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Abstract

We describe several exotic fusion systems related to the sporadic simple groups at
odd primes. More generally, we classify saturated fusion systems supported on Sylow 3-
subgroups of the Conway group Co; and the Thompson group F3, and a Sylow 5-subgroup
of the Monster M, as well as a particular maximal subgroup of the latter two p-groups. This
work is supported by computations in MAGMA.

2020 Mathematics Subject Classification: 20D08, 20D20, 20D05 (Primary);
55R35 (Secondary)

1. Introduction

A fusion system over a finite p-group S is a category satisfying certain conditions modeled
on properties of finite groups and the internal actions associated to their Sylow p-subgroups.
The typical example of a fusion system arises just like this: as the p-fusion category of a finite
group. In this case, certain additional conditions are satisfied which may be abstracted as
additional axioms, defining the class of saturated fusion systems. However, not all saturated
fusion systems can be realised as the p-fusion category of some finite group, giving rise to
exotic fusion systems.

Over the course of this work, we completely classify all saturated fusion systems sup-
ported on Sylow 3-subgroups of the Conway group Co; and the Thompson group F3, and a
Sylow 5-subgroup of the Monster M. In addition, we also classify saturated fusion systems
supported on a particular maximal subgroup of a Sylow 3-subgroup of F3, and of a Sylow
5-subgroup of M. Of particular interest in this determination is the occurrence of several
exotic fusion systems supported on these p-groups. In total we uncover sixteen new exotic
systems up to isomorphism, seven of which are simple, giving a rich source of reasonably
complicated examples.

We have not yet considered the implications of these new exotic fusion systems to any
of the areas in which fusion systems have application (see [6] for a survey), and have stud-
ied them purely for their interesting structural properties, and for their appearance in other
ongoing classification programs concerning fusion systems. Since exotic fusion systems
themselves are still poorly understood, at this moment a considerable amount of attention is
just focused on determining new families of examples with the ultimate goal of discerning
exotic fusion systems from those occurring as p-fusion categories of finite groups, without
having to rely on heavy machinery from finite group theory.
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Our first main result is the following, and is proved via Proposition 4-14, Theorem 4-15
and Theorem 4-16:

THEOREM A. Let F be a saturated fusion system on a 3-group S with S isomorphic to a
Sylow 3-subgroup of Coy. If O3(F) = {1} then F is isomorphic to the 3-fusion category of
Coy, Spe(3) or Aut(Spe(3)).

We point out that the 3-fusion system of Co; has been identified by work of Oliver [33,
theorem A] but from a different starting point than what is considered in this paper. We
remark that the proofs of [33, theorem A] and Theorem A do not depend on each other,
however they both reduce to a situation where one has strong information about the local
actions in the fusion system. At this point, either paper could use the other’s result but yet
again, different (and complementary) approaches are taken to prove the uniqueness of the
fusion system of Coj.

We now move on to the construction of some exotic fusion systems. We use the same
methodology to prove Theorem B and Theorem C, although the arguments vary slightly
depending on the structure of the underlying p-group S. The author first encountered the sys-
tems in Theorem B while classifying certain fusion systems which contain only two essential
subgroups [45]. These systems arise as a fusion theoretic generalisation of weak BN-pairs
of rank 2, a collection of amalgams classified by work of Delgado and Stellmacher [16]. In
Theorem B one of the exotic systems we uncover arises as a fusion system “completion” of
an amalgam of F3-type, as defined in [16]. In the case of the group Fs, the corresponding
amalgam generates the entire group. This is in contrast to the fusion system case, where the
3-fusion category of F3 requires another set of 3-local actions, corresponding to the maximal
subgroups of F3 of shape 3° : 2.Sym(6), to be properly generated.

THEOREM B. Let F be a saturated fusion system on a 3-group S with S isomorphic to a
Sylow 3-subgroup of F3. If O3(F) = {1} then either F is isomorphic to the 3-fusion category
of F3; or F is isomorphic to one of two exotic examples. In all cases, F is simple.

THEOREM C. Let F be a saturated fusion system on a 5-group S with S isomorphic to a
Sylow 5-subgroup of M. If Os(F) = {1} then either F is isomorphic to the 5-fusion category
of M; or F is isomorphic to one of three exotic examples. Two of the three exotic fusion
systems are simple.

Theorem B is proved as Theorem 5-18 while Theorem C is proved as Theorem 6-24
and Theorem 6-25. We note that the process by which we construct some of the systems
in Theorem B and Theorem C can also be applied to the 2-fusion category of J3. In this
application, one obtains three proper saturated subsystems, all of which contain no non-
trivial normal 2-subgroups. However, unlike the odd prime cases, the subsystems recovered
are realizable by finite groups. Indeed, these subsystems are isomorphic to the 2-fusion
categories of J, PSL3(4) : 2 and PGL3(4) : 2, as demonstrated in [30, theorem 4-8].

Interestingly, we record that some of the exotic fusion systems described in Theorem B
and Theorem C contain a unique proper non-trivial strongly closed subgroup which does
not support a normal fusion subsystem. In both cases, this strongly closed subgroup is the
centraliser of the second center of the Sylow p-subgroup, and is also essential in the fusion
system. This is another instance where fusion systems seem to depart from the conventions
of finite simple groups. As witnessed in [18, corollary 1-4], if G is a finite simple group with
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Exotic fusion systems related to sporadic simple groups 333

a non-trivial strongly closed subgroup A then Ng(A) controls strong G-fusion in S € Syl,(G)
and so F3(G) is not simple in this instance.

Where we have a proper non-trivial strongly closed subgroup 7', we are able to descend
to exotic subsystems supported on 7', and we speculate that this may be an illustration of a
more generic method to construct exotic subsystems of exotic fusion systems. The examples
we obtain in the theorems below arise in this fashion.

THEOREM D. Let S be isomorphic to a Sylow 3-subgroup of F3. Then, up to isomorphism,
there are two saturated fusion system supported on Cs(Z»(S)) in which Cs(Z>(S)) is not
normal. Both of these systems are exotic and only one is simple.

THEOREM E. Let S be isomorphic to a Sylow 5-subgroup of M. Then, up to isomorphism,
there are nine saturated fusion system supported on Cs(Z2(S)) in which Cs(Z>(S)) is not
normal. All of these systems are exotic and two are simple.

The exotic fusion systems described in Theorem D and Theorem E are reminiscent of
the exotic fusion systems supported on p-groups of maximal class, as determined in [23].
There, in almost all cases where JF is an exotic fusion system, there is a class of essential
subgroups which are pearls: essential subgroups isomorphic to p? or p}jz. It is clear that
for a fusion system JF with a pearl P, OP/(Out]:(P)) = SL,(p) and so these occurrences
are strongly connected to certain pushing up configurations in local group theory. In our
case, the analogous set of essential subgroups P are of the form p4 X CP(OP/(Out]-‘(P)))
where OP/(Out r(P) = SLz(pz), and in one of our cases C| p(OP/(Out 7(P))) is non-trivial. We
speculate that both the systems containing pearls and our examples are part of a much larger
class of exotic fusion systems which arise as the odd prime counterparts to “obstructions to
pushing up” in the sense of Aschbacher [3]. A clear understanding of this would go some
way to explaining the dearth of exotic fusion systems at the prime 2.

With this work, we move closer to classifying all saturated fusion systems supported
on Sylow p-subgroups of the sporadic simple groups, for p an odd prime, complementing
several other results in the literature. Indeed, all that remains is the study of saturated fusion
systems on Sylow 3-subgroups of the Fischer groups, the Baby Monster and the Monster.
For the reader’s convenience, we tabulate the known results with regards to fusion systems
on Sylow p-subgroups of sporadic simple groups in Table 1.

We remark that, perhaps aside from the Sylow 3-subgroup of Fis,, the remaining cases are
large and complex enough that it is laborious and computationally expensive to verify any
results using the fusion systems package in MAGMA [8, 36]. Throughout this work, we lean
on a small portion of these algorithms for the determination of the essentials subgroups of the
saturated fusion systems under investigation (as in Proposition 4-3), although the techniques
used in [35, 43] could be employed here instead. We record that several of the main theorems
have been verified using the full potential of this MAGMA package. However, we believe
it is important to provide handwritten arguments in order to exemplify some of the more
interesting structural properties of the fusion systems described within, while simultaneously
elucidating some of the computations performed implicitly by the MAGMA package. For
the sake of brevity, the MAGMA code we use is not included here and has instead been
relegated to an alternate version of this paper [44, appendix A].
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334 MARTIN VAN BEEK
Table 1. Fusion systems on non-abelian Sylow p-subgroups of sporadic groups for p odd

Simple Group 1S| Reference  #Exotic Systems Supported
2F4(2)/, J2, J4, M12, Moy, Ru, He 33 [40] 0
I3 3 [36] 0
Coy 39 Section 4 0
Cop, McL 36 [7] 0
Cos 37 (36] 0
Fiyy 3° - Open
Fiy3, B 313 - Open
Fi), 316 - Open
Suz, Ly 37 [36] 0
HN 30 [36] 0
Th 310 Section 5 2
M 320 - Open
Coy 54 [25,31,32) 24
Coy, Cos, Th, HS, McL, Ru 53 [40] 0
HN, Ly, B 56 [35] 0
M 5 Section 6 4
Fi,,, He, O'N 73 (40] 3
M 76 [35] 27
Js 113 [40] 0
M 133 [40] 0

Our notation and terminology for finite groups is a jumble of conventions from [4, 20, 27],
and we hope that our usage will be clear from context. With regards to notation concerning
the sporadic simple groups, we will generally follow the Atlas [13] with the exception of
Thompson’s sporadic simple group, which we refer to as F3 instead of the usual Th, except
in Table 1. We make this choice to emphasise the connection with “amalgams of type F3” as
defined in [16]. For fusion systems, we almost entirely follow the conventions in [5].

2. Preliminaries: groups

We start with some elementary observations regarding the Thompson subgroup of a finite
p-group and the related notion of failure to factorise modules. For a more in depth account
of this phenomena, see [27, section 9-2].

Definition 2-1. Let S be a finite p-group. Set A(S) to be the set of all elementary abelian
subgroup of S of maximal rank. Then the Thompson subgroup of S is defined as J(S) :=
(A| A e A(S)).
PROPOSITION 2-2. Let S be a non-trivial finite p-group. Then the following hold:
(i) J(S) is a non-trivial characteristic subgroup of S,
(ii) Qi(Cs(J(8))) = QZJS)N) = Nacacs) As and
(iii) if J(S) < T <, then J(S) = J(T).
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See [27, 9-2-8] for parts (i) and (iii). Additionally, by part (d) of that result, we see
that Q21(Cs(J(S))) < Q1(Z(J(S))). Since Z(J(S)) < Cs(J(S)), it is clear that Q{(Cs(J(S))) =
Q1(ZJ(9))).

Let ae ﬂAeA(S)A. Then a has order p and [a,A]= {1} for all A € A(S). By defi-
nition, [a, J(S)] = {1} so that a € 21(Cs(J(S))) and ﬂAeA(S)A < Q1(Cs(J(S))). Now, for
x € Cs(J(S)) of order p, we have that x < Cs(J(S)) < Cs(A) for all A € A(S). Hence, x €
Q1(Cs(A)) for all A € A(S). But now, (x)A is elementary abelian of order at least as large
as A and by the definition of A(S), we have that x € A. Therefore, x € (), A A and
Q1(Cs(J(9)) = e AGS) A, completing the proof of (ii).

Definition 2-3. Let G be a finite group, V a GF(p)G-module and A < G. If
(i) A/C4(V) is an elementary abelian p-group;
(i) [V,A] # {1}; and
(iii) |V/Cv(A)] < |A/Ca(V)]

then V is a failure to factorise module (abbrev. FF-module) for G and A is an offender on V.

We will also make liberal use of several coprime action results, often without explicit
reference.

PROPOSITION 2-4 (Coprime Action). Suppose that a group G acts on a group A coprimely,
and B is a G-invariant subgroup of A. Then the following hold:

(i) Ca/B(G) = Cu(G)B/B;

(ii) [A, Gl=[A, G, G];
(iii) A =1[A, G]C4(G) and if A is abelian then A = [A, G] x C4(G); and
(iv) if G acts trivially on A/ ®(A), then G acts trivially on A.

Proof. See, for instance, [27, chapter 8].

In conclusion (iv) in the statement above, one can say a little more. The following is a
classical result of Burnside, but the version we use follows from [20, (I-5-1-4)].

LEMMA 2-5 (Burnside). Let S be a finite p-group. Then Caus)(S/®(S)) is a normal
p-subgroup of Aut(S).

LEMMA 2-6. Let E be a finite p-group and Q <A < Aut(E). Suppose there exists a normal
chain {1} =Ey < E| JEy ... E,, =E of subgroups such that for each a € A, Ejax = E;
forall0 <i<m.Ifforall 1 <i<m, Q centralises E;/E;_1, then Q < Op(A).

Proof. See [20, (I-5-3-3)].

LEMMA 2-7 (AxB-Lemma). Let AB be a finite group which acts on a p-group V. Suppose
that B is a p-group, A = OP(A) and [A, Bl = {1} = [A, Cy(B)]. Then [A, V] = {1}.

Proof. See [4, (24-2)].

Our final results in this section with regards to groups and modules concern the
identification of some local actions within the groups Coy, Spe(3) and M.
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LEMMA 2-8. Suppose that G is a finite group with O3(G) = {1} and V is a faithful GF(3)G-
module of dimension 6. Assume that for S € Syl3(G), S = 3}‘_4'2, G= 03/(G) and there is
an elementary abelian subgroup A < S of order 9 with |V /Cy(A)| = |V /Cy(a)| = 3> for all
a € A*. Then G = PSL3(3) or 2.M .

Proof. Let G be a minimal counterexample with respect to |G|. By [27, 8-3-4(a)], O3 (G) =
(Coy(6)(@) | a € A*) and since Cy(a) = Cy(A) for all a € A*, we have that O3 (G) normalises
Cy(A). Set T := (4493 5o that Cy(A) = Cy(T) < Cy(O3(T)). By coprime action again,
V=1[V,03(T)] x Cy(Ox(T)). But now,

Cv,0n(A) <[V, 03(D)]1 N Cy(A) =V, 03(T)] N Cy(T) = {1}

and as A is a 3-group, we must have that [V, O3(T)] = {1}. Since G acts faithfully on V,
we infer that O3 (T)={1}. Then, as A <T <AO3(G) and T N O3 (G) < 03(T) ={1}, we
conclude that A = T is normalised by Oz (G). In particular, [A, O3 (G)] = {1}.

Since 03(G) = {1} and F*(G) is self-centralising in G, we have shown that G contains a
component, K say, whose order is divisible by 3. Then E := (K®) is normalised by S and
so we deduce that it contains Z(S). Note that since m3(S) =2 and O3(E) < 03(G)={1}, E
contains at most two components of G whose orders are divisible by 3. Indeed, since S is a
3-group, we see that S normalises these components. If E contains exactly two components
of G whose orders are divisible by 3, K| and K> say, then K; NS S for i € {1, 2} so that
Z(S) < K1 N K, < Z(E). Hence, Z(S) < O3(Z(E)) < 03(G), a contradiction.

Thus, E = K is quasisimple. Now, K = (Z($)K)y = (Z(S)®) and so K is a component of
H:= (Z(S)°)S so that H = 03,(H) is almost-quasisimple. Note that O3(H) is trivial for
otherwise Z(S) < O3(H)N K < 03(K) < 03(G) and since O3(G) = {1}, this is a contradic-
tion. Hence, by minimality, either H = PSL3(3) or 2.M13; or G = H. In the former case, we
deduce that H =K < G and since S < H and G = 03/(G), we have that G = H.

Hence, a minimal counterexample of this lemma is almost quasisimple. Now, |A|? = 3* >
3P¥= |V/Cy(A)| so that V is a 2F-module for G with offender A in the language of [24]. By
[24, Table 1], G is isomorphic to either a group of Lie type in characteristic 3 or 2.M1;. The
groups of Lie type in characteristic 3 with Sylow 3-subgroup isomorphic to S are well known
(see [21, (3-3)]), and so we have that G = 2.Mj;, PSL3(3) or SU3(3). Now, SU3(3) has only
one non-trivial module of dimension 6 over GF(3), the natural module. But for this module,
we have that |Cy(B)| = 32 for any subgroup B of the Sylow 3-subgroup which has order 9.

In the following proposition, MAGMA is used to verify certain calculations. The actual
code itself may be found in [44, appendix A].

LEMMA 2:9. Suppose that Q = 5\%, G < Out(Q) and write V = Q/Z(Q) and S € Syl5(G),
Suppose the following hold:

(i) S is elementary abelian of order 25;

(ii) G=(59);

(iii) Os(G)={1}; and

(iv) |Cy(S)| =5 and |Cy(s)| = 25 for all s € §*.
Then G=2.J,.

Proof. Since Q is extraspecial, O5(G) = {1} and G = 05/(G), applying [47] we have that G is
isomorphic to a subgroup of Sp(5) and Q/Z(Q) may be identified with the natural module
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for Spg(5) in this action. We appeal to [9, Table 828, Table 8-29] for the list of maximal
subgroups of Spg(5). These are

2.J2, Sp(5) 0 GO3(5), GU3(5).2, Sp,(5).3, Sp,(5)*:Sym(3), Sp,(5) x Sp4(5),

50:GL3(5), 5°T*:(GLa(5) x Sp,(5)) and 514:(Cy x Sp,(5)).

Aiming for a contradiction, assume throughout that G Z 2.J.

We compute that the maximal subgroups in which a Sylow 5-subgroup fixes a subspace of
dimension 1 are 2.J5, Sp,(5) 0 GO3(5), 5%:GL3(5), 53+4:(GLa(5) x Sp,(5)) and 51*:(Cy x
Sp4(5)). We refer to these subgroups as M, . .., Ms respectively. In M, one can compute
that there is a 5-element which fixes a subspace of dimension 3 and as a Sylow 5-subgroup
of M5 has order 25, G cannot be isomorphic to a subgroup of M;. If G is isomorphic to
a subgroup of M3, then as Os(G) = {1}, G projects as a subgroup of GL3(5). But every
subgroup of GL3(5) which has a Sylow 5-subgroup of order 25 has a normal 5-subgroup, a
contradiction.

Similarly, if G is isomorphic to a subgroup of My, then G is isomorphic to a sub-
group of GL2(5) x Sp,(5). Indeed, since G = (S, |S] =25 and Os5(G) = {1}, it follows
that G = SL,(5) x Sp,(5). Hence, GO5(M4) = 05/(M4). Let L < G be such that L < G and
L=SL,(5) = Sp,(5). Then L contains a Sylow 2-subgroup T of LOs5(M4) < G. By a cal-
culation (see [44, appendix A]), we have that Cgosm,)(T) =2 x SLo(5). Since Cq(T) =
2 x SL»(5), we have that CGOS(M4)(T) = Cg(T). However, for R € Syl5(CGOS(M4)(T)), we
have that |Cy(R)| = 5°, a clear contradiction.

If G is isomorphic to a subgroup of M5 then G is isomorphic to a subgroup of C4 X Sp4(5).
Since G = (S9), we see that G is isomorphic to a subgroup of Sp4(5). Using MAGMA (see
[44, appendix Al]), since O5(G) = {1}, |S| =25 and G = (S©), we calculate that G = SL,(25)
or SL>(5) x SL(5). Moreover, the center of Sp,(5) is equal to the center of a Sylow 2-
subgroup of Sp,(5) and it follows from computations that G centralises the center of a Sylow
2-subgroup of L5 := 05,(M5), which we denote by 7. Then G = G’ < Cp,(T) = Spy(5) and
so G is contained in a specified complement to Os(Ms) in Ls. But then we calculate for all
such candidates for G that |Cy(S)| = 5%, a contradiction.

Hence, G is isomorphic to a proper subgroup of M; = 2.J,. But, appealing to [13] for a
list of maximal subgroups of J, the only maximal subgroups of 2.J, which have a Sylow
5-subgroup of order 25 also have a normal 5-subgroup, a contradiction.

3. Preliminaries: fusion systems

We now let S be a finite p-group and F a saturated fusion system on S, referring to [5, 14]
for standard terminology and results regarding fusion systems. We use the remainder of this
section to reaffirm some important concepts regarding fusion systems which pertain to this
work, and mention some vital results from other sources in the literature.

We begin with the notion of isomorphism for fusion systems.

Definition 3-1. Let F be a saturated fusion system on a p-group S and let « : S — T be a
group isomorphism. Define F* to be the fusion system on T with

Homz«(P, Q)= {a 'ya |y e Homr(Pa™', Qo™ ")

forP,Q<T.
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We then say that a fusion system & over a p-group 7 is isomorphic to F, written £ = F,
if there a group isomorphism «:S — T with £ = F*.

Remark. We note that our definition of isomorphism coincides with morphisms defined in
[5, definition II-2-2] which are surjective and have trivial kernel.

Importantly, for G a finite group, S € Syl ,(G) and K a normal p’-subgroup of G, writing
G:= G/K, we have that F5(G) = fg(@). This is often viewed as one of the main attractions
for working with fusion systems in place of finite groups.

We recall that F is realizable if there is a finite group G and S € Syl,(G) such that F=
Fs(G), and F is exotic otherwise. By the above observation, if we aim to show that F is
realised by a finite group G, then we may as well assume that O,/ (G) = {1}.

Notation. Let F be a fusion system and let F;, F, be fusion subsystems of . That is,
JF;i is a subcategory of F which is itself a fusion system. Write (Fj, F3)s for the smallest
subsystem of F supported on S which contains both F; and .

At various points, we may also write (M, Mj,...)s where M, is some set of mor-
phisms contained in F and by this we mean the smallest subsystem of JF supported on S
which contains M; for all i. We also mix the two conventions e.g. (Fi, M1, M»)g is the
smallest subsystem of F supported on S containing Fj, M| and Mo.

We emphasise that saturation is not imposed here. So even if F, F| and J; are saturated,
then (F1, F2)s need not be saturated.

We denote the set of F-centric subgroups of F by F°¢ and the fully F-normalised,
F-centric-radical subgroups of F by F/*¢, referring to [5, definition 1.2-4, definition I.3-1]
for the appropriate definitions. We present the following result as a lemma, but in truth it
may be considered as part of the definition of saturation of a fusion system.

LEMMA 3-2. Let F be a saturated fusion system on a p-group S. For a fully F-centralised
subgroup P of S and R a subgroup of Ns(P) strictly containing P, the morphisms in
Naw ) (Autg(P)) lift to F-automorphisms of R.

Proof. Since P is fully F-normalised and JF is saturated, P is receptive, as defined in
[S, definition I-2-2]. Hence, for o € Naucz(p)(Autg(P)) and Ny := {g € Ns(P)|%cg €
Autg(P)}, we have P < R <N, < Ng(P) such that there is @ € Homz(Ng, S) with R =R
and @|p = «. Indeed, @ restricts to @ € Autz(R), as desired.

Often, the morphisms we choose to lift in Lemma 3-2 can chosen to lift all the way to
certain essential subgroups of F.

Definition 3-3. Let F be a saturated fusion system on S and let E < S. Then E is essential
in F if E is fully F-normalised, F-centric and has the property that Outz(E) contains a
strongly p-embedded subgroup.

We denote by E£(F) the essential subgroups of F.

LEMMA 3-4. We have that E(F) C FI*.

Proof. See [5, proposition I-3-3(a)].
In later sections, our treatment of saturated fusion systems will focus specifically on the
actions associated to essential subgroups, and the morphisms lifted to them. The reasoning
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behind this is that a saturated fusion system is completely determined by this information.
This observation is contained in the following theorem.

THEOREM 3-5 (Alperin — Goldschmidt Fusion Theorem). Let F be a saturated fusion sys-
tem over a p-group S and let EO(F) be a set of representatives of the F-conjugacy classes

of E(F). Then
F = (Autr(Q), Autr(S) | Q € E%F))s.

Proof. See [5, theorem 1-3-5] and [14, proposition 7-25].
We will make frequent use of the following lemma which comes as a result of Lemma 3.2
and the Alperin—Goldschmidt theorem.

LEMMA 3-6. Let F be a saturated fusion system on S and let Q < § be F-centric and fully
F-normalised.

(i) If there is E € E(F) such that for all P € Q7 we have that P is properly contained
in E, P is properly contained in no other essentials, and E is Autx(S)-invariant, then
for Q <R < Ns(Q) and a € Ny 0)(Autr(Q)) there is @ € AutF(E) with d|gp = . In
particular, if Q & E(F) then Autg(Q) < Autx(Q) and Q is not F-radical.

(ii) If P is not properly contained in any essential subgroup of F for all P € Q7 , then
for Q <R < Ns(Q) and o € Nay r(0)(Autr(Q)) there is & € Aut 7(S) with @|gp = . In
particular, if Q & E(F) then for any Aut 7(S)-invariant subgroup B which contains Q,
Autg(Q) <Autr(Q) and Q is not F-radical.

Proof. Let Q < R < Ng(Q) with Q F-centric and « € Nau-(0)(Autr(Q)). In particular, Q is
fully F-centralised.

Suppose that there is E € £(F) such that E is Autz(S)-invariant and for all P € Q]: , E
is the unique essential subgroup of F which properly contains P. By Lemma 3-2, there
is & € Autz(R) with &|p = a. By the Alperin—-Goldschmidt theorem, we may write & =
(a1 0...0ay)|gr where o; € Autx(F) for F € E(F) U {S}. Now, Q is properly contained in
exactly one essential subgroup (namely E), and as R > Q we must have that «] € Autr(S)
or a1 € Autr(E). Notice that if R < E, then as E is Autz(S)-invariant, we may replace o] by
o1|g € Autr(E) and Qo < Roy < E.If R £ E, then o € Autr(S) and Ry £ E.

Now, Qo1 < Rap and Qo is properly contained in exactly one essential subgroup, and
so ap € Autr(S) or oy € Autr(E). Again, if Ry < E (so that R < E) then as E is Autrz(S5)-
invariant, we may arrange that o € Autz(E). Otherwise, oy € Autz(S). Continuing in this
fashion, we see that either R < E and we may take @ = 0...0a, € Autr(E); or R £ E
and @ =owq0...0a,; € Autr(S). In the latter case, since Q < E, we have that &|g is still a
lift of «, and so the first statement of (i) holds. In particular, in either case we see that «
normalises Autg(Q).

Assume now that Q € E(F). Then by [5, proposition I-3-3], Aut£(Q) is generated by maps
a € Nautr(0)(Autg(Q)) for some Q < R < Ng(Q). But all such maps normalise Autg(Q)
and as Q < E and Q is F-centric, {1} < Outg(Q) < Outx(Q) and Q is not F-radical. This
completes the proof of (i).

For the proof of (ii), we follow the same proof scheme as for (i). However, this time
we note that as each F-conjugate of Q is not properly contained in any essential subgroup
of F, the Alperin—-Goldschmidt theorem promises that & is a composition of restrictions
of maps in Autr(S) and so we deduce that @ € Autz(S). In particular, @ normalises any
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Autr(S)-invariant subgroup of S containing Q. Applying [5, proposition I-3-3], Aut#(Q) is
generated by maps o € Naut-(0)(Autg(Q)) for some QO < R < Ng(Q) and all such maps lift
to maps which normalise any Autz(S)-invariant subgroup B of S containing Q. Since these
maps also normalise Q, they must normalise Np(Q) and we deduce that Autg(Q) < Autr(Q).
As Q is F-centric, and taking B =S, we have that {1} < Outg(Q) < Outr(Q) and Q is not
JF-radical. This completes the proof of (ii), and so completes the proof of the lemma.

Throughout the later portions of this work, we will often employ computational methods
to determine a list of potential essential subgroups of a fusion system F supported on a
given p-group S via the fusion systems package in MAGMA [36, 37].

Roughly speaking, the algorithm first determines a list a subgroups of S which are
self-centralising in S, a prerequisite to being essential. Since the groups with a strongly
p-embedded subgroup are ‘“known”, the isomorphism type of Ng(E)/E for a potential essen-
tial subgroup E should have a prescribed form too. Then further checks are carried out which
verify that certain internal conditions in E hold which necessarily hold if E is essential in
some saturated fusion system supported on S. These checks and more are described in [36].

The following result is a useful tool for identifying automisers of essential subgroups.

THEOREM 3-7. Suppose that E is an essential subgroup of a saturated fusion system F
over a p-group S, and assume that there are Aut r(E)-invariant subgroups U <V < FE such
that E = Cs(V/U) and V/U is an FF-module for G := Outr(E). Then, writing L := OP/(G)
and W := V /U, we have that L/ C (W)= SLy(p™), CL(W) is a p’-group and W/Cw(L) is a
natural SLy(p™)-module for some n € N.

Proof. Since E = Cs(W), we infer that Inn(E) = Cauigry(W) so that Cg(W) is a p’-group.
In particular, G/Cg(W) has a strongly p-embedded subgroup and so too does L/Cr(W) =
LCG(W)/Cc(W) = 0P (G/Cg(W)) by [26, remark 3-5]. Then W is an FF-module for
L/Cr(W) and we apply [26, theorem 5-6] to obtain the result.

The next two results of this section are pivotal in creating exotic fusion systems from
p-fusion categories while maintaining saturation. The first of these techniques we refer to as
“pruning.”

LEMMA 3-8. Suppose that F is a saturated fusion system on S and P is an F-essential
subgroup of S. Let C be a set of F-class representatives of JF-essential subgroups with P € C.
Assume that if Q < P then Q is not S-centric. Then G = (Aut 7(S), Aut r(E) | E € C\ {P})s is
saturated. Furthermore, £(G) = E(F)\ {P7}.

Proof. We apply [36, lemma 6-4], taking K = Hr(P) where Hr(P) denotes the subgroup of
Autr(P) which is generated by F-automorphisms of P which is extend to F-isomorphisms
between strictly larger subgroups of S. By that result, the fusion system (G, K)s is saturated.
However, for P < R < § we have that Hom #(R, §) = Homg(R, S) and we conclude that K C
G so that G is saturated.

Also included in [36, lemma 6-4] is the statement that P ¢ £(G). Since Autg(E) =
Autr(E) for all E € £(F) \ {P”7}, we ascertain that £(G) = £(F) \ {P7).

PROPOSITION 3-9. Let Fo be a saturated fusion system on aﬁnite p-group S. Let V<S8
be a fully Fo-normalised subgroup, set H = Outr,(V) and let A < Our(V) be such that H
is a strongly p-embedded subgroup of A. For A the full preimage of A in Aut(V), write
F = {(Fo, A)s. Assume further that
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(i) Vis Fo-centric and minimal under inclusion amongst all F-centric subgroups; and
(ii) no proper subgroup of V is JFy-essential.

Then F is saturated.

Proof. See [10, proposition 5-1] or [42, theorem C].

We recall the notion of normaliser fusion systems from [5, section I-6], noting that for P
a fully F-normalised subgroup, Nx(P) is a saturated fusion subsystem of F. We say P is
normal in F if F = Nx(P) and we denote by O,(F) the unique largest normal subgroup of
F. The following proposition connects normal subgroups of F, strongly closed subgroups
of F in the sense of [5, definition I-4-1], and the essential subgroups of F.

PROPOSITION 3-10. Let F be a saturated fusion system over a p-group S. Then the
following are equivalent for a subgroup Q < S:

(i) Q< F;
(ii) Q is strongly closed in F and contained in every centric radical subgroup of F; and

(iii) Q is contained in each essential subgroup, Q is Autr(E)-invariant for any essential
subgroup E of F and Q is Aut (S)-invariant.

Moreover, if Q is an abelian subgroup of S, then Q < F if and only if Q is strongly closed
in F.

Proof. See [5, proposition 1-4-5] and [5, corollary 1-4-7].

Fundamental to our analysis of fusion systems is the application of a plethora of known
results from finite group theory. Particularly, given a fully normalised subgroup Q, we wish
to understand the actions induced by Nz(Q) and to do this, we wish to work in a finite group
which models the behaviour of this normaliser subsystem.

THEOREM 3-11 (Model Theorem). Let F be a saturated fusion system over a p-group S.
Assume that there is Q < S which is F-centric and normal in F. Then the following hold:

(i) there is a model for F. That is, there is a finite group G with S € Sylp(G), F*(G) =
0p(G) and F = Fs(G);
(ii) if G1 and Gy are two models for F, then there is an isomorphism ¢:G; — G, such
that ¢|s = Ids;
(iii) for any finite group G with S € Sylp(G), F*(G) = Q and Autg(Q) = Aut £(Q), there is
B € Aut(S) such that Blo = Idg and Fs(G) = F B Thus, there is a model for F which
is isomorphic to G.

Proof. See [5, theorem 1-4-9].

As with finite groups, we desire a more global sense of normality in fusion systems, not
just restricted to p-subgroups. That is, we are interested in subsystems of a fusion system JF
which are normal. We use the notion of normality provided in [5, definition I-6-1], noting
that this condition is stronger than some of other definitions in the literature.

By [15, theorem A], a proper, non-trivial normal subsystem of J with respect to one of
the accepted definitions of normality gives rise to a proper, non-trivial normal subsystem of
F with respect to the other accepted definitions. Thus, we can unambiguously declare F to
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be simple if it has no proper, non-trivial normal subsystems and so, for our purposes, the
distinction between the definitions of normality is unimportant.

Of particular importance in our case is the normal subsystem o’ (F) of F, and more
generally, the saturated subsystems of F of index prime to p, as in [5, definition 1-7-3]. The
following result characterises some of the most important properties of these subsystems.

LEMMA 3-12. Fix a saturated fusion system JF over a p-group S, and set &:=
(OP (Autz(P)) | P < S)s, as a (not necessarily saturated) fusion system on S. Define

Autg_—(S) = (a € Autr(S) | «|p € Homg, (P, S), some P € F°)

and let £ be a saturated fusion system on S of index prime to p in F. Then

(i) Aut%(S) < Autg(S) < Autr(S) and each group L with Aut%(S) <L < Autz(S) gives
rise to a unique saturated fusion subsystem of index prime to p in F

(ii) € QF if and only if Autg(S) < Autz(S); and

(iii) there is a unique minimal saturated subsystem OP'(F)<XF of index prime to p, and
Aut gy 7(S) = Aut(S).

In particular, Aut}-(S) = Autz(S) implies that F = O (F), and O (O” (F)) = OF (F).

Proof. See [5, theorem 1.7-7].

If £ is a saturated subsystem of index prime to p in F with [Autz(S):Autg(S)] = r, then
we say that £ has index r in F.

We provide a short lemma characterising essential subgroups in saturated subsystems of
index prime to p.

LEMMA 3-13. Let F be a saturated fusion system on S and let B be a saturated fusion
subsystem of F of index prime to p. Then E(F) = E(B).

Proof. By [5, lemma I.7-6(a)], the centric subgroups of F and B coincide.

It is clear that any fully F-normalised subgroup of S is also fully B-normalised. Suppose
that P is a fully B-normalised subgroup of S which is not fully F-normalised and choose
Q <§ a fully F-normalised F-conjugate of P. Choose ¢ € Homxz(P, Q). By [5, lemma
I.7-6(a)] the “Frattini condition” holds and so there is & € Autz(S) and ¢9 € Homg(P, Qo™ 1)
such that ¢ = ¢ oa. Since « € Autr(S) we have that |[Ng(Q)| = [Ns(Qa~!)| and since
P is fully B-normalised |Ns(P)| > INs(Qa~ 1)), yielding a contradiction. Hence, any fully
B-normalised subgroup is also fully F-normalised.

Finally, since o (Autr(P)) < Autg(P) < Autr(P) for all P < S, Outx(P) has a strongly
p-embedded subgroup if and only if O (Out£(P)) does, and we conclude that E(F) = E(B).

We close this section with a result concerning strongly closed subgroups of fusion
systems, and how they might be used to verify the exoticity of certain saturated fusion sys-
tems. In the analogous definition for finite groups, a result of Foote, building on work of
Goldschmidt, promises that when p =2, the only simple groups G which contain a proper
non-trivial strongly closed subgroup T < S € Syl,(G) are PSU3(2") and Sz(2"). Work of
Flores and Foote [18] complements the result in the odd prime case, using the classification
of finite simple groups. From their results, we deduce the following consequence ready for
use in fusion systems.
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THEOREM 3-14. Suppose that F is a saturated fusion system over a p-group S and A is
a proper non-trivial strongly closed subgroup chosen minimally with respect to adhering
to these conditions. Assume that no normal subsystem of F is supported on A. Then F is
exotic.

Proof. Assume that F and A satisfy the hypotheses of the lemma, and suppose that there is
a finite group G with F = F5(G). We may as well choose G such that O,/(G) = {1}. Then
A is a proper non-trivial strongly closed subgroup of G. Following [18], let O4(G) be the
largest normal subgroup N of G such that AN N € Syl,(N). Then O4(G) NA is a strongly
closed subgroup of G. By the minimality of A, and using that O,(G) = {1}, we deduce
that either A € Sylp(OA(G)) or O4(G) = {1}. In the former case, we have that F4(O4(G)) <
Fs(G) = F, a contradiction. Hence, O4(G) = {1}. Applying [18, theorem 1-1] when p =2
and [18, theorem 1-3] when p is odd, we conclude that A is elementary abelian. But then by
Proposition 3-10 we have that A < F so that F4(A) is a normal subsystem of F supported
on A, another contradiction. Hence, no such G exists and JF is exotic.

This result provides an alternate check on exoticity distinct from the techniques currently
used in the literature, albeit still relying on the classification of finite simple groups.

4. Fusion Systems on a Sylow 3-subgroup of Co

In this section, we classify all saturated fusion systems supported on a 3-group S which
is isomorphic to a Sylow 3-subgroup of the sporadic simple group Coq, validating Theorem
A. Utilising the Atlas [13], we extract the following 3-local maximal subgroups from
G:= Coy:

My =3%:2. M1,
M, =34:8p,(3).2

M3 =342 (Sym(4) x Sym(4))

and remark that for a given S € Syl;(G), M; can be chosen such that S € Syl;(M;). We record
that |S| =3° and J(S) = O3(M,) (where J(S) is as defined in Definition 2-1). We denote
J:= 03(M)), Q:= 03(M>) and R:= O3(M3).

In addition, S is isomorphic to a Sylow 3-subgroup of Spg(3) and in this isomorphism we
recognise the subgroups E1, E>, E3 < .S whose images correspond to the unipotent radicals of
the minimal parabolic subgroups of Spg(3). Indeed, E1, E», E3 are also essential subgroups
of Fs(Coy) such that

NG(E)) =M N My = 3474.33:(2 x GL2(3))
NG(E») = M; N M3 =3%.3%:(2 x GL»(3))

NG(E3) = Mr N M3 =334 3:(2 x GL,(3))

In an abuse of notation, we suppress the isomorphism between S and a Sylow 3-subgroup
of Spe(3) and let £y, E», E3 be subgroups of Co; or of Spg(3) where appropriate.

We also note the following characterizations of E1, E> and E3 from their embeddings
in S.
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(i) Ej is the unique subgroup of S of order 38 such that ®(E;) = ®(Y), where Y is the
preimage in S of Z(S/J) and has order 3.

(it) Ey = Cs(Z2(5)).

(iii) Es is the unique subgroup X of S of order 3% which is not equal to E; but satisfies
olX) =Z(S).

In particular, Eq, E> and E3 are characteristic subgroups of S, and so too is R = E; N E3.
In what follows, we take several liberties with the determination of various characteristic
subgroups of the E;, but all of these properties are easily verified by computer (e.g. using
MAGMA and taking S to be a Sylow 3-subgroup of Spg(3)).

PROPOSITION 4-1. Let F = Fs(Spe(3)). Then E(F) ={E|, Ea, E3}.

Proof. This is a consequence of the Borel-Tits theorem [21, corollary 3-1-6].

We record one final subgroup of G. Let X < M| with M| /X = M, and consider the maxi-
mal subgroup H = Alt(4) x Sym(3) of M1/X. Define E4 to be the largest normal 3-subgroup
of the preimage of H in M so that

NG(Es) =Ny, (E4) = 30.3:(SLy(3) x 2).

Then E4 is an essential subgroup of Fs(Cop), E4 is not contained in any other essential
subgroup of Fs(Cop) and [NG(S):Nng(s)(E4)] = 6.

We note that non-trivial elements of E;/J and E>/J comprise of elements of type 3A in
Ng(J)/J=2.M1, and non-trivial elements of E4/J correspond to elements of type 3B in
ATLAS terminology [13]. In particular, for x e R € Ef with x ¢ J, x acts on J unlike any
element of E; or E».

PROPOSITION 4-2 Let F = Fs(Coy). Then E(F) = {E\, E», E3, E ).

Proof. See [41].

We now move onto to the classification of all saturated fusion systems on S. Throughout
we suppose that F is a saturated fusion system on a 3-group S such that S is isomorphic to
a Sylow 3-subgroup of Coj.

We utilise the fusion systems package in MAGMA [36, 37] to verify the following
proposition. The code and outputs are included in [44, appendix A].

PROPOSITION 4-3. E(F) C{E1, Ez, E3, E7 ).

For the duration of this section, we will frequently use that J=J(S)=J(E;) is a
characteristic subgroup of E; for i € {1, 2, 4}. This follows from Proposition 2-2 (iii).

LEMMA 4-4. Suppose that 0% (Outx(J)) = PSL3(3). Then EJ N E(F)=0.

Proof. We note first that F, is contained in no other essential subgroup of F and so by the
Alperin—Goldschmidt theorem, {Ef }= {Ej\utf (S)}. In particular, if any JF-conjugate of Ey
is essential, then every J-conjugate of Ej is. Since J is invariant under Autz(S) we may as
well assume, aiming for a contradiction, that E4 € E(F).

Since J=J(E4), we have that Ny(E4) <Nz(J) and so Nr(E4) =Ny, (g)(Es). In par-

ticular, if E4 € E(F) then E4 € E(Nx(J)). By the uniqueness of models provided by
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Theorem 3-11, for H a model of Nx(J), we have that Nr(E4) = FnykE,)(Vu(E4)) so that
Outr(E4) = Ng(E4)/E4. Since 03’(H/J) = PSL3(3), we have that Ng(E4) < Ng(S) and so
Ny(E4)/E4 does not have a strongly 3-embedded subgroup, a contradiction.

LEMMA 4-5. If E4 € E(F), then {E, E2} CE(F). Moreover, E4 € E(F) if and only if
O3 (Out £(J)) = 2.M1».

Proof. Suppose that F is a saturated fusion system on S with E4 € E(F). Then, as J=
J(E4), Nr(E4) < Nx(J) and so E4 is also essential in Nx(J). Since E4 £ .S and |E4/J| =3,
Proposition 3-10 implies that J = O3(Nx(J)). By Theorem 3-11 there is a finite group H
with S € Syl;(H), Nr(J) = Fs(H) and F*(H) = J. Then, 03/(H)/J is determined by Lemma
2-8. Using that E4 € £(F) and applying Lemma 4-4, we conclude that 03/(H)/J =2.Mjs.

Suppose now that 03/(Out;(J)) =2.Mj, and again set H to be a model for Nx(J) so
that 03,(H)/J =2.Mj;. We examine the maximal subgroups of 2.Mj, as can be found
in the Atlas [13], and identify them with their preimage in 03/(H). Then there are three
classes of maximal 3-local subgroups Hi, H>, H3, and we may arrange in each case that
SN H; € Syly(H;). These groups have the same shape as Ng(E1), Ng(E2) and Ng(E4) respec-
tively. Indeed, in each case, |Ng(O3(H;))/O3(H;)| =3 and so we deduce that H;/O3(H;)
contains a strongly 3-embedded subgroup for i € {1, 2, 3}. Since J =J(0O3(H;)), we have
that 0% (Outz(03(H;))) = 0% (Outy(03(H;))) = 0% (Outy.(03(H;))) contains a strongly 3-
embedded subgroup for all i € {1, 2, 3}. Moreover, each O3(H,) is fully F-normalised and
as J is JF-centric, so too is Oz(H;) for i € {1,2,3}. Applying Proposition 4-3, we have
that O3(H1), O3(H>), O3(H3) are equal to E1, E; and E4qo for some o € Autz(S). Hence,
E1, E, Eq € E(F), as required.

As a consequence of the above lemma, we have the following observation. Let R < § be
such that |R/J| =3 and R 4 S. The for a saturated fusion system F on S, if R is F-essential
then R € Ef and R/J corresponds to a subgroup of order 3 generated by an element of type
3Bin 03/(Out r(J)) =2.Mj;,. Moreover, under these conditions and for x € § \ J such that xJ
is an element of type 3B in 0% (Out 7(J)) =2.Mj,, we have that (x)J is an essential subgroup
of F which is F-conjugate to E4.

LEMMA 4-6. Suppose that E; € E(F). Then O (Outr(E))) = SLy(3), both E\/J and
O(E1)/Z(S) are natural SLy(3)-modules for 03/(Out}-(E1)), and J/®(E1) is a natural
Q3(3)-module for 0% (Out r(E1))/Z(0% (Out (E)))) = PSLy(3).

Proof. Assume that E; € E(F). We calculate that Z(S) = Z(E1) is of order 3, and ®(E) =
JNQ is elementary abelian of order 33 with Cg(®(E;))=J. Let K := CautzE)(P(EL))
so that Auty(E7) € Syl3(K) and K normalises Inn(E;). In particular, [K,Inn(Ej)] <K N
Inn(E7) = Auty(E1) and K centralises the quotient E7/J. Now, as J is elementary abelian,
K/Ck(J) is a 3'-group and centralises Z(E|) = Cy(Inn(E})) < ®(E}). Applying the A xB-
lemma, with K|y, Inn(E1)|y and J in the roles of A, B and V we deduce that K centralises
J, and so K centralises the chain {1} <J < E;. By Lemma 2-6, K is a 3-group. Thus, K =
Auty(E1) and so we infer that Autz(E1)/K acts faithfully on ®(E;). Since Auts(E1) cen-
tralises Z(E1) = Z(S) and Inn(E1) = Caugry)(P(E1)/Z(S)), we conclude that 03/(Out r(E1))
acts faithfully on ®(E7)/Z(S) of order 32. Then as 03(03/(Out]:(E1))): {1}, consider-
ing subgroups of SL,(3) yields that 03/(Out]:(E1)) =SL,(3) and ®(E1)/Z(S) is its natural
module.
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We note that for r € 03/(Ollt]-'(E[)), if r centralises Ej/J, then as [Eq, D(E1)] = Z(S),
we have by the three subgroups lemma that [r, (E;), E1] = {1} so that r centralises
®(E1)/Z(S), a contradiction. Hence, 03/(Out;(E1)) =SIL,(3) and E/J is its natural mod-
ule. Set V:= J/®(E;) of order 33. Then for T=Z(03,(Out]:(E1))) we have by coprime
action that V=1[V,T] x Cy(T). However, Outs(E;) acts indecomposably on V and we
conclude that V=[V,T] or V=Cy(T) is an irreducible 3-dimensional SL>(3)-module.
Thus, V=Cy(T) is a natural £3(3)-module for O3 (Outr(E}))/Z(0% (Outr(E;))) =
PSL>(3).

LEMMA 4-7. Suppose that Ey € E(F). Then 03,(0ut]:(E2)) =S1L,(3), Z(Ey) is of order
33, |lJ/D(E2)| =3 and both E;/J and ®(Ey)/Z(E>) are natural SLy(3)-modules for
0¥ (OutF(Ex)).

Proof. Assume that E; € £(F). One can calculate that that ®(E>) = [E>, J] is of order 33
and is contained in J, and |Z(E>)| = 33 and 1Z5(S)| = 32. By Proposition 2.2 (iii), J = J(E»)
and J/®(E,) is of order 3 and centralised by S. Hence, 03/(Out]r(E2)) acts trivially on
J/E> and so must act faithfully on E»/J of order 32 by Lemma 2-5 and coprime action.
Since 03(0% (Outz(E»))) = {1}, we deduce that 0¥ (Outr(E»)) = SL»(3) and E»/J is its
natural module. Letting r € 03/(Out]:(E2)), if r centralised ®(E,)/Z(E>) then by coprime
action, [r, J, E2] = {1}. Moreover, since [E3, J, r] <Z(E>;) we conclude by the three sub-
groups lemma that [Ej, r, J] <Z(E,). But J is abelian so that [Ej, r, J] =[[E2, 1), J] =
[E2, J] = ®(E»), a contradiction. Hence, ®(E,)/Z(E>) is a 2-dimensional faithful module
for 03,(Out 7(E»)) and so is a natural SL»(3)-module.

LEMMA 4-8. Suppose that E3 € E(F). Then 03/(0ut}-(E3)) = SL>(3), R is normalised by
Autr(E3), and R/ ®(E3) and ®(E3)/Z(R) are natural SLy(3)-modules for 03/(Out]:(E3)).

Proof. Assume that E3 € £(F). One may calculate that Z»(S) = Z»(E3) and so Cg,(Z»(E3)) =
E> N E3 =R < Outr(E3). Since S centralises E£3/R, we must have that 03/(Out 7(E3)) cen-
tralises E3/R. Moreover, one can calculate that ®(E3) is of order 3% and so by Lemma 2-5
and coprime action, 03/(Out 7(E3)) acts faithfully on R/®(E3) which has order 32. As in
Lemma 4-6, we conclude that 03/(Out 7(E3)) =SL,(3) and R/ ®D(E3) is a natural module.

Let re 03,(Out F(E3)) of 3'-order. We note that Z(S) < Z>(E3) = Z»>(S) < Z(R) = Z(E,)
and Z(E,) has order 3°. It follows that 03(0% (Out£(E3))) acts trivially on Z(R). Assume that
r centralises ®(E3)/Z(R). Then by coprime action r centralises ®(E3). One can calculate
that Cg,(P(E3))) = Zo(E3) < ®(E3) so that [r, E3] = {1} by coprime action and the three
subgroups lemma, a contradiction. Hence, ®(E3)/Z(R) is a 2-dimensional faithful module
for 03,(Out 7(E3)) and so is a natural SL»(3)-module.

PROPOSITION 4-9. Assume that E(F) C{E;} for some i€ {l,2,3}. Then one of the
following occurs:

(i) F=Ng(S);or
(ii) F = Nr(E;) where 03/(Out]:(E,~)) =S1,(3) for some i e {1,2,3}.

Proof. If £(F) = @, then outcome (i) is satisfied by the Alperin—-Goldschmidt theorem. Thus,
we may assume that E; is the unique essential subgroup of F. Indeed, we must have that E;
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is invariant under Autz(S) and so E; < F. Then Lemma 4-6, Lemma 4-7 and Lemma 4-8
complete the proof in case (ii).

LEMMA 4-10. Assume that E| € E(F). Then there is a unique Aut(S)-conjugate of Q which
is Autr(Ey)-invariant and Aut r(S)-invariant.

Proof. Assume that E| € £(F). By Lemma 4-6, 03/(Out]:(E1)) = SL,(3) normalises J and
®(E7), and V:= J/P(E)) is a irreducible 3-dimensional module for 03/(Out]:(E1 )/T=
PSL»(3) where T = C03’(Out;(E1))(V)' For U := E|/®(E;) we have that U/V has order 9
and as T acts non-trivially on U by coprime action, we deduce that Cy(T)=V and U =
[U,T] x V where [U,T] is a natural SLy(3)-module.

For X the preimage in E| of [U,T], we have that X <5 and X N J = ®(E)). Moreover,
since X/®(E) is an irreducible module for Outr(E;), we deduce that |21 (X)| # 34. With
this information, we calculate that there are 3 subgroups of E; satisfying these properties
including X. Furthermore, since E1, ®(E1) and J are all characteristic subgroups of S, we
have that X also satisfies these properties for all @ € Aut(S), and we calculate that under
the action of Aut(S), all 3 subgroups of Ej are conjugate (see [44, appendix A] for the
explicit code for these calculations). Finally, since Q satisfies these properties, we conclude
that there is o € Aut(S) such that X = Qu. By the module decomposition of U above, X is
the unique such Aut(S)-conjugate of Q which is Autz(E;)-invariant.

By definition, F¢ ' is a saturated fusion system on S which is isomorphic to F,
for o € Aut(S). Furthermore, it follows from the above lemma that there is « € Aut(S)
such that Q is the unique subgroup of S in its Aut(S)-conjugacy class which is both
Allt]_.a—l (E1)-invariant and Aut]_.a—l (S)-invariant. Since we are only interested in investi-
gating the possibilities of F up to isomorphism, we may as well assume for the remainder
of this section that Q is Autz(E)-invariant whenever E; € £(F). Indeed, Q is the preimage
in Ey of [E}/®(E}), Z(O% (Outz(E)))].

PROPOSITION 4-11. Suppose that {E1, Ex} C E(F). Then either:

(i) Ef NEF) =0, ENrd)={E1, E2} and 0% (Out(J)) = PSL3(3); or
(ii) E4 € E(F), ENF()={E1, Ez, E } and 0% (Outz(J)) = 2.M)5.

Moreover; in each case, if E3 & E(F) then F = Nr(J).

Proof. By Proposition 4-3, E(N£())) C{E1, Es, E3, Ef}. We note that as J=J(E|)=
J(E2) =J(Es), Outr(E;) =Outy.g)(E;) for ie{l,2,4}. Furthermore, since E; is self-
centralising in S and fully normalised in F, we see that E; € E(Nx(J)) if and only if E; €
E(F) forie{l,2,4}. Since J £ E3, we necessarily have that E3 € E(Nx(J)) by Proposition
3-10.

Suppose that {E, E>} C E(F). Let X be the largest subgroup normalised by Aut(E;) and
Autr(E3). Since J = J(Ey) = J(E,), we have that J < X < E7 N E,. Furthermore, by Lemma
4.6, E1/J is irreducible under Autr(E;) and we deduce that X =J and J = O3(Nrx(J))).
Indeed, Outx(J) satisfies the hypothesis of Lemma 2-8 and we deduce that 03/(Out )=
PSL3(3) or 2.M15. In the former case, we have by Lemma 4-4 that Ef NE(F) =0, and so
(1) holds. In the latter case, we have by Lemma 4-5 that E4 € £(F), and so (ii) holds. Finally,
since J = J(S) and J is invariant under Autz(S), Proposition 3-10 and Proposition 4-3 imply
that if £3 € E(F) then F = Nx(J).
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PROPOSITION 4-12. Suppose that {Ei,E3} CE(F). Then 03/(0Mt]-‘(Q)) = Sp4(3),
ENF(Q)) ={E1, E3} and if Ey & E(F) then F = Nx(Q).

Proof. Suppose that {Eq, E3} € E(F) and let X be the largest subgroup of S normalised
by both Autr(E;) and Autr(E3). Then X < E; NE3 so that J £ X. Since Autr(E;) acts
irreducibly on J/ ®(E1), by the choice of Q following Lemma 4-10 we have that X < Q. We
note that Z(S) = Z(E1) = Z(E3) so that Z(S) < X.

Assume first that X = Z(S), let G; be a model for Nx(E;), where i € {1, 3}, and G13 be a
model for Nx(S). Since E1 and E3 are Autz(S)-invariant, we can arrange that there are injec-
tive maps «;:G13 — G; for i € {1, 3}. Furthermore, since Z(S) < G1, G3, we may form injec-
tive maps «;:G13/Z(S) — G;/Z(S) so that the tuple (G1/Z(S), G3/Z(S), G13/Z(S), af, o3)
satisfies the hypothesis of [16, theorem A]. Since [S/Z(S)|= 3% and |Z(S/Z(S))| =3,
comparing with the outcomes provided by [16, theorem A], we have a contradiction.

Thus, Z(S) <X and we deduce that Z(S) <XNZy(E;) < d(E;). By Lemma 4-6,
Autr(Ey) is irreducible on ®(E;)/Z(S) and so we have that ®(E|) < X. If X = D(E)
then |X| = 33 and X N Z»(S) > Z(S). Hence, |XP(E3)/ ®(E3)| < 3 and as Aut=(E3) acts irre-
ducibly on R/ ®(E3) by Lemma 4-8 we deduce that X < ®(E3). Similarly, |XZ>(S)/Z»(S)| <
3 and as Autr(E3) acts irreducibly on ®(E3)/Z,(S) by Lemma 4-8 we deduce that X =
Z>(S), a contradiction since X/Z(S) is a natural SL,(3)-module for 03’(Out 7(E1)). Hence,
®(E1) < X. Finally, since X < Q and Autr(E1) acts irreducibly on Q/P(E;) by Lemma 4-6,
we have that X = Q.

We have that 03,(Out 7(Q)) acts faithfully on Q. By [47], we deduce that 03,(Out 7(Q))
is isomorphic to a subgroup of 03,(Out(Q)) = Sp,4(3). Hence, Outs(Q) € Syl;(Out(Q)) and
03/(Out]:(Q)) is an overgroup of Outg(Q) with no non-trivial normal 3-subgroups. By
[9, Table 8-12], any maximal subgroup of Sp,(3) which contains a Sylow 3-subgroup is
a parabolic subgroup so has a normal 3-subgroups. Hence, 03/(Out 7(Q)) is contained in no
maximal subgroups so that 03/(Out F(Q)) = Sp,s(3).

We note that the maximal abelian subgroups of Q have order 3° and so QJ=Ej. In
particular, E> # Q £ E4 and neither E; nor E4 are essential in Nx(Q) by Proposition 3-10.
Since E1, E3 are F-centric, normal in S and satisfy Outr(E;) = Outy(Q)(E;), we deduce
that E1, E3 € E(F) if and only if E1, E3 € E(N£(Q)). By Lemma 4-5, if Efﬂg(f) #0,
then E; € £(F) and so by Proposition 4-3, if E; ¢ £(F) then E(F) = {E}, E3}. In particular,
since we have arranged that Q is Autz(S)-invariant by Lemma 4-10, applying Proposition
3-10 we see that F = Nx(Q), completing the proof.

PROPOSITION 4-13. Suppose that {Ez, E3} CE(F). Then O°(Outr(R)=Q(3)=
SLy(3) ¢, SLa(3), E(N£(R)) = {Ea, E3} and if Ey & E(F) then F = Nx(R).

Proof. Suppose that {E», E3} C £(F). By Lemma 4-8, we have that R = E, N E3 is charac-
teristic in E3. Recall from Lemma 4-7 that for V := E,/®(E;) and L := 03/(Outf(E2)) =
SL»(3), V =[V, L] x Cy(L) where [V,L] has order 32 and Cy(L) = J/O(E>).

We claim that R is the preimage of [V,L] in E> and so is normalised by Autz(E>). First,
observe that [E3, E3]D(E,)/ P(E>) has order 3 and is contained in ([V, L] N R)/®(E3). Since
E3 is Autr(S)-invariant, we deduce that either R is the preimage of [V,L], or L centralises
R/[E>, E3]®P(E3). In the latter case, we deduce that Cy(L) < R/P(E>) so that J<R, a
contradiction. Hence, R is the preimage in E, of [V,L] and so is normalised by Autz(E>).
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Since ®(R)=Z(R), |R/<I>(R)|=34 and applying Lemma 2-5, we deduce that
03/(Out]:(R)) is isomorphic to a subgroup SL4(3). Set ﬁ:R/QD(R). We note
that |Cx(Outg(R))|=3 and that R= (Ci(OutS(R))O“tF(R)) by the actions of
Nout=®)(Outg;(R)) = Autg(E;)/Autg(E;) for ie{2,3}. In particular, Outr(R) sta-
bilises no subspaces of R and R is indecomposable under Outrz(R). Moreover,
INoy (OutF(R))(OutEi(R))l is divisible by 8 and we deduce that 03/(Outf(R)) Z (P)SL,(9).

Comparing with [9, Table 8-8], we deduce that 03/(Out]:(R)) is isomorphic to a sub-
group of SOI(?;) or Spy(3). In the latter case, we check against the tables of maximal
subgroups of Sp,(3) [9, Table 8.12] and find no suitable candidates which contain
03,(Out]:(R)). In the former case, since |SOI(3)|3 =32 and comparing orders we deduce
that 0% (Out£(R)) = 0¥ (SO} (3)) = 2 (3), as desired.

Since R < S is of order 37, contained in E, and does not contain J (for otherwise J < E3),
we see that £} # R £ E4 and neither E| nor E4 are essential in Nz (R) by Proposition 3-10.
Since E,, E3 are JF-centric, normal in S and satisfy Outz(E;) = Outy - (Rr)(E;), we deduce
that E;, E3 € E(F) if and only if Ej, E3 € E(N£(R)). By Lemma 4-5, if Ef NEF) #1,
then E; € £(F) and so by Proposition 4-3, if E| & £(F) then E(F) = {E», E3}. Since E; and
E5 are characteristic subgroups of S, so too is R. Hence, R is Autz(S)-invariant and so if
E1 & E(F), then applying Proposition 3-10, we have that 7 = Nx(R), completing the proof.

Hence, as consequence of Proposition 4-3, Lemma 4-5 and Proposition 4-9-Proposition
4.13, we have proved the following result.

PROPOSITION 4-14. Suppose that F is a saturated fusion system on a 3-group S such that
S is isomorphic to a Sylow 3-subgroup of Coy. If O3(F) = {1} then E(F) ={E1, E», E3} or
E(F)={E\, E2, E3,E] ).

We now complete the classification of all saturated fusion systems supported on S. As
evidenced in Proposition 4-12 and Proposition 4-13, the structure of 03/(Out 7(Q)) and
03,(Out 7(R)) is fairly rigid and the flexibility we exploit is in the possible choices of actions
for Out =(J).

The identification of the fusion systems of Spg(3) and Aut(Spg(3)) is proved using a result
of Onofrei [34] which identifies a parabolic system in F. Further restrictions then identify
Spe(3) from an associated chamber system. We remark that in the case of parabolic systems
in groups, the definition is meant to abstractly capture a set of minimal parabolics containing
a “Borel”, in analogy with groups of Lie type in defining characteristic. We cannot hope to
capture the rich theory of parabolic systems in groups (and fusion systems) here, but we
refer to [29] for a survey of this area in the group theory case, and refer to [34] for the fusion
system parallel.

THEOREM 4-15. Suppose that F is a saturated fusion system on a 3-group S such that S is
isomorphic to a Sylow 3-subgroup of Coy. If E(F) ={E\, E», E3} then F = Fs(H) such that
H = Spe(3) or Aut(Spg(3)).

Proof. Let Fjj:= (Nr(E;), Nr(Ej))s for i,j € {1, 2,3}, noting that Nx(S) < Nr(E;) for all
i€{l,2,3}. Then J < F; and as E4 & E(F), Proposition 4-11 along with the Alperin—
Goldschmidt theorem imply that Fj» = Nx(J). Applying Proposition 4-12 we have that
F13 = Nx(Q), and Proposition 4-13 yields that />3 = N=(R).
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Leta € HOHIN;(E,-)nN;(Ej)(P, O)forP,Q<S,i#jandi,je {1,2,3}. Since E; INx(E;) N
N]:(Ej), there is @ € HomN]:(Ei)r’]N]:(Ej)(PEi, QE;) with a|p =co. But Ej ANz(E)N N]-‘(Ej)
and so there is & € Homy (g (g)(PEEj, QE;Ej) with &|pg, = d. Since E;E; = S, we have
shown that for all & € Homy - (£)nn7(E) (P> Q), there is @ € Auty (£ z(g)(S) with &|p =
a. Hence, S I Nx(E;) N Nxr(E)) so that Nx(S) = Nr(E;) N Nz(E;) whenever i # j. Hence,
{Fiii e {l,2,3}} is a family of parabolic subsystems in the sense of [34, definition 5-1].

In fact, following [34, definition 7-4], F has a family of parabolic subsystems of type
M, where 9 is the diagram associated to F described in that definition. By Proposition
4-11, Proposition 4-12 and Proposition 4-13, 971 is exactly the Dynkin diagram correspond-
ing to the group Spg(3) and so is a spherical diagram. Then [34, proposition 7-5 (ii)]
implies that F is the fusion system of a finite simple group G of Lie type in character-
istic p extended by diagonal and field automorphisms. Then Nx(Q) = Fs(Ng(Q)) and as
0% (Out+(Q)) = Spy(3) acts irreducibly on Q/Z(S), we conclude that Ng(Q) = O3 (Ng(Q))
so that G = 03(G). Comparing with the structure of the Sylow 3-subgroups of the finite sim-
ple groups of Lie type (as can be found in [21, section 3-3]), we deduce that F = Fg(G)
where Inn(Spg(3)) < G < Aut(Spg(3))).

THEOREM 4-16. Suppose that F is a saturated fusion system on a 3-group S such that S is
isomorphic to a Sylow 3-subgroup of Coy. If E(F) ={E, E», E3, EZ:} then F = Fs(Coy).

Proof. We observe first that G := Fg(Coy) satisfies the hypothesis of the proposition and
that G = (Autg(E)), Autg(Ey), Autg(E3), Autg(Es), Autg(S)) by the Alperin—-Goldschmidt
theorem. By Lemma 4-10, there is o € Autz(S) such that Qo is Autr(S)-invariant and
Autr(E))-invariant. Since we are only interested in determining J up to isomorphism, we
may replace F by F* and assume that Q is Autz(S)-invariant and Autz(E)-invariant. We
have that Q is Autg(E)-invariant and Autg(E1)-invariant by construction.

Since J is characteristic in Ey, E3 and E4, Q I Nx(E3) and Q < Ng(E3), we see that G =
(Ng(D), Ng(Q))s and F = (Nr(J), Nr(Q))s. Hence, upon showing that Ng(J) = Nr(J) and
Ng(Q) = Nr(Q), we will have shown that 7 = G and the proof will be complete.

Applying Proposition 4-11 and Proposition 4-12, since E4 € E(F), we have that
03/(Aut ) =E2.Mp, and 03/(Out 7(Q)) = Spy(3). We may lift the 3’-order morphisms in
Ny (Autr( J))(AutS(J )) to morphisms in Autz(S) by Lemma 3-2, which then restrict faithfully
to morphisms of Autz(Q) by Lemma 4-10. Similarly, any morphism in Naut -(Q)(Auts(Q))
lift to morphisms in Autz(S) by Lemma 3-2 and restrict faithfully to morphisms in
Nautz)(Auts(J)). Comparing the orders of the normaliser of a Sylow 3-subgroup of 2.Mj>
with the normaliser of a Sylow 3-subgroup of Out(Q) = Sp,(3).2, and applying the Frattini
argument, we deduce that Autr(Q) = Aut(Q) = Autg(Q) = 34:(Sp4(3) :2) and Autr()) =
2.Mj;. Since J admits Autz(S) faithfully, we deduce that |Autz(S)| = |Autg(S)|. By
Theorem 3-11, we conclude that there is § € Aut(S) with N5 (Q) = Ng(Q). Since Autg(S) =
Autyg)(S) = AutNJT,3 @) (S) and |Aut £5(S)| = |Aut£(S)| = [Autg(S)|, we deduce that Q is
Autzp(S)-invariant. A similar argument reveals that Q is Autzs(E7)-invariant. As we are
only interested in determining F up to isomorphism, we mat replace F by F# so that
Ng(Q) =Nx(Q), and Q is Autz(S)-invariant and Autr(E1)-invariant.

Now, Ng(E1) = Nyng(Q)(E1) = Nnx(Q)(E1) = Nr(E1). Then Ng(J) > Ng(E1) < Nx(J) and
by [33, proposition 2-11], it suffices to show that Autg(J) = Autz(J) and that the homo-
morphism H'(Outg(J);J) — H'(Outy,g,)(J);J) induced by restriction is surjective. For the
latter condition, we calculate in MAGMA (see [44, appendix A]) that H 1(OutNg(El)(J);J) =
{1} and so the homomorphism is surjective.
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Let K := Autygg)(J), X := Autg(J) and Y := Autr(J) so that K <XNY < Aut(J) =
GLg(3). We aim to show that X =Y. Since there is only one conjugacy class of groups
isomorphic to 2.Mj; in GLg(3), we may assume that there is g € Aut(J) with ¥ = X8 and
K <XNY.Hence, K, K¢ <Y =2Mj;. Now, K is the unique overgroup of T € Syl;(X) of
its isomorphism type whose largest normal 3-subgroup centralises only an element of order
3 in J. Then, K% is the unique overgroup of 7% € Syl;(X#) with the same properties. Since
K <X8 =Y, K is an overgroup of P € Syl;(X%) with O3(K) centralizing only an element
of order 3 in J. Thus, for m € X8 with P =T%, K™ and K& are isomorphic overgroups
of T¢ € Syl;(X) and by uniqueness, we deduce that K = K&. But now, K = K" so that
gm~le NgLy3)(K) and X& — xem ' However, one can calculate that Ngp ¢3)(K) = Nx(K)
sothat Y = X8 =X.

Remark. Suppose that F = Fg(Cojy) and set Fo:= (Nr(E1), Nr(E2), Nr(E3))s. The
Alperin—Goldschmidt theorem yields that Autz(E4) ¢ Fo so that Fo < F. By Proposition
4.12, we have that Nx(Q) < Fy. Then as O3(Fy) < O3(Nr(Q)), we conclude that if
03(Fo) # {1} that Z(S) = ®(Q) < Fo. But Z(S) A Nr(E2) = Nxyco,)(E2) and so O3(Fp) =
{1}. Hence, by Theorem 4-15 and Theorem 4-16, if Fy is saturated then Fy = Fs(G) where
G € {Spe(3), Aut(Spg(3))}. But then PSL3(3) = 03/(Out]:0(J)) < 03/(Out]:(J)) =2.Mj,. But
13 divides |PSL3(3)| and does not divide |2.M1| and so we conclude that Fy is not saturated.

The above remark is of particular interest in the mission of classifying fusion systems
which contain parabolic systems. In the case of the group G := Coy, the groups Ng(E;) for
i € {1, 2,3} all contain the “Borel” Ng(S) and together generate G and so successfully form
something akin to a parabolic system. Utilised above, work by Onofrei [34] parallels the
group phenomena in fusion systems and provides conditions in which a parabolic system
within a fusion system JF gives rise to a parabolic system in the group sense. The resulting
completion of the group parabolic system realises the fusion system and if certain additional
conditions are satisfied, the fusion system is saturated.

Comparing with [34, definition 5-1], if ¢y does not have a family of parabolic subsys-
tems then the only possible condition we fail to satisfy for Fy is condition (F4). Indeed, the
subsystem (Nr(E1), Nr(E>))s is not a saturated fusion system. Part of the reason this prob-
lem arises is that the 3-fusion category of 2.Mj is isomorphic to the 3-fusion category of
PSL3(3) and, consequently, the image of E4 is not essential in the quotient Nz (J(S))/J(S).

However, we still retain that

(NF(E1), NF(Ep))s < Fs((NH(E1), Nu(E))) = Nr(J(S))

where Nx(J(S)) is a saturated constrained fusion system with model H. Thus, we can still
embed the models for Nr(E;), Nr(E>) uniquely in H and obtain a parabolic system of
groups. Perhaps it is possible in all the situations we care about to create an embedding
(Nr(E1), Nr(Ep))s < Fs({(G1, Gp)) < Np(U) where Nr(U) is constrained and Gy, G, are
the models of Nx(E1), Nr(E3). In such a circumstance, we should always be able to work
in a group setting and can then force restrictions on the structures of Nx(E;) for i € {1,2}.

Finally, we remark that the above example of Co; at the prime 3 is similar in spirit to the
example of M4 at the prime 2 given in [23, p. 58].

5. Fusion Systems related to a Sylow 3-subgroup of F3

We now investigate fusion systems supported on a 3-group S which is isomorphic to a
Sylow 3-subgroup of the Thompson sporadic simple group F3. For the exoticity checks
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in this section, we will use some terminology and results regarding the known finite simple
groups. As areference, we use [21]. Again, for structural results concerning S and its internal
actions, we appeal to the Atlas [13]. We begin by noting the following 3-local maximal
subgroups of F3:

M] ~ 32+3+2+2:GL2(3)

M3 =3%:SLy(9).2

remarking that |S| = 3!0 and that for a given S € Syl3(F3), each M; may be chosen so that
S N M; € Syl;(M;). We make this choice for each M;.

Set E; = O3(M;) so that E1 = Cs(Z»(S)) and E3 = Cs(Z3(S)/Z(S)) are characteristic sub-
groups of S, and so are Autz(S)-invariant in any fusion system J on S. We obtain generators
for M and M, (and hence for S, E| and E») as in Proposition 5-17. For ease of notation, we
fix G := Fs(F3) for the remainder of this section.

PROPOSITION 5-1. We have that G'® = {E, E, E‘;, S}. In particular, £(G) ={E1, E3, E‘g}.

Proof. This follows from a combination of [2, Table 27] and [46].
We appeal to MAGMA (see [44, appendix A]) for the following result.

PROPOSITION 5-2. Suppose that F is saturated fusion system on S. Then E(F)C
{E1, E», E5}.

We will need the following observation in the proofs of the coming results. Several aspects
of this proof are verified computationally (see [44, appendix A]).

LEMMA 5-3. Let F be a saturated fusion system on S. Then {E{} = {Eg} E = (Eg) and
every F-conjugate of E3 contains Z)(S), is contained in E| and is not contained in Ej.
Moreover, if any F-conjugate of E3 is essential in F then the following hold:

(i) every F-conjugate of Ej is essential in F,
(ii) Zo(S) < [E3, OV (Autz(E3))], 0% (Autz(Es)) = SLo(9) and [E3, 0% (Autz(E))] is a
natural module for 03/(Aut]:(E3));
(iii) E; € E(F); and
(iv) O3(F)={1}.

Proof. Note that [Z;(S), E3] = {1}. One can see this in G for otherwise, since E3 is ele-
mentary abelian, we would have that Z>(S) £ E3 and [Z>(S), E3] < Z(S), a contradiction
since Outg(E3) = SL2(9).2 has no non-trivial modules exhibiting this behaviour. Since E3
is self-centralising in S and E; = Cs(Z>(S)), we deduce that Z»(S) < E3 < E;. Now, ®(E)
is elementary abelian of order 3% and is not contained in E3. Furthermore, [E3, ®(E;)] <
[E1, ®(E1)] = Z1(S) < E3 so that ®(E)) < Ng(E3). Comparing with G, we get that Ng(E3) =
E3®(E|) = Ng,(E3), E3 N ®(Ey) is of order 33 and ®(E)) induces an FF-action on Ej3.

We verify computationally (see [44, appendix A]) that every elementary abelian subgroup
A of order 3° which is contained in E; and has |Ng, (A)| = 37is S-conjugate to E3. Moreover,
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for any such A we have that E| = (AS). Since E> < S and E| £ E>, we have that A £ 5.
We observe that Ng, (E3) = Ns(E3) and so any Autx(S)-conjugate of E3 is S-conjugate to
E3. Similarly, we see that any Autrz(E;)-conjugate of E3 is S-conjugate to E3. Let R be
an JF-conjugate of E3 with R = Eza. By the Alperin—Goldschmidt theorem, we have that
a=(p10...¢,)|g, where ¢; € Autr(Q) where Q € {E1, E», S, Eg:}. Since S-conjugates of
E3 are never contained in E», it follows that o = (¢ o . . . ¢,)E; where ¢; € Autr(Q) where
Qe{Ey,S, Eg:}. By the above reasoning, we have that R < Ey and Ng,(E) has order 37,
Hence, R is S-conjugate to E3 and {Eg:} = {E‘;}.

Following the definition, it is clear that every S-conjugate of an essential subgroup is
essential and so if any F-conjugate of E3 is essential in JF, then every F-conjugate of E3 is
essential. Since both Ej and E; are normal in S, we have shown that every F-conjugate of
E5 contains Z»(S), is contained in E; and is not contained in E».

Assume that E3 is essential in F. Then for L := 03,(Aut 7(E3)), applying Theorem 3.7,
we have that L=S1,(9) and E3 =[E3, L] x Cg;(L), where [E3, L] is a natural SLy(9)-
module. It follows that [®(E1), E3] =Z»(S) has order 9 and that Cg, (L) N Z»(S) = {1}. Let
K be a Sylow 2-subgroup of Ny (Auts(E3)) so that K is cyclic of order 8 and acts irreducibly
on Z»(S). Then if E] is not essential, using Lemma 3-6 and Proposition 5-2, the morphisms
in K must lift to automorphisms of S. But then, upon restriction, the morphisms in K would
normalise Z(S), contradicting the irreducibility of Z;(S) under the action of K. Hence,
E1 € E(F). Since 03(F) < S and, by Proposition 3-10, O3(F) is an Autr(E3)-invariant
subgroup of E3, we conclude that O3(F) = {1}.

Throughout the remainder of this section, we set

H = (Autg(E1), Autg(Es), Autg(S))s
and

D = (Autg(Ey), Autg(E3), Autg(S))s.
PROPOSITION 5-4. H is a saturated fusion system with H' = {Ey, E», S}.

Proof. By applying Lemma 3-8 to G with P = E3 we deduce that # is saturated. Moreover,
by Lemma 5-3 we have that {Eg} = {Eg:} and Lemma 3-8 reveals that £(H) = {E}, E»}.

Let R be a fully H-normalised, radical, centric subgroup of S not equal to Ey, E; or
S. Then some H-conjugate of R must be contained in an H-essential subgroup for oth-
erwise, by Lemma 3-6, we infer that Outg(R) < Outy(R) and R is not H-radical. If an
‘H-conjugate of R is contained in a G-conjugate of E3 then since R is H-centric, we
would have that R is G-conjugate to E3 (and so would be S-conjugate to E3). Then
Outg(R) < 03/(OutH(R)) < 03,(Outg(R)) = SL>(9). Since R is not H-essential, it follows
that 03/(OutH(R)) is contained in the unique maximal subgroup of 03/(Outg(R)) which
contains Outg(R) and so Outg(R) < 03/(OutH(R)). Then the Frattini argument implies that
Outg(R) < Outy(R), a contradiction as R is H-radical. Thus, no H-conjugate of R is not
contained in an G-conjugate of E3. Hence, by the Alperin—-Goldschmidt theorem and using
Proposition 5-2, since H = (Autg(E1), Autg(E>), Autg(S))s and R is fully H-normalised, R
is fully G-normalised and so is G-centric. Finally, since O3(Outg(R)) < O3(Outy(R)) = {1},
we conclude that R is G-centric-radical and comparing with Proposition 5-1, we have a
contradiction.

PROPOSITION 5-5. H is simple.
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Proof. Assume that N' << 'H and N is supported on 7. Then T is a strongly closed subgroup
of H. In particular, T < S and Z(S) < T. Taking repeated normal closures of Z(S) under the
actions of Autg(E7) and Autg(E,), we apply the description of F3 from [16, p. 100] to ascer-
tain that ®(E1) < T £ E1. Then E; = ([T, E{]A"9E1) < T and so S =T. Since Auty/(S) is
generated by lifted morphisms from 03/(AutH(E1 )) and 03/(AutH(E2)), in the language of
Lemma 3-12 we have that Autg{(S) = Auty/(S). Then [5, theorem I1-9-8(d)] implies that H
is simple.

PROPOSITION 5-6. H is exotic.

Proof. Aiming for a contradiction, suppose that H = Fg(G) for some finite group G with S €
Syl;(G). We may as well assume that O3(G) = O3(G) = {1} so that F*(G) = E(G) is a direct
product of non-abelian simple groups, all of order divisible by 3. Since Fsnr+G)(F*(G)) <
‘H, we have that G = F*(G). Furthermore, since |21(Z(S))| = 3, we deduce that G is simple.
We note that m3(F3) = 5 by [21, Table 5-6-1]. In particular, we reduce to searching for simple
groups with a Sylow 3-subgroup of order 3'° and 3-rank 5. Since Ej is not normal in S, S
does not have a unique elementary abelian subgroup of maximal rank.

If G = Alt(n) for some n then m3(Alt(n)) = L%J by [21, proposition 5-2-10] and so n < 18.
But a Sylow 3-subgroup of Alt(18) has order 3% and so G 2 Alt(n) for any . If G is isomor-
phic to a group of Lie type in characteristic 3, then comparing with [21, Table 3-3-1], we see
that the groups with a Sylow 3-subgroup which has 3-rank 5 are PSLy(3%), ©7(3), >D4(3)
and PSU5(3), and only PSUs(3) has a Sylow 3-subgroup of order 3!0 of these examples.
Since the unipotent radicals of parabolic subgroups of PSU5(3) are essential subgroups and
since neither has index 3 in a Sylow 3-subgroup, we have shown that G is not a group of Lie
type of characteristic 3.

Assume now that G is a group of Lie type in characteristic r # 3 with m3(G) =5. By
[21, theorem 4-10-3], S has a unique elementary abelian subgroup of order 3° unless
G = Gy(r%), 2F4(r), 3D4(r*), PSU3(r%) or PSL3(r%). Since S has more than one elementary
abelian subgroup of order 3°, we have that G is one of the listed exceptions. Then, applying
[21, theorem 4-10-3(a)], none of the exceptions have 3-rank 5 and we conclude that G is not
isomorphic to a group of Lie type in characteristic r.

Finally, checking the orders of the sporadic groups, we have that F3 is the unique sporadic
simple group with a Sylow 3-subgroup of order 3!°. Since the 3-fusion category of F3 has 3
classes of essential subgroups, G # F3 and we have a final contradiction. Hence, H is exotic.

PROPOSITION 5-7. D is a saturated fusion system with DIre = {(E,, E%), S1.

Proof. In the statement of Proposition 3.9, letting Fo=Ng(E1), V=FE3; and A=
Autg(E3) we have that D = (Fo, Autg(E3))s is a proper saturated subsystem of G. But
now, applying the Alperin—Goldschmidt theorem Fy = (Autg(E]), Autg(S))s so that D =
(Autg(E1), Autg(E3), Autg(S))s = (Fo, Autg(E3))s = DT. Therefore, D is saturated.

Let R be a fully D-normalised, radical, centric subgroup of S not equal to Ey, S or a D-
conjugate of E3. If any D-conjugate of R is contained in a D-conjugate of E3, then since R is
D-centric and Ej3 is elementary abelian, we have a contradiction. Hence R is not contained
in a D-conjugate of E3 and by Proposition 5-2 and using that E; ¢ £(D), R is contained in
at most one D-essential subgroup, namely E;. Then, as E is Autp(S)-invariant, Lemma 3-6
implies that Outg, (R) < Outp(R). Since R is D-centric-radical we conclude that £y <R < S,
a contradiction.
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LEMMA 5-8. E| is the unique proper non-trivial strongly closed subgroup of D.

Proof. Since every essential subgroup of D is contained in Ej, and since E; is charac-
teristic in S, we deduce by the Alperin—Goldschmidt theorem that E; is strongly closed
in D. Assume that T is any proper non-trivial strongly closed subgroup of D. Then
T <1.S and so Z(S) < T and Z»(S) = (Z(S)A"P(EV) < T Suppose first that T N O(E1) = Z»(S).
Since ®(E1) IS we have that [D(E), T] < Z»(S). We calculate ([44, appendix A]) that
Cs(D(E1)/Z(S)) =E; so that T < Ej. But then [E|,T] < ®(E))NT =Z(S) =Z(Ey) and
T <Zy(E1)= P(E7). We compute that Z(E1) = O(E) so that T = Z>(S). However, then
T < E3 and by Lemma 5.3, T < (TAYP(£3)) "3 contradiction.

Thus, TN ®(E1) > Z>(S) and from the description of F3 given by [16, p. 100], we see that
Outp(E1) acts irreducibly on ®(E1)/Z,(S). Therefore, we must have that ®(E;) <T. But
now, by Lemma 5.3, E3 = ((®(E1) N E3)AMPE)y < (T N E3)AUPED)) < T Finally, again
by Lemma 5-3, since E| = (Eg ) < T, we deduce that T = E|, as desired.

PROPOSITION 5-9. D is a saturated exotic simple fusion system.

Proof. We note that 03/(OutD(E1 )) =SL>(3) and Lemma 3-2 yields that Aut%(S) has
index at most 2 in Autp(S). Suppose AutOD(S) has index exactly 2 in Autp(S). Then,
since Outp(E1) = GL,(3), an application of Lemma 3-2 yields that Outoy(D)(El)E

SL»(3). Observe that 03/(Autp(E3)) =SL,(9). Let K be a Sylow 2-subgroup of
N03’( AutD(E3))(AUtS(E3)) which is cyclic of order 8 and contained in 03/(2)). Then, as Ej
is AutOy(D)(S)-invariant, applying Lemma 3-6, we deduce that the morphisms in K lift
to morphisms in AutOy(D)(E]). Hence, Outoy(D)(El) contains a cyclic group of order 8.

Since Out )y D) (E1) = SL,(3), this is a contradiction. Thus Aut%(S) = Autp(S) and applying

Lemma 3-12 we must have that D = 03,(D).

Applying [5, theorem 11-9-8(d)], if D is not simple with A/ <I D then by Lemma 5-8 we
have that N is supported on Ej. Then by [5, proposition 1-6-4], Autzr(E;) < Autp(E) so
that Outar(E;) is isomorphic to a normal 3’-subgroup of Outp(E|) = GL,(3) and hence is a
subgroup of the quaternion group of order 8. In particular, E3 is not essential in A/ for oth-
erwise, applying an argument similar to Lemma 5-3, we would have that 03/(Aut N(E3) =
SL»(9) and we could again lift a cyclic subgroup of order 8 to Auty/(E7), using Lemma
3-6. Then, we apply Proposition 5-20 (or just perform the MAGMA calculation on which
this relies) to deduce that E(N) =0 and E; = O3(NN), and so E; <D, a contradiction by
Proposition 3-10. Hence, D is simple.

Since D is a simple fusion system which contains a non-trivial proper strongly closed
subgroup, we deduce by Theorem 3-14 that D is exotic.

It feels prudent at this point to draw comparisons with some of the other exotic fusion
systems already documented in the literature. We remark that the set of essentials {EZ‘D} in
some ways behave similarly to pearls as defined in [22], or the extensions of pearls as found
in [31]. In some ways, our class {E? } motivates an examination of a generalisation of pearls
to g-pearls P where OP/(G) = ¢~:SLy(g) for G some model of Nx(P) and g = p", as in [12].

Perhaps one can investigate an even further generalisation where we need only stipulate
that O”'(G)/Z(0"' (G)) = ¢*:SLy(g) and we allow for Z(O”' (G)) # {1}. All of these cases are
linked with pushing up problems more familiar in local group theory, and we speculate that
all of these examples are special cases of a more general phenomenon in this setting.
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We also record the following interesting observation. As shown in [22, theorem 3-6], p-
pearls are never contained in any larger essential subgroups, in direct contrast to situation in
the fusion system D. Perhaps the fusion systems where there is a class of g-pearls contained
in a strictly larger essential subgroup have a more rigid structure and so may be organized
in some suitable fashion.

We now delve into the study of all saturated fusion systems on S and throughout the
remainder of this section, we let F be a saturated fusion system on S. As in the study of
Coy, we first limit the possible combinations of essentials we have in a saturated fusion
system supported on S, as well as the potential automisers.

LEMMA 5-10. Suppose that F is a saturated fusion system on S with E; € E(F). Then
Autr(Ey) is Aut(Ey)-conjugate to a subgroup of Autg(E1) and 03,(0141‘]:(E1)) =SLy(3).

Proof. Since Z(E1) has order 9, and from the actions present in F3, we deduce that
Aut(E1)/Cawe)(Z(E1)) = GLo(3). Indeed, we calculate (see [44, appendix A]) that
|Aut(E7)|3 = 16 so that Cauyk,)(Z(E1)) is a normal 3-subgroup. It follows that Outz(E)
is isomorphic to a subgroup of GL;(3) which contains a strongly 3-embedded subgroup
and so Outr(E;) = SLy(3) or GLy(3). Indeed, Outx(E;) is normal in a subgroup iso-
morphic to GL»(3). We calculate that there are two conjugacy classes of subgroups of
Aut(E1) containing Inn(E]) whose quotient by Inn(E}) is isomorphic to SL,(3). Moreover,
Autg(E1) is a subgroup of a conjugate of exactly one of these classes (see [44, appendix
Al]). Since Autg(E1) < Autz(Er) N Autg(E1), we conclude that 03,(Aut;(E1 )) is Aut(E})-
conjugate to 03/(Autg(E 1)). Moreover, if Outr(E1) = GL,(3) then Autz(E]) is the product
of 03,(Aut]:(E1)) and a Sylow 2-subgroup of NAut(El)(OS/(Aut]-'(El))) and so is Aut(E})-
conjugate to Autg(Ep).

The following lemma uses several facts about the group E;. These may be gleaned from
[16, section 13] (E2 = Qg, Z(P(E3)) = Vg, Co = Cg and W, = Wp) but are also computed
explicitly in [44, appendix Al].

LEMMA 5-11. Suppose that F is a saturated fusion system on S with E; € E(F). Set
G2 1= Cp,(Z3(9)) and Wy := Ck,([E2, C2]). Then Z3(S) = Z(Ez), |W2 =36, |Z(Wp)| =3*
and 0% (Out £(E»)) = SL»(3) acts irreducibly on Ey/Cy, Wy /Z(W2) and Z(E»)/Z(E?).

Proof. We calculate the following in MAGMA (see [44, appendix A]). We have that
Z(S) = Z(E>) has order 3 and Z3(S) = Z»(E») has order 33. Moreover, C, has order 3’
and so has index 32 in E;. We have Z(W,) = [E», C>] has order 34, W, has order 3° and
Zr(Ep) < Z(Wy) = Cg,(W>). Finally, we have that C = Cg,(W>/Z»(E»)). It remains to prove
that 03/(Outf(E2)) = SL,(3) acts irreducibly on E/Cy, W, /Z(W>) and Z>(E3)/ Z(E?).

We observe that as Zp(E»;) <Z(W,), we must have that Wy < C,. Then |Cy/W>| =
|Z(W2)/Z2(EL)| = |Z(E»)| = 3 and so 03/(Out 7(E»)) centralises each of these chief factors.
We note that [E>, Wr] < [E», C2] =Z(W,). LetR := CO3/(0ut]:(E2))(W2/Z(W2)) <1 Outr(Ey).

Assume that R is non-trivial, and so as 03,(Out}-(E2)) has a strongly 3-embedded sub-
group, there is r € R of 3’-order. Then [r, W] < Z(W>) and as 03/(Out]:(E2)) centralises
Z(W3)/Zy(E»), we have that [r, Z(W>)] < Z>(E>) and by coprime action we deduce that
[r, Wa] < Z»(E»). We have that [E>, W] < [E», C2] =Z(W>) and so [Er, Wa, r] < Z)(E»). By
the three subgroups lemma, we have that [r, E, W] < Z>(E>). But Cg,(W2/Z,(E>)) = C; and
so we deduce that [r, E>] < C;.
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Again, as 03/(Outf(E2)) centralises C,/W>, we have that [r, C2] < W, and [r, W] <
Z>(E»), and by coprime action we deduce that [r, E»] < Z>(E»). Hence, [r, Ep, Co] = {1},
[Ca, 1, E2] < [Z2(Ep), E2] =Z(E>) and by the three subgroups lemma we conclude that
[Er, Cr, r] < Z(E»). But [En, Cy] = Z(W3) > Z»(E») and so we ascertain that [Z>(E»), r] <
Z(E») and as r centralises Z(E?), a final application of coprime action yields that [r, E;] =
{1}, a contradiction since r is non-trivial. Hence, R = {1} and 03/(0111:]-‘(E2)) acts faithfully
on Wy /Z(W>). As |Wa/Z(W>)| = 32, we conclude that W, /Z(W>) is a natural module for
0% (Out £(E»)) = SLy(3).

Since |Ey/Co| = |Z2(Ey)/ Z(Ey)) =32, to complete the proof it remains to show that
1#¢te Z(O3/(Out_7:(E2))) acts non-trivially on E;/C, and Zp(E;)/Z(E;). Note that if
[t, Z2(E2)] < Z(E3) then by coprime action, [t, Z>(E>)] = {1}. An application of the three
subgroups lemma would then yield that [z, E;] < C;. Hence, it suffices to demonstrate
that [z, E;] £ C;. Assume otherwise. Since [z, C2] < W;, by coprime action we have
that [¢, Ey] < Wh. Then [z, Ep, Wo]| < [W), W] < [Cp, Wa] = Z»(E»). Moreover, [Ey, W), t] =
[Z(W>), t] < Z2(E»). By the three subgroups lemma, we infer that [¢, W», E»>] < Z>(E>). But
Wy = [t, Wo1Z(W>) and [E,, Z(W»)] < Z»(E») so that [W5, E»] < Z»(E>), a contradiction as
Cy = Cg,(W2/Z,(E»)). Hence, t acts non-trivially on E»/C>, which completes the proof.

LEMMA 5-12. Suppose that F is a saturated fusion system on S such that {E1, E»} C E(F).
Then O3(F) ={1}.

Proof. Assume that F is a saturated fusion system on S such that {E}, E;} C £(F) and sup-
pose that {1} # Q < F. By Proposition 3-10, we have that Q < E; N Ej. Then Z(S) < Q and
as Outr(E1) acts irreducibly on Z(E1) by Lemma 5-10, we deduce that Z(E) = Z»(S) < Q.
By Lemma 5-11, we have that 03/(Aut 7(E»)) acts irreducibly on Z3(S)/Z(S) and so Z3(S) <
Q. Since ®(E1) < S and Z(S) < ®(E1), we have that Z3(S) < ®(E1). Then using the descrip-
tions of F3 in [16, p. 100], we have that 03,(Autg(E 1)) acts irreducibly on ®(E1)/Z>(S). By
Lemma 5-10, 0¥ (Aut=(E))) is Aut(E;)-conjugate to O° (Autg(E})) and so we deduce that
Autr(E)) acts irreducibly on ®(E1)/Z>(S). Thus, (E1) < Q <E1 N Es.

Now, if ®(03(F)) is non-trivial then by the above argument we have that ®(E) <
®(03(F)) < 03(F) <E| NE. But ®(03(F)) < P(P(E| N Ey)) < P(E7), and we conclude
that ®(E1) < F. If ®(03(F)) = {1} and O3(F) # {1} then O3(F) is elementary abelian and
contains ®(E1), and since ®(E1) is elementary abelian of maximal order, the only possibil-
ity is that O3(F) = ®(E)). Either way ®(E;) < F. But in the language of Lemma 5-11, we
have by a calculation (see [44, appendix A]) that Z(W,) < ®(E1) < Ws. As Outr(E,) acts
irreducibly on W, /Z(W>) by Lemma 5-11, this is a contradiction.

PROPOSITION 5-13. Suppose that F is a saturated fusion system on S such that O3(F) #
{1}. Then either:

(i) F =Nx(S); or
(ii) F = Nr(E;) where 03 (Out£(E;)) = SLo(3) for i € {1, 2).

Proof. If £(F) = ¥, then outcome (i) is satisfied by the Alperin—-Goldschmidt theorem. Thus,
by Lemma 5-3 and Lemma 5-12, we may assume that E; is the unique essential subgroup of
F and apply Lemma 5-10 and Lemma 5-11.
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LEMMA 5-14. Suppose that F|, F are two saturated fusion systems supported on T where
E,<T<S. IfE3 € g(f]) N 5(]:2) andN}'l(El) :N].'z(El) then Aut]:1 (E3) :Aut}'z(E3).

Proof. By Lemma 5-3, we have that 03/(Aut]:i(E3))’£SL2(9) for ie{l,2}. Write
X:= 0% (Autz, (E3)) and Y:= 0% (Autr,(E3)). Set K := Nauy, g5 (Autr(E3)) so that,
by Lemma 3-6, all morphisms in K lift to morphisms in Autg (E1) = Autg,(E7). In
particular,

K = Nauyz, ) (E) (AUT(E3)) = Nauty o s, (E:) (AUT(E3)) = Nauts, (B5) (Autr(E3)).

Let L be the unique cyclic subgroup of order 8 of a fixed Sylow 2-subgroup of
K arranged such that Ky := LAutS(E3)=NO3/( Autr (E3))(Aut5(E3)). Then Kp <XNY<
1

Aut(E1) = GL5(3). We record that there is a unique conjugacy class of subgroups isomorphic
to SL2(9) in GL5(3) (see [44, appendix A]). Hence, there is g € Aut(E3) with Y = X8.

Then K, (K1) <Y and so, by Sylow’s theorem, there is y € Y such that (K7 )8 = (KL)’.
Thus, we have that X' = X2 and we calculate that gy < NgLs3)(KL) < NgLs3)(X) (see
[44, appendix A]). But then X =X& =Y. By a Frattini argument, Autr, (E3) =XK =YK =
Autr, (E3).

THEOREM 5-15. Suppose that F is saturated fusion system on S such that O3(F) = {1}. If
Ey ¢ E(F) then F=D.

Proof. Suppose that Ey ¢ E£(F). Since O3(F) = {1} and E| is Autr(S)-invariant, an applica-
tion of Proposition 3-10 using Proposition 5-2 implies that some Ef NE(F) # . Hence
by Lemma 5-3 we have that Ey, F3 € £(F) and 03/(Autf(E3)) =SL»(9). Then for k an
element of order 8 in Ny ( AutF(,:-3))(Aut5(E3)), by Lemma 3-6, and since Ej is Autr(S)-
invariant, k lifts to an element of order 8 in Aut(E;). Now, by Lemma 5-10, we have
that 03/(Out;(E1)) =SL,(3) and since SL,(3) has no cyclic subgroups of order 8, the
Sylow 2-subgroups of Autr(E7) have order at least 16. We calculate (see [44, appendix
A]) that |Aut(E7)|3 = 16 so that Autr(E7) contains a Sylow 2-subgroup of Aut(E7), and
Outr(E1) = GLy(3).

Let 7 be an element of Aut(S) of order coprime to 3. Since E| is Aut(S)-invariant, # nor-
malises Ej. Since Ej is self-centralising in S, an application of the three subgroups lemma
and coprime action reveals that ¢ acts non-trivially on E;. Hence, a Hall 3’-subgroup of
Aut(S) restricts faithfully to Nawg,)(Auts(E1)). As in Lemma 5-10, since Z(E;) has order
9 and from the actions present in F3, we conclude that Aut(E;)/Caue)(Z(E1)) = GL2(3)
and Cauyk,)(Z(E1)) is a normal 3-subgroup of Aut(E1). Now, a Hall 3’-subgroup of Aut(S)
also normalises Z(E) and so it restricts faithfully to Nauyk,)(Auts(E1)Caug,)(Z(E1))), and
as Aut(E1)/Cau,)(Z(E1)) = GL2(3) and [Auts(Ey), Z(E1)] # {1}, we conclude that a Hall
3’-subgroup of Aut(S) is elementary abelian of order at most 4. Since Naui»(g,)(Auts(E}))
contains an elementary abelian subgroup of order 4 which, by Lemma 3-2, lifts to Autz(S) <
Aut(S) we conclude that a Hall 3’-subgroup of Aut(S) and of Autz(S) is elementary abelian
of order 4. In particular, Out#(S) in elementary abelian of order 4.

By the Alperin—Goldschmidt theorem and using that E is characteristic in S, we have that
F =(Nr(Ey), Autr(E3))s and D = (Np(E}), Autp(E3))s. Hence, by Lemma 5-14 to show
that F = D it suffices to show that there is & € Aut(S) with Nr«(E;) = Np(E}).
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Now, Autz(S) contains a Hall 3’-subgroup of Aut(S). By Hall’s theorem, there is a; €
Aut(S) such that Autre (S) = Autz(S)*! = Autp(S). By the Alperin—-Goldschmidt theorem,
we see that Nz« (S) = Np(S). Then

K := Nautz E)(AUtS(ED) = Nauty 5 (ED(Auts(E1))
= NAutN,D(S)(E| )(AutS(El))
= Nautp(Ey)(Auts(E1)).

We calculate that in Aut(E) there are three candidates for the group Autx(£;) which contain
K appropriately and that there is an element which conjugates the three candidates and
extends to an automorphism of S which preserves the class {E§ } (see [44, appendix A]).
In particular, there is ay € Aut(S) with Autre«; (E1) = Autp(E1). Hence, by Theorem 3-11
there is B € Aut(S) with o := a8 and Nre(E1) = Np(E1), as required.

We are now almost in a position to determine all saturated fusion systems on S. First, we
require the notion of an amalgam of type F3. We refer to [16, p. 100] for the notion of an
amalgam of type F3, noting that by a result of Delgado [17] such amalgams are unique up to
parabolic isomorphism. We first record a short lemma recognising an amalgam of type F3
from our hypothesis. For the following, as in [16], we conceal the relevant monomorphisms
involved in the amalgam and instead work with identified subgroups.

LEMMA 5-16. Let A:= A(G1, G, G12) be an amalgam of finite groups. Write Q; =
0,(G)) and L; = OP/(Gi)for i € {1,2}. Suppose the following conditions hold:

(i) thereis S € Sylp(Gl) N Sylp(Gz) such that G2 = Ng,(S) = Ng,(5);
(ii) L;/Q; = SLy(3);
(iii) C,(Qi) < Qi; and
(iv) S is isomorphic to a Sylow 3-subgroup of Fs.

Then A is an amalgam of type Fs.

Proof. Conditions (i), (ii) and (iii) promise that we satisfy [16, hypothesis A] so that A is
a weak BN-pair of rank 2. We apply [16, theorem A]. Since § is isomorphic to a Sylow
3-subgroup of F3, we have that |S| = 3'°. We appeal to [21, Table 2-2] for the structure of
the rank two groups of Lie type in characteristic 3 (specifically the orders of their Sylow 3-
subgroups), and it follows that that only possibilities are that .4 is isomorphic to an amalgam
associated to PSU5(3); or that A is amalgam of type F3. However, in the first case we do
not satisfy (ii) (the relevant parabolics in PSU5(3) have quotient isomorphic to PSU3(3) and
SL»(9)). Hence, we have that A is an amalgam of type Fs.

In the setting above, we may freely use any of the structural results obtained in Section
13 of [16] pertaining to amalgams of type F3. In particular, all the necessary conditions in
Delgado’s proof [17] that such amalgams are unique up to parabolic isomorphism follows
from results there.

We provide the following result, which appears to have evaded the literature up until this
point.

PROPOSITION 5-17. Let A be an amalgam of type F3. Then A is unique up to isomorphism.
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For this, we apply the computer implementation of Goldschmidt’s lemma [19, (2-7)]
found in Cano’s PhD Thesis [11, p. 34] (mirrored in [44, appendix A]) in MAGMA. This
takes as input four groups: Py, B, P, B>. It then outputs a 4-tuple, of which the first entry
is the one we are interested in. We appeal to the online version of the Atlas of Finite Group
Representations [1] for a matrix representation of the group F3, namely its 248-dimensional
representation over GF(2). We then use [1] to obtain the matrices which generate two dis-
tinct maximal subgroups of F3 which contain a Sylow 3-subgroup. These groups represent
Py and P> in our case.

By the main result of [17], the parabolic subgroups defining an amalgam of type F3 are
unique up to isomorphism and so, the groups P; and P, have the isomorphism type of the
parabolic groups in any F3-type amalgam. Hence, we are justified in our choice of subgroups
to take. Then the groups B; are defined as Np,(S;), where S; is any Sylow 3-subgroup of P;,
for i € {1, 2}. The function then outputs 1 as its first entry, and so the amalgam is unique.

THEOREM 5-18. Suppose that F is saturated fusion system on S such that O3(F) = {1}.
Then F =D, G or H.

Proof. Observe that if E; ¢ £(F) then by Proposition 5-2 and Lemma 5-3, we would
have that £(F) = {E»}. Since E, is Autz(S)-invariant, Proposition 3-10 would imply that
O3(F) # {1}. Hence, as O3(F) = {1}, we must have that that £ € £(F). By Theorem 5-15,
we may assume that that {E, E} € £(F) and form 7 := (Autr(E}), Autr(E>), Autr(S))s.
If E5 € £(F) then T is the F-analogue of H and the proof that T is saturated is the same
as the proof that H is saturated, relying on Lemma 3-8. If E3 ¢ £(F) then by the Alperin—
Goldschmidt theorem we have that 7 = 7. In either case, £(7) = {E7, E»} and O3(T) = {1}
by Lemma 5-12.

For i€ {l1,2}, let G; be a model for Nr(E;). Since E; is Autr(S)-invariant, by the
uniqueness of models provided by Theorem 3-11, we may embed the model for Nz(S),
which we denote Gy, into G; for i€ {1,2}. Applying [39, theorem 1], we ascertain
that 7 = (Fs(G1), Fs(G2))s = Fs(G1 *¢,, G2). Furthermore, by Lemma 5-16, the tuple
(G1, G2, G12) (upon identifying subgroups in the free amalgamated product with the appro-
priate injective maps) forms an amalgam of type F3. By Proposition 5-17, this amalgamated
product is determined up to isomorphism, and so 7 is unique up to isomorphism. In partic-
ular, 7 is the unique (up to isomorphism) saturated fusion system on S with O3(7) = {1}
and E(7) = {E1, E,}. Since H satisfies these conditions, we must have that 7 = H.

We may as well assume now that Ez € £(F) and by the Alperin—-Goldschmidt theorem,
that 7 = (7, Autr(E3))s. By the proof of Lemma 5-3, utilising the MAGMA computations
from [44, appendix A], we see that every elementary abelian subgroup A of E;| of order
35 with INE, (A)| = 37 is S-conjugate to E3. Since E; is Aut(S)-invariant, these conditions
are maintained under the action of Aut(S) and so we conclude that {Eg: }= {E‘3g }= {E? Ult(S)}.
Hence, {Eg: }= {Eg'— “} for any « € Aut(S). Thus, replacing F by F¢ for some o € Aut(S),
we have that F = (H, Autr(E3))s and upon demonstrating that Autr(E3) = Autg(E3) we
will have shown that F =G. But Nx(E;) = Ny(E|) = Ng(E;) and so Lemma 5-14 gives
Autr(E3) = Autg(E3), as desired.

We provide the following Table 2 summarizing the actions induced by the fusion systems
described in Theorem 5-18 on their centric-radical subgroups. The entry “-” indicates that
the subgroup is no longer centric-radical in the subsystem.
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Table 2. G-conjugacy classes of radical-centric subgroups of S

P P Outg(P) Outy (P) Outp(P)
S 310 2x2 2x2 2x2
E; 39 GL>(3) GLy(3) GLy(3)
E» 39 GL2(3) GL2(3) -

Ex 3> SL,(9).2 - SL»(9).2

We describe a pair of bonus exotic fusion systems related to the exotic system
D. Using that E; is characteristic in S, and applying Lemma 3-6, the morphisms in
Nautp (k) (Auts(E3)) extend to a group of morphisms in Autp(E;) which we denote by K.
Then |K|3 = 16. Let G be a model for Np(E1) and let H be a subgroup of G chosen such that
Auty(E1) = KInn(E1). In particular, H is the product of £ with some Sylow 2-subgroup of
G. We define the subsystem

D*:= (Autp(E3), Fg,(H))g, <D

Note that the conjugacy class of E3 in S splits into three distinct classes upon restricting
only to E;. Indeed, in this way we have three choices for the construction of D*, correspond-
ing to the three E1-conjugacy classes of S-conjugates of E3, which in turn correspond to the
three choices of Sylow 2-subgroups of Outp(E7). Since the choice is induced by an element
of Aut(E)), all choices give rise to isomorphic fusion systems.

PROPOSITION 5-19. D* is saturated fusion system on E| and 0% (D*) has index 2 in D*.

Proof. We create H as in the construction of D* and consider Fg, (H). Since Fg,(H) € D,
and as Ej3 is fully D-normalised and Ns(E3) < E|, E3 is also fully Fg, (H)-normalised. Since
Cg, (E3) < E3 we see that E3 is also Fg, (H)-centric. Finally, since E3 is abelian, it is minimal
among S-centric subgroups with respect to inclusion and has the property that no proper sub-
group of Ej is essential in Fg, (H). In the statement of Proposition 3.9, letting Fo = Fg, (H),
V=E3 and A = Autp(E3), we have that A= Auth H)(E3) = Nautp (k5 (Auts(E3)) is
strongly 3-embedded in A. By that result, D* = (AutD(E3) FE,(H))E, is a saturated fusion
system.

In the construction of D*, we may have taken in place of K the group obtained by lifting
the morphisms in N, Aut03,(D)(E3)(AutS(E3)) to Autp(E;) and forming H of index 2 in H with
Autg(E3) = Nauy ,, ) (Auts(E3)). Letting Fo=Fg,(H), A=Nau o¥ oy E(AULS(E3))
(Auts(E3)) and A = Aut,y (D)(E3) and applying Proposition 3-9, the fusion system
D+ = (03/(Autp(E3)) FE, (f])) E, 18 a saturated fusion subsystem of D.

By construction, D* = (D* Autp+(E1))g, and it is clear that for all o € Autp+(E1),
D** = D*. Hence, applying [5, proposition 1-6-4], we have that D* is weakly normal in
D* in the sense of [5, definition I-6-1] and [15, theorem A] yields that 0% (D*) < D*. Then
03,(Autp*(T)) < Aut,y (ﬁ)(T) < Autp+(T) by [5, proposition 1-6-4] for all T < E1, and we
deduce that 0% (D*) has index prime to 3 in D*. It quickly follows that D* has index prime
to 3 in D* and as Autz:(E)) < Aut%* (E1), we see that Autz:(E) = AutOD* (E1) has index
2 in Autp=(E1). A final application of Lemma 3-12 gives that 03/(D*) — D* has index 2 in
D*, as desired.

We provide some more generic results regarding all possible saturated fusion systems sup-
ported on Ej. Although we do not formally prove the following proposition, its conclusion
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merits some explanation. Let F be a saturated fusion system on Ej. It is fairly easy to show
that £(F) C {Eg } so we take this as a starting point.

For E5 some S-conjugate of E3 with s & Ey, if E3, E5 € E(F) then it quickly follows that
03/(Aut F(E3) = 03/(Aut F(E3)) = SLa(9) (as witnessed in Lemma 5-23). Applying Lemma
3.6 to E3 and E5, we have that for T a cyclic subgroup of 03/(Aut 7(E3)) of order 8 which
normalises Ng, (E3) the morphisms in 7T lift to morphisms in Autz(E;). Similarly, 7° also
lifts. Note that no element of T centralises Z>(S) = Z(E;) and so both T and 7° project to
cyclic subgroups of order 8 in Aut(E)/Cauk,)(Z(E1)) = GL2(3). But then the projection
of (T, T") is divisible by 3, a contradiction since Inn(E}) € Syl;(Autz(£7)) and Inn(E7) <
CauE)(Z(E)).

We conclude that if F3 € £(F) then the only S-conjugates of E3 in £(F) are the E| conju-
gates of E3. Moreover, for s € S\ E and o, the automorphism of £ induced by conjugation
by s, F* = F and if {Eg‘} C E(F) then {(E“;)El} € E(F*). Since we only care about clas-
sifying fusion systems up to isomorphism, we may as well assume that E3 € £(F), leading
to the following result (which is verified computationally [44, appendix A]).

PROPOSITION 5-20. Let F be a saturated fusion system supported on E|. Then E(F) C
E
{E5"}.

We return to some properties of the systems D and 0% (D).

PROPOSITION 5-21. Ng,(E3) is the unique, proper, non-trivial, strongly closed subgroup in
both 0¥ (D*) and D*, and D*" = 0¥ (D*y™ = {(EP", Ey ).

Proof. Since Ng,(E3) is normalised by Autp+(E1) and contains all D*-conjugates of E3,
we have by the Alperin—Goldschmidt theorem that Ng, (E3) is strongly closed in D* and
03/(D*). Assume that T is a proper non-trivial strongly closed subgroup of D*. Then ((T N
E3)A”tD(E3)) < T and since T < E, we must have by Lemma 5-3 that [E3, Autp«(E3)] <T.
But then ([E3, Autp+(E3)]F') < T and one can calculate (see [44, appendix A]) that this
implies that Ng, (E3) <T.

Let T be a non-trivial involution in Z(O3’(Autp*(E3))). By Lemma 3-6, t lifts to
Te Autyy iy (E1). Suppose  that [T, E1]l < Ng,(E3). Since T is the extension of 7 to
Autp«(Ng,(E3)) and T centralises Autg, (E3), we conclude that [T, Ng, (E3)] <E3 and
so by coprime action, we have that [T, E1] < E3. Since E3 is abelian and [E1, E3, T] <
[®(E1), T] = Z(E}), the three subgroups lemma implies that [E3, T, E1] < Z(E}). But then, as
E3 =[E3, T]Z(Ng, (E3)) and [Ey, Z(NE, (E3))] < [E1, P(E1)] = Z(E}), we have that E3 J E},
a contradiction. Hence, T acts non-trivially on E| /Ng, (E3) and since the Sylow 2-subgroups
of Aut s (o) (E1) are cyclic of order 8, we deduce that a Sylow 2-subgroup of Aut s o+ (ED
acts faithfully and irreducibly on Ej /Ng, (E3). We conclude that T = Ng, (E3) is the unique
proper non-trivial strongly closed subgroup of both 0% (D*) and D*.

Let F e{D, 03/(D)} and assume that R € 7/ but R is not equal to Ej. Since R is
F-radical, Lemma 3-6 implies that some F-conjugate of R is contained in at least one
JF-essential subgroup. But Proposition 5-20 then implies that some JF-conjugate of R is
contained in an Ej-conjugate of E3. Since E3 is elementary abelian and R is JF-centric, we
must have that R is E1-conjugate to E3, as required.

PROPOSITION 5-22. 0% (D*) is simple and both O3 (D*) and D* are exotic fusion systems.
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Proof. Let N' < 03/(27*) supported on {1} <P <E;. By [5, theorem 1I.9-8(d)] we may
assume that P < Ey, and P is strongly closed in 0% (D*). Hence, N is supported on
NE,(E3) and we have that Autyr(E3) < Autgy (D)(E3) by [5, proposition 1-6-4(c)] so that
Autpr(E3) = Aut03/(D)(E3) =SL»(9).

Let T be a non-trivial involution in Z(Auty/(E3)). By Lemma 3-6, t lifts to
Te Autpy ) (E1) and restricts to T € Autpy ) (NE, (E3)). Indeed, T € Autpn/(Ng, (E3)) <
Aut 0y (NVE (E3)) and we ascertain that [T, Autg, (Ng, (E3))] < Inn(Ng, (E3)). Since 7 is the
lift of 7, we infer that [T, E1] < Ng,(E3). But as in witnessed in the proof of Proposition
5-21, the Sylow 2-subgroups of Autoy(D)(E 1) act faithfully on E/Ng, (E3), a contradiction.
Hence, 03/(D*) is simple.

Assume that there is A is a proper non-trivial normal subsystem of D*. Applying [5,
Theorem I1-9-1] and using that 03/(D*) is simple, we deduce that 03/(D*) <N and it
quickly follows that 03/(D*) = N. Since Ng, (E3) is a strongly closed subgroup of both
D and 03/(9*), by Theorem 3-14, we conclude that both D and 03/(1)*) are exotic.

We now classify all saturated fusion systems supported on E]. We preface this classifica-
tion with the following lemma.

LEMMA 5-23. Suppose that F is saturated fusion system on E| with E3 € E(F). Then
03(F) = {1} and O (Autr(E3)) = SL»(9).

Proof. As in Lemma 5.3, since ®(E;) induces an FF-action on Ej3, an
application of Theorem 3-7 implies that 03/(Autf(E3))’£SL2(9) and E3=
[E3, 0¥ (Autf(E3))] x Cp;(0% (Autz(E3))). Moreover, Z(E1) < [E3, 0¥ (Autx(E3)] A E)
and |CE3(O3/(Aut]:(E3)))|:3. Since E3 € £(F), by Proposition 3-10, O3(F) is an
Autr(E3)-invariant subgroup of E3 which is also normal in E1, so that O3(F) = {1}.

THEOREM D. Suppose that F is saturated fusion system on E| such that E1 4 F. Then
F = 0%(D*) or D*.

Proof. Since E| 4 F, we must have that E3 is essential in F by Proposition 5-20. By Lemma
5-23, we have that O3(F) = {1} and 03/(Aut]:(E3)) = SL>(9). Let K be a Hall 3’-subgroup of
Naut»(E3)(Autg(E3)) so that by Lemma 3-6, K lifts to a group of automorphisms of £, which
we denote by K. Asin Lemma 5- 10, we calculate that |Aut(E1)|3 = 16 and so Outp«(E;) is a
Sylow 2-subgroup of Out(E}). Set L:= K N 0% (Autx(E3)) and L the lift of L to Autz(E).
Then L is the unique cyclic subgroup of K of order 8 and has index at most 2 in K. We
may choose & € Aut(E)) so that K*Inn(E}) < Autre(E;) < Autp+(E)). Indeed, L*Inn(E;) =
Aut )y (D*)(El). Applying Theorem 3-11, we deduce that there is 8 € Aut(E]) with

No3 (pr(E1) = Npap(E1) < Np+(E1).
In either case, we invoke Lemma 5-14 so that Aut zap (E3) = Aut03/(D*)(E3) if Nrap(E1) =
NOy(D*)(El), while Autras(E3) = Autp+(E3) if Nrap(E1) =Np+(E7). Then the Alperin—
Goldschmidt theorem implies that F*f = 0% (D*) or D* and the theorem holds.

The following Table 3 summarises the actions induced by the fusion systems described in
Theorem D on their centric-radical subgroups.
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Table 3. D-conjugacy classes of radical-centric subgroups of E1

P |P| OutD*(P) Out03’(D*)(P)
E; 39 SDjs Cg
E3 33 SL»(9).2 SL>(9)

6. Fusion systems related to a Sylow 5-subgroup of M

In this final section, we investigate saturated fusion systems on a 5-group S which is iso-
morphic to a Sylow 5-subgroup of the Monster sporadic simple group M. As in the previous
section, we document some exotic fusion systems supported on S and some exotic fusion
systems supported on a particular index 5 subgroup of S. Once again, the Atlas [13] is an
invaluable tool in illustrating the structure of M and its actions. As a starting point, we
consider the following maximal 5-local subgroups of M:

M; = 5252 5%(Sym(3) x GL,(5))
My =5110:47,2
M3 = 5%(3 x SLy(25)).2

My =533 (2 x PSL3(5))

remarking that |S| = 5%, and for a given § € Syls(M) each M; be chosen such that SN M; €
Syls(M;). Choose M; such that this holds.

Let E; := Os(M)) = Cs(Z>(S)) of order 58, and Ez:= Os(M3) elementary abelian of
order 5*. Furthermore, note that Q := Os(M>) is the unique extraspecial subgroup of S of
order 57 and so is characteristic in S.

We appeal to the online version of the Atlas of Finite Group Representations [1] for rep-
resentations of M; for i € {1, 2, 3, 4}. These are accessible without the need to construct the
Monster computationally. We consider M as a permutation group on 750 points, M> in its
8-dimensional matrix representation over GF(5), and M4 as a permutation group on 7750
points. Naturally, we access S and E] computationally via M.

We note some important structural properties of M| which will be used later. Namely, we
have that ®(E)) is of order 5* and Z(E|) = Z»(S) is of order 52. Moreover, we can choose
a subgroup isomorphic to Sym(3) in M| /E;| which acts trivially on Z(E1). We shall denote
this subgroup A and refer to Ay as the “pure” Sym(3) in M /E. We record that the unique
normal subgroup of M;/E; isomorphic to GL,(5) acts faithfully on Z(E;) and centralises
Aj1. In this way, we have that M| /E; = A x B; = Sym(3) x GL3(5). Moreover, 05/(M1) =
Cu, (D(E1)/Z(E1)), 0% (M1 /Ey) = O° (M1)/Ey = SLy(5) and 0% (M /Ey) < By.

We desire more candidates for essentials subgroups of the 5-fusion category of M and
for this we examine the structure of M>. Let X < M, with M>/X =J,.2 and consider the
maximal subgroup H = (Alt(5) x Dih(10)).2 of M>/X. Define E, to be the largest normal
5-subgroup of the preimage of H in M3 so that

Num(E2) = Ny (E2) = 5140.5:(2 x GLy(5)).
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Then E; is an essential subgroup of Fs(M) of order 58, Q is characteristic in E, and
[NM(S):Nny(s)(E2)] = 3.

We remark that M = (Nm(S), Nm(E2)) and we can arrange, up to conjugacy,
that M4:(05/(NM(E1)),NM(E2)). In particular, setting R:= Os5(M4), we have that
[NM(S):Nny(s)(R)] = 3. For ease of notation, we fix G := Fs(M) for the remainder of this
section.

PROPOSITION 6-1. £(G) = (E1, ES, ES} and ¢ = (Ey, E§ , ES, Q. RY, S).

Proof. See [48, theorem 5].

As in Section 5, before describing any exotic subsystems of G, we require an observation
regarding the containment of some essentials in others and lean on MAGMA for the deter-
mination of all possible essential subgroups of a saturated fusion system JF supported on S.
The following proposition is verified computationally (see [44, appendix A]).

PROPOSITION 6-2. Suppose that F is saturated fusion system on S. Then E(F)C
(E1, S, ES).

We remark that each of the three G-conjugates of Ej is normal in S. We record that upon
restricting to S, the G-conjugates of E3 split into four distinct classes, fused by elements of
Nautg(s)(E2). We provide some generic results regarding all saturated fusion systems on §
which also elucidate some of the structure of G.

LEMMA 6-3. Every G-conjugate of E3 is contained in E, and not contained in any

Nourgy (i) (Autts (E
G-conjugate of E;. Moreover, {E3g} = {E3A rg i (At 2))}.

. G Nautg (E,)(Auts(E2)) . .
Proof. We verify that {E3} = {E; } computationally (see [44, appendix A]).
Since E and E>a are normalised by Naug(s)(E2) for all o € Autg(S), for the first statement
of the lemma it suffices to prove that E3 < E| and E3 £ Esra for all @ € Autg(S). To this end,
we note that [Z»(S), E3] = {1} so that E3 < Ej. One can see this in G, for otherwise since E3
is elementary abelian we would have that Z>(S) £ E3 and [Z5(S), E3] < Z(S), a contradiction
since 05/(Outg (E3)) = SL»(25) has no non-trivial modules exhibiting this behaviour. If 3 <
E>a for some o € Autg(S), then as Era < S, we have that £ = (Eg) < E>a, an obvious
contradiction.

LEMMA 6-4. Suppose that F is a saturated fusion system on S with Ey € E(F). Then
|D(Ey)| =52, 05,(Aut]:(E2)) acts trivially on E;/Q, and both Q/®(E>) and ®(Ep)/ D(R)
are natural modules for 05/(0ut]:(E2)) =SLy(5).

Proof. We compute (see [44, appendix A]) that ®(E») is of order 57 and so has index 5°
in E>. Then Q has index 5 in E; and ®(E;) has index 5% in Q. Thus, 0% (Autr(E,)) acts
trivially on E>/Q and since 05/(Autf(E2)) acts faithfully on E,/®(E,), we deduce that
05,(Out r(E2)) = SLy(5) and Q/ O(E>) is a natural module.

We have that ®(E,) < R < Ej so that ®(R) < P(E3). We calculate (see [44, appendix A])
that ®(R) = [E,, ®(E>)] is characteristic in £, and so R = Cg,(P(R)) is also characteristic
in E,. Since |R/®(E3)| =5, S centralises R/ ®(E>) and we either have that 05/(Out r(E»))
acts faithfully on ®(E,)/P(R) of order 52; or 05/(Out;(E2)) acts trivially on R. Since R
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is self-centralising in S the latter case clearly gives a contradiction. Hence, the former case
holds and ®(E,)/P(R) is a natural module for 05/(Out F(E»)) = SL(5).

The above lemma also holds for any G-conjugate of E; which is essential in F, with R
replaced by Ra for some appropriate « € Autg(S).

LEMMA 6-5. Let F be a saturated fusion system on S. Let P be some G-conjugate of E3. If
P € E(F), then O (Aut 7(P)) = SLy(25), P is a natural module for O° (Autz(P)), E1 € E(F)
and Os(F)={1}.

Proof. Let P be some G-conjugate of E3z and suppose that P € £(F). Then ®(E;) is
elementary abelian of order 5* and is not contained in P. Furthermore, by Lemma 6-3
[P, ®(E))] <[E1, D(E1)] =7Z>(S) <P so that ®(E;) < Ng(P). Since P is G-essential, and
|INs(P)/P| = 52, applying Theorem 3-7 we see that Ng(P) = P®(Ey), PN ®(E1) = Z(S) and
®(E7) induces an FF-action on P. Then for L := 05/(Autf(P)), Theorem 3-7 implies that
L=S1,(25) and P = [P, L] is a natural module.

Let K be a Hall 5'-subgroup of Np(Auts(P)) so that K is cyclic of order 24 and acts
irreducibly on Z,(S). If E; is not essential then applying Lemma 3-6, Proposition 6-2 and
Lemma 6-3, the morphisms in K must lift to automorphisms of S. But then, upon restriction,
the morphisms in K would normalise Z(S), contradicting the irreducibility of Z>(S) under
the action of K. Hence, E; € E£(F). Since Os5(F) < S, P is irreducible under the action of
Autr(P) and, by Proposition 3-10, Os(F) < P, we conclude that Os(F) = {1}.

LEMMA 6-6. Suppose that F is a saturated fusion system on S with E| € E(F). Then
|D(E))| = 54, 05/(Aut]:(E1)) acts trivially on ®(E1)/Z(E1), Z(E1) is a natural module for
05/(0ut]:(E1)) = SLy(5), and 05/(Aut]:(E1 )) normalises every Autg(S)-conjugate of R.

Proof. We compute (see [44, appendix A]) that ®(E) is elementary abelian of order 5% and
that S centralises ®(E1)/Z(E1). In particular, 05’(Aut r(E1)) acts trivially on ®(E1)/Z(E1).
Set L := 05,(Out F(E1)) and notice that for r € L of 5’-order, if r acts trivially on ®(E}) then,
by the three subgroups lemma, r centralises E1/Cg,(P(E)). Since ®(E)) is self-centralising
in E, we deduce that L acts faithfully on ®(E1). In particular, Cr.(Z(E1)) = {1}. Since Z(E1)
has order 52, we conclude that Z(E}) is natural module for L = SLy(5).

We note that Z(E7), ®(E1) and Ep are all invariant under Autg(S). Hence, for « €
Autg(S), R < E; so that ®(Ra) < ®(E7). Since Z(E7) centralises R, we deduce that
Z(E1) <Z(Ra)=dRa) and as 05/(Aut]:(E1)) centralises ®(E1)/Z(Ey), 05/(Aut_7:(E1 )
normalises ®(Ro) and so normalises Cg,(P(Ra)) = Ro (where the last equality follows
from a MAGMA computation [44, appendix A]).

LEMMA 6-7. Suppose that F is a saturated fusion system on S with E| € E(F). Then there is
y € Aut(Ey) with Autr(E1)Y <Autg(E1) and we may choose A, B < Out(E) such that A =
A’l/ = Sym(3) with [A,Z(Ey)]={1}, B =B)1/ = GLy(5) with [B,A]l={1}), and Outr(E;) <
A x B with 0% (Outz(E)) <B.

Proof. Let T be a Sylow 2-subgroup of 05/(Autf(E1)) so that |T|=23. Then
Nr(Autg(Ep)) is cyclic of order 4 and T centralises ®(E1)/Z(E1) and so centralises
Autgg)(E1). We calculate ([44, appendix A]) that Ny(Autg(Eq)) is a Sylow 2-subgroup
Of  CNpyyp (Auts(E) (AUt (E1)) and Nr(Auts(Ep)) is conjugate by an element of
NauE,)(Auts(Er)) to a Sylow 2-subgroup N, 0% (Autg (El))(AutS(E ).
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We have that there is a unique Aut(E])-conjugacy class of subgroups which con-
tain NOS/(Autg(El))(AUtS(E] )) with quotient by Inn(£;) isomorphic to SL,(5). Indeed,

05,(Autg(E1)) satisfies these conditions and tracing backwards, we ascertain that
0% (Autz(Ey)) is Aut(E))-conjugate to O° (Autg(E})). Finally, the normaliser in
Out(E) of 0% (Outg(E})) is Outg(E) so that Outr(E1) < Nows,) (0 (Outr(E;))) and
Nom(El)(OS/(Out]:(El))) is Out(E17) conjugate to Outg(E1). Hence, Autz(E1) is Aut(E)-
conjugate to a subgroup of Autg(E1) and the rest of the result follows from the description
of Outg(El) = Ml/El.

LEMMA 6-8. Let F be a saturated fusion system on S. Let P be some G-
conjugate of Ez. If P € E(F), then Outr(E1) = CourE,)(Z(E1)) X B, where B= GLy(5),
[B, CourrE)(Z(E1)] = {1} and |Couz £, (Z(E1))| € {3, 6}.

Proof. Let P € £(F) where P is a G-conjugate of E3. Applying Lemma 6-5, E| € £(F) and
05,(Aut]:(P)) = SL,(25), and following the notation from the proof of that result, we set
K to be a Hall 5'-subgroup of Nos ( Autf(p))(AUtS(P))- Then K is cyclic of order 24 and
using that £ is Aut z#(S)-invariant and applying Lemma 3-6 and Proposition 6-2, we see that
K lifts to a group of automorphisms of E; which we denote K. Then K acts on Z(E}) as
K does. In particular, K acts faithfully on Z(E1). By Lemma 6-7, Outr(E1) is Out(E})-
conjugate to a subgroup of Outg(E) so that Outx(E1)/Coutr k) (Z(E1)) is isomorphic
to a subgroup of GLy(5). But 0 (Outz(E1)) N Cour &) (Z(E)) = (KInn(Ey)/Inn(E})) N
Cout(E))(Z(E1)) = {1} and we deduce that Out 7(E1)/Cout»£)(Z(E1)) = GL2(5).

Furthermore, again using that Outz(E1) is Out(E1)-conjugate to a subgroup of Outg(E1),
we deduce that |Coucr(£,)(Z(E1))| < 6. Now, a Sylow 3-subgroup of 05/(Out}-(E 1)) cen-
tralises ®(E1)/Z(E71). Since a Sylow 3-subgroup of K acts on ®(E1)/Z(E1) as K acts on
Autg(P) = O(E)P/P = ®(E1)/Z(E1), we have that a Sylow 3-subgroup of K acts non-
trivially on ®(E7)/Inn(E). Hence, 9 ’ |Outz(E£71)| and it follows that |Cout(£,)(Z(E1))| €
{3, 6}.

Since Out £(E7) is Out(E7)-conjugate to a subgroup of Outg(Ey), if |Cout (£, (Z(E1))| =
6 then Outg(E;) is Out(E;)-conjugate to Outg(E;) and the result is -easily
seen to hold. Hence, we assume that [Coutr(g)(Z(E1))|=3 so that Outr(E))=
(I?Inn(E1 )/Inn(EY), 05/(Out_7:(E1))). We note that {E3g } is the unique class of elemen-
tary abelian subgroups H of E; of order 54 with INg,(H)| =5% and [Ng,(H),E1]=
Z(E1) (see [44, appendix A]). In particular, this class is invariant under Aut(E). Since
Autr(E7) is Out(E7)-conjugate to a subgroup of Autg(E7), and we can choose a Sylow
3-subgroup of Autg(E;1) to normalise P, we can also choose a Sylow 3-subgroup of
Autr(Ep) to normalise P. In particular, there is a 3-element ¢ of Autz(E;) which nor-
malises P and centralises ®(E1)/Z(E1) = Autg(P). Since 05/(Aut]:(P))§SL2(25), we
must have that ¢|p centralises 05,(Aut 7(P)). Hence, K centralises a Sylow 3-subgroup of
Autz(E;) and so KInn(E)/Inn(E;) centralises Cour(;)(Z(E1)). But 0% (Outx(E})) cen-
tralises Cout(£,)(Z(E1)) and so we see that Out(E) centralises Cout-(£,)(Z(E1)). Finally,
since Outz(E1) is Out(E7)-conjugate to a subgroup of Outg(E7), the lemma holds.

LEMMA 6-9. Let F be a saturated fusion system on S. Let P be some G-conjugate of E3 and
set Aut’z(S) the subgroup of Autx(S) generated by all F-automorphisms of S that restrict to

elements of 05/(Aut}-(R)), where R € {E1, P, S} If P € E(F), then
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(i) |Autz(S)/Autz(S)| = |Coutr &) (Z(E1)|/3;
(i) {PT)={ES); and
(iii) [Autz(P):0° (Autz(P)] = | CoutrE)(Z(ED)!.

Moreover, if {Ezg} NE(F) =0 then Aut’=(S) = Autg_-(S), Outps' £/(E1) =3 x GL»(5) and
Allt05/(]_-)(E3) =3 x SL»(25).

Proof. Since E; is self-centralising and characteristic in S, an application of the three
subgroups lemma implies that any morphism in 0’ (Autz(R)) which extends to auto-
morphisms of S restricts faithfully to a morphism in Autr(E;). Indeed, it follows that
|Aut]:(S)|/|Aut§_-(S)| = |Autr(E1)|/| (Aut?_-(S)|E1 R 05’(Aut;(E1))) |. By the proof of Lemma
6-8, and using that Outr(E7) <A x B in the language of Lemma 6-7, we have that

(Aut=(S)|E,, O° (Autz(Ey)))Inn(Ey)/Inn(E;) = O3(A) x B=3 x GLa(5).

Hence, (i) holds.

We observe that the subgroup of Autg(E1) with quotient by Inn(£7) isomorphic to 3 x
GL;(5) acts transitively on the set {E3g } (see [44, appendix A]), and is conjugate by Aut(E1)
to a subgroup of Autr(E;) by Lemma 6-8. Since {Eg } is preserved by Aut(E1) (as in Lemma
6-8) and P is G-conjugate to E3, we have that (P7} = {E3g } and so (ii) holds. We may take
P = Ej3 to prove the remainder of the claims.

Now, it follows by a Frattini argument that |Naug(k;)(Auts(E3))| =
[Aut }-(Eg):OS/(Aut F(E3NIIN s ( Aut]:(E3))(AUtS(E3))|‘ By Lemma 3.6, and using that
E is characteristic in S, we see that all morphisms in Nyt »(£;)(Auts(£3)) lift to morphisms
in Autr(E;) which normalise E3. But Autrz(E;) is Aut(Ep)-conjugate to a subgroup of
Autg(E1) and as Inn(E7) preserves the class {E3g}, we may calculate |Nayt»(E;) (Auts(E3))]
from Naug(£,)(E3). Writing H for the subgroup of Autg(E7) with H/Inn(E1) = 3 x GL2(5),
we calculate (see [44, appendix A]) that Ny(E3) has index 2 in Naugg,)(E3) and so (iii)
holds.

Finally, assume that {Eg JNEF)=0. We clearly have that Aut’~(S) < Aut(%(S) <
Autz(S). Aiming for a contradiction, suppose that Aut’-(S) < AutOF(S) so that Autz(S) =
Autz(S). Then we see that Outr(E;) =A x B=Sym(3) x GL2(5). By Theorem 3-11,
we let H be a model for Nr(Ey) and let H* <H such that H*/E| =3 x GLy(5).
Indeed, H* is unique with respect to this property. Form the fusion system JF*:=
(05,(Aut]:(P)), Fs(H*))s. Applying Proposition 3-9 and by the definition of Aut’-(S), we
have that F* is saturated and F = (F™*, Autr(S))s. Moreover, for all & € Autz(S) we have
that F*% = F*. Hence, applying [5, proposition I-6-4], we have that F* is weakly normal
in F in the sense of [5, definition 1-6-1] and [15, theorem A] yields that 05/(]:*) < F.
Then 05,(Aut]:(T)) < Autos/(]_-*)(T) < Autx(T) by [5, proposition 1-6-4] for all T < S, and
we deduce that 05 (F*) has index prime to 5 in a F, a contradiction by Lemma 3-12 since
Aut%(S) = Autr(S). Hence, Aut’-(S) = Aut)(S).

Then OutOS/(}.)(El) = (AutOF(S)|El , 05/(Aut;(E1)))Inn(E1)/Inn(El) =03(A) x B=3 x
GL>(5). As in Lemma 6-8, we see that we may choose r € Autr(E;) to normalises E3
with [f, ®(E1)] < Z(E)) so that t|g, centralises 05,(Aut]:(E3)). Then part (iii) implies that
AutOs/(]_-)(Eg) =3 x SL,(25).

As a consequence of Lemma 6-5 and Lemma 6-9, if any G-conjugate of E3 is essential in

F, then {Ey, (EY}} C E(F).
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We now construct some exotic fusion subsystems of G in a similar manner to Section 5,
and persist with the same notations. That is, we set

H = (Autg(E1), Autg(E), Autg(S))s
and

D = (Autg(E)), Autg(E3), Autg(S))s.

PROPOSITION 6-10. H is a saturated fusion system with with E(H) = {E1, E;{} and H/ =
{E1,E}, Q,R™,S).

Proof. By applying Lemma 3-8 to G with P = FE3 we deduce that  is saturated. Moreover,

Nau (Auts(E2))
by Lemma 5-3 we have that {EY } = {E, Aug (AT

6-2 reveal that E(H) = {E], Ezg}.

Let R be a fully H-normalised, radical, centric subgroup of S not equal to one described
in the conclusion of the proposition. Then an H-conjugate of R must be contained in an -
essential subgroup for otherwise, by Lemma 3-6, we infer that Outg(R) < Outy/(R) and R is
not H-radical. If an H-conjugate of R is contained in a G-conjugate of E3 then since R is H-
centric, R is G-conjugate to E3. Then Outg(R) < 0% (Outy(R)) < 0 (Outg(R)) = SLy(25).
Since R is not H-essential, it follows that 05/(OutH (R)) is contained in the unique maximal
subgroup of 05/(Outg(R)) which contains Outg(R) and so Outg(R) < 05/(OutH(R)). Then
the Frattini argument implies that Outg(R) < Outy(R), a contradiction.

Thus, no H-conjugate of R is contained in an G-conjugate of E3. Hence, by the Alperin—
Goldschmidt theorem and using Proposition 6-2, since H = (Autg(E), Autg(E>), Autg(S))s
and R is fully H-normalised, R is fully G-normalised and so is G-centric. Finally, since
05(0utg(R)) < O5(0Outy(R)) = {1}, we conclude that R is G-centric-radical and comparing
with Proposition 6-1, we have a contradiction.

}. Then Lemma 3-8 and Proposition

PROPOSITION 6-11. H is simple.

Proof. Assume that ' <'H and V is supported on 7. Then T is a strongly closed subgroup
of H. In particular, T < S and Z(S) < T. Observe that since Ng(Q) = (Ng(S), Ng(E»))s < H,
we have that Ny (Q)=Ng(Q). In particular, Auty(Q) is irreducible on Q/Z(S). Since
Auty(E1) = Autg(Ey) is irreducible on Z(S), we have that Q <7. Then E; = ((E1 N
Q)AUMGEDY < T and so S=E;Q=T. Since Auty(S) is generated by lifted morphisms
from 05/(AutH(E1)) and 05/(AutH(Q)), in the language of Lemma 3-12 we have that
Autg_[(S) = Auty(S). Then [5, theorem I1-9-8(d)] implies that 7 is simple.

PROPOSITION 6-12. H is exotic.

Proof. Aiming for a contradiction, suppose that H = Fs(G) for some finite group G with
S € Syl5(G). We may as well assume that Os5(G) = Os(G) = {1} so that F*(G) = E(G) is a
direct product of non-abelian simple groups, all divisible by 5. Then, as H is simple and
Fsnr+c)(F*(G)) 9 Fs(G), we may assume that G = F*(G). Hence, every component in G
is normal and is divisible by 5 and as |Q2(Z(S))| =5, we have that G is simple. We note that
ms(M) =5 by [21, Table 5-6-1].
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If G = Alt(n) for some n then ms(Alt(n)) = ng by [21, proposition 5-2-10] and so n <
25. But a Sylow 5-subgroup of Alt(25) has order 5° and so G 2 Alt(n) for any n. If G is
isomorphic to a group of Lie type in characteristic 5, then comparing with [21, Table 3-3-1],
we see that the groups with a Sylow 5-subgroup which has 5-rank 4 are PSL,(5%), PSL3(25),
PSU3(25), PSL4(5) or PSU4(5) and none of these examples have a Sylow 5-subgroup of
order 5°.

Assume now that G is a group of Lie type in characteristic » # 5 with ms5(G) =4. By
[21, theorem 4-10-3], S has a unique elementary abelian subgroup of order 5* unless
G = Ga(r%), 2F4(r%), 3D4(r%), PSU3 (%) or PSL3(r%). Since S has more than one elementary
abelian subgroup of order 5%, we have that G is one of the listed exceptions. Then, applying
[21, theorem 4-10-3(a)], none of the exceptions have 5-rank 4 and we conclude that G is not
isomorphic to a group of Lie type in characteristic .

Finally, checking the orders of the sporadic groups, we have that M is the unique spo-
radic simple group with a Sylow 5-subgroup of order 5°. Since M has 3 classes of essential
subgroups, G Z M and H is exotic.

PROPOSITION 6-13. D is a saturated fusion system and O° (D) has index 2 in D.

Proof. In the statement of Proposition 3.9, letting Fo=Ng(E;), V=E3 and A=
Autg(E3) we have that D = (Fo, Autg(E3))s is a proper saturated subsystem of G. But
now, applying the Alperin—-Goldschmidt theorem Fy = (Autg(E1), Autg(S))s so that D =
(Autg(E1), Autg(E3), Autg(S))s = (Fo, Autg(E3))s = DT, Therefore, D is saturated.

We note that as D < G, no G-conjugate of E; is essential in D. Applying Lemma 6-9, we
have that Auth(S) = AutOD(S) and |Autp(S)/Aut0D(S)| = |Cautp(E))(Z(E1))|/3 =2. Hence,
Lemma 3-12 implies that 05/(73) is the unique proper subsystem of D of p’-index and has
index 2 in D.

PROPOSITION 6-14. Df® = 05 (D) = {E|, E3g S}.

Proof. Let F be one of D or 05/(7)) and R be a fully F-normalised, radical, centric subgroup
of § not equal to E, S or a D-conjugate of E3. If an F-conjugate of R is contained in a G-
conjugate of E3, then since R is F-centric and F3 is elementary abelian, we have that R is
G-conjugate to E3. Since no G-conjugate of E3 is contained in E», the Alperin-Goldschmidt
theorem implies that {E%)} = {Egj } and so R is D-conjugate to E3, a contradiction. Hence R
is not contained in a G-conjugate of E3 and by Proposition 6-2 and using that Ey & £(F),
every D-conjugate of R is contained in at most one JF-essential, namely Ej. Then, as E|
is Autz(S)-invariant, Lemma 3-6 implies that Outg, (R) < Outz(R). Since R is F-centric-
radical we see that £; < R < S, a contradiction.

LEMMA 6-15. Ej is the unique proper non-trivial strongly closed subgroup of D and
0% (D)

Proof. Assume that T is a proper non-trivial strongly closed subgroup of F, where F is one
of D or 0% (D). Then T < S and so Z(S) < T. Then applying Lemma 6.5, the irreducibility
of 05,(Autp(E3)) < Autr(E3) on E3 implies that E3 < T. We calculate (see [44, appendix
A)]) that E| = (Eg ) from which we deduce that E; < T. Since E| is Autz(S)-invariant and
every essential subgroup of F is contained in E; by Proposition 6-2, it follows from the
Alperin—Goldschmidt theorem that Ej is strongly closed in F.
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PROPOSITION 6-16. 05/(D) is a simple saturated fusion system on S and both D and
05,(17) are exotic.

Proof. If 05,(2)) is not simple with ' < 05/(D) and N supported on T < S then by Lemma
6-15, N is supported on Ej. By [5, proposition 1-6-4], Autpr(E;) < AutOs/(D)(El) so that
Outpr(E1) is isomorphic to a normal 5’-subgroup of Outs (D)(E 1) =3 x GLy(5). In par-
ticular, no D-conjugate of E3 is essential in A/ for otherwise we could again lift a cyclic
subgroup of order 24 to Auta/(E1), using Lemma 3-6. Thus, applying Proposition 6-36 (or
performing the MAGMA calculation on which this relies), we deduce that £(N) =@ and
E; =05(N)sothat E; < 05,(27), a contradiction by Proposition 3-10.

Hence, if O%(D) is not simple then N is supported on S. But then by [5, theorem
I1.9-8(d)], we have that 05/(05,(29)) < 05’(1))’ a contradiction. Thus 05/(D) is simple.

Assume that there is V/, a proper non-trivial normal subsystem of D. Applying [5, the-
orem I1-9-1] and using that 05,(1)) is simple, we deduce that 05/(1)) <N and it quickly
follows that 05,(2)) = N. Since E| is strongly closed in D and 05’(1))’ by Theorem 3-14,
we conclude that D and 05/(27) are exotic.

We now begin the task of determining all saturated fusion systems supported on S. We
first record a lemma limiting the possible combinations of essential subgroups in J.

LEMMA 6-17. Let F be a saturated fusion system on S with E3g NEF)#D.IfT e {Eg} ol
E(F) then T is not Aut 7(S)-invariant and {Ezg} CEF).

Proof. Assume that T € {Eg} NE(F) and Eg N E(F) # @. Then by Lemma 6-9(ii), we may
assume that E3 € £(F). Moreover, there is a 3-element in Autz(E]) which centralises S/E}
and Z(E1), normalises E3 and lifts to some o € Autz(S) by Lemma 3-2. Then « nor-
malises S/Q by Lemma 3-6. Thus, if T is Autrz(S)-invariant, as |S/T|=|T/Q|=15 and
by coprime action, « centralises S/Q and so centralises £3Q/Q. But as an («)-module,
EzQ/Q = E3/Z(E71) and coprime action yields that « centralises E3, a contradiction. Thus,
T is not Autz(S) invariant and we deduce that all G-conjugates of T are essential in F.

PROPOSITION 6-18. Suppose that F is a saturated fusion system on S such that E(F) C
{Eia} for some i€ {1,2} and o € Autg(S). Then either:

(i) F =Ng(S); or
(ii) F = Nr(Ejo) where O (Outr(Ejer)) = SLa(5) fori € {1, 2}.

Proof. If £(F) =0, then (i) holds by the Alperin—-Goldschmidt theorem. If £(F) ={E} or
{Era} for some o € Autg(S), then (ii) holds by Lemma 6-4 and Lemma 6-7.

PROPOSITION 6-19. Suppose that F is a saturated fusion system on S with {Ezg} CEF).
Then 0% (Out7(Q)) = 2.J2, EINF(Q)) = {ES} and if {E§ ) = E(F) then F = Nx(Q).

Proof. Assume that {Ezg} C E(F). Note that Q INx(Era) < Nx(Q) for all o € Autg(S).
Then Proposition 3-10 implies that {E2g } CEWNE(Q)), Os(Nr(Q)=Q and F =Nr(Q)
whenever {Eg } = E(F). Furthermore, any essential subgroup of Nx(Q) contains Q, and
as Q £ Ej, an appeal to Proposition 6-2 gives E(Nr(Q)) = {Ezg }. Finally, 05/(Out]:(Q))
satisfies the hypothesis of Lemma 2-9 so that 05,(Out Q) =E21,.
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PROPOSITION 6-20. Suppose that F is a saturated fusion system on S with {E1, Era} C
E(F) for some a€G. Then 05/(0ut]:(Ra))§PSL3(5), ENrF(Ra))={E\, Era} and if
{E\, Era} = E(F) then F = Nr(Ra).

Proof. Assume that £(F) = {E|, Ea} for some « € Autg(S). Adjusting by an automorphism
of S if necessary, we may as well assume that £(F)={FE], E»}. Since any Autz(S)-
conjugate of E; is also essential in J, we infer from this that E> is Autz(S)-invariant.
In particular, since R I Nx(E>) by Lemma 6-4, R is normalised by Autz(S). By Lemma
6-7 05’(Aut 7r(E1)) normalises R and so applying Lemma 3-2 and a Frattini argument to
Autr(E), we deduce that R is normalised by Autz(E1). In particular, {E], E2} € E(N£(R)).

Note that if R < Era # E; for some o € Autg(S), we have that R < E> N Era = Q, a con-
tradiction. Hence, by Proposition 3-10, we see that £E(Nx(R)) = {E}, E}. Since Autr(E>)
acts irreducibly on Q/®(E>) = Q/Q N R, we have that Autr(E,) acts irreducibly on E3 /R
and we conclude that R = O5(Nx(R)). If {E{, E»} = E(F) then F = Nx(R). Moreover, the
actions described in Lemma 6-4 and Lemma 6-7 imply that the only non-trivial normal sub-
groups of F are R and ®(R). Since M = (Ny(S), M4), where M is the Monster, we see that
®(R) is not characteristic in S. In particular, no non-trivial characteristic subgroup of § is
normal in F.

By Theorem 3-11, there is a finite group G with S € Syls(G), Nr(R) = Fs(G) and
F*(G) =R. Moreover, by the uniqueness of models provided in Theorem 3-11 we can
embed the models of Nx(S), Nr(E1) and Nx(E>), which we write as G2, G; and G»
respectively, into G. Indeed, by the Alperin—Goldschmidt theorem, we may as well assume
that G = (G, G2) and G132 = G| N G». Then the triple (G /R, G2 /R, G12/R) along with the
appropriate induced injective maps forms a weak BN-pair of rank 2, and since S/R=5 fz,
applying [16, theorem A] and using the terminology there, we deduce that 05/(G)/R is
locally isomorphic to PSL3(5). By [28, theorem 1], 05/(G)/R =PSL3(5), and R/Z(R) and
Z(R) are dual natural modules for 0% (G)/R. Hence, we have that O° (Out+(R)) = PSL3(5),
as desired.

Remark. In the above, the groups of shape 5373 PSL3(5) come from a situation where a
weak BN-pair of rank 2 of type PSL3(5) is pushed up. Indeed, this case occurs as outcome
(12) of [28, theorem 1] with the stipulation that g = 5. There, this phenomena could also
occur for g = 3" for all n € N. We speculate that these cases could result in a class of inter-
esting fusion systems. In particular, when ¢ = 3, a similar Sylow subgroup already supports
the 3-fusion categories of €27(3), Fiz; and 2E¢(2). We note however that in our case S is not
isomorphic to a Sylow 5-subgroup of 27(5).

PROPOSITION 6-21. Suppose that F is a saturated fusion system on S. Then Os(F) = {1}
if and only if E(F) = {E1, ES} or {E§} N E(F) # 0.

Proof. Suppose first that E(F) = {F|, Ezg }. By Proposition 6-19, we have that Outr(Q) =
2.J5 acts irreducibly on Q/Z(S). As Q> £ E|, by Proposition 3-10, we conclude that O5(F) <
Z(S). But by Lemma 6-7, Out £(E1) acts irreducibly on Z(E) and we conclude that Os(F) =
{1). If {ES} N E(F) # 0 then Os(F) = {1} by Lemma 6-5.

Suppose that Os(F) = {1}. By Lemma 6-9, if E3 ¢ £(F) then no G-conjugate of Ej is
contained in £(F). Then Proposition 6-2 and Proposition 6-18-Proposition 6-20 imply that
E(F)={E), E§} as desired.
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As a consequence of this result, if Os(F) # {1} then F is described in Proposition 6-18-
Proposition 6-20. We additionally note that if E3x € £(F) then Lemma 6-5 implies that
E; € £(F) and Lemma 6-17 implies that either {Ezg} NEF)=0or {Ezg} Cc EF).

LEMMA 6-22. Suppose that F, F> are two saturated fusion systems supported on S. If
Ey € E(F1)NE(F2) and Nx,(S) = Nx,(S) then Nr,(E1) = Nr,(E}).

Proof. We know that Ej is characteristic in S so that Nx, (E1) > Nx,(S) < Nx,(E1). By
[33, proposition 2-11], it suffices to show that Autr, (E1) = Autr,(E1) and that the homo-
morphism H L(Out F (B Z(E)— H l(Outhl $)(E1);Z(E1)) induced by restriction is sur-
jective. We observe by Lemma 6-7 and Lemma 6-8 that Outz,(E;) contains a subgroup
isomorphic to 3 x GL;(5) of index at most 2 for i € {1, 2}. Moreover, since E] is charac-
teristic in S, all morphisms in Autz,(S) restrict faithfully to morphisms in Autz,(E;) for
i € {1,2}. In particular, Autr,(S) is generated by lifted morphisms in Ny fl.(El)(AUtS(El))-

Let K be a Hall 5/—subgroup of NAut].-l (El)(AUtS(El )= Autj\/}-1 (S)(El) = AUtN].-z(S)(El) SO
that K =3 x C4 x C4 or Sym(3) x C4 x C4. Then K lifts to a group of automorphisms K
of Aut(S) with fInn(S) = Autr, (S) = Aut 5, (S). We calculate that |[Aut(S)|s = |Outg(S)| in
[44, appendix A] (but Theorem 6-24 also provides a genuine proof). In particular, K is either
a Hall 5’-subgroup itself or is the centraliser of the unique Sylow 3-subgroup of a Hall
5'-subgroup of Aut(S). Either way set L := Cg(03(K)) so that L=3 x C4 x Cy.

Since Coutr,£)(03(0utr,(E1))) =3 x GLa(5), Z(Coutx,E)(03(Outr,(E)))) is cyclic
of order 12 for i€ {1,2}. Indeed, there is a unique subgroup L* of L cyclic of order
12 such that [L*|g, Inn(E;)/Inn(E}), COut]:i(El)(03(OUt_7-'i(El)))] = {1}. In particular, by a
Frattini argument, we see that Cay ]—',-(El)(L*| g)Inn(E;) is the preimage in Autr,(Ep)
of Comfi(El)(03(Out]:l.(E1))). We verify using MAGMA (See [44, appendix A])
that Cauwg)(L*|g,) =3 x GL2(5) and so we have that CAmF1 EHL* |[g)Inn(E) =
Cautz,(E)(L*[g)Inn(E).  Finally,  since  Naugy, g)(Auts(ED)) = Autyz (5)(E1) =
Authz (5)(E1), a Frattini argument implies that Autz, (E1) = Aut g, (E7).

It remains to prove that the homomorphism H L(Out F (E1),Z(E) —
H 1(Outhl $)(E1);Z(E1)) induced by restriction is surjective. We observe by Lemma
6-7 and Lemma 6-8 that Outr, (E1) =3 x GL2(5) or Sym(3) x GL»(5). One can compute
(e.g. in MAGMA as in [44, appendix A]) that Hl(Outh1 $)(E1);Z(E1)) = {1}. Hence, the
result.

LEMMA 6-23. Suppose that F\, F» are two saturated fusion systems supported on T where
Ei<T<S. IfE3 € g(f]) N 5(?2) ai’ldN]r:1 (E1) :N}'Z(El) then Alxtl‘]:1 (E3) :Aut]:Z(E3).

Proof. By Lemma 6-5, we have that 05,(Aut}-l.(E3)) =SL,(25) for ie{l,2}. Write
X := 0% (Autz, (E3)) and Y := O (Autz,(E3)). Set K := Naut, (5)(Autr(E3)) so that, by
Lemma 6-6, all morphisms in K lift to morphisms in Autr, (E1) = Autz, (E1). In particular,
by Lemma 6-8

K= NAuthl &y (E3)(Autr(E3)) = NAutN]_.z ) (E3)(AUT(E3)) = Nauz, (E3) (Autr (E3)).

Let L be a cyclic subgroup of order 24 in a Hall 5'-subgroup of K arranged such
that Ky := LAuts(E3) =Nps' (ay - (gy))(Auts(E3)). Then Kp <X NY < Aut(Er) = GL4(5).
1
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We record that there is a unique conjugacy class of subgroups isomorphic to SL,(25) in
GL4(5) (see [44, appendix A]). Hence, there is g € Aut(E3) with ¥ = X8.

Then Ki, (Kr)® <Y and so there is y € Y such that (K7)® = (Kr)”. Thus, we have that
X2 = X2 and we calculate that gy_1 < NGLy5)(KL) < NgLy5)(X) (see [44, appendix A]).
But then X = X8 =Y. By a Frattini argument, Autr, (E3) = XK = YK = Autr,(E3).

THEOREM 6-24. Suppose that F is saturated fusion system on S. If {E|, Eg} C E(F) then
F=GorH.

Proof. We observe by the Alperin—Goldschmidt theorem, Proposition 6-2 and Lemma 6-9
that either £(F) = {E|, E2g } or E(F) ={E}, E2g , E3g }. Moreover, applying Lemma 6-22 and
Lemma 6-23, if Nx(S) = Ng(S) and Nr(Q) = Ng(Q) then the Alperin—Goldschmidt the-
orem and Proposition 6-2 yields that F =G or F =H depending on whether or not
E3 € E(F).

Since {Eg }CE(F), we have by Proposition 6-19 that Q= 0s5(Nx(Q)) and
05/(Out r(Q)) =2.J, acts trivially on Z(S). Let L be a complement to Autg(E;) in
N 05 (Aut 7 (E; ))(AutS(E 1)), recalling that 05/(Out r(E1)) = SL,(5) by Lemma 6-7. Then L acts
faithfully on Z(S) and lifts by Lemma 3-2 to L < Autz(S) which also acts faithfully on Z(S).
Since Q is characteristic in S, Z|Q induces a cyclic subgroup of Autr(Q) of order 4 which
acts faithfully on Z(S). Indeed, we have that |Outr(Q)/ 05/(Out 7(Q))| > 4.

Since a maximal subgroup of Out(Q) = Spg(5):4 containing 05/(Out;(Q)) has shape
4.J, :2 by [47] and [9, Table 8-28], we deduce that Outx(Q) = 4.J> : 2 is maximal in Out(Q).
We calculate in MAGMA that |Aut(S)|s =2°.3=|N Aut=(Q)(Auts(Q))| so that a Hall
5'-subgroup of NauiQ)(Auts(Q)) has the same order as a Hall 5'-subgroup of Aut(S). By
Lemma 3-2, every automorphism in Nayc»(Q)(Auts(Q)) of 5'-order extends to an element
of Autr(S) of 5'-order. We deduce that the subgroup of Autrz(S) generated by lifts of
elements of a fixed Hall 5'-subgroup of Naui-Q)(Auts(Q)) has the same order as a Hall
5’-subgroup of Aut(S), and so is a Hall 5’-subgroup of Aut(S). Indeed, Aut(S) contains a
Hall 5’-subgroup of Aut(S), and by a similar reasoning, Autg(S) contains a Hall 5’-subgroup
of Aut(S). Therefore, there is o € Aut(S) such that Autre(S) = Autr(S)* = Autg(S) and by
the Alperin—Goldschmidt theorem, we have Nz« (S) = Nz(S)* = Ng(S).

Let K be the embedding of the restriction of Autr«(S) to Q into Aut(Q) = 56:Sp6(5).4. Set
X = Autr«(Q) and Y = Autg(Q) so that K < X N Y. We observe that there is one conjugacy
class of subgroups isomorphic to Autr«(Q) in Aut(Q) and so there is g € Aut(Q) with ¥ =
X8. Then K, K8 <Y and K, K¢ are both Sylow 5-subgroup normalisers in Y. Thus, there is
m e Y with K™ = K& so that gm~' e N Aut(Q)(K) and X8"' =Y. We calculate in MAGMA
that NauQ)(K) < Nauw@Q)(X) ([44, appendix A]) so that X =Y and Autr«(Q) = Autg(Q).
Hence, by Theorem 3-11 there is 8 € Aut(S) such that N z«5(Q) = Nr« (Q)F = Ng(Q). Then
for y := af € Aut(S), we deduce that Ny (S) = Ny, Q)(S) = Nng()(S) = Ng(S) and we
conclude that F¥ = H or G. Hence, F = H or G, as desired.

Remark. The techniques in the above proof can be used to show that the symplectic
amalgam 453 found in [38] is determined up to isomorphism.

THEOREM 6-25. Suppose that F is saturated fusion system on S such that Os(F) = {1} and
(E1, ES} & E(F). Then F =D or 0% (D).
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Proof. Since Os(F) = {1}, Proposition 6-21 implies that {E;j }NE(F) #@. Then Lemma
6-9(ii) implies that {E3g} C E(F). Moreover, Lemma 6-5 implies that £} € £(F) and Lemma
6-17 implies that {ES} N E(F) = 4. Hence, £(F) = (E1, ES ).

By Lemma 6-7 and Lemma 6.8, we have that Coyr(£,)(O3(Outr(E1))) =3 x GLy(5)
has index at most 2 in Outx(E7) and {Eg: }= {E3g }. Let A be the preimage in Autr(E])
of this subgroup and consider the group K := Nj(Auts(E7)). Then, by Lemma 3-2 K
lifts to a subgroup K < Autz(S) such that klnn(S)/Inn(S) =3 x C4 x C4. In particular,
|§Inn(S)/Inn(S)| =|Outg(S)|/2. As observed in Theorem 6-24, Outg(S) is a Hall 5'-
subgroup of Out(S) and so EInn(S)/Inn(S) has index 2 in some Hall 5'-subgroup Y of
Out(S) which is conjugate in Out(S) to Outg(S). Indeed, flnn(S)/Inn(S): Cy(0O3(Y)).
Hence, we have that K is conjugate in Aut(S) to AutOs/(D)(S) = Cautp(5)(03(Autp(S))).
Since Nauys)(Auts (D)(S)) = Autg(S) by [44, appendix A], we see that either Autz(S)
is conjugate to Aut s (D)(S) or Autg(S). In particular, applying Theorem 3-11, Nx(S) is
Aut(S)-conjugate to N 051(D)(S) or Np(S).

Suppose that there is o € Aut(S) with Nz« (S) = Nz(S)* = Np(S). Applying Lemma 6-22
we have that Nre(E1) = Np(E1). We note that by Lemma 6-9 that {E;j }= {E{ a}. Hence,
F¢ and D have the same essential subgroups and we deduce by the Alperin—-Goldschmidt
theorem that F* = (Nx«(E1), Autr«(E3))s. Then Lemma 6-23 implies that 7% =D and
F=D.

Suppose now that there is o € Aut(S) with Nz (S) = Nx(5)* =N05/(D)(S) so that by
Lemma 6-22, we have Nr«(E{) =N, 05’(D)(E 1)- Then by the Alperin—Goldschmidt theorem,
Proposition 6-2 and Lemma 6-9, we have that 7% = (Nr«(E}), Autre(E3))s and Lemma
6-23 implies that F* = 05 (D) and F = 0% (D), completing the proof.

We provide the following Tables 4 and 5 summarising the actions induced by the fusion
systems described in Theorem 6-24 and Theorem 6-25 on their centric-radical subgroups.

The entry “-” indicates that the subgroup is no longer centric-radical in the subsystem.

Table 4. G-conjugacy classes of radical-centric subgroups of S

P |P| Outg(P) Outy(P)

S 59 Sym(3) x 4 x 4 Sym(3) x 4 x 4

E; 58 Sym(3) x GL,(5) Sym(3) x GL;(5)

E; 58 2 x GL(5) 2 x GL(5)

E; 54 (3 x SL»(25)).2 -

Q 57 4.Jy:2 4.J5:2

R 50 2 x PSL3(5) 2 x PSL3(5)
Table 5. G-conjugacy classes of radical-centric subgroups of S

P |P| Out’D(P) Outos’ (D)(P)

S 59 Sym(3) x 4 x 4 3x4x4

E; 58 Sym(3) x GLo(5) 3 x GLy(5)

Ep 58 - _

E3 54 (3 x SLy(25)).2 3 x SL,(25)

Q 57 - _

R 56 - -
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In a similar manner to Section 5, we now construct some additional exotic fusion systems
related to the system D and supported on E;. We note that the lift to Autp(E7) of a cyclic
subgroup of order 24 in NOS/( AutD(E3))(AutEl (E3)) projects as a group of order 24 in the
unique normal subgroup of Outp(E7) = Sym(3) x GL(5) which is isomorphic to GLy(5).
Indeed, there is a unique up to conjugacy cyclic subgroup of GL,(5) of order 24 which is
contained in a unique 5'-order overgroup, in which it has index 2. We set K* = Sym(3) x
(Ca4 : 2) to be the unique 5’-order overgroup of a chosen cyclic subgroup of order 24 in
Outp(E1) and denote by K its preimage in Autp(E1). Indeed, Nauty(£,)(E3) has index 50 in
KInn(E1).

Let G be a model for Np(E1) and let H be a subgroup of G chosen such that Auty(E}) =
KInn(E7). We define the subsystem

D* = (Fg,(H), Autp(E3))g, <D.

We observe that we could have chosen any of the 10 Autp(E|)-conjugates of K to form
a saturated fusion system. By definition, all of the created fusion systems are isomorphic.
Moreover, the D-conjugacy class of E3 splits into 10 classes upon restricting to D*, which
in turn correspond the possible choices of a cyclic subgroup of order 24.

PROPOSITION 6-26. D* is saturated fusion system on E| and E(D*) = {E%)*}.

Proof. We create H as in the construction of D* and consider Fg, (H). Since Fg,(H) <D,
and as E3 is fully D-normalised and Ns(E3) < E1, E3 is also fully Fg, (H)-normalised. Since
CE, (E3) < E3 we see that E3 is also Fg, (H)-centric. Finally, since E3 is abelian, it is minimal
among S-centric subgroups with respect to inclusion and has the property that no proper sub-
group of Ej is essential in Fg, (H). In the statement of Proposition 3.9, letting Fo = Fg, (H),
V=E;3 and A = Autp(E3), we have that A= Aut]:E1 #)(E3) = Nautp (E;)(Auts(E3)) is
strongly 5-embedded in A. By that result, D* = (Fg, (H), Autp(E3))E, is a saturated fusion
system.

Since each morphism in D* is a composite of morphisms in Fg, (H) and Autp(E3), we
must have that an essential subgroup of D* is contained in some H-conjugate of E3 and so

E(D*) ={EY"}.
PROPOSITION 6-27. O% (D*) has index 4 in D*.

Proof. Let K be a Hall 5’-subgroup of N 05 (Autpe( E3))(AutEl (E3)) so that K is cyclic of order
24. Then K centralises a Sylow 3-subgroup of Autp+(E3) and, by Lemma 3-6, lifts to a group
of morphisms in Autp+(E1) which we denote by K. Indeed, it follows that K centralises a
Sylow 3-subgroup of Autp+(E]), and this holds for all D* conjugates of E3. Now, by the
definition of D*, if R is a D*-centric subgroup which is not equal to a D*-conjugate of E3
then by Lemma 3.6, it follows that Autg, (R) < Autp+(R) and so 05/(Autp* (R)) is a 5-group.
Hence, we have by definition that OutOD* (E1) centralises a Sylow 3-subgroup of Outp+(E}).
We observe that the centraliser in Outp=(£7) = Sym(3) x (Caq : 2) of a Sylow 3-subgroup is
isomorphic to 3 x Cp4 and so 05/(D*) has index at least 4 in D* by Lemma 3-12.

Since K is cyclic of order 24, we have that OutY,, (E)) is of order at least 24 and Osl(D*)
has index at most 12 in D* by Lemma 3-12. Aiming for a contradiction, assume that
Out),.(E1) = KInn(E})/Inn(E) is cyclic of order 24. Then KInn(E7)/Inn(E;) < Outps(Ey).
But then for T € Syl3(I?Inn(E] )/Inn(E7)), we see that T < Outp+(E]) and in the language
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of Lemma 6-7 we have that T € Syl;(A) or T € Syl5(B). That is, either T centralises Z(E)
or T centralises ®(E1)/Z(E). Since T is induced by the lift of a morphism in K, this is a
contradiction. Hence, OutOD* (E1) =3 x Cyq and by Lemma 3-12 we have that 05/(D*) has
index 4 in D*.

PROPOSITION 6-28. 05/(D*) is simple and there is a € Autp+(E\) such that 5(05,(1?*)) =
% 5’ Ty 5 5’ Ty
(EPy =B P (Bso)” POy (E] 7).

Proof. Let N' < 05,(D*) supported on P <E;. By Lemma 3-12 we may assume that
P < Eq, and P is strongly closed in D*. By the irreducible action of 05/(Autp* (E3)) on
E3, we deduce that E3 <P and since P JEj], we have (as calculated in [44, appendix
A]) that Ng,(E3) = (E?) < P. Indeed, as Outos/(D*)(El) acts irreducibly on E/Ng, (E3)

we see that P=Ng (E3). By [S, proposition 1.6-4(c)] we have that 05/(Aut N(ER)) =
0% (Aut s 1 (E3)) = SLy(25).

Let t be a non-trivial involution in Z(OS/(AutN(E3))). By Lemma 3.6, 7 lifts to T €
Autys s (E1) and restricts to T e Auty (p+(P)- Indeed, T € Auty(P) < Aut s (p+(P) and
we ascertain that [T, Autg, (P)] < Inn(P). Since T is the extension of 7 € Autp/(E3) to P,
we have that [T, Autg, (P)] < Autg,(P). Since T is the lift of v to Autp+(E7), we infer that
[T, E1] < E3. But then, as E3 is abelian and [E, E3, T] < [®(E}),T] < Z(E)), the three sub-
groups lemma implies that [E3, T, E1] < Z(E)) and as E3 = [E3, t] and Z(E) < E3, we have
that £5 < E1, a contradiction. Hence, 05/(D*) is simple.

By Lemma 3-13, we see that E0% (D*) = E(D*) = {E%)*}. We note that
Aut05/(D*)(E1) SNAutD* (El)(E3)Inn(E1). Since NAutD*(El)(E3) has index 50 in Autp+(E})
and |Inn(E|)/Nmn,)(E3)| =25, it follows that {E? *} splits into two conjugacy
classes upon restricting to the action of Nau,.(g,)(E3)Inn(E}), each of size 25. Since
Inn(E)) < Aut)s (D*)(El ), we deduce that

Aut 5 . (E1) Nau (E3)Inn(Eq)
05 (D*) _ Autp (E7) 3
{E3 } = {5 |

utOS,(D*)(El)

A
Finally, there is & € Autp+(E}) with Eza & {E;
/ 5/ * / "
8(05 (D*)) — {E? (D )’ E3OlOS (D )}’

} and it follows that for such an «,

PROPOSITION 6-29. There are three proper saturated subsystems of D* which properly

contain 05 (D*). Moreover, every saturated subsystem JF of D* of index prime to 5 satisfies
Ffre ={EP" E;).

Proof. Applying Lemma 3-12, we simply enumerate the proper subgroups of Outp=(E7)
which properly contain Outoy(D*)(El), which gives three non-isomorphic subgroups of
shapes Sym(3) x Ca4, 3 x (Ca4 :2) and (3 x Cpgq): 2.

Let F be a fusion subsystem of D* of index prime to 5 and assume that R € F/" with
R # E. Applying Lemma 3-6, since R is F-radical, some JF-conjugate of R is contained in
at least one JF-essential subgroup. But Proposition 6-28 then implies that R is contained in
a D*-conjugate of E3. Since E3 is elementary abelian and R is JF-centric, we must have that
R is D*-conjugate to E3, as required.
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PROPOSITION 6-30. Every saturated subsystem F of D* of index prime to 5 is an exotic
fusion system.

Proof. Assume that there is AV is a non-trivial normal subsystem of F. Applying [5, theorem
I1-9-1] and using that 05/(D*) is simple and normal in F, we deduce that 05/(7)*) <N.
Hence, every normal subsystem of JF is supported on E|.

Suppose that there is a finite group G containing E1 as a Sylow 5-subgroup with F =
FE,(G). We may as well assume that Os(G) = Os/(G) = {1}, and since Fr+g)ng, (F*(G)) <
F, we have that E1 € Syls(F*(G)). Since |21(Z(E1))| = 25, we conclude that F*(G) = E(G)
is a direct product of at most two non-abelian simple groups.

If F*(G) is a direct product of exactly two simple groups, K and K> say, then Ny ) (K; N
Q2(Z(E1))) has index at most 2 in Ng(E1). But a 3-element of Autrz(E]) acts irreducibly on
Q(Z(E1)) and we have a contradiction. Thus, F*(G) is simple.

If F*(G) = Alt(n) for some n then ms(Alt(n)) = L%J by [21, proposition 5-2-10] and so
n <25. But a Sylow 5-subgroup of Alt(25) has order 5% and so F*(G) % Alt(n) for any
n. If F*(G) is isomorphic to a group of Lie type in characteristic 5, then comparing with
[21, Table 3-3-1], we see that the groups with a Sylow 5-subgroup which has 5-rank 4 are
PSL,(5%), PSL3(25), PSU3(25), PSL4(5) or PSU4(5) and none of these examples have a
Sylow 5-subgroup of order 5%.

Assume now that F*(G) is a group of Lie type in characteristic » # 5. Since £ has mul-
tiple elementary abelian subgroups of order 5%, we arrive at the same contradiction as in
Proposition 6-12.

Finally, no sporadic groups have Sylow 5-subgroup of order 5% and we conclude that F
is exotic.

As observed in Proposition 6-28, the D*-classes of E3 split into two distinct classes upon
restriction to 05/(2)* ) (in fact, this holds restricting to Fg, (E1)). Indeed, there is a system of
index 2 in D* in which this happens and this is the largest subsystem of D* in which this
happens. This subsystem, which we denote by £, contains 05/(73*) with index 2 and has
Outz(E1) = Noutps(£)(E3) = (3 x Cog) 1 2.

We may apply Lemma 3-8 to £ and 05/(2)*), and as the two classes of essential sub-
groups are fused by an element of Aut(E}), regardless of the choice of class we obtain a
saturated subsystem defined up to isomorphism. We denote the subsystems obtained by Lp
and 05/('D*)73 and the convention we adopt is that E3 € E(Lp) N 5(05,(73*)79). It is clear
from Lemma 3-8 that £(Lp) = £(0% (D*)p) = {ES}.

PROPOSITION 6-31. 05/(£7>) has index 6 in Lp and is simple. Moreover, Ng,(E3) is the
unique proper non-trivial strongly closed subgroup in every saturated subsystem F of Lp
which contains 05/(573).

Proof. It is immediate from Lemma 3-12 and Proposition 6-27 that 05/(D*)7> has index 2 in
Lp and 0 (Lp) has index prime to 5 in 0% (D*)p. Hence, 0% (Lp) = 0% (0% (D*)p) and
for the first part of the lemma, it suffices to prove that 05/(579) has index 3 in 05,(17*)7:.
Note that 05/(Aut05/ (D*)p (E3)) = SL»(25) and that, as in Proposition 6-27 we can select

a cyclic subgroup of order 24 labeled K which lifts to a subgroup K of Aut s (D*)p (E1)
and ?Inn(E 1) J Aut s (D*)p (E1). For R a 05/(D*)p-centric subgroup, we have that either
Autg, (R) Aut05/(D*)7: (R) or that R is 05/(D*)p—conjugate to E3. Then as K /Inn(Ep) <
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Autyys ey (E1), it follows that KInn(E;) = Aut‘()) S (pry, (1) and 0% (Lp) has index 6 in
Lp.

Let F be a saturated subsystem F of L5 which contains 05,(£7;). Then 05,(Aut F(E3) =
SL,(25) acts irreducibly on E3. Hence, if P is a non-trivial strongly closed subgroup of
F, then since PNZ(E7) # {1}, we infer that E3 < P. Indeed, Ng, (E3) = (Eg‘) < P. Note
that Autz(E1) = Naut(£,)(E3)Inn(E1) and so Ng, (E3) contains all essential subgroups of F
and is normalised by Autz(E1). Hence, Ng,(E3) is strongly closed in F and as Autr(E;)
acts irreducibly on E1/Ng,(E3), Ng,(E3) is the unique proper non-trivial strongly closed
subgroup of F.

Let \V be a proper non-trivial normal subsystem of 05/(,679). Then by Lemma 3-12, we
may assume that \V" is supported on Ng, (E3). We then repeat parts of the proof of Proposition
6-28 with 05/(,673) in place of 05/(2)*) to see that E53 < E1, a contradiction. Hence, 05/(,673)
is simple, completing the proof.

PROPOSITION 6-32. Up to isomorphism, there are two proper saturated subsystems of Lp
which properly contain O° (Lp), one of which has index 3 while the other, O° (D*)p, has
index 2. Furthermore, every saturated subsystem F of Lp which contains 05,(£73) is an

. . . fre 05 (D*)
exotic fusion system, and satisfies F'* = {E; ,E1}.

Proof. As in Proposition 6-29, applying [5, theorem I-7-7], we enumerate proper subgroups
of Outz, (E7) which properly contain Out05/( Lp)(E 1), noting that this corresponds to calcu-
lating subgroups of Sym(3). Thus, there is a unique subsystem of index 2 and three systems
of index 3 which, since they are all conjugate under an automorphism of E1, are pairwise iso-
morphic. Since 0’ / (D*)p has index 2 in Lp, we have verified the first part of the proposition.
We now let F be a fusion subsystem of Lp of index prime to 5.

Assume that R in 7/ but not equal to E1. Applying Lemma 3-6, since R is F-radical, an
JF-conjugate of R is contained in at least one J-essential subgroup. But then R is contained
in a L-conjugate of E3. Since E3 is elementary abelian and R is JF-centric, we must have
that R is L-conjugate to E3, as required.

Assume that there is \V, a proper non-trivial normal subsystem of . Applying [5, the-
orem I1-9-1] and using that 05 (F) = 05 (Lp) is simple, we deduce that 0% (Lp) < N and
so Ng, (E3) supports no normal subsystem of F. Hence, applying Theorem 3-14, we see that
F is exotic.

We now determine all fusion systems supported on £ up to isomorphism. We begin with
the following general lemmas.

LEMMA 6-33. Suppose that F is saturated fusion system on E| with P € {E3g} NEF) #0.
Then Os(F) = {1}, O (Aut 7(P)) = SL»(25) and P is natural module for O% (Aut 7 (P)).

Proof. Let P e {E3g } N E(F). The proof that 05/(Aut 7(P)) = SL»(25) and the verification of
the action on P is the same as Lemma 6-5. Then by Proposition 3-10, Os(F) is an Autz(P)-
invariant subgroup of P which is also normal in Ej, so that O5(F) = {1}.

LEMMA 6-34. Suppose that F is saturated fusion system on E| with E3g NE(F) #B. Then
Outr(E7) is Aut(Ey)-conjugate to a subgroup of Outp=(E1).

Proof. Let Pe{Eg}OE(]:). By Lemma 3-6 and Lemma 6-33, we may lift a

cyclic subgroup of order 24 from N05/( Aut]:(P))(AutEl (P)) to Autr(Ep). This subgroup
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acts faithfully on Z(E|) and so injects into Aut(E;)/Cauk,)(Z(E1)) = GL2(5). Since
Autr(E1)/CautrE)(Z(E1)) is a 5'-group containing a cyclic subgroup of order 24, we
deduce that Autz(E1)/Cau(£,)(Z(E1)) has order at most 48 and contains a cyclic subgroup
of order 24 of index at most 2.

Write N := NAut(El)(AUt]-'(El))CAut(El)(Z(El)) so that N/CAut(El)(Z(El)) has order 48,
and N contains Autz(E1). Since |Autg(E1)|s = |Aut(E1)|s (see [44, appendix A], we have
that |Cauwe)(Z(E1))|sr = 6. In particular, Cauyk,)(Z(E1)) is solvable and we conclude that
N is solvable.

Since Autp+(E1)Cauk;)(Z(E1))/ Caue,)(Z(E1)) has order 48 (and GL(5) has a unique
conjugacy class of groups of order 48 with a cyclic subgroup of index 2), we deduce that
Autp+(E1) is Aut(E7)-conjugate to a subgroup of N. Hence, Outp=(E1) is Out(E1)-conjugate
to a subgroup of N/Inn(E). But |[N/Inn(E})|s = 2°.3% = |Outp+(E;)| and so Outps(E})
is Out(E1)-conjugate to a Hall 5'-subgroup of N/Inn(E;). Since Outx(E;) is a 5'-group,
Outr(E) lies in a Hall 5'-subgroup of N/Inn(E;) and we deduce that Outz(E) is Out(E})-
conjugate to a subgroup of Outp=(E).

LEMMA 6-35. There is a unique conjugacy class of cyclic subgroups of order 24 in
Outp+(E1) whose Sylow 3-subgroups act non-trivially on Z(E1) and ®(E1)/Z(E}). This class
contains two subgroups.

Proof. We note that the Sylow 3-subgroups of Coutps(g)(Z(E1)) and of
Coutps (£ (P(E1)/Z(E1)) are normal in Outp+(E7). Indeed, these are the unique sub-
groups of order 3 which are normal in Outp=(E1). The rest of the calculation is performed
computationally (see [44, appendix A]).

The next result is computed in MAGMA (see [44, appendix A]).

PROPOSITION 6-36. Let F be a saturated fusion system supported on Ey. Then E(F) C
{ED").

Again, we provide some explanation for this without formal proof. The MAGMA cal-
culation performed, as documented in [44, appendix A], and the existence of D* yields
that £(F) C {E3Am(E‘)} = {E3AmD(E1)}. By Lemma 6-34, and as we are only interested in
classifying fusion systems up to isomorphism, we arrange that Autr(E;) is contained in
Aut’D* (E 1 )

Let Py, P, € E(F) so that Py and P; are D-conjugate to E3. Further, suppose that P} and
P, are not D*-conjugate. Writing Kp, for the lift to Autz(E7) of N5 (Aut( Pi))(AUtEl (Py)),
we see that

Kp,Cautp(E)(Z(EY)) < NAutD(El)({P}'F}) < Autp+(E)

for i e {1,2}. In particular, we see that Kp, Cautp(E)(Z(E1)) = Kp, Caup(£)(Z(E1)). Let
a € Autp(Ey) \ Autp+(Ey) such that Pia = Py. Then Nauep ) ((P] Dot = Nawep ) ((P5 ).
Hence, either N, AutD(El)({P{: D =Autp«(E;) and « normalises Autp«(E{) or
NAutD(El)({P{:}) =Kp, CaupE)(Z(E1)) and « normalises Kp, Cautp(g,)(Z(E1)). Either
way, we have that o € Autp«(E1), a contradiction.

Hence, £(F) C {PD*} where P is some D-conjugate of E3. It remains to show that P and
E3 are D*-conjugate. Assume for a contradiction that this is not the case. We may lift a
cyclic subgroup of order 24 from N5 (Auty( P))(Autgl (P)) to Autr(E1), and denote it Kp.
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Then, by Lemma 6-35, Kp is D* conjugate the cyclic subgroup of order 24 which is induced
by lifted morphisms from N s ( Aut]:(E3))(AutEl (E3)). Since E(F) C {PD*}, we may as well
assume that these groups are equal. Hence, we may apply Proposition 3-9 to F, with V = E3
and A = 05/(Autp* (E3)). It easy to see that we verify the hypothesis there, and so we may
construct a saturated fusion system on Ej in which both E3 and P are essential. But by the
above, this is a contradiction and we see that £(F) C {Eg)D .

THEOREM E. Suppose that F is saturated fusion system on E| such that Ey 4 F. Then F
is either isomorphic to a subsystem of D* of 5'-index, of which there are five, or isomorphic
to a subsystem of Lp of 5'-index, of which there are four

Proof. Since we are only interested in determining F up to isomorphism, and as E; 4 F,
applying Proposition 6-36, we have that E3 € £(F) C {E%j*}. Note that Lemma 6-23 holds
upon replacing E3 by any D* conjugate of E3 and so £(F) and Nx(E) determine F com-
pletely, by the Alperin—Goldschmidt theorem. By Lemma 6-34 we arrange that Autz(E1) is
a subgroup of Autp«(E1). Let P € {E3D *} with P not conjugate to E3 by any element of E].

Let K be a Hall 5’-subgroup of Nys (Aut( ES))(AutE] (E3)) so that K is cyclic of order 24.
We note that a Sylow 3-subgroup acts non-trivially on Z(E1) and Autg, (E3) = ®(E1)/Z(E1).
By Lemma 3-6, we let K be the lift of K to Autr(E7). Then, by Lemma 6-35, in Outp=(E7)
there is a unique conjugacy class of cyclic subgroups of order 24 whose Sylow 3-subgroup is
not contained in COutD*(El)(Z(El )) or COutD* (El)(q)(El)/Z(El))' Indeed, ?IHH(EI)/IHH(EI)
belongs in this class and again by Lemma 6-35, we have two candidates for KInn(E)) in
Autp+(E1) (one coming from the lift of automorphisms of E3 and one coming from the lift
of automorphisms of P).

We enumerate the possible overgroups of I?Inn(E 1)/Inn(E}) = Cyq in Outp«(E) =
Sym(3) x Ca4 : 2. These are the groups of shape

Cog, Coq:2, 3 x Coq, (3 x Coq):2, Sym(3) x Cpq, 3 x (Cpq:2) and Sym(3) x (Cpq :2).

Note that there are three subgroups of shape Cpy4:2, all conjugate, and every other
group is unique. Finally, we note that Out s ( Lp)(El) = Cp4, Out s (D*)(El) =3 x Cy4 and
Outs(E1) = (3 x Cyg): 2.

Suppose first that P¢E(F). Hence, &E(F)= {Efl} and so Autp(E)) <
NauwzE)(E3)Inn(Er). In particular, Outrz(E1) <Outg(E1) =3 x Cy4):2. There are
four choices for Outr(E7) up to conjugacy, and so there are four choices for Autr(E;)
and these choices correspond exactly with Auty(E;) where ) is a subsystem of 5’-index
in Lp described in Proposition 6-31 and Proposition 6-32. By the Alperin—Goldschmidt
theorem, there is « € Aut(E;) such that Nr«(E1) = Np(E1)* =Ny(Ey). If E(FY) = {E3E‘}
then we have that 7% =) by an earlier observation so that F = )). Hence, we have that
P € E(F*). Then there is S € Autp+(E}) such that P = E3 and Ny(E ¥ = Ny(E1). Hence,
by an earlier observation using the Alperin-Goldschmidt theorem, we have that 7% =)
and so F = ).

Therefore, we may assume that E(F) = {E%’*}. Let 8 € Autp«(E) with E38 = P. Then
B & Autz(Ey), KInn(E;) # KBInn(E)) and KB|p < O° (Aut=(P)). In particular, by Lemma
6-33, we have that (I?, K B) < Autr(E1) and we infer that Outr(E7) is an overgroup of
Out05/(D*)(E1) =3 x Cy4 Thus, there are five choices for Outz(E]) up to conjugacy, and
so there are five choices for Autz(E;) and these choices correspond exactly with Auty(E1)
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where ) is a subsystem of 5'-index in D* described in and Proposition 6-29. By the Alperin—
Goldschmidt theorem, there is o € Aut(S) such that Nz« (E1) = Nr(E1)* = Ny(Eq). Since
EFH=EQ)= {E3D ", by an earlier observation we have that /% =) so that F = ).

We provide the following tables summarising the actions induced by the fusion systems
described in Theorem E on their centric-radical subgroups. Table 6 and Table 7 treat those
subsystems of D which are not “pruned”, while Table 8 and Table 9 deals with the remainder.
The entry “-” indicates that the subgroup is no longer centric-radical in the subsystem, and
an entry decorated with “ specifies that there are two conjugacy classes of E3 in this
subsystem which are fused upon enlarging to D.

Table 6. D-conjugacy classes of radical-centric subgroups of Eq

P |P| OutD*(P) Outos’(’D*).zl(P) OutOS’(D*).ZZ(P)
Eq 58 Sym(3) x (Caq:2) Sym(3) x Coq4 3x(Cyq:2)
E; 54 (3 x SL(25)).2 3 x SL»(25) 3 x SL,(25)

Table 7. D-conjugacy classes of radical-centric subgroups of E{

E; 58 (3xCas):2 3x Coy
Ex 54 (3 x SLy(25)).27 3 x SL,y(25)"

Table 8. L-conjugacy classes of radical-centric subgroups of E1

P |P| Outgp (P) Outos/(']_)*)p (P)
E; 58 (3 x Cpa):2 3 x Cyu
Ex 54 (3 x SLy(25)).2 3 x SL,(25)

Table 9. L-conjugacy classes of radical-centric subgroups of E1

P |P| Outos’(ﬁp)'z(P) Outos’(ﬁp)(P)
E 58 Cog:2 Cyq
Ex 54 SL»(25).2 SL»(25)
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