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Abstract

In this paper we prove a general uniqueness result in the inverse boundary value problem for the weighted p-Laplace
equation in the plane, with smooth weights. We also prove a uniqueness result in dimension 3 and higher, for real
analytic weights that are subject to a smallness condition on one of their directional derivatives. Both results are
obtained by linearizing the equation at a solution without critical points. This unknown solution is then recovered,
together with the unknown weight.

1. Introduction

Let Q c R", n > 2, be a compact connected set with nonempty interior and a smooth boundary, let
v € C*(Q) be a positive function', and finally let p € (1,2) U (2, o0). We consider the boundary value
problem
V- (y|Vu|P~2Vu) = 0,
(1)

ulpo = f,

where f, u are real-valued functions. Equation (1) is known as the weighted p-Laplace equation and it
is a quasilinear, degenerate elliptic equation. The forward problem for this equation is well studied and
we have

Theorem 1.1 (e.g., [33, Theorem 1]). Let f € C1-@(0Q) for some a € (0, 1]. There exist € (0, 1) and
C(lfllcr.eaq)) > 0 nondecreasing such that equation (1) has a unique weak solution u € CP(Q) and

lullcre @) < CUIfllcre o)) )
It is therefore possible to define the Dirichlet-to-Neumann map associated to (1) by
Ay(f) = (MValP20)| . v fe o), )
where u is the unique solution to (1) and v is the exterior normal unit vector on 9Q.

Note on notation: since we choose € to denote a closed set, C* () is the space that other works might be denoted by C* (Q),
i.e. the space of restrictions of C*° (R™) functions to Q = Q.
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In [7], Calderén proposed the following question/inverse problem: Can an elliptic coefficient y be
recovered from the Dirichlet-to-Neumann map associated to the equation V - (yVu) = 0? A positive
answer for general smooth coefficients y was first provided in [42] in dimension 3 or higher and by [35]
in the plane. In the intervening decades, similar questions for other equations have been investigated in
a large number of papers. It is beyond the purposes of our work to give a full account of the existing
inverse problems literature. We will reference below those works that are most closely related to our
own, in terms of subject matter or technique.

In this paper we are interested in the inverse problem of recovering the a priori unknown coefficient
v in (1), given the knowledge of A, . This is a natural analogue of the original problem of Calderén. We
will prove two results. The first is the following general uniqueness result in the plane.

Theorem 1.2. Let n = 2 and let y, 7 € C*(Q) be strictly positive functions. If A, = Ay, theny = 7.

In dimensions 3 and higher we prove the following uniqueness result for weights belonging to C* (£2),
the space of real-analytic functions on Q.

a neighborhood of which 0Q is flat. There exists u > 0, depending only on Q and n, such that if
Y, 7 € C¥(Q) are strictly positive functions with ||{ - Vy||lco.a(q), [I{ - VI lco.eq) < p, then Ay = Ay
implies y = .

Theorem 1.3. Let n > 3 and let { € R" be a unit vector. Suppose there exists a point z € 0 in

The study of inverse problems for nonlinear equations is not new, but in recent years there has been
a considerable increase in the interest for this topic. As examples, we can cite the papers [17], [21],
[23], [24], [28], [29], [31], [30], [40] on semilinear equations, and [10], [9], [11], [14], [15], [8], [16],
[20], [22], [25], [34], [37], [38], [39], [41] on quasilinear equations. By and large, all these works rely
on a so-called second/higher linearization method. These ideas go back to [21], where what one may
call a first-order linearization method was used. As commonly employed, the method consists of using
Dirichlet data that depends on a small (or large) parameter €, typically of the form e€¢ (or A + €¢, with
A a constant, if constants are a solution to the linear part of the equation). One then uses the asymptotic
expansion of the Dirichlet-to-Neumann map in terms of the parameter € to obtain information about the
coefficients of the equation. Sometimes this is presented as differentiating the equation with respect to
the small parameter, then setting it to zero.

Our paper is not the first to take up the inverse boundary value problem for the weighted p-Laplacian.
The works [6], [3], [4], [5], [19], [27], [36] all address aspects of the same problem. We note that
a uniqueness result without additional constraints, such as monotonicity, has not yet been previously
derived for the weighted p-Laplacian. Also, past boundary determination results have only yielded y|s
and 0,y |sq, but not the rest of the derivatives of y on the boundary (see [36], [3]). For other degenerate
equations, the only known results are those of [12], [13], where general uniqueness results are derived
for the coefficients of porous medium equations.

The approach to the proofs of Theorems 1.2 and 1.3 also makes use of a linearization method. In
equation (1) we use Dirichlet data of the form f = ¢o + €¢, with € a small parameter. Let u. be the
corresponding solution and, assuming that we are justified in taking the derivative, let i = d—dEuE €=0-
Further assuming we can differentiate the equation, it is not hard to see that i should satisfy the
anisotropic linear equation

V. (AVu) =0,
. @)
itloa = ¢,
where A is the matrix with the uy-dependent coefficients
8'I/loaku0
A =y|VuolP2(6 i + (p - 2) 22— 5
jk 7| ”0| ( Jjk (P ) |Vl/t()|2 ( )

The Dirichlet-to-Neumann map A, determines the Dirichlet-to-Neumann map A 4 for the equation (4).
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In order to use already established results for the determination of the coefficient matrix A, we need
it to be elliptic. Indeed, even the differentiability of u. w.r.t. € is in question unless that is the case. We
then see that the unknown 1y must be guaranteed to have no critical points. In dimension 2, by results of
Alessandrini and Sigalotti in [2], we can guarantee the absence of critical points by choosing Dirichlet
data that has single local minimum and maximum points on Q2. In dimension 3 and higher something
like this is unlikely to hold, as even for linear elliptic equations it is known that for each Dirichlet data
there is an open set of smooth coefficients that produce solutions with critical points (see [1]). We can
show, however, that, for coefficients y that vary slowly in one direction, there exists explicit Dirichlet
data for which no critical points appear.

We can also point out here a simple corollary of our linearization result (Proposition 2.3 below), for
weights that are constant in one direction.

Corollary 1.1. Let n > 3 and ¢ € R" be a unit vector. If v,y € C®(Q) are such that { -Vy =(¢-Vy =0
and Ay, = Ay, theny = 3.

Proof. In this case ug = ¢ - x is a solution of (1), with either weight. Then

Ajk =y + (P =2)8k), A =766 + (p = 2)L54x). (6)
After a rescaling in the ¢ direction, the linearized problem reduces to the classical Calderén problem
with isotropic conductivities. m

The linearization procedure is detailed in section 2. In section 3 we give a proof of Theorem 1.2.
By the well-known result [35] of Nachman, we have uniqueness for the coefficient matrix A, up to
diffeomorphism invariance. Making use of the particular structure of A, we then succeed in showing
that the diffeomorphism relating A and A must be trivial and that y = 7. In section 4 we give the proof of
Theorem 1.3. Our approach is to use boundary determination results for equation (4) to obtain the values
of all tangential directions of A on the boundary, together with all their normal direction derivatives.
From this information we are then able to inductively show uniqueness for the values of all the normal
direction derivatives (95M0|g)g, 6fy|ag, k =0,1,2,.... Since here vy is assumed to be a real-analytic
function, this is enough to recover it on Q.

2. Linearizing the p-Laplace equation

For each & € R \ {0} let

Jj(f):|§|p_2§j, j=1,...,n. (7)
Then
5e. 1) = lér (m +p =27 ) 8)
In what follows, we will repeatedly use Taylor’s formula
n 1
Ji(0) =Jj(§)+Z(§k—§k)/O Og J(E+1(L - €))dt. )

k=1

We plan to linearize equation (1) near some solution ug, whose boundary data uglgo = ¢ is known.
As will become apparent below, we can only perform the linearization if uo does not have any critical
points in Q. In dimension two plenty of such solutions exist, thanks to the following proposition due to
Alessandrini and Sigalotti.

Proposition 2.1 (see [2, Theorem 5.1]). If n = 2 there exists boundary data ¢y € C*(9Q) independent
of vy such that the corresponding solution ug of (1) is in C*(Q) and |Vuo(x)| > 0 for any x € Q.
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In higher dimensions, even for a linear elliptic equation with unknown coefficients it is impossible
to guarantee the absence of critical points (see [1]). We can still show the existence of such a solution
provided the weight vy is sufficiently close to a constant.

Proposition 2.2. Let { € R" be a unit vector. There exists 1 > 0 so that if |[{ - Vy|lco.a(q) < u, then
there exists ug € C*(Q) which solves (1) with boundary data ¢o = ¢ - x, and is such that |Vuo(x)| > 0
for any x € Q.

Proof. Without loss of generality, we assume that £ = (1,0, ...,0). We make the Ansatz

up(x) =x1+ R, Rlsg=0. (10)
By (9) we have
D Bix(VR)R =J;(Vuo) = y61,, (11)
k
! (017 +1&)(O1k + 1&k)
Bjx(é) = e +1 p—z((;_ +(p-2)—L—21 dr. 12
@ =7 [ ler o6l s+ (p -2 LEL T (12
Taking the divergence of the above we get
{ V- (B(VR)VR) = -0y, 1%
Rlag = 0.

LetV € C>?(Q) be such that IVllc2.e (@) < 1/2and define the map T'(V)) = U, where U is the solution to

(14)

{ V- (B(YV)VU) = 8,7,
Ulsa = 0.

Since B(VV) € C'%(Q) are uniformly elliptic coefficients, it follows that a unique solution U € C>?(Q)
exists (see [18, Theorem 6.14]). Furthermore, by [18, Theorem 6.6] we have

IUllc2.e @) < CllO1yllco.eq)- (15)

If the right hand side is less than 1/2, by Schauder’s fixed point theorem (see [18, Theorem 11.1]) it
follows that T has a fixed point on the ball of radius 1/2 in C>“(Q). By uniqueness of solutions for (1),
this must be R and we conclude that

1
IVR|L=(q) < X (16)
SO
1
[Vug(x)| > 5 Vx € Q. a7
Note that the nonvanishing of the gradient Vi, makes the equation satisfied by ug elliptic, so the
smoothness of 1 follows. |

In what follows we will assume that ug is as in the preceding two propositions. Let A be the matrix
with coefficients

ajl/loakuo

Ak =v|VuolP 26+ (p =2
Jjk 7| M0| Jjk (P ) |Vu0|2

(18)
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Proposition 2.3. Under the assumptions of either Proposition 2.1 or Proposition 2.2, we have that the
Dirichlet-to-Neumann map A, for the weighted p-Laplace equation (1) determines the Dirichlet-to-
Neumann map A4 for the linear equation V - (AVu) = 0, on the same domain Q.

Proof. For ¢ € C*(0Q), and € € R small, let u. be the solution of

V. (7|Vu€|p_2VuE) =0,
(19)
Uelaq = uoloq + €¢.
We make the Ansatz
Ue =Ug+ Re. (20)
By Theorem 1.1 and the theorem of Arzela-Ascoli, it follows that (on a subsequence) we have that

R. — Ry in C'(Q). Since then ug + Ry would be a weak solution of the same boundary value problem
ug satisfies, it follows that R, — 0 in C'(Q). Since the limit is the same for every subsequence, it
follows that in fact we do not need to pass to a subsequence. This is easily seen as follows: suppose there
is a subsequence of R, of R¢so that liminfe, o+ [|Re, — Rollct © > 0; however, the argument above
also shows that R, has a subsequence which converges to Rg in C 1(Q), which is a contradiction.

By Taylor’s formula we have that

1
ZakRE/ 6§k]j(Vu0+tVRE)dt:Jj(Vue)—Jj(Vuo). 21
A 0
Let
1
AJE.k = )/‘/0 angj(Vuo +Z‘VRE)dl. (22)

Since R, — 01in C, it follows that |Vug + tVR| is uniformly bounded and uniformly bounded away
from zero. This implies that A€, is a set of elliptic coefficients, with ellipticity bounds independent of
€. Taking gradients in (21) we get that R satisfies

V- (A°VR.) =0,
(23)
Reloa = €9,
It follows that
”Re”CLB(Q) < Ce. (24)

We can again invoke the theorem of Arzela-Ascoli to conclude that there must exist # € C!(Q) such
that e 'R, — 1 in C'(Q). Taking the limit in (23) we see that i must be a weak solution of

V- (AVu) =0,
(25)
oo = ¢,
Returning to (21), dividing by € and taking the limit € — 0, we have that
J(Vu.) —v-J(V
v+ AV = lim 52 (Ve) = v J(Vuo)
e—0 €
A + -A
— iy Dy (woloe €¢) — Ay (uoloa) . 26)
e—0 €
We see then that the Neumann data for the equation (25) is determined by the map A,,. O
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3. Proof of Theorem 1.2

Suppose n = 2 and we have vy, ¥ as above such that A, = Ay. We use notation such as u, if¢ to denote
the corresponding solutions to (19), etc. Observe that one consequence of the identity of the DN maps is

/ YIViuol? dx = / F1Vitol? dr.
Q Q

27)

By Proposition 2.3 we have Ay = Aj4. From [35, Theorem 2] it follows that there must exist a

diffeomorphism @ = (®!, ®?) : Q — Q such that ®|sq = Id and

A _ 1 T o -1

Here D® is the matrix with coefficients (D®);x = aid>k.
Note that

81100
det(d,-k +(p- 2)M)

|Vuol?

((91u0)2)(l +(p-2) (8au0)*

[Vuol? [Vuol?

:(1+(p—2)

upru)*

(0
- (p-2) - 1.
(p-2) Vaol p

Taking determinants on both sides of (28) we obtain
2\? 2\? 2 2 1
(11Vaol72)" = (vIVuol”2) 1D@I 2 DD 0 07!,
SO

7| Viig|P~% = y|Vug|P~2 o @71

(28)

(29)

(30)

€1y

Another consequence of As = A is that for each ¢ we have i = ii o ®~!. Incidentally, for ¢ = ug|sq

the solution to the linear equation is # = ug. Therefore

fip = ugo @ (32)
It then follows that
Vu() = D‘D(VIZ() o (1)), (33)
which we can use in (28), together with (31), to get
A = §|Viig|P 7 ———| [(D®) D®| 0 @' + (p - 2)—|W°|2
|D®| o @1 Vo[> o @~
_1 Viig ® Vi _
x [(D®)" D®] o @ IW [(D®) DD] o @71 . (34)
Let
D®)' DD Viip ® Vi Viio|?
- | LEEDD gyt po YOOV, pgpjo gt 1ROl (35)
|DO| |Viip|? [Vuol?>o @1
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Note that F, P are symmetric matrices and that P2 =P Identifying P, F, and « in (34) and (18), we have
F+a(p-2)FPF =1+ (p-2)P. (36)

As both I + (p — 2)P and F are invertible and the left-hand side of (36) can be factored as either
F(I+(p—=2)PF)or (I+(p—-2)FP)F, it follows that both I + a(p —2)PF and I + a(p — 2) FP are
also invertible.

If we multiply (36) by P on the left, we get

PF +a(p-2)PFPF =(p-1)P, 37
SO

PF=(p-1){I+a(p-2)PF)"'P, (38)
since the inverse exists. Multiplying by P on the right and using that P> = P yields

PFP=(p-1)(I+a(p-2)PF)"'P?

=(p-1)({+a(p-2)PF)"'P = PF. (39)
On the other hand,
FP+a(p—2)FPFP = (p - 1)P, (40)
SO
FP=(p-1)P(I+a(p-2)FP)!, (41)
and therefore
FP=PFP =PF. (42)

Since F' and P commute, they can be simultaneously diagonalized. Since P is a rank-one projection
matrix, we can write

F=0P+n(I-P), 0,nscalars. (43)

Multiplying (36) by I — P and using the commutativity of F and P together with the identity
P(I — P) =0, it is easy to see that n = 1. Multiplying (36) by P and using (43) yields

B+a(p-20)P=(p-1DP = 6O+a(p-2)>=p-1. (44)
On the other hand, taking the determinant of the definition of F in (35) and also in (43) gives

_ |DD|?
DO

o®d ! =detF=6n=06. (45)

It follows that § = 1, F = I, and by (44) also that & = 1.
Suppose a nontrivial diffeomorphism such as @ exists. Let o be a scalar conductivity on € and let

o (y) = %(D@TD«D 0@ (y) = o @ (y)F(y) = 0 ®' (). (46)

This new conductivity is also scalar and gives the same DN map as 0. This violates the known uniqueness
results for the Calderén problem in the plane (e.g., see [35]). So ® must be trivial. Therefore ug = i
andy = 7.
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4. Proof of Theorem 1.3

As in the previous section, we will denote by ug, #o, A, A, etc. the functions corresponding to the
coefficients y and ¥ respectively. By Proposition 2.3 we have that A4 = A ;.

It is an immediate consequence of [32, Proposition 1.3] (or [26, Theorem 1.3]) that there must exist
a neighborhood of U of dQ and a smooth diffeomorphism @ : U N Q — U N Q, for which we will also
use the notation ® = (le, ..., ®"), with ®|50 = Id, and such that

L 1
0lAl =86 —— (DD ADD®| , j=0,1,2,.... 47
VAl VIDCDI( ) o J 47

Let z € 0Q. Unless otherwise specified, all the following computations will be pointwise, at this
point z. We wish to proceed inductively in the order of differentiation in (47).

Oth order:
‘We have that

_ 1
 |D®|(z)

A(z2) (DD (2)A(z)DD(2). (48)

If 7 is any unit tangent vector to 9Q at z, we must have that D®(z)7 = 7. Since uglgg = foloq, we also
have that 7 - Vug(z) = 7 - Viig(z). Therefore

{(2)7 = 9(2) Vil |72 (T Vu)*(2)
7+ A(2)T = 7(2)|Viip|” (Z)(1+(P 2) Vol (2) ) (49)
On the other hand, by (48) we have
o " ) <T~Vuo>2<z))
T AQT = ey IVl (z>(1+<p T (50)

We can vary 7 in the tangent space to the boundary at z, which is at least two-dimensional. Our plan
is to use two different choices for 7.

Note that the intersection of the space of vectors that are orthogonal to Vug(z) with the tangent space
to the boundary at z has dimension at least n — 2, so it cannot be trivial. By choosing 7 L Vug(z) we
can separately identify

7(2)|Vio|"2(z) = ¥(2)|VuolP2(2). (51)

|D®|(z)
It is, in principle, possible for the tangent space to the boundary at z to coincide with the space of
vectors that are orthogonal to Vug(z). Recall that on the boundary we are choosing u(x) = ¢ -x, therefore
Vuo(z) is orthogonal to the boundary at z if and only if £ is. If that is the case, note that a unit vector
{’ € R” that is sufficiently close, but not identical, to ¢ will still satisfy the condition in the statement
of Proposition 2.2. Therefore, without loss of generality, we may assume that £ is not orthogonal to the
boundary at z, and so neitheris Vug(z). Choosing now a tangent vector 7 such that 7 £ Vug(z) we get

1 (2) = 1
Vao2 "~ [Vuol2

(2). (52)

It follows that

[Vuol(2) = Vil (2), (53)
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and, as we already know that 7 - Vuy(z) = 7 - Viip(z) for all T as above, we also conclude that

Oyuo(z) = dyiio(2). (54)
As Ay (uolaa) = Ay (uolaa), we get
y(2) = 7¥(2). (55)
This further implies that
|DD|(z) =1, (56)
Since now A(z) = A(z) and D® acts as the identity in the tangent space to dQ at z, equation (48) can
only hold if
D®(z) = 1. (57)
15! order:
We have that
(0,8)(2) = (0, 5 (DO 4D (2, (58)

From this point onward, we will use the assumption that dQ is flat in a neighborhood of z. For ease of
computation, we will rotate our coordinates so that v = e¢| and locally 9QNU c {x; = 0}. We also find it
notationally convenient to introduce the tangential gradient V' = V-9, e;. As above, by possibly slightly
changing the vector ¢ in the statement of Proposition 2.2, we can make sure that { is not tangent to 92
at z. Since Vuy is close to ¢ in L™ norm, we may assume, without loss of generality, that d;uy(z) # 0.

In the previous step we have shown that D®(z) = I. It follows that

9;0k®'(z) =0, unlessj=k=1. (59)
Rewriting (58) with this information, we obtain that at z
NAjk = 0 Aji + (Aj10F D" + A1 97 D)) — A 07" (60)

In preparation for using the equations above and denoting by a1, a, a1 terms made up of quantities
for which uniqueness has already been shown in the previous step, that is, they depend on y|sonu,
uoloanu » and (d1uo)|aenu - We compute

- d1up)*
11 = 0y 1Tl 1+ (- 2)

|Vuol?

_ d1up)?
+ 0ugydiuo|VuoP~* (p - 2)(3 +(p-4) (|Vlu(?|)2 ) +ap. (61)
For j # 1
_ (8;u0)?
01A;; = 01y|Vuol? 2(1 +(p-2) |Vju0|2
_ (8u0)?
+ 07 ugydiuo|Vuo|P 4(p—2)(1 +(P—4)|Vju—0|2 +ajj. (62)
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Also

A1 = d1y|VuelP2(p -2
141 17|Vuo|P™(p = 2) Vo2

+ 0Fugydjuo|VuolP™ (p = 2)[ 1+ (p — 4)

Since V - (y|Vug|P">Vug) = 0, at z we have that

01 [yIVuolP201ug| = =V - [y|VuolP 2V uo| = 1 [¥|Viio|"~*drdo |,

6] uoal ug

(O1u0)

2

+aj.
[Vuo|? !

by the previous step. Let £ = 91 (y — 7)(z) and &, = 612(140 — iig)(z). It follows that

01161 +0Opé
where
©11 = duo|Vuo|P 2,

O12 = y|VuoP 21+ (p

=0,

-2)

(01up)?
[Vuol* |

Let & = 612<D1 (). Taking j = k = 1 in (60), we obtain the equation

02181 + Opnésr + 0383 =0,

where

0 = |V“O|p_2(1 +(p-2)

®22 = ydiuo|Vuol?~*(p - 2)(3 +(p—4)

(01u0)?
[Vuol?

Oy = VIVuolpz(l +(p - 2)(—

Taking k = j in (60), we obtain the equation

O31&1 + Onéy + B33 = 20707 y|Vug|P(p - 2)

where

O3 = |Vbt0|p_2(1 +(p-2)

©32 = yd1uo|Vuo|P ™ (p - 2)(1 +(p-4)

033 = —7|Vuo|p_2(1 +(p-2)
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[Vuol?

|

)

6]14061 ug
|Vuol?

bl

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)
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Under our assumptions, we are still free to rotate the coordinate axes, as long as the normal direction
remains that of x;. We can therefore arrange that d;u¢(z) = 0. In this case we then have the system

011é1+012é2 =0,
02161 + Onésr + 02383 =0, (76)
03161 + 038, + 03363 = 0.

Denoting A(z) = y*(z)|Vuo|*?~3(z), we compute the determinant

©1 02 0
0721 O O3
031 O3 B33
Biug IVu0|2(1 +(p-2) ‘fv‘j(j%z ) 0
= A 4 (-2 D (- 2ponun(3+ (p - L 1) 2
1 (p—2)0iuy -1
Auo IVM()|2(1+(P—2) ‘mf) 0
= un)2 un)2
@) L R R
2 (p—2)01up -1
[ 2
o 2
=A(2) 2|Vu0|2(1 +(p —2)( 1u0)2 )
| |Vuo|
o 2
L~ D)@ (3 + (p - 4y L)
[Vuo|?
) i
= A(2)|2|Vuo? + (p -2 (91Lt02+pp—2(1u0) 0, (77)
|Vuol?

where the conclusion holds because, since p > 1, both p —2 > —1 and p(p —2) > —1. It follows that
y(2) = 019(2),  Ofuo(z) = diig(2), 87 @'(2) =0. (78)
Returning to (60), with k = 1, we are left with
Aol =0, (79)
which implies that
D/ (z) =0, (80)

for all directions j that are orthogonal to the projection of Vug into the tangent plane. If we choose
our coordinates so that the direction of x; is the same as that of the just-mentioned projection, then
Aj1(z) # 0,50 (60), with j = k = [ gives

3! (2) = 0. (81)
Therefore, combining (59) and (81), we have that

8;®(z) =0, jk=1,...,n. (82)
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m-th order:
For multiindices @ = (a1, . .., @,) € N", suppose that we know that
0% (z) =0%(z), a1 =0,1,...,m—1, (83)
0%uo(z) = 0%ip(z), a1 =0,1,...,m, (84)
0°D®(z) =0, a;=0,1,...,m—1. (85)
‘We have that
. 1
(07"A)(2) = a;ﬂM(ch)TADcD (2). (86)

Using our induction assumptions, we can rewrite this as
O Ak = 07" Ajic + (Aj 0y % + A a™ @) — Ao o' (87)

Denoting by a ;. terms made up of quantities whose uniqueness follows from the induction hypothe-
ses, that is, on the quantities in (83) and (83), we have that

_ 8~u06ku0
07" Ak = 07"y (2)[VuolP |8k + (p = 2) =0—>—
[Vuol
+ 07" uo(p - 2)y ()| Vuo |~
0;ug0ug
X 6jk61u0 + (p - 4)W81u0 + 61j6ku0 + 61k6ju0 +ajk. (88)
0
Since V - (y|Vuo|P~?>Vug) = 0, at z we have that
07" [¥IVuolP~20yuo
= ="'V [¥IVuolP72V ug| = 0" [#1Vio|P2dr o (89)
This can be rewritten as
7" (y = 7)0uo| Vuo |~
(01u0)*\ _

+ 07 (uo — i)y [Vuo|P 2|1+ (p - 2) (90)

[Vuol? |

If we set &1 = 0" (y — ¥)(2), é2 = 61””1 (ug — ), & = 6{"“@1, and if we choose a direction j that is
orthogonal to the projection of Vuy(z) into the tangent space to dQ at z, we obtain the same system

01161 + 0126, =0,
02181 + Onér + 02383 =0, on
03181 + 038 + 03383 = 0.
Since with our assumptions
011 012 0
©21 O O3] # 0, 92)
031 O3 O3
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it follows that
Oy (2) = 0"y (2), "™ uo(z) = 87" ug(2), o' @!(2) = 0. 93)
Setting k = 1 in (87), we have
Apalel = o, (94)
which implies that
ol (z) =0, 95)

for all directions j that are orthogonal to the projection of Vug into the tangent plane. If we choose
our coordinates so that the direction of x; is the same as that of the just-mentioned projection, then
A (z) # 0, s0 (87), with j = k =1 gives

arlal(z) = 0. (96)
Therefore
0°D®(z) =091, a;=0,1,...,m. Cn)

This completes the induction step.
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