛿 𝑗𝑘 + (𝑝 − 2)

𝜕 𝑗𝑢0𝜕𝑘𝑢0

|∇𝑢0 |2

)
. (5)

The Dirichlet-to-Neumann map Λ𝛾 determines the Dirichlet-to-Neumann map Λ𝐴 for the equation (4).
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In order to use already established results for the determination of the coefficient matrix A, we need
it to be elliptic. Indeed, even the differentiability of 𝑢𝜖 w.r.t. 𝜖 is in question unless that is the case. We
then see that the unknown 𝑢0 must be guaranteed to have no critical points. In dimension 2, by results of
Alessandrini and Sigalotti in [2], we can guarantee the absence of critical points by choosing Dirichlet
data that has single local minimum and maximum points on 𝜕Ω. In dimension 3 and higher something
like this is unlikely to hold, as even for linear elliptic equations it is known that for each Dirichlet data
there is an open set of smooth coefficients that produce solutions with critical points (see [1]). We can
show, however, that, for coefficients 𝛾 that vary slowly in one direction, there exists explicit Dirichlet
data for which no critical points appear.

We can also point out here a simple corollary of our linearization result (Proposition 2.3 below), for
weights that are constant in one direction.
Corollary 1.1. Let 𝑛 ≥ 3 and 𝜁 ∈ R𝑛 be a unit vector. If 𝛾, 𝛾̃ ∈ 𝐶∞(Ω) are such that 𝜁 · ∇𝛾 = 𝜁 · ∇𝛾̃ = 0
and Λ𝛾 = Λ𝛾̃ , then 𝛾 = 𝛾̃.
Proof. In this case 𝑢0 = 𝜁 · 𝑥 is a solution of (1), with either weight. Then

𝐴 𝑗𝑘 = 𝛾
(
𝛿 𝑗𝑘 + (𝑝 − 2)𝜁 𝑗 𝜁𝑘

)
, 𝐴̃ 𝑗𝑘 = 𝛾̃

(
𝛿 𝑗𝑘 + (𝑝 − 2)𝜁 𝑗 𝜁𝑘

)
. (6)

After a rescaling in the 𝜁 direction, the linearized problem reduces to the classical Calderón problem
with isotropic conductivities. �

The linearization procedure is detailed in section 2. In section 3 we give a proof of Theorem 1.2.
By the well-known result [35] of Nachman, we have uniqueness for the coefficient matrix A, up to
diffeomorphism invariance. Making use of the particular structure of A, we then succeed in showing
that the diffeomorphism relating A and 𝐴̃ must be trivial and that 𝛾 = 𝛾̃. In section 4 we give the proof of
Theorem 1.3. Our approach is to use boundary determination results for equation (4) to obtain the values
of all tangential directions of A on the boundary, together with all their normal direction derivatives.
From this information we are then able to inductively show uniqueness for the values of all the normal
direction derivatives 𝜕𝑘

𝜈 𝑢0 |𝜕Ω, 𝜕𝑘
𝜈 𝛾 |𝜕Ω, 𝑘 = 0, 1, 2, . . .. Since here 𝛾 is assumed to be a real-analytic

function, this is enough to recover it on Ω.

2. Linearizing the p-Laplace equation

For each 𝜉 ∈ R𝑛 \ {0} let

𝐽 𝑗 (𝜉) = |𝜉 |𝑝−2𝜉 𝑗 , 𝑗 = 1, . . . , 𝑛. (7)

Then

𝜕

𝜕𝜉𝑘
𝐽 𝑗 (𝜉) = |𝜉 |𝑝−2

(
𝛿 𝑗𝑘 + (𝑝 − 2)

𝜉 𝑗𝜉𝑘

|𝜉 |2

)
. (8)

In what follows, we will repeatedly use Taylor’s formula

𝐽 𝑗 (𝜁) = 𝐽 𝑗 (𝜉) +
𝑛∑

𝑘=1
(𝜁𝑘 − 𝜉𝑘 )

∫ 1

0
𝜕𝜉𝑘 𝐽 (𝜉 + 𝑡 (𝜁 − 𝜉)) d𝑡. (9)

We plan to linearize equation (1) near some solution 𝑢0, whose boundary data 𝑢0 |𝜕Ω = 𝜙0 is known.
As will become apparent below, we can only perform the linearization if 𝑢0 does not have any critical
points in Ω. In dimension two plenty of such solutions exist, thanks to the following proposition due to
Alessandrini and Sigalotti.
Proposition 2.1 (see [2, Theorem 5.1]). If 𝑛 = 2 there exists boundary data 𝜙0 ∈ 𝐶∞(𝜕Ω) independent
of 𝛾 such that the corresponding solution 𝑢0 of (1) is in 𝐶∞(Ω) and |∇𝑢0 (𝑥) | > 0 for any 𝑥 ∈ Ω.
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In higher dimensions, even for a linear elliptic equation with unknown coefficients it is impossible
to guarantee the absence of critical points (see [1]). We can still show the existence of such a solution
provided the weight 𝛾 is sufficiently close to a constant.

Proposition 2.2. Let 𝜁 ∈ R𝑛 be a unit vector. There exists 𝜇 > 0 so that if ‖𝜁 · ∇𝛾‖𝐶0,𝛼 (Ω) < 𝜇, then
there exists 𝑢0 ∈ 𝐶∞(Ω) which solves (1) with boundary data 𝜙0 = 𝜁 · 𝑥, and is such that |∇𝑢0 (𝑥) | > 0
for any 𝑥 ∈ Ω.

Proof. Without loss of generality, we assume that 𝜁 = (1, 0, . . . , 0). We make the Ansatz

𝑢0(𝑥) = 𝑥1 + 𝑅, 𝑅 |𝜕Ω = 0. (10)

By (9) we have ∑
𝑘

𝐵 𝑗𝑘 (∇𝑅)𝜕𝑘𝑅 = 𝛾𝐽 𝑗 (∇𝑢0) − 𝛾𝛿1 𝑗 , (11)

𝐵 𝑗𝑘 (𝜉) = 𝛾

∫ 1

0
|𝑒1 + 𝑡𝜉 |𝑝−2

(
𝛿 𝑗𝑘 + (𝑝 − 2)

(𝛿1 𝑗 + 𝑡𝜉 𝑗 ) (𝛿1𝑘 + 𝑡𝜉𝑘 )

|𝑒1 + 𝑡𝜉 |2

)
d𝑡. (12)

Taking the divergence of the above we get{
∇ · (𝐵(∇𝑅)∇𝑅) = −𝜕1𝛾,

𝑅 |𝜕Ω = 0.
(13)

Let𝑉 ∈ 𝐶2,𝛼 (Ω) be such that ‖𝑉 ‖𝐶2,𝛼 (Ω) < 1/2 and define the map𝑇 (𝑉) = 𝑈, where U is the solution to{
∇ · (𝐵(∇𝑉)∇𝑈) = −𝜕1𝛾,

𝑈 |𝜕Ω = 0.
(14)

Since 𝐵(∇𝑉) ∈ 𝐶1,𝛼 (Ω) are uniformly elliptic coefficients, it follows that a unique solution𝑈 ∈ 𝐶2,𝛼 (Ω)
exists (see [18, Theorem 6.14]). Furthermore, by [18, Theorem 6.6] we have

‖𝑈‖𝐶2,𝛼 (Ω) ≤ 𝐶‖𝜕1𝛾‖𝐶0,𝛼 (Ω) . (15)

If the right hand side is less than 1/2, by Schauder’s fixed point theorem (see [18, Theorem 11.1]) it
follows that T has a fixed point on the ball of radius 1/2 in 𝐶2,𝛼 (Ω). By uniqueness of solutions for (1),
this must be R and we conclude that

‖∇𝑅‖𝐿∞ (Ω) ≤
1
2
, (16)

so

|∇𝑢0 (𝑥) | >
1
2
, ∀𝑥 ∈ Ω. (17)

Note that the nonvanishing of the gradient ∇𝑢0 makes the equation satisfied by 𝑢0 elliptic, so the
smoothness of 𝑢0 follows. �

In what follows we will assume that 𝑢0 is as in the preceding two propositions. Let A be the matrix
with coefficients

𝐴 𝑗𝑘 = 𝛾 |∇𝑢0 |
𝑝−2

(
𝛿 𝑗𝑘 + (𝑝 − 2)

𝜕 𝑗𝑢0𝜕𝑘𝑢0

|∇𝑢0 |2

)
. (18)
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Proposition 2.3. Under the assumptions of either Proposition 2.1 or Proposition 2.2, we have that the
Dirichlet-to-Neumann map Λ𝛾 for the weighted p-Laplace equation (1) determines the Dirichlet-to-
Neumann map Λ𝐴 for the linear equation ∇ · (𝐴∇𝑢) = 0, on the same domain Ω.

Proof. For 𝜙 ∈ 𝐶∞(𝜕Ω), and 𝜖 ∈ R small, let 𝑢𝜖 be the solution of{
∇ · (𝛾 |∇𝑢𝜖 |

𝑝−2∇𝑢𝜖 ) = 0,

𝑢𝜖 |𝜕Ω = 𝑢0 |𝜕Ω + 𝜖𝜙.
(19)

We make the Ansatz

𝑢𝜖 = 𝑢0 + 𝑅𝜖 . (20)

By Theorem 1.1 and the theorem of Arzelà-Ascoli, it follows that (on a subsequence) we have that
𝑅𝜖 → 𝑅0 in 𝐶1 (Ω). Since then 𝑢0 + 𝑅0 would be a weak solution of the same boundary value problem
𝑢0 satisfies, it follows that 𝑅𝜖 → 0 in 𝐶1 (Ω). Since the limit is the same for every subsequence, it
follows that in fact we do not need to pass to a subsequence. This is easily seen as follows: suppose there
is a subsequence of 𝑅𝜖𝑘 of 𝑅𝜖 so that lim inf 𝜖𝑘→0+ | |𝑅𝜖𝑘 − 𝑅0 | |𝐶1 (Ω) > 0; however, the argument above
also shows that 𝑅𝜖𝑘 has a subsequence which converges to 𝑅0 in 𝐶1 (Ω), which is a contradiction.

By Taylor’s formula we have that∑
𝑘

𝜕𝑘𝑅𝜖

∫ 1

0
𝜕𝜉𝑘 𝐽 𝑗 (∇𝑢0 + 𝑡∇𝑅𝜖 ) d𝑡 = 𝐽 𝑗 (∇𝑢𝜖 ) − 𝐽 𝑗 (∇𝑢0). (21)

Let

𝐴𝜖
𝑗𝑘 = 𝛾

∫ 1

0
𝜕𝜉𝑘 𝐽 𝑗 (∇𝑢0 + 𝑡∇𝑅𝜖 ) d𝑡. (22)

Since 𝑅𝜖 → 0 in 𝐶1, it follows that |∇𝑢0 + 𝑡∇𝑅𝜖 | is uniformly bounded and uniformly bounded away
from zero. This implies that 𝐴𝜖

𝑗𝑘 is a set of elliptic coefficients, with ellipticity bounds independent of
𝜖 . Taking gradients in (21) we get that 𝑅𝜖 satisfies{

∇ · (𝐴𝜖∇𝑅𝜖 ) = 0,

𝑅𝜖 |𝜕Ω = 𝜖𝜙,
(23)

It follows that

‖𝑅𝜖 ‖𝐶1,𝛽 (Ω) ≤ 𝐶𝜖. (24)

We can again invoke the theorem of Arzela-Ascoli to conclude that there must exist �𝑢 ∈ 𝐶1(Ω) such
that 𝜖−1𝑅𝜖 → �𝑢 in 𝐶1 (Ω). Taking the limit in (23) we see that �𝑢 must be a weak solution of{

∇ · (𝐴∇ �𝑢) = 0,

�𝑢 |𝜕Ω = 𝜙,
(25)

Returning to (21), dividing by 𝜖 and taking the limit 𝜖 → 0, we have that

𝜈 · 𝐴∇ �𝑢 = lim
𝜖→0

𝛾
𝜈 · 𝐽 (∇𝑢𝜖 ) − 𝜈 · 𝐽 (∇𝑢0)

𝜖

= lim
𝜖→0

Λ𝛾 (𝑢0 |𝜕Ω + 𝜖𝜙) − Λ𝛾 (𝑢0 |𝜕Ω)

𝜖
. (26)

We see then that the Neumann data for the equation (25) is determined by the map Λ𝛾 . �
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3. Proof of Theorem 1.2

Suppose 𝑛 = 2 and we have 𝛾, 𝛾̃ as above such that Λ𝛾 = Λ𝛾̃ . We use notation such as 𝑢𝜖 , 𝑢̃𝜖 to denote
the corresponding solutions to (19), etc. Observe that one consequence of the identity of the DN maps is∫

Ω
𝛾 |∇𝑢0 |

𝑝 d𝑥 =
∫
Ω

𝛾̃ |∇𝑢̃0 |
𝑝 d𝑥. (27)

By Proposition 2.3 we have Λ𝐴 = Λ𝐴̃. From [35, Theorem 2] it follows that there must exist a
diffeomorphism Φ = (Φ1,Φ2) : Ω → Ω such that Φ|𝜕Ω = 𝐼𝑑 and

𝐴̃(𝑥) =
1

|𝐷Φ|
(𝐷Φ)𝑇 𝐴 𝐷Φ ◦Φ−1(𝑥). (28)

Here 𝐷Φ is the matrix with coefficients (𝐷Φ) 𝑗𝑘 = 𝜕 𝑗Φ𝑘 .
Note that

det
(
𝛿 𝑗𝑘 + (𝑝 − 2)

𝜕 𝑗𝑢0𝜕𝑘𝑢0

|∇𝑢0 |2

)
=

(
1 + (𝑝 − 2)

(𝜕1𝑢0)
2

|∇𝑢0 |2

) (
1 + (𝑝 − 2)

(𝜕2𝑢0)
2

|∇𝑢0 |2

)
− (𝑝 − 2)2 (𝜕1𝑢0𝜕2𝑢0)

2

|∇𝑢0 |4
= 𝑝 − 1. (29)

Taking determinants on both sides of (28) we obtain(
𝛾̃ |∇𝑢̃0 |

𝑝−2
)2

=
(
𝛾 |∇𝑢0 |

𝑝−2
)2
|𝐷Φ|−2 |𝐷Φ|2 ◦Φ−1, (30)

so

𝛾̃ |∇𝑢̃0 |
𝑝−2 = 𝛾 |∇𝑢0 |

𝑝−2 ◦Φ−1. (31)

Another consequence of Λ𝐴 = Λ𝐴̃ is that for each 𝜙 we have �̃𝑢 = �𝑢 ◦Φ−1. Incidentally, for 𝜙 = 𝑢0 |𝜕Ω
the solution to the linear equation is �𝑢 = 𝑢0. Therefore

𝑢̃0 = 𝑢0 ◦Φ
−1. (32)

It then follows that

∇𝑢0 = 𝐷Φ(∇𝑢̃0 ◦Φ), (33)

which we can use in (28), together with (31), to get

𝐴̃ = 𝛾̃ |∇𝑢̃0 |
𝑝−2 1

|𝐷Φ| ◦Φ−1

( [
(𝐷Φ)𝑇 𝐷Φ

]
◦Φ−1 + (𝑝 − 2)

|∇𝑢̃0 |
2

|∇𝑢0 |2 ◦Φ−1

×
[
(𝐷Φ)𝑇 𝐷Φ

]
◦Φ−1 ∇𝑢̃0 ⊗ ∇𝑢̃0

|∇𝑢̃0 |2

[
(𝐷Φ)𝑇 𝐷Φ

]
◦Φ−1

)
. (34)

Let

𝐹 =

[
(𝐷Φ)𝑇 𝐷Φ

|𝐷Φ|

]
◦Φ−1, 𝑃 =

∇𝑢̃0 ⊗ ∇𝑢̃0

|∇𝑢̃0 |2
, 𝛼 = |𝐷Φ|◦Φ−1 |∇𝑢̃0 |

2

|∇𝑢0 |2◦Φ−1 . (35)
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Note that F, P are symmetric matrices and that 𝑃2 = 𝑃. Identifying P, F, and 𝛼 in (34) and (18), we have

𝐹 + 𝛼(𝑝 − 2)𝐹𝑃𝐹 = 𝐼 + (𝑝 − 2)𝑃. (36)

As both 𝐼 + (𝑝 − 2)𝑃 and F are invertible and the left-hand side of (36) can be factored as either
𝐹 (𝐼 + (𝑝 − 2)𝑃𝐹) or (𝐼 + (𝑝 − 2)𝐹𝑃)𝐹, it follows that both 𝐼 + 𝛼(𝑝 − 2)𝑃𝐹 and 𝐼 + 𝛼(𝑝 − 2)𝐹𝑃 are
also invertible.

If we multiply (36) by P on the left, we get

𝑃𝐹 + 𝛼(𝑝 − 2)𝑃𝐹𝑃𝐹 = (𝑝 − 1)𝑃, (37)

so

𝑃𝐹 = (𝑝 − 1) (𝐼 + 𝛼(𝑝 − 2)𝑃𝐹)−1𝑃, (38)

since the inverse exists. Multiplying by P on the right and using that 𝑃2 = 𝑃 yields

𝑃𝐹𝑃 = (𝑝 − 1) (𝐼 + 𝛼(𝑝 − 2)𝑃𝐹)−1𝑃2

= (𝑝 − 1) (𝐼 + 𝛼(𝑝 − 2)𝑃𝐹)−1𝑃 = 𝑃𝐹. (39)

On the other hand,

𝐹𝑃 + 𝛼(𝑝 − 2)𝐹𝑃𝐹𝑃 = (𝑝 − 1)𝑃, (40)

so

𝐹𝑃 = (𝑝 − 1)𝑃(𝐼 + 𝛼(𝑝 − 2)𝐹𝑃)−1, (41)

and therefore

𝐹𝑃 = 𝑃𝐹𝑃 = 𝑃𝐹. (42)

Since F and P commute, they can be simultaneously diagonalized. Since P is a rank-one projection
matrix, we can write

𝐹 = 𝜃𝑃 + 𝜂(𝐼 − 𝑃), 𝜃, 𝜂 scalars. (43)

Multiplying (36) by 𝐼 − 𝑃 and using the commutativity of F and P together with the identity
𝑃(𝐼 − 𝑃) = 0, it is easy to see that 𝜂 = 1. Multiplying (36) by P and using (43) yields

(𝜃 + 𝛼(𝑝 − 2)𝜃2)𝑃 = (𝑝 − 1)𝑃 ⇒ 𝜃 + 𝛼(𝑝 − 2)𝜃2 = 𝑝 − 1. (44)

On the other hand, taking the determinant of the definition of F in (35) and also in (43) gives

1 =
|𝐷Φ|2

|𝐷Φ|2
◦Φ−1 = det 𝐹 = 𝜃𝜂 = 𝜃. (45)

It follows that 𝜃 = 1, 𝐹 = 𝐼, and by (44) also that 𝛼 = 1.
Suppose a nontrivial diffeomorphism such as Φ exists. Let 𝜎 be a scalar conductivity on Ω and let

𝜎∗(𝑦) =
𝜎

|𝐷Φ|
(𝐷Φ)𝑇 𝐷Φ ◦Φ−1(𝑦) = 𝜎 ◦Φ−1(𝑦)𝐹 (𝑦) = 𝜎 ◦Φ−1(𝑦). (46)

This new conductivity is also scalar and gives the same DN map as 𝜎. This violates the known uniqueness
results for the Calderón problem in the plane (e.g., see [35]). So Φ must be trivial. Therefore 𝑢0 = 𝑢̃0
and 𝛾 = 𝛾̃.
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4. Proof of Theorem 1.3

As in the previous section, we will denote by 𝑢0, 𝑢̃0, A, 𝐴̃, etc. the functions corresponding to the
coefficients 𝛾 and 𝛾̃ respectively. By Proposition 2.3 we have that Λ𝐴 = Λ𝐴̃.

It is an immediate consequence of [32, Proposition 1.3] (or [26, Theorem 1.3]) that there must exist
a neighborhood of U of 𝜕Ω and a smooth diffeomorphism Φ : 𝑈 ∩Ω → 𝑈 ∩Ω, for which we will also
use the notation Φ = (Φ1, . . . ,Φ𝑛), with Φ|𝜕Ω = 𝐼𝑑, and such that

𝜕
𝑗
𝜈 𝐴̃

���
𝜕Ω

= 𝜕
𝑗
𝜈

1
|𝐷Φ|

(𝐷Φ)𝑇 𝐴𝐷Φ

����
𝜕Ω

, 𝑗 = 0, 1, 2, . . . . (47)

Let 𝑧 ∈ 𝜕Ω. Unless otherwise specified, all the following computations will be pointwise, at this
point z. We wish to proceed inductively in the order of differentiation in (47).

0th order:

We have that

𝐴̃(𝑧) =
1

|𝐷Φ| (𝑧)
(𝐷Φ)𝑇 (𝑧)𝐴(𝑧)𝐷Φ(𝑧). (48)

If 𝜏 is any unit tangent vector to 𝜕Ω at z, we must have that 𝐷Φ(𝑧)𝜏 = 𝜏. Since 𝑢0 |𝜕Ω = 𝑢̃0 |𝜕Ω, we also
have that 𝜏 · ∇𝑢0(𝑧) = 𝜏 · ∇𝑢̃0(𝑧). Therefore

𝜏 · 𝐴̃(𝑧)𝜏 = 𝛾̃(𝑧) |∇𝑢̃0 |
𝑝−2 (𝑧)

(
1 + (𝑝 − 2)

(𝜏 · ∇𝑢0)
2(𝑧)

|∇𝑢̃0 |2 (𝑧)

)
. (49)

On the other hand, by (48) we have

𝜏 · 𝐴̃(𝑧)𝜏 =
1

|𝐷Φ| (𝑧)
𝛾(𝑧) |∇𝑢0 |

𝑝−2(𝑧)

(
1 + (𝑝 − 2)

(𝜏 · ∇𝑢0)
2(𝑧)

|∇𝑢0 |2 (𝑧)

)
. (50)

We can vary 𝜏 in the tangent space to the boundary at z, which is at least two-dimensional. Our plan
is to use two different choices for 𝜏.

Note that the intersection of the space of vectors that are orthogonal to ∇𝑢0(𝑧) with the tangent space
to the boundary at z has dimension at least 𝑛 − 2, so it cannot be trivial. By choosing 𝜏 ⊥ ∇𝑢0 (𝑧) we
can separately identify

𝛾̃(𝑧) |∇𝑢̃0 |
𝑝−2 (𝑧) =

1
|𝐷Φ| (𝑧)

𝛾(𝑧) |∇𝑢0 |
𝑝−2 (𝑧). (51)

It is, in principle, possible for the tangent space to the boundary at z to coincide with the space of
vectors that are orthogonal to∇𝑢0 (𝑧). Recall that on the boundary we are choosing 𝑢0 (𝑥) = 𝜁 ·𝑥, therefore
∇𝑢0 (𝑧) is orthogonal to the boundary at z if and only if 𝜁 is. If that is the case, note that a unit vector
𝜁 ′ ∈ R𝑛 that is sufficiently close, but not identical, to 𝜁 will still satisfy the condition in the statement
of Proposition 2.2. Therefore, without loss of generality, we may assume that 𝜁 is not orthogonal to the
boundary at z, and so neitheris ∇𝑢0(𝑧). Choosing now a tangent vector 𝜏 such that 𝜏 �⊥ ∇𝑢0(𝑧) we get

1
|∇𝑢̃0 |2

(𝑧) =
1

|∇𝑢0 |2
(𝑧). (52)

It follows that

|∇𝑢0 | (𝑧) = |∇𝑢̃0 | (𝑧), (53)
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and, as we already know that 𝜏 · ∇𝑢0(𝑧) = 𝜏 · ∇𝑢̃0(𝑧) for all 𝜏 as above, we also conclude that

𝜕𝜈𝑢0(𝑧) = 𝜕𝜈 𝑢̃0 (𝑧). (54)

As Λ𝛾 (𝑢0 |𝜕Ω) = Λ𝛾̃ (𝑢0 |𝜕Ω), we get

𝛾(𝑧) = 𝛾̃(𝑧). (55)

This further implies that

|𝐷Φ| (𝑧) = 1, (56)

Since now 𝐴(𝑧) = 𝐴̃(𝑧) and 𝐷Φ acts as the identity in the tangent space to 𝜕Ω at z, equation (48) can
only hold if

𝐷Φ(𝑧) = 𝐼 . (57)

1𝑠𝑡 order:

We have that

(𝜕𝜈 𝐴̃) (𝑧) =

(
𝜕𝜈

1
|𝐷Φ|

(𝐷Φ)𝑇 𝐴𝐷Φ

)
(𝑧). (58)

From this point onward, we will use the assumption that 𝜕Ω is flat in a neighborhood of z. For ease of
computation, we will rotate our coordinates so that 𝜈 = 𝑒1 and locally 𝜕Ω∩𝑈 ⊂ {𝑥1 = 0}. We also find it
notationally convenient to introduce the tangential gradient ∇′ = ∇−𝜕1𝑒1. As above, by possibly slightly
changing the vector 𝜁 in the statement of Proposition 2.2, we can make sure that 𝜁 is not tangent to 𝜕Ω
at z. Since ∇𝑢0 is close to 𝜁 in 𝐿∞ norm, we may assume, without loss of generality, that 𝜕1𝑢0(𝑧) ≠ 0.

In the previous step we have shown that 𝐷Φ(𝑧) = 𝐼. It follows that

𝜕 𝑗𝜕𝑘Φ
𝑙 (𝑧) = 0, unless 𝑗 = 𝑘 = 1. (59)

Rewriting (58) with this information, we obtain that at z

𝜕1 𝐴̃ 𝑗𝑘 = 𝜕1𝐴 𝑗𝑘 + (𝐴 𝑗1𝜕
2
1Φ

𝑘 + 𝐴1𝑘𝜕
2
1Φ

𝑗 ) − 𝐴 𝑗𝑘𝜕
2
1Φ

1. (60)

In preparation for using the equations above and denoting by 𝑎11, 𝑎 𝑗 𝑗 , 𝑎 𝑗1 terms made up of quantities
for which uniqueness has already been shown in the previous step, that is, they depend on 𝛾 |𝜕Ω∩𝑈 ,
𝑢0 |𝜕Ω∩𝑈 , and (𝜕1𝑢0) |𝜕Ω∩𝑈 . We compute

𝜕1𝐴11 = 𝜕1𝛾 |∇𝑢0 |
𝑝−2

(
1 + (𝑝 − 2)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
+ 𝜕2

1 𝑢0𝛾𝜕1𝑢0 |∇𝑢0 |
𝑝−4 (𝑝 − 2)

(
3 + (𝑝 − 4)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
+ 𝑎11. (61)

For 𝑗 ≠ 1

𝜕1𝐴 𝑗 𝑗 = 𝜕1𝛾 |∇𝑢0 |
𝑝−2

(
1 + (𝑝 − 2)

(𝜕 𝑗𝑢0)
2

|∇𝑢0 |2

)

+ 𝜕2
1 𝑢0𝛾𝜕1𝑢0 |∇𝑢0 |

𝑝−4 (𝑝 − 2)

(
1 + (𝑝 − 4)

(𝜕 𝑗𝑢0)
2

|∇𝑢0 |2

)
+ 𝑎 𝑗 𝑗 . (62)
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Also

𝜕1𝐴 𝑗1 = 𝜕1𝛾 |∇𝑢0 |
𝑝−2 (𝑝 − 2)

𝜕 𝑗𝑢0𝜕1𝑢0

|∇𝑢0 |2

+ 𝜕2
1 𝑢0𝛾𝜕 𝑗𝑢0 |∇𝑢0 |

𝑝−4 (𝑝 − 2)
(
1 + (𝑝 − 4)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
+ 𝑎 𝑗1. (63)

Since ∇ · (𝛾 |∇𝑢0 |
𝑝−2∇𝑢0) = 0, at z we have that

𝜕1
[
𝛾 |∇𝑢0 |

𝑝−2𝜕1𝑢0
]
= −∇′ ·

[
𝛾 |∇𝑢0 |

𝑝−2∇′𝑢0
]
= 𝜕1

[
𝛾̃ |∇𝑢̃0 |

𝑝−2𝜕1𝑢̃0
]
, (64)

by the previous step. Let 𝜉1 = 𝜕1(𝛾 − 𝛾̃) (𝑧) and 𝜉2 = 𝜕2
1 (𝑢0 − 𝑢̃0) (𝑧). It follows that

Θ11𝜉1 + Θ12𝜉2 = 0, (65)

where

Θ11 = 𝜕1𝑢0 |∇𝑢0 |
𝑝−2, (66)

Θ12 = 𝛾 |∇𝑢0 |
𝑝−2

(
1 + (𝑝 − 2)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
. (67)

Let 𝜉3 = 𝜕2
1Φ

1(𝑧). Taking 𝑗 = 𝑘 = 1 in (60), we obtain the equation

Θ21𝜉1 + Θ22𝜉2 + Θ23𝜉3 = 0, (68)

where

Θ21 = |∇𝑢0 |
𝑝−2

(
1 + (𝑝 − 2)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
(69)

Θ22 = 𝛾𝜕1𝑢0 |∇𝑢0 |
𝑝−4(𝑝 − 2)

(
3 + (𝑝 − 4)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
(70)

Θ23 = 𝛾 |∇𝑢0 |
𝑝−2

(
1 + (𝑝 − 2)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
. (71)

Taking 𝑘 = 𝑗 in (60), we obtain the equation

Θ31𝜉1 + Θ32𝜉2 + Θ33𝜉3 = −2𝜕2
1Φ

𝑗𝛾 |∇𝑢0 |
𝑝−2 (𝑝 − 2)

𝜕 𝑗𝑢0𝜕1𝑢0

|∇𝑢0 |2
, (72)

where

Θ31 = |∇𝑢0 |
𝑝−2

(
1 + (𝑝 − 2)

(𝜕 𝑗𝑢0)
2

|∇𝑢0 |2

)
, (73)

Θ32 = 𝛾𝜕1𝑢0 |∇𝑢0 |
𝑝−4 (𝑝 − 2)

(
1 + (𝑝 − 4)

(𝜕 𝑗𝑢0)
2

|∇𝑢0 |2

)
, (74)

Θ33 = −𝛾 |∇𝑢0 |
𝑝−2

(
1 + (𝑝 − 2)

(𝜕 𝑗𝑢0)
2

|∇𝑢0 |2

)
, (75)
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Under our assumptions, we are still free to rotate the coordinate axes, as long as the normal direction
remains that of 𝑥1. We can therefore arrange that 𝜕 𝑗𝑢0(𝑧) = 0. In this case we then have the system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θ11𝜉1 + Θ12𝜉2 = 0,

Θ21𝜉1 + Θ22𝜉2 + Θ23𝜉3 = 0,

Θ31𝜉1 + Θ32𝜉2 + Θ33𝜉3 = 0.

(76)

Denoting 𝜆(𝑧) = 𝛾2 (𝑧) |∇𝑢0 |
3𝑝−8 (𝑧), we compute the determinant��������

Θ11 Θ12 0

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

��������
= 𝜆(𝑧)

��������
𝜕1𝑢0 |∇𝑢0 |

2
(
1 + (𝑝 − 2) (𝜕1𝑢0 )

2

|∇𝑢0 |2

)
0

1 + (𝑝 − 2) (𝜕1𝑢0 )
2

|∇𝑢0 |2
(𝑝 − 2)𝜕1𝑢0

(
3 + (𝑝 − 4) (𝜕1𝑢0 )

2

|∇𝑢0 |2

)
1 + (𝑝 − 2) (𝜕1𝑢0 )

2

|∇𝑢0 |2

1 (𝑝 − 2)𝜕1𝑢0 −1

��������
= 𝜆(𝑧)

��������
𝜕1𝑢0 |∇𝑢0 |

2
(
1 + (𝑝 − 2) (𝜕1𝑢0 )

2

|∇𝑢0 |2

)
0

0 (𝑝 − 2)𝜕1𝑢0

(
3 + (𝑝 − 4) (𝜕1𝑢0 )

2

|∇𝑢0 |2

)
1 + (𝑝 − 2) (𝜕1𝑢0 )

2

|∇𝑢0 |2

2 (𝑝 − 2)𝜕1𝑢0 −1

��������
= 𝜆(𝑧)

[
2|∇𝑢0 |

2
(
1 + (𝑝 − 2)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)2

−(𝑝 − 2) (𝜕1𝑢0)
2
(
3 + (𝑝 − 4)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)]
= 𝜆(𝑧)

[
2|∇𝑢0 |

2 + (𝑝 − 2) (𝜕1𝑢0)
2 + 𝑝(𝑝 − 2)

(𝜕1𝑢0)
4

|∇𝑢0 |2

]
≠ 0, (77)

where the conclusion holds because, since 𝑝 > 1, both 𝑝 − 2 > −1 and 𝑝(𝑝 − 2) > −1. It follows that

𝜕1𝛾(𝑧) = 𝜕1𝛾̃(𝑧), 𝜕2
1 𝑢0 (𝑧) = 𝜕2

1 𝑢̃0 (𝑧), 𝜕2
1Φ

1(𝑧) = 0. (78)

Returning to (60), with 𝑘 = 1, we are left with

𝐴11𝜕
2
1Φ

𝑗 = 0, (79)

which implies that

𝜕2
1Φ

𝑗 (𝑧) = 0, (80)

for all directions j that are orthogonal to the projection of ∇𝑢0 into the tangent plane. If we choose
our coordinates so that the direction of 𝑥𝑙 is the same as that of the just-mentioned projection, then
𝐴𝑙1 (𝑧) ≠ 0, so (60), with 𝑗 = 𝑘 = 𝑙 gives

𝜕2
1Φ

𝑙 (𝑧) = 0. (81)

Therefore, combining (59) and (81), we have that

𝜕 𝑗𝜕𝑘Φ(𝑧) = 0, 𝑗 , 𝑘 = 1, . . . , 𝑛. (82)

https://doi.org/10.1017/fms.2025.10095 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10095


12 C. Carstea and A. Feizmohammadi

𝑚-th order:

For multiindices 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N
𝑛, suppose that we know that

𝜕𝛼𝛾(𝑧) = 𝜕𝛼𝛾̃(𝑧), 𝛼1 = 0, 1, . . . , 𝑚 − 1, (83)

𝜕𝛼𝑢0(𝑧) = 𝜕𝛼𝑢̃0(𝑧), 𝛼1 = 0, 1, . . . , 𝑚, (84)

𝜕𝛼𝐷Φ(𝑧) = 𝜕𝛼 𝐼, 𝛼1 = 0, 1, . . . , 𝑚 − 1. (85)

We have that

(
𝜕𝑚

1 𝐴̃
)
(𝑧) =

(
𝜕𝑚

1
1

|𝐷Φ|
(𝐷Φ)𝑇 𝐴𝐷Φ

)
(𝑧). (86)

Using our induction assumptions, we can rewrite this as

𝜕𝑚
1 𝐴̃ 𝑗𝑘 = 𝜕𝑚

1 𝐴 𝑗𝑘 + (𝐴 𝑗1𝜕
𝑚+1
1 Φ𝑘 + 𝐴1𝑘𝜕

𝑚+1
1 Φ 𝑗 ) − 𝐴 𝑗𝑘𝜕

𝑚+1
1 Φ1. (87)

Denoting by 𝑎 𝑗𝑘 terms made up of quantities whose uniqueness follows from the induction hypothe-
ses, that is, on the quantities in (83) and (83), we have that

𝜕𝑚
1 𝐴 𝑗𝑘 = 𝜕𝑚

1 𝛾(𝑧) |∇𝑢0 |
𝑝−2

(
𝛿 𝑗𝑘 + (𝑝 − 2)

𝜕 𝑗𝑢0𝜕𝑘𝑢0

|∇𝑢0 |2

)
+ 𝜕𝑚+1

1 𝑢0(𝑝 − 2)𝛾(𝑧) |∇𝑢0 |
𝑝−4

×

(
𝛿 𝑗𝑘𝜕1𝑢0 + (𝑝 − 4)

𝜕 𝑗𝑢0𝜕𝑘𝑢0

|∇𝑢0 |2
𝜕1𝑢0 + 𝛿1 𝑗𝜕𝑘𝑢0 + 𝛿1𝑘𝜕 𝑗𝑢0

)
+ 𝑎 𝑗𝑘 . (88)

Since ∇ · (𝛾 |∇𝑢0 |
𝑝−2∇𝑢0) = 0, at z we have that

𝜕𝑚
1

[
𝛾 |∇𝑢0 |

𝑝−2𝜕1𝑢0
]

= −𝜕𝑚−1
1 ∇′ ·

[
𝛾 |∇𝑢0 |

𝑝−2∇′𝑢0
]
= 𝜕𝑚

1
[
𝛾̃ |∇𝑢̃0 |

𝑝−2𝜕1𝑢̃0
]
. (89)

This can be rewritten as

𝜕𝑚
1 (𝛾 − 𝛾̃)𝜕1𝑢0 |∇𝑢0 |

𝑝−2

+ 𝜕𝑚+1
1 (𝑢0 − 𝑢̃0)𝛾 |∇𝑢0 |

𝑝−2
(
1 + (𝑝 − 2)

(𝜕1𝑢0)
2

|∇𝑢0 |2

)
= 0. (90)

If we set 𝜉1 = 𝜕𝑚
1 (𝛾 − 𝛾̃) (𝑧), 𝜉2 = 𝜕𝑚+1

1 (𝑢0 − 𝑢̃0), 𝜉3 = 𝜕𝑚+1
1 Φ1, and if we choose a direction j that is

orthogonal to the projection of ∇𝑢0(𝑧) into the tangent space to 𝜕Ω at z, we obtain the same system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θ11𝜉1 + Θ12𝜉2 = 0,

Θ21𝜉1 + Θ22𝜉2 + Θ23𝜉3 = 0,

Θ31𝜉1 + Θ32𝜉2 + Θ33𝜉3 = 0.

(91)

Since with our assumptions ��������
Θ11 Θ12 0

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

�������� ≠ 0, (92)
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it follows that

𝜕𝑚
1 𝛾(𝑧) = 𝜕𝑚

1 𝛾(𝑧), 𝜕𝑚+1
1 𝑢0(𝑧) = 𝜕𝑚+1

1 𝑢0(𝑧), 𝜕𝑚+1
1 Φ1(𝑧) = 0. (93)

Setting 𝑘 = 1 in (87), we have

𝐴11𝜕
𝑚+1
1 Φ 𝑗 = 0, (94)

which implies that

𝜕𝑚+1
1 Φ 𝑗 (𝑧) = 0, (95)

for all directions j that are orthogonal to the projection of ∇𝑢0 into the tangent plane. If we choose
our coordinates so that the direction of 𝑥𝑙 is the same as that of the just-mentioned projection, then
𝐴𝑙1 (𝑧) ≠ 0, so (87), with 𝑗 = 𝑘 = 𝑙 gives

𝜕𝑚+1
1 Φ𝑙 (𝑧) = 0. (96)

Therefore

𝜕𝛼𝐷Φ(𝑧) = 𝜕𝛼 𝐼, 𝛼1 = 0, 1, . . . , 𝑚. (97)

This completes the induction step.
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