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Abstract

To investigate multiple effects of the interaction between V. cholerae and phage on cholera transmission, we propose
a degenerate reaction-diffusion model with different dispersal rates, which incorporates a short-lived hyperinfec-
tious (HI vibrios) state of V. cholerae and lower-infectious (LI vibrios) state of V. cholerae. Our main purpose is to
investigate the existence and stability analysis of multi-class boundary steady states, which is much more compli-
cated and challenging than the case when the boundary steady state is unique. In a spatially heterogeneous case, the
basic reproduction number %, is defined as the spectral radius of the sum of two linear operators associated with HI
vibrios infection and LI vibrios infection. If %, < 1, the disease-free steady state is globally asymptotically stable.
If %, > 1, the uniform persistence of phage-free model, as well as the existence of the phage-free steady state, are
established. In a spatially homogeneous case, when %, > 1, the global asymptotic stability of phage-free steady
state and the uniform persistence of the phage-present model are discussed under some additional conditions. The
mathematical approach here has wide applications in degenerate Partial Differential Equations.

1 Introduction

Cholera, a waterborne disease caused by V. cholerae, can be found in diverse aquatic environments, such
as the ocean, estuaries, rivers, and lakes [11, 33, 59]. It is characterised by severe vomiting and diar-
rhoea, and if not promptly treated, the disease can lead to severe dehydration and death [7, 16, 22]. This
is attributed to the ability of V. cholerae to produce cholera toxin, which stimulates water and electrolyte
secretion by intestinal endothelial cells [27]. The primary symptoms of cholera include diarrhoea, dehy-
dration, abdominal cramps, a drop in blood pressure and kidney failure [5]. Besides, the dynamics of
cholera epidemics involve a complex web of interactions between human hosts, pathogens and environ-
ments [51]. The disease is primarily transmitted to humans by ingesting water or food contaminated
with toxigenic forms of V. cholerae O1 and O139 from the environment [8, 14, 21]. Cholera outbreaks
frequently arise in regions lacking access to antibiotics and adequate public health infrastructure, espe-
cially in developing countries with limited healthcare resources, such as the Indian subcontinent, parts
of Asia, Africa and Latin America. Cholera remains a persistent health challenge [23, 35].

Research on mathematical models of cholera can be traced back to 1973, when Capasso and Paveri-
Fontana [6] introduced an ordinary differential equation (ODE) model to study the spread of cholera
in the Mediterranean region. The model described compartments for V. cholerae and infected indi-
viduals, investigating the transmission of cholera in the European Mediterranean region. Joh et al.
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first proposed an iSIR model describing indirectly transmitted infectious diseases with immunologi-
cal threshold [20], with a follow up work [25] studying a seasonal forcing iSIR model with a smoothing
immunological threshold. Tien and Earn [43] proposed a waterborne disease model incorporating both
direct transmission and indirect transmission with bilinear incidence. Wu and Zou [58] examined a dif-
fusive host-pathogen model that incorporates distinct dispersal rates for susceptible and infected hosts.
They analysed the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible
or infected hosts tends to zero. The findings indicate that the infected hosts concentrate at certain points,
which can be characterised as the pathogen’s most favoured sites when the mobility of the infected
host is limited. Wang et al. [52] proposed a new reaction-convection-diffusion model to investigate the
spatiotemporal dynamics of cholera transmission. The model incorporates time-periodic parameters to
describe the seasonality of the disease transmission and bacterial growth rates. Wang and Wang [45]
proposed a reaction-diffusion cholera model incorporating the different dispersal rates of the susceptible
and infected hosts in the absence of diffusion term for the cholera equation.

Recent laboratory findings in [3, 14] suggested that the V. cholerae induces a short-lived, hyperin-
fectious (HI) state through the gastrointestinal tract and decays into a lower infectiousness (LI) state
within hours [14, 30]. Moreover, the infectivity of freshly shed V. cholerae greatly out-competes bacte-
ria grown in vitro, exhibiting infectivity levels up to 700 times higher [31, 51]. HI vibrios, being closer
to human hosts than environmental vibrios, are more likely to come into contact with human susceptible
individuals [14]. To investigate hyperinfectious state of V. cholerae is crucial and also holds substantial
practical significance. Furthermore, incorporating these hyperinfectious states and lower infectiousness
states of V. cholerae into cholera disease models may lead to a better understanding of the observed
cholera epidemic patterns.

Research on hyperinfectivity of V. cholerae has received increasing attention in recent years. Hartley
et al. [14] incorporated hyperinfectivity vibrios into the mathematical model. The results suggest that
for minimising the epidemic spread of cholera, intervention measures should focus on minimising the
transmission risk of short-lived, highly infectious cholera vibrios. Shuai et al. [39] investigated cholera
dynamics with both hyperinfectivity and temporary immunity. Wang and Wang [51] introduced a novel
modelling framework to investigate the impact of bacterial hyperinfectivity on cholera epidemics in a
spatially heterogeneous environment. Specifically, this model categorised V. cholerae into HI vibrios
compartment and LI vibrios compartment. Wang and Wu [46] extended the work in [45] by incorporat-
ing bacterial hyperinfectivity and saturation mechanism for indirect transmission pathway. Wang et al.
[49] developed a reaction-advection-diffusion model with a general boundary conditions, considering HI
and LI vibrio strains, convection factors, and human behaviour change, to establish the threshold-type
results of cholera transmission in spatial-temporal heterogeneous environment (see also [53]). Wang
et al. [48] formulated a generalised cholera model incorporating nonlocal time delays to investigate the
effects of bacterial hyperinfectivity on cholera outbreaks and to derive the detailed classifications of
global dynamics in a spatially heterogeneous environment.

Phages, viruses that specifically infect and destroy bacteria, have been characterised as bacterial para-
sites, with each phage type exhibiting a distinct ability to replicate within specific strains of host bacteria
[55]. The interaction mechanism between bacteriophages and bacteria begins when a lytic phage inserts
its genetic material into a bacterial cell, where it proliferates, leading to cell lysis and the release of
new phages into the environment [4]. This process can significantly impact the severity of cholera out-
breaks. For example, the investigation of the cholera epidemic in Dhaka, Bangladesh, indicates that lytic
bacteriophages may mitigate epidemic severity by eliminating bacteria in both reservoirs and infected
individuals [10, 19].

Phages (viruses of bacteria) play a pivotal role in shaping both the evolution and dynamics of bacterial
species, especially for V. cholerae [19, 23, 30, 32]. Kong et al. [23] proposed an ODE model incorpo-
rating a Holling II response function to depict the interaction between V. cholerae and bacteriophages.
Misra et al. [29] investigated a reaction-diffusion system for the biological control of cholera epidemics.
They focused on temporal evolution of cholera within a region and explored its control using lytic bac-
teriophage in aquatic reservoirs. Botelho et al. [4] proposed an ODE model with the bacteria-phage
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interaction of Holling type 1. This model includes human populations (SIRS), bacteria population (B)
and phage population (p) to represent these interactions. In their study, they derived threshold parame-
ters to characterise the stability of equilibria. The findings suggest that the reservoir environment might
contribute to the periodicity of cholera outbreaks. Hu et al. [18] proposed a cholera model comprising
coupled reaction-diffusion equations and ODEs to discuss the effects of spatial heterogeneity, horizontal
transmission, environmental viruses and phages on the spread of V. cholerae.

The aim of the paper is to investigate multiple effects of the interaction between V. cholerae and phage
on cholera transmission, thereby improving our understanding of the transmission mechanism of cholera
diseases and proposing targeted disease control measures. Generally speaking, it is very challenging to
discuss the threshold-type results in the case of multi-class steady states. Fortunately, in this paper, we
derive the existence and stability analysis of multi-class steady states for some special cases.

The remainder of the paper is organised as follows. In Section 2, we propose a degenerate
reaction-diffusion model with different dispersal rates, which incorporates short-lived hyperinfectious
(HI vibrios) state of V. cholerae and lower-infectious (LI vibrios) state of V. cholerae simultaneously
in a heterogeneous environment. In Section 3, we present the main results of this paper, including the
well-posedness, dynamics of the disease-free steady state, dynamics of the phage-free steady state and
dynamics of the phage-present steady state. In Section 4, we give the proofs of the main results. A brief
discussion of this paper is given in Section 5.

2 Mathematical model

Building upon the model presented by Jensen et al. [19], which integrates cholera epidemiology with
bacterial and bacteriophage population dynamics, we examine the interaction between HI vibrios and LI
vibrios with bacteriophages, as well as the intrinsic growth rate of V. cholerae, and divide the infected
human hosts into two parts, one consists of human hosts infected only with V. cholerae, denoted as I,
while the other consists of human hosts that are simultaneously infected with V. cholerae and bacterio-
phages, indicating the parasitism of bacteriophages within the host cells (bacteria), denoted as /,. Based
on the above considerations, we propose a degenerate reaction-diffusion cholera model:

S
rrin dsAS + A(x) — a;(0)fi(B)S — a,(x)f2(B2)S — u(x)S,
h _ Al 1 P B))S TP B,)S I
E— 1 1+051(x)< _L—}-_P>f]( 1) +052(x)( _L—}-—P)fZ( DS — (0,
L _ 4l P rsys P s I
a9 z+051(x)L+Pf1( ) +012(X)L+sz( 2)S — w0k, o
0B,
W =h(x, B) + 1)U, + L) — by(x)B,P — §,(x)B;,
0B,
o = hy(x, By) + 6, (x)By — by(x)B,P — 8,(x)B,
oP
T a()n)L + x1 ()b (xX)B1 P + x2(x)by(x)B,P — m(x)P.

The population density of susceptible individuals at location x and time ¢ is denoted by S(x, r). The pop-
ulation densities of phage-negative and phage-positive infected individuals at location x and time ¢ are
denoted by I,(x, 1), I,(x, 1), respectively. Let I(x,t) =I,(x, t) + L,(x, t), where I(x, f) denotes all human
hosts infected with V. cholerae. The concentrations of HI and LI vibrios in the water environment at
location x and time ¢ are denoted by B, (x, 1), By(x, t), respectively. The concentration of phage in the
water environment at location x and time ¢ is denoted by P(x, f). The recruitment rate of susceptible
human hosts is represented by A(x). The parameters «;(x) and o,(x) can be interpreted as the rates of
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Figure 1. Schematic diagram of model (2.1). The green solid line represents the recruitment and mor-
tality rates of human hosts and V. cholerae, and the blue solid line denotes the direct development of
cholera. The purple dashed line represents the infection process and the interaction between phages and
V. cholerae.

HI and LI vibrios consumption. L(x) represents the half-saturation concentration of phage. For simplic-
ity, we consider only natural deaths by w(x) and disregard deaths caused by the disease. The functions
h(x, By) and h,(x, B,) are the intrinsic growth rates of HI and LI vibrios, respectively. The rate of bacte-
rial shedding is represented by n(x), while §,(x), 6,(x) denote the natural death rate of HI and LI vibrios,
respectively. Phage interacts with both HI and LI vibrios, resulting in bacterial death rates of b,(x) and
b,(x), respectively. Meanwhile, the phage has a gain from two vibrios’ deaths represented by y,(x) and
X2(x). The mean phage shed rate is denoted as «(x), and m(x) represents the phage decay rate. The
cholera transmission process is shown in Figure 1. In model (2.1), we choose

B;
fiB) = ITH() =1,2, xeQ,

where H;(x) denotes the half-saturation concentration of bacteria. ds, d; represent the dispersal rates of
susceptible and infected human hosts, respectively. Here, we assume that the dispersal rate d; for both
phage-negative and phage-positive infections are equal. We also consider an isolated habitat €2, which
is characterised by the homogeneous Neumann boundary condition.

as d, 9L

v Jdv  dv
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and the initial conditions are

S()C, 0) = SO(-X)» Il(x’ 0) = I?(.X), 12(-x9 O) = Ig(x)’ B](.X, 0) = B(l)(x)9 BZ(-xs O) = Bg(-x)’ P(X, 0) = PO(-X)9
(2.3)
for xe @, and where S°(x), I(x), I(x), B'(x), BS(x), P°(x) are nonnegative continuous functions.
Furthermore, if spatial heterogeneity is not considered, model (2.1) degenerates to the homogeneous

model:
S
E:dSAS+A—othI(Bl)S—ozzfQ(Bz)S—/LS, xeQ, t>0,
al dAL +a (1 P fiB)S+a (1 P £(By)S — ul €Q, >0
— = o - o - — , X , t>0,
ar IZAVS] 1 LiP 1D 2 L+P22 Hiy
oL, d,AL + f(B)S + £(By)S — ul €Q, >0
_— = o (07 - ) X s >V,
a1 IZAYS) 1L+P1 1 2L+P2 2 1225) 2.4
0B
—  =m@B)+n(+5)—bBP -8B, xeQ 1>0,
0B,
¥=h2(32)+5131—szzP—Ssz, XGQ,t>0,
oP
E:an12+)(|blBIP+ XzszzP—mP, )CEQ, t>0.

In the following, we make some basic assumptions:

(H,) ds, d, are positive C'-function on €;

(Hy) (1%, 13, B, BY, P*) # 0 on €3

(H;) hi(x,v), hy(x,v) € C*(Q x R, ) are nonnegative and strictly concave down in relation to the second

variable, and /;(x,v) =0, i =1, 2, if and only if v =0, then

. hix,v)
lim ——

V—00 Vv

<&M, i=1,2, xeQ. (2.5)

For the assumption (Hj), we also refer to [4, 51], these general incidence functions are set to be

B
h,‘ ,B,' =9 Bi 1_ ! N ‘:1,2, EQ,
(x.B) =600 ( HB,.(x> i=1,2, x
where 6(x) is the intrinsic growth rate of bacteria, and Hp,(x) denotes the maximum capacity of the
bacteria.
It should be pointed out that since multiple effects of the interaction between V. cholerae and phages
on cholera transmission, the complexity of model (2.1)—(2.3) leads to several mathematical difficulties:

(i) We prove the global asymptotic stability of the disease-free steady state for the critical case when
Xy = 1 for the high-dimensional system, which is instituted by six equations.

(ii) Generally speaking, it is very challenging to discuss the threshold-type results in the case of multi-
class steady states. Fortunately, in this paper, we derive the existence and stability analysis of multi-
class steady states for some special cases. We show the existence of phage-free steady state in a
heterogeneous environment. An appropriate Lyapunov function is constructed to discuss the global
stability of the phage-free steady state in a homogeneous environment.

3 Main results

In this section, we state the main results of this paper, whose proofs are given in Section 4.
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3.1 Well-posedness of the model

Define H = C($2, R%), which is assigned the following supremum norm:

lelly: = max {sup l@1 ()], sup [@2(x)], sup |@3(x)], sup |@4(x)], sup |@s(x)], sup I%(X)I} ,

xeQ xeQ xeQ xeQ xeQ xeQ
with ¢ = (¢, ©2, @3, ©4, Ps, Ps) € H. Define Ht = C(S_Z, ]Rﬁr) as the positive cone of H. Let L,(2) be the

Banach space of function y whose p-th power of absolution value is integrable on €2 for 1 < p < oo with

1

»
”y”p:(/ |y|p) 5 ISP<OO,
Q

I¥llsc =ess sup [y(x)|, p=o0.
Define

7" =max z(x), z,, = min z(x),
xXeQ xeQ

where z(x) € C(Q, R). Define B;:D(B;) — C(£, R) as the linear operator with
B ¢: =dsAp(x), Brgp: =dAp(x),

where D(B)): = {¢ € N,., W>(Q): 22 =0 on 3 and B,¢ € C(Q, R)}. By [56], we know that the opera-
tor B, is the infinitesimal generator of the strongly continuous semigroup {e”Bf} i =1, 2. The operator
% :H — H defined by

B¢ (x)

B¢, (x)

B, s (x) _ s

Bo(x): = 0 s @ = (@1, 92, 03, a, 95, 95) € D(B)) x D(B,) x D(B,) x [C(L,R)]" CH
0

0

>0’

3.1
is also the infinitesimal generator of the strongly continuous semigroup {e“@ } in H. Moreover, we

define the nonlinear operator . : H — H as

>0

AQx) — ay(X)fi (@)1 — () (@s)pr — p(xX)e,
a1 (X)fi(p)Ley o (x)f>(es) Lo

L+ o0 L+ o — pu(x)@,
a ()1 (@)@sp1  a(X)f(@5) @6
L) = Tho T Lig MO . (3:2)

hi(x, @4) + n(X)(@2 + @3) — bi(X)@sp6 — 81(X) @4
hy(x, @s) + 81(0)@s — by(X)@spe — 8:(x)s
a()N@)@s + x1(0b1(X)Ps@s + X2(X)b2(X)Ps0s — M(xX)s

Thus, model (2.1) can be expressed as

d

prlaGLE )y =B, 150+ L, 15, .0 =c". (3.3)
Theorem 3.1. For any c(x) = (8°(x), I} (x), [(x), B{(x), Bj(x), P°(x)) € H*, model (2.1)—(2.3) admits a

unique global nonnegative classical solution defined on Q x [0, 00). Moreover, model (2.1)—(2.3) has a
connected global attractor in H*.
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3.2 Dynamics of the disease-free steady state
A steady state of model (2.1)—(2.3) is a solution of the following model
dsAS + A(x) — o (x) fi(B1)S — (%) /2(B2)S — n(x)S =0, x € €2,

N +a1<x)LLf.(Bl>s () —E— fi(B)S — (0, =0, xe %,

+P L+P

dIAIZ + Oll(x)

L+Pf1(31)5+0!2(X)L+P

hi(x, By) +n()U; + L) — by(x)B\P —§,(x)B; =0, x € 2,

H(By)S — ux)h =0, x€Q, (3.4)

hy(x, By) + 8,(x)By — by(x)B,P — 8,(x)B, =0, x € Q,

a(X)nN@)L + x1(0)b1(x)B1P + x2(x)b,(x)B,P — m(x)P =0, x € 2,

for t > 0. Model (2.1)—(2.3) admits a unique disease-free steady state F,, = (S*(x), 0,0, 0, 0, 0), where
S*(x) is the unique positive solution of

dsAS+ A(x) — n(x)S=0, xe L,

aS (3.5
— =0, xe Q.
av
Define
N ohi(x,0
hi(x) = a(; ) 1.2, e
Linearising model (2.1)—(2.3) at F,, and adding the equations for /,(x, f) and I,(x, t), we obtain
al Oll(x)S*Bl (Xz(.x)S*Bz
— =d,Al — 1, Q, t>0,
Y AL+ H + , uxl, xe >

0B ~
— = (X)B, + NI — 8,(x)B), x€Q, 1>0,
ot (3.6)

dB,

a_; = hy(xX)B, + 8,(x)B, — 8,(x)B,, x€Q, t>0,
oI

— =0, xedQ, t>0.

av

Let J(r) be the solution semiflow associated with model (3.6), where J(t)p=
I, t, 9), Bi(-, 1, @), By (-, t, @) for ¢ € C(2, R?). Since model (3.6) is cooperative, J(¢) is a Cy-semigroup
with generator

dIA —u CV]S* Ole* d[A —u 0 0 OllS Ole
_H, H, N H, H,

of = 1 hy — 8, 0 = n h, — 6, A 0 +10 o0 0 =:V+F.
0 8 h—6 0 S =6 0 0 0

To ensure the well-definedness of <7, we impose the following assumption on hi(x) for the remainder of
this paper:

h(x) < 8:(x), Vxe Q, i=1,2. (3.7)

Following [42, 50], the basic reproduction number %, of model (2.1)—(2.3) is defined as the spectral
radius of —FV~!, which is denoted by r(— FV~'), namely

Ry =r(— FV).
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From the similar results in [42, 50], we can assert the following statement.

Lemma 3.2. %, — 1 has the same sign as s(<f), where s(<f) denotes the spectrum bound of <f with
s(o/) = sup{ReA, A € o ()}

To derive an equivalent formula for the basic reproduction number %, similar to the proof in [38, 47],
we introduce the following result involving the next generation operators Dy and D, for HI vibrios and
LI vibrios infections, respectively.

Lemma 3.3. Let

Fll 2

~
Il
coco

F,

0 o0

0 0
be a positive operator, and

A -V, 0 0

V = VZl _V22 0
0 Vi, =V
be a resolvent-positive operator with s(V) <0, where s(V) denotes the spectral bound of V, then we

obtain
"= FV™)=r(Dy + Dy),
where Dy = F1,Vy,' Voy(Viy — d;A) ™ and Dy, = F1, V' Vi, Vo, Vo (Vi — dy A7
In addition, based on Lemma 3.3, we can derive a specific form for %, as follows:
Po =r(Dy + Dy),
where
D, = o (D) A )n () (p(x) - diA)”!
p()H;(81(x) — hi(x))
is the next generation operator for HI vibrios transmission to human hosts, and
_ @A®S @) (rE) —diA)!
OO0 — by (0)(8:0) — ha()
is the next generation operator for LI vibrios transmission to human hosts.

If considering exclusively the infection of human hosts by HI vibrios, the basic reproduction number
R can be represented as

%: =r(Dy)
_, (m(x)A(x)n(x)(u(x) —dip) )
HEOH, (81() = ()
_ gp  Jat@AWNOREHG0) — k@)
0eH! (Q), 90 fg di|Vo|* + p(x)e?dx

On the other hand, if considering exclusively the infection of human hosts by LI vibrios, the basic
reproduction number Z; can be represented as

%OL =r(Dy)
_, ( az(x)A(x)51(x)7z(x)(u(x) - dzé)“ )
1L)H,(8,(x) — 7y (0))(8,(x) — ()
— o 2 A8, () (X9 / 11 (X)H (8 (X) — Ty (x))(8,(x) — ﬁz(x»dy
peH! (Q), 90 fQ di|Vol* + u(x)pdx
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By [2, Theorem 2] and the expressions of %,’ and Z[, we immediately get Theorems 3.4 and 3.5.
Theorem 3.4. The following statements are valid:

(i) %7 is decreasing in d; with

A _
llm% = max {011—77A :er}
4=0 wWH (8, — hy)
and
lim 2% — Jo ot An/H (8, — hy)dx

dj—o0 Jo, mdx

(it) If Q2 is a favourable environment for HI vibrios in the sense that
A
/ al—nAdx > / udx,
o wH, (8, — hy) Q
then ¢ > 1 for all d; > 0.

(iii) If 2 is a non-favourable environment for HI vibrios in the sense that

A
/al—nAdx</‘udx,
Q MH1(51 —h ) Q

Meanwhile, there is a favourable site x within the domain in the sense that o, (x)A(x)n(x) >
(x)ﬁl(é (x) — hy(x)), then there exists d; such that Ry > 1 when d; < d,, and Rf' <1 when
d, >d,.

Theorem 3.5. The following statements are valid:

(i) Zf is decreasing in d; with

A _
lim %, = max { & Agln - :er}
=0 W2H, (8, — hy)(8y — )
and
lim 27 = Jo 02 A/ 1H:G, )6 — h)dx

dj—o00 fQ ,de)C

(it) If 2 is a favourable environment for LI vibrios in the sense that
AS
/ Olem — dx>/udx,
o wHy (81 — hi)(8: — hy) Q
then Zf > 1 for all d; > 0.

(iii) If Q2 is a non-favourable environment for LI vibrios in the sense that

AS
/ @ —~ 1% — dx</ udx,
o WHy(8; — h)(6, — hy) Q

Meanwhile, there isa favourable site x within the domam in the sense that ozz(x)A(x)(Sl(x)n(x) >
W () H,(8,(x) — 1(x))(82(x) hz(x)) then there exists d, such that Zf > 1 when d; < d,, and

Ry <1 whend; > d,.

Remark 3.6. For model (2.4), there exists a disease-free steady state Fy=(5%,0,0,0,0,0), where
St = % By a simple computation, the basic reproduction number of model (2.4) is

~  alAp o A,
[2H\ (8 — ) p2HA(8 — h) (S, — hy)
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10 W. Wang et al.

The extinction of the disease for model (2.1)—(2.3) in terms of %, can be expressed as follows:
Theorem 3.7. The following two statements are valid:

(i) If %y < 1, the disease-free steady state F,y of model (2.1)—(2.3) is globally asymptotically stable;
(ii) If %, =1, the disease-free steady state F, of model (2.1)—(2.3) is globally asymptotically stable.

3.3 Dynamics of the phage-free steady state

In this subsection, we discuss the case that phages and phage-positive infected individuals are absent in
model (2.1), and analyse the dynamics of the model under this case.

Theorem 3.8. If %, > 1, model (2.1) has at least one phage-free steady state F, = (5*(x), I{(x),0,
B{(x), B5(x), 0).

Remark 3.9. Although we establish the existence of phage-free steady state for model (2.1), the prob-
lems of uniqueness and local/global stability are still unresolved. However, if the heterogeneous space
degenerates to a homogeneous one, that is, model (2.1) degenerates to model (2.4), we can determine
the uniqueness and stability of F,.

For model (2.4), iﬂ@o > 1, there exists a phage-free steady state F | = (5‘“, if, 0, Bﬁ‘, E‘;, 0), where

- A—ul - I - 8l
Sa:$>O’B‘::n—1A>O,B;= Th

— >0,
M (61— M) (81 — h)(8, — o)

and ¢ is the positive root of £(I;) :/NHI2 + BI, + C, where

A=

G et ) 5 ( AdiPlon+on)  nHy(e+1)  SinHi(e + ) )
(81 — m)*(8, — o) (8 — hi)*(8; — ho) (61 —h) (81 = h1)(82 — ho)

~ ( AaynH, + Aa,yénH,

= = < ~— — MH1H2> = pH H)(%, — 1).

n@ —h)  p(d —h)(S —hy)
If %N’;) > 1, we find that f(0) = C>0. Additionally, since A <0, it follows that f(I,) = 0 has two real roots:
one positive and one negative. Hence, model (2.4) has a unique phage-free positive steady state F =
(84, 17,0, B}, B;, 0) for %, > 1. Assume that b, = 0, the following theorem presents a result regarding
the global stability of the phage-free steady state F.

Theorem 3.10. If(%z) > 1, B‘l’ < E’l’ andl; < ’;—);‘ hold, then the phage-free steady state F, of model (2.4)
is globally asymptotically stable.

3.4 Dynamics of phage-present steady state

In this section, the existence and uniform persistence of phage-present steady state of model (2.1) are
difficult to obtain due to the spatial heterogeneity and other mathematical difficulties. Therefore, we focus
on proving the existence and uniform persistence of the phage-present steady state for its homogeneous
case. Assuming o = b, =0 and I =1, + I, in this subsection. From model (2.4), we assume that there
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exists the phage-present positive steady state F,= (3” I, B?, Bg, Pb), We have

A —a i(B)S — ar fo(BY)S" — uS’ =0,

o1 i(BDS’ + o fu(BYS® — pl’ =0,

h(B)) 4+ nI* — b, B'P* — 8,8, =0, (3.8)
hy(B2) + 8,8, — 8,B, =0,

lelélfi)b — mi’b =0.
One gets

. A . A—pS
bl Ib = 05
o m o (hy x1by + 8,m) n g

+
m~+H, xb, hyx1by + 8im + Hy8, x, by

%!
S
Il

B m B (hyx1by + 8,m) P xXihby + xinb,I" — 51m'
: x1b1 ? 8 x1b

mbl
We define the phage invasion reproduction number as

{@’b _ xXihby + Xlnbljh.

0 81m

It %7: > 1, then P’ > 0. Consequently, model (2.4) has a unique phage-present positive steady state

F,=(8"1", B, B, P"). The following theorem demonstrates the uniform persistence of the disease for
model (2.4) when %, > 1.

Theorem 3.11. If .@70 > 1, and B‘l’ >E’f hold, there exists a & >0 such that for the initial con-
dition °(-)=(S°, I, I, BY, BY, P°)(-) e HT with I?(x) £0 or I3(x) £0 or B)(x)#£0 or B)(x) #0 or
P°(x) £0, the solution ¢(x,t;c®) = (S(x, 1), I,(x, 1), L,(x, 1), B,(x, 1), B,(x, 1), P(x, 1)) of model (2.4) sat-
isfies 1im,_ o inf &(x, 1 ; ¢°) > O uniformly for x € Q.

4 Proofs
4.1 Proof of Theorem 3.1

In this section, we present a series of lemmas to prove Theorem 3.1. The first lemma is just a consequence
of applying the general results in [28].

Lemma 4.1. Let B and £ be defined by (3.1)—(3.2). For any ¢® € D(%B) C H", there exists a Ty, > 0
satisfying that model (3.3) admits a unique nonnegative solution

c,t;0) =%+ / 9% L(c(-, s, ))ds, 1[0, Ty,
0
where Ty, < 400, then we have lilp lle(-, £5 )| = 00 if Ty = .

=Ty
Lemma 4.2. For any ¢’(x) = (8°(x), I} (x), [5(x), BY(x), B)(x), P°(x)) € H*, model (2.1)~(2.3) admits a
unique nonnegative global solution defined on 2 x [0, 00).

Proof. Let c(x,7)=(S,1,,1,,B;,B,,P) be a solution associated with ¢°(x)=(S°(x), I%(x), I2(x),
B%(x), BY(x), P°(x)). The first equation of model (2.1) implies that 3S/9f <dsAS+ A(x) — u(x)S.
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By [24, Lemma 1], we derive

aS - _

E:dSAS~I—A(x)—,u(x)S, xe, t>0,

_ “.1)
0S

— =0, x€0, t>0,

av

has a unique positive steady state S*(x), which is globally asymptotically stable. According to the
comparison principle, we have

lim sup S(x, #) < lim sup S’(x, 1) =S8"(x). “4.2)
Thus, there exists a Q; > 0 satisfying
1SCe, DIl < O, 1=0. 4.3)

Let {J5(?)}:>0 be the semigroup generated by the operator d;A — pi(-), then from the second equation of
model (2.1), we have

1 B = hOPe) + / I —s) ( o, (X)LB, (x, $)S(x, 5) o (X)LB,(x, $)S(x, 5) ) ds.
0

(L4 P(x,$)(Bi(x,5) + Hy) ~ (L+P(x,5)(By(x,5) + H,)

from (4.3), we derive

! LB (x,
||11(.x, t)” Se—k]t”I?” +Q1a;n/ e—)q(t—s) < ” ”” l(x S)“ )ds
0

(LI 1P, $IDCAB: x, 91|+ [1H 1)

o ILIIBs(x. 5)]
+ m X1 (1—s) < )d
Qie; / ¢ (LI + 1PG. ) D(Bo )| + 1Hal ) <

t
<4208 [ e s
0

“4.4)

1
<IN+ 2Qlo2'"k—, t>0,
1

where @&” = max,q{a]'(x), &'(x)}, and A, > 0 is the principal eigenvalue of —d;A + w(-). Similarly,
from the third equation of model (2.1), we have

< o, (x)P(x, $)B;(x, 5)S(x, 5) o (X)P(x, 5)B,(x, $)S(x, 5) ) d
(L4 P(x,s)B(x,s)+ H) (L4 Px,s)(By(x,s)+ H,) ’

Lo ) = BOLE) + f I(i—s)

0

one gets
i ‘o 1P 1B (. 5)]
I , < At IO + m/ A (t—s) < )
IECo Dl = e LN+ Qe | e LT+ PG DB e )+ TH D
C 1PGr. 1B, 5)]
+ m X1 (t—s) < )d
Qie; / ¢ (LI + 1PG. ) D(Bo )|+ 1Hal ) <

: (4.5)
<4208 [ e s
0

o 1
<IBI+20:a s 120
1

By [37, proof of Theorem 2.3] and assumption (Hj3), for v > 0, there exist Cy and C; satisfying &, (x, v) —
§,v<Cy— C,v, we derive

hy(x, By (x, 1)) — 8,B,(x,1) < Cy — C\By(x, 1), x€ Q, 1> 0, (4.6)
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in which 1§1(x, 1) satisfies

dB,(x, 1) .
TR n@U(x, D) + Lx, 1) + Co — C1B,(x, 1), x€ Q, >0,

3B, (x, 1) 4.7)

ov
B(x,0) =B, (x,0) = B(x), x€ Q.

For the first equation of model (4.7), applying the Gronwall’s inequality yields

=0, xe9Q, t>0,

Bi(x,n=e"Bl(v) + / e (Co + Ui (x, 5) + L(x, 5))) ds,
0

based on (4.4)—(4.5), there exist @, > 0 and Q; > 0 satisfying ||I,(x, 1)|| < Q, and ||L,(x, 1)|| < O;, along
with the comparison principle, we derive

t t
I1Bi(x, Dl < 1By (x, D) < e 1Byl +/ e 1C dS+/ eI (1 e I+ 1L )1 ds

Co
< 1B + E (0 + Qo/ €109 g
1

<|IB7Il + E(CO +1n"(Q:+03), 1=0
1

(4.8)
Similarly, there exist C, > 0 and C; > 0 satisfying h,(x, v) — §,v < C, — C3v, we derive
ha(x, By(x, 1)) — 8,B,(x, 1) < Cy — C3By(x, 1), x€Q, 1>0, (4.9)
in which éz(x, t) satisfies
3B, (x, t .
23(;C ) =8(0)B(x, 1) + C, — G3By(x, 1), x€Q, t>0,
3By (x, 1 4.10
2(x )=O,x68§2,t>0, ( )
ov
By(x,0) = B,(x,0) = BY(x), x € Q.

For the first equation of model (4.10), applying the Gronwall’s inequality again yields
t
Bx=e B+ [ e CIC+0,0B x5
0

based on (4.8), there is a Q, > 0 satisfying ||B,(x, t)|| < Q,, along with the comparison principle, we

derive

IB,(x, )] < [Ba(ex, D] < e '[|BY)| +/ €7C3('7°')CzdS+[ e U8, (0)|1By(x, 5) || ds
0 0
0 C m ' —C3(t—s)
<B4+ = +8"Q, | e ds .11
C 0
< B + F(Cz +48704), 120
3

Considering the last equation of model (2.1), we have

'
p(x t):ef(;(Xl(«*)b](X)Bl(«“JH’)(Z(X)hz(x)BZ(X»V)—'"(X))dfpo(x)+/ a(x)n(x)]z(x s)ds xe Q.
0
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Based on (4.11), there is a Q5 > 0 satisfying || B,(x, 1)|| < Os, then

t
P(x, 1)|| < elo ¥V UBI GBS | POy gy pm / L(x, s)||ds
| PCx, DI < [l n ) 112(x, s) I @.12)

< "CHONIPO| "y Qs, 120,
where
x" = max {x1(0), o0}, b" = max {b1(x), b,(x)} .
XE Xe

By (4.3)-(4.5), (4.8), (4.11)—(4.12) and Lemma 4.1, the solution c(x, ) = (S, I,, L, B,, B, P) exists
globally. O

Lemma 4.3. There exists a constant M, > 0 independent of ¢° = (5°(x), I 9(x), 2(x), B(x), BS(x), P°(x))
€ H satisfying

lim sup (SCx, £) + I, (x, £) + L(x, ) + B, (x, £) + Ba(x, ) + P(x, 1)) < M.
=00

Proof. From the first equation of model (2.1), we derive
0S(x, 1)

S dSAS + Am - M}rzs(x? [)

By the comparison principle, there exists 7} > 0 such that for all # > T, and x € ,

m

S(x,7) <M,, where M, = — + 1. 4.13)

Mom
The second equation I, (x, #) of model (2.1) yields

AL (x, 1)

< dIAIl + (aiﬂ + Ol;n)Ml - l'LmIl(-xv t)

Applying the comparison principle, there exists 7, > T} such that for all > T, and x € ,

m m M
1Geut) < My, where M, = 4 T0M1 (4.14)
[on
Similarly, one gets
L(x,t)<M,, x€Q, t>T,. (4.15)

From the fourth equation of models (2.1) and (4.6), we derive
B, (x, 1)

ot
By the comparison principle, there exists 75 > T, such that for all # > T; and x € Q,

20"M, + C
By(x, 1) < M, where M, = "C;ﬂ 1. (4.16)

1

<2n"M, + Cy — C,B,(x, 1).

Similarly, for equation B,(x, f) of models (2.1) and (4.9), one gets
0B, (x, 1)
ot
The comparison principle yields 7, > T such that for all # > T, and x € ,
8'M; + G,
G
Let N(x, £) = x1(X)Bi(x, 1) + x2(X)B(x, 1) + P(x, ), we obtain
AN(x, 1)
at

<8'M5 + C, — G5By (x, 1).

B,(x,t) <M,, where M, = + 1. “4.17)

= XhY A XY A+ (@ + 20" My 4 87 X' M — 8, (X1 (0B, (x, 1) + x2(x)Ba(x, 1) + P(x, 1)),
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where §,, = min,cq {8, (x), §2(x), m(x)}, A" = max,cq hi(x, B;), i = 1, 2. By the comparison principle, there
exists a Ts > T, such that for all t > T5s and x € €2,

xR A XY (@ 20" My + 87 X M
8}"
Let Mo, =M, 4+ Y0 | M,. Then by (4.13)~(4.18), for all > Ts, the solution satisfies

P(x,t) < Ms, where M5 =

+1. (4.18)

lim sup (S(x, 1) + I (x, 1) + Ly(x, 1) + By (x, t) + By(x, 1) + P(x, 1)) < A;IOO.

This establishes Lemma 4.3. O

Define Ji (t): H* — H™" as the semiflow generated by model (2.1)—(2.3), namely J () = c(x, 1) for
t > 0. We observe that the last three equations in model (2.1)—(2.3) lack diffusion terms; the solution
semiflow J(7) loses its compactness. We introduce the Kuratowski measure of noncompactness, denoted
as k(-),

x = inf{R : & has a finite cover of diameter < R}.
Denote
hi(x, By) + n(o)(; + 1) — bi(x)B1P — 6,(x)B,
K1\, L, B\, B, P) = hy(x, By) 4 8,(x)B; — by(x)B,P — 6,(x)B,
a ()N L + x1 ()b (x)B P + x2(x)by(x)B,P — m(x)P

as the vector field associated with the last three equations of model (2.1). The Jacobian of K with
(B,, B,, P) is defined as

oh
a?l —bP—3, 0 —bB,
K _ 8K(11312’B1aBZ9P) _ ! ahz
o Jd(B,, B,, P) o 8 3B, b,P -6, —b,B,
2
x1b, P Xx2b,P X1b1B1 + x2b,B, —m

Lemma 4.4. J(1) is asymptotically smooth and k -contracting if there exists a r* > 0 satisfying
WKpu<—ru'u, VueR?, xeQ, cel,. (4.19)

Proof. By using similar proofin [36, Lemma 23.1(2)], we can derive that J()is asymptotically compact
on any closed bounded set & for J(1)&? C Z2. Thus, the omega limit w(£?) is nonempty, invariant and
compact, and attracts &2. This proves the asymptotic smoothness of J(¢). By [26, Lemma 2.1(b)], we
have

k(1) P) < k(0(DP)) +dJ (1), o(P)) = d(J (1) P, (D)),

where d(J(1) P, w(2)) denotes the distance from J(£)2 to w(Z?), which tends to zero as  — +00.
Consequently, J(¢) is k-contracting. O

Remark 4.5. A sufficient condition for (4.19) is that

L 2b, M, ki)
JB, 0B,
Proof of Theorem 3.1 The global existence and uniqueness of solution of model (2.1)—(2.3) can be
obtained from Lemmas 4.1-4.2. In view of Lemma 4.3, J(r) is point dissipative. According to Lemma
4.4,]J () is asymptotically smooth. Thus, by [13, Theorem 2.1], model (2.1)—(2.3) has a connected global
attractor in H™. O

+ 81 < 2b1M1 +82, memel <m.
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4.2 Proof of Lemma 3.3
Let ¢ = Fw and w = —V~'¢. Then,

o=V —diAw, @=Vaow, — Voywy, @3 ="Viw; — Vyw,,
we can easily derive

wy =V, — d1A)7l(P1,
Wy = Vz_zl ((ﬂz + Vo (Vi — dIA)_l(ﬂl) s

ws =V (03 + Va V' (02 4 Va (Vi — diA) ' gy)) -

By a straightforward calculation, we get

Y =F,V; (€03 + Vi Vs, (<P2 + Vo (Vi — d1A)71€01)) + F, Va, ((Pz + Vou (Vi — d1A)7l§01) )

V=0, ¥3=0,
and
@ D¢y + Drpy + D3¢s
—FV'| @ | = 0 ;
©; 0
where

D, =F V'V (Vii = di A) ™ + Fiu Vi Vi Vi, Vi (Vi — dy A~
D2 =F11V2721 +F|2V3;l‘/32V2;l7
D3 :Flz‘/;}l.

It follows by iteration that

@ D'}, + D} "' Dy, + D' Dsg;
—FVvY| e |= 0
] 0

Then, we have
1D} < (= VYU < (1D NAD I+ DL 4 11Ds ).

By applying the Gelfand’s formula and the squeeze theorem, we obtain r(— FV~') = r(Dy + D). This
establishes Lemma 3.3.

4.3 Proof of Theorem 3.7
Before proving Theorem 3.7, we first give some preliminaries.

Lemma 4.6. Define A° as the principal eigenvalue of the eigenvalue problem
o (05" n(x) n o (0)S*n(x)8; (x)
Hi(81(x) —(x))  Hy(8:(x) — 7y (x))(82(x) — hy(x))

d,Aso—u(x)<p+( >¢=/\<p, xeq,
(4.20)

—0 x € 0.
Bv

Then %y — 1 and s(&) have the same sign as \°.
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Proof. It is well-known that there exists a least eigenvalue A° associated with the eigenvalue problem
(4.20), its corresponding eigenfunction ¢ can be chosen to be positive on €2, that is,

QWS @ (X)S*N(x)8; (%)
Hy(81(X) — iy (x)  Ha(81(x) — hy(0))(8,(x) — p(x))

d,A@—u(x)¢+( >¢=)»°¢J, xeQ,

96 (4.21)
220, xeoq.

av

Next, we consider the following eigenvalue problem
S* S*n(x)8 1
dAG — () + ( o (x) 77(36) n Oéz(xz 1n(x)8;(x) _ > 10 xea
H(3,(x) = (x))  Hy(8:(x) — 7 (x))(82(x) — hy(x)) Ko (4.22)

0

220, xeoq.

av

By multiplying (4.21) with ¢ and (4.22) with ¢, and performing integration by parts on €2, subtracting
the resulting equation, we get

I (IS N() (S 78 () ) ] . / )
1— — — + ~ — dx =\ dx.
( %) / (Hl(a.oo—h.(x)) Ha(3,) — )00 —heen ) 00 S P

Apparently,

f ( LS L()SNE8 () ) 5od

e \H(8;(x) —hi(x))  H(8:(x) — hi(x))(8:(x) — ha(x))

and fQ @@dx are both positive, it implies that (1 - Q%(J) and A° have the same sign, namely %, and A°

have the same sign. This establishes Lemma 4.6. O
Let I(x, 1) = "¢, Bi(x,1) = €5, By(x,t) = e, in model (3.6), then

o (x)S* o, (x)S*

Ay =di AP, + H o3+ H by — n(x)py, x €L,
1 2
Ay = N(X)ps + h(N)ps — 8, ()¢5, x € Q, 423
Ay = 8, ()3 + hy(X)ps — 8, (X)ps, X € Q,
3¢
— =0, xe€dQ.
v

Lemmad.7. If %, > 1, then s(<7) is the principal eigenvalue of problem (4.23) with respect to a strongly
positive eigenfunction.
Proof. Let

o1 (x)S™n(x) n o2 (x)8™n(x)8; (x) _
et Hi(31() = () A+ Ha(81(0) = i (x)(8:00 — ho(x)

be a family of linear operators on C(£2). Notice that s(T}) is decreasing and continuously dependent on
A, where XA denotes the principal eigenvalue of T,c = Ac. As a result, it has the following variational

TA :dlA +

Hx)

characterisation:
S* S$*né
fg( T el )wz—dva—w%zx
_ A+H G —h)  A+Hy8 —h)(S —h)
s(T))=  sup 5
peH! @), g0 o, @2dx

Clearly, we have s(T)) < 0 if A is large enough. From %, > 1 and Lemma 4.6, the following equation
holds s(T) = A° > 0. Therefore, we duduce that there exists a unique x satisfying s(73) = A. Let (f) >0
be an eigenvector with respect to s(73), we get T,—\& = ):qs. Similar to the results in [50, Theorem 2.3],
we have A = s(.27). This establishes Lemma 4.7. O]
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Proof of Theorem 3.7 (i) The locally asymptotically stability of F, for model (2.1)—(2.3) follows from
[50, Theorem 3.1]. Next, we only need to establish the global attractivity of Fj,. Initially, we set gy > 0.
From (4.2), we deduce that there exists a#; > 0 such that 0 < S(-, 1) < S*(x) + ¢, forall ¢ > t,, and from the
comparison principle for cooperative models, we get (I(x, £), B (x, 1), B,(x, 1)) < (I(x, 1), B, (x, 1), B(x, 1)),
where (I(x, 1), B, (x, 1), By(x, 1)) is the solution of the following model

a1 - S - S _ -
o =dial+ GO He)p | O Ty ol e, 151,
1 2
aBl - ~ - —_
= NI+ hy(x0)By — 8;(x)By, x€, t>1,
9B, . _ (4.24)
W =8,(X)B) + h,(x)B, — 6,(x)B,, x€Q, t>1,
ol

— =0, x€0dQ, t>1,
av

7(% 1) =1(x,1), Bl(x, 1) =B(x,1), Bz(x, t)=B,(x, 1), xeQ.

Let J,, (¢) be the linear semigroup of model (4.24) with respect to C,,, where C,, is defined as the
following generator

al(S* + 8()) 0[2(5* + 8())

dA —
! H, H,
Cgo - n l’;| — 8| 0
0 8, hy, — 8,

n [l7eo

Next, we prove that [/, ()|| < Ne™' for some N > 0, where y,: =lim, . —;

growth bound of J,(¢). Note that

is the exponential

Yeo = Max{s(Cy,), Vess(Joy (1)},

where y,(J, (1)):=lim,_ o "(Jef(')), and n(-) represents the measure of non-compactness. Similar to the

arguments in [58, Lemma 3.5], there exists a §, > 0 such that y,(J,,) < —§.. Then we can choose ¢,
small enough such that y,, < 0. To see this, y,, has the same sign as s(C,,). Moreover, s(C,,) has the
same sign as A, in which A, represents the principal eigenvalue of the eigenvalue problem

@S+ e | (S + ()8
Hi(8,(x) = (x)  Ha(81(x) — hy(0))(8>(x) — a(x))

dzAsv—u(X)<p+( )<p=/\<p,x€9,

(4.25)

0p

— =0, x€ 0.

av
According to Lemma 4.6, %, < 1 and the continuous dependence of kfjo on &, it can be inferred that
A2 <0 if & is small enough. Then we get ., < 0. It implies that (I(x, 1), B,(x, 1), By(x, 1)) — (0,0,0)
as £ — oo uniformly for x € Q. Clearly, we derive (I(x, 1), B,(x, t), B,(x, 1)) = (0,0, 0) as t — oo uni-
form_ly for x € Q. Then, we have (I,(x, 1), ,(x, 1), B,(x, 1), B,(x, 1)) = (0,0, 0,0) as t — oo uniforr_nly for
x € Q2. Furthermore, it follows from model (4.2) that S(x, ) — S*(x) as t — oo uniformly for x € Q. This
establishes Theorem 3.7 (i). O

Proof of Theorem 3.7 (ii) First, we prove the local stability of F;,. For any given ¢ > 0, we assume that
¥ > 0 and initial conditions ¢® = (8°, 19, IY, B, BY, P°) with ||c° — Fy|| < 9. Let

S(x, 1)
S*(x)
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From model (3.5), we have dgAS* + A — uS* =0, and by the first equation of model (2.1), we derive

8\/1 VAN Vvl A OtlBlS aszs

oAy, —2d~2 M B _ .
o e T s s T T SB +H)  S(B,+H))

Define J,(¢) as the positive semigroup generated by the following operator

Vs .V A
dsA +2dg——— — —.
S + S S* S*

By [57, Proposition 2.3], there exists a z; > 0 satisfying ||f1(t)|| < Me™" for some M > 0. We derive
o, B, (-, )S(, 5) asz(~,S)S(-,S))

Vl(" [) = J](t)vlo - -/0 ‘Il(t - S) (S*(Bl(.7 s) =+ Hl) S*(BZ('7 S) + H2)

0
where vy = i 1. In view of the positivity of J,(f), one gets

a(t) = max (v (x, 1), 0} = max {fl(t)vlo —/ Jit—s) ( B (,95C.8) | By, HSC.5) )ds,O}
xeQ xeQ 0

S*By(,8)+ Hy)  S*(Ba(-, 5) + Hy)
< m%x{fl(r)vlo, 0} < 7, (Dol

N
<Me ™ |——1
S*
P il
< Sf , (4.27)

m

where S¥ = min,.q S$*(x). From Ry =1 and [58, Lemma 3.6], we obtain ||J(¢)|| <M for > 0and M > 0.
Recall that a(r) < ¥ Me™"/S*, we derive

a1 Bi(-,5)S*  a,By(:, 5)S* S(-, 8)
1, 1) I° [ < H, + 7 )( 5 —1)
Bi(-, 1) =J@®| B +/ J(t—ys) 0 ds
0
By(-,1) B 0

v ! Am S("S)
§Mz9+/ J(t — 5)@"s" (Bl(-,s)+B2(-,s))< - —1) ds,
0

where I° =17 + I). Thus,

max{|1(x, DI, | Bi(x, DI, 1Ba(x, D} < MW +1\71|I07mIIIIS*|I/ a(s)([I1B. (> )1 + [1B2(-, 5)[ds
0

. (4.28)
<19+ 10 [ T UBC N+ 1B s
where M, = M?||@"||||S*|| /S, This yields that
1B G, )l + [1Bo(-, 1)l < 2M0 + 2M,9 /Ot e (1B, Il + (B2, )lDds.
Utilising Gronwall’s inequality, we derive
IBLC, )]l + 1Ba(-, )] < 20l 27t 4.29)

<2Mw M,
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Moreover, we can also derive

t
VG0 < 310 + 3,0 / (B2 9| + [1Bo-. ) )ds
0
t
< WD + 201,192 / o ds (4.30)
0

<M (1 + 2M, M0/ /zl> .
The last equation in model (2.1) yields
%—I: <a"n"Mo (1 + 2M, 90/ /Zl) + x"B"2MY M P — mP.
Let M, = ™" MO (1 + 2M 9217/ /7)), My = x"b"2M©9 17/ | we have
1P, D]l < e (IP°)| + / it 4 B IPC, )l

Applying Gronwall’s inequality, we obtain

[P(x, )| < (e + My)eh e @30
<(We ™+ M2)6M3’. .
By the first equation of models (2.1) and (4.28), we get
as - i i
5 dsAS > A(x) — pw(x)S — QMM g™s.
Let S be the solution of the following model
i dsAS + A(x) — pu(x)S — QM e’ g™Ms, xeQ, t>0,
BN (4.32)

— =0, x€0Q, t>0,
ov

S(x,0)=5", xeq.

The comparison principle yields that S(x, 1) > g(x, 1) for x € Q and t > 0. Define S as the positive steady
state of model (4.32) and ¥ = § — S%, (x, t) satisfies
v R Y Aty A
a—: — dgAD — (u(x) + 2M0 MG, xeQ, 1> 0,

A

av
— =0, x€0, t>0,
ov

(4.33)

M, 0)=5"—S;, xeQ.

Define J,(7) as the semigroup generated by dsA — j, then we have ||J,(¢)|| < Me"»', where M > 0 and
large enough. From model (4.33), we derive

V() =J,()(S" — %) — / Ji(t — $)2MO 75 G"(-, 5)ds.
0
Then
I5C, )]l < MIS° — 5 lle" + / Me™ 2097 || @"|| |6, 5)]|ds.
0

Applying the Gronwall’s inequality again yields
ISC. ) = S5l = I19C. )| < M|S° — S ], (4.34)
where M, = 2M*®e*17/21 ||@".
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Choosing ¥ > 0 small enough such that M, < Un/2, (4.34) yields that
IS¢, 1) = S5 < M|IS° — S [l ™2, (4.35)
Inequality (4.35) implies that
SC.6)— 85 >8(,1)—5*
=8, 0)— S +8 —5*
> —M||S° =Syl + 5, — 5 (4.36)

> =M (IS° =S+ IS* = S;11) — IS, — S
> —M® — (M +1)||S5 — S|

Since a(f) < ¥Me™'/S: < O M/S, we have

S(x, t _
S —§ =5 (% _ 1) < 115" lato) < OH|S1/S:. @37)
From (4.36)—(4.37), we have
1SC. 1) — §°1| < max [#19 + (71 + VIS, — $*[., S7IS"/S.) 438)

Thus, from (4.28)—(4.31), (4.38) and lim,_,, S} = S*, we choose ¥ > 0 small enough satisfying for ¢ > 0,

[1SCe, 8 = S™IL LG DN NEC DN 1B G DL IBRG DL PG D) < €.

This proves the local stability of Fy = (5%, 0, 0, 0, 0, 0). Then we need to discuss the global attractivity of
F,. Theorem 3.1 implies that J(¢) has a connected global attractor 2. From Lemma 4.7, the eigenvalue
problem (4.23) has a positive eigenvector (¢,, @3, ¢4) with s(.¥) = 0. Let

o~

8)/1 = {(§77;9i;’§19§25ﬁ)€H+ :/[\l :/]\ZZBI =§2=ﬁ:0} .

We present the following two claims.
Claim 1. For any ¢® = (S°,1°, I, BY, BS, P°) € 9, the omega limit set w(c’) C 3.

In view of (4.2), we have S < §*. If I{ =) = BY = B) = P’ =0, the claim easily follows from the
fact that 8, is invariant for J(r). Hence, we assume that either I # 0 or 2 # 0 or BY#0or B) #0 or
P° =£ 0. From the results in Theorem 3.1, we easily know that c¢(x, t, ¢®) > 0 for x € Q and ¢ > 0. S(x, t)
satisfies

as
™ <dsAS+ A(x) — ux)S, xeQ, t>0,

aS
— =0, x€0%, t>0,
ov

S(x, 0) <S5*(x), xe .

Applying the comparison principle, we have S(x, 1) < S*(x) for x € Q and ¢ > 0. Motivated by [9], we
assume

u(t; c®) =inf (i e R:(-, ) < iih, and B, (-, 1) < iths and B (-, 1) < s} ,
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and u(t;c®) >0 h(ﬂds for all > 0, weNalso know that u(z; c~°) is strictly decreasing. Then we choose a
t, > 0 satisfying I(-, 1) = u(t, ; ®)¢,, Bi(-, 1) = u(t, ; )3, B,(-, ) = u(t, ; *)¢p, for t>1,. Note that
S(x, t) < S*, we have

al ~ (S =B, wm@)(S* — 9B, ~
— >d,Al —uWI, xeQ, t>10,
T A 7 AT S TS HOOL, x €Sl 1> 1
B, ~  Oh(x, )~ ~ ~
—_— = ( )]+LB1 _bl(.x)l?Bl _SI(X)Bl, XGQ, t>t2,
at 9B,
3B, ~  Oh(x, 19) (4.39)

—_— = 8]()()31 + — - bz(.x)'l?Bz - 82()()32, X e Q t>1,
ot dB,
a1

— =0, x€0Q, t>1,

v

T(x, 1) > I(x, 1), Bi(x, 1,) > By(x, 1), By(x,1) = By(x, 1), x€ K.

Applying the comparison principle, we have (7(x 1), E(x 1), Ez(x H)>U(x,1),B(x,1), Bz(x 1)) for
xeQandr>n. From model (4.39) and the strong comparlson principle, we have u(t, ; ¢®)¢, =1 (x t) >
1(x, 1), u(ty 3 )y = Bi(x, 1) > Bi(x, 1), u(ts ; *)ps = Bo(x, 1) > By(x, 1) forx € Qand t > 1,. Due to , > 0
is arbitrary, u(z ; ¢°) is strictly decreasing function. Define u, = lim,_, ., u(z ; ¢°), which implies u, =0,
and define T = (T, T, T, T4, Ts, Ts) € w(c®). Then there exists a sequence {,} with , — oo satisfying

J(1)c® — T. We easily obtain u(z, T) = u, fort > 0. In view of lim,,_, J(t+ 1) = J(©) lim, . J(1)c" =
f(t)T. If T, #0o0r T; Z0or T, # 0 or Ts # 0 or Ty 7~ 0, it follows from [58, Theorem 3.12] that u(z ; T)
is strictly decreasing. This leads to a contradiction. Hence, we have T, =T; =T, =Ts = Ts =0. By
the theory of asymptotically autonomous semiflows in [41], it follows that

hm ”(S(.X, t), Il (.X, t)’ IZ(X’ t)9 Bl(-x, t)’ BZ(-xs t)s P(-x, t)) - (S*’ Oa 09 03 O’ 0)” = O

Claim 2. I={F,}.

Since {F,} is globally attractive in dY;, {F,} is the unique invariant subset of model (2.1)—(2.3)
in 8Y,. In view of the fact that the omega limit set w(c®) is compact invariant and w(c°) C 3Y;, for
any ¢ € 2, we get w(c”) = {F,}. Since the global attractor 2 is compact invariant in H*, F, is sta-
ble, and according to [58, Lemma 3.11], one gets 2= {F,}. Combining the global attractivity and
local stability, we immediately obtain the globally asymptotical stability of F,, completing the proof of
Theorem 3.7 (ii).

4.4 Proof of Theorem 3.8

If %, > 1, model (2.1) has a phage-free steady state F'; = (5“(x), I{(x), 0, B{(x), B5(x), 0). Let L(x, ) =
P(x, 1) =0 in model (2.1), we have

S

rin dsAS + A(x) — o1 (0)f1(B1)S — ax(0)f2(B2)S — n(x)S, x€Q, 1>0,

al
B_tl =d; Al + o, (x)fi(B))S + a,(X0),(B2)S — ux);, xe, t>0,

0B,
— —h(x,B I, — 8,(x)B,, Q, >0,
ot 1, B) + 00l —8i(0)B1, x¢€ = (4.40)

oB

3_; = hy(x, B,) + 8,(x)B; — 8,(x)B,, x€, t>0,
as ol

—:—1:0, anQ,t>O,

Jdv  dv

0 0 0 0
S(x,0)=58"(x), 1;(x,0) =1/(x), Bi(x,0) =B,(x), B,(x,0)=B,(x), xeL.
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By applying a similar proof as in Theorem 3.1, for model (4.40), we have the following corollary:
Corollary 4.8. Let E = C(Q2, R*) be the Banach space and its positive cone is denoted by E*.
(i) For any c®(x) = ($°(x), I’(x), BY(x), BS(x)) € ET, model (4.40) admits a unique global nonnegative
classical solution ¢(-, t ; c®) defined on Q x [0, 00).

(ii) Let J,(1):E* — E* be the semifiow generated by model (4.40), namely J,(1)c” = &(x, 1) for t > 0.
Moreover, J(t) is point dissipative.

(iii) The semiflow AG) of model (4.40) has a connected global attractor in E*.

I\Iote that model (4.40) has a disease-free steady state Fy=(5*(x),0,0,0). Linearising model (4.40)
at F yields

811 Oll(x)S*Bl az(X)S*Bz
— =d Al — [, x€, t>0,
a[ 1 1 + Hl + H2 /,L(X) 1 X >
aBl A
— =hX)B, +n(x), =6 (x)B;, x€, t>0,
at
. (4.41)
8—; = hy(X)B, + 8,(X)B; — 8,(x)By, x€ K, 1>0,
ol
—1=0, xedQ, 1>0.
av

We continue the discussion on the threshold dynamics of model (4.40). The following theorem presents
the uniform persistence and the existence of phage-free steady state for model (4.40) when %, > 1.

Theorem 4.9. If %, > 1, there exists © > 0 such that for any c°(-) = (8°, I, BY, BY)(-) € E* with I(x) # 0
or B)(x) # 0 or BY(x) # 0, the solution c(x, t ; ¢°) = (S(x, 1), [ (x, 1), By(x, 1), By(x, 1)) of model (4.40) sat-
isfies lim,_, o, inf c(x, £) > O uniformly for x € Q. Moreover, model (4.40) has at least one positive steady
state.

Before proving Theorem 4.9, we first give some preliminaries. We define
Ey={p €E":01() >0, 02() # 0, 3() £ 0, 4 (1) £ 0},
and
0Ey: =EN\E;={p € E": ¢,(-)=0or ¢3(-) =0 or ¢,(-) =0}.
Define
Fy:={p € dE,: J ()¢ € IE,},

for t > 0, and w(p) be the omega limit set of the orbit G : = {jl e :t>0}.
Claim 1. E, is positively invariant regarding J,(t), namely J,(1)Eo € E, for all t > 0.

Let ¢ € E,, which implies /9 # 0 and B} #0 and B) # 0. We derive that d1,/9t > d;Al, — p(x)I,
from model (4.40). Thus, I, is an upper solution of the problem

ol (x, 1) . .

o7 =d Al — pI(x, 1), xe, t>0,
ol (x,t
L:O, x€ o, t>0,

av

L0 =10(,0=0I(), xeQ.

It follows from the maximum principle and /7 # 0 that I;(x, ) > 0 for x € Q and > 0. It holds that
I (x, 1) > I1(x,1) > 0 for x € Q and 7 > 0. Assume that there exist 7 > 0 and X € Q such that B, (X,7) =0,
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and from the third equation of model (4.40), along with (H;), we derive
0 0B, (%, 1)
ot

It implies that n(¥)I, (%, 7) = 0, which leads to a contradiction. Hence, we get B, (x, ) > 0 for x € Q and
t > 0. From the fourth equation of model (4.40), one gets

=L, ).

9B
a_tz > hy(x, By) + 8,(X)B, — 8,(X)B,, x€ K, 1> 0.

Similar to [17, Lemma 2.1] and [44, Proposition 3.1], by strong maximum_ principle [34, The~orem 4] and
Hopf boundary theorem [34, Theorem 3], we derive B,(x, ) > 0 for x € Q and t > 0. Then J,(1)c° € E,.

Claim 2. If:%) > 1, there exists §>0 such that the semiflow J,(t) of model (4.40) satisfies
lim,_, o, sup ||[J,(H)p — Fyl| = 8 for all ¢ € E,.

By way of contradiction, assuming that there exists a ¢, € [, satisfying

Jim_ 17,0y — (5"(2),0,0,0)]| <.

Thus, there exists t* > 0 satisfying S(x, #, ¢o) > S*(x) — 8, Vt> t*. Therefore, (I (x, t, 0o), Bi(x, t, ©g),
B,(x,t, ¢)) is an upper solution of the following linear model

ol . S* — 8B S — 8B .
—l=d1A11+0[1(X)( = ) : +a2(X)( = ) 2 —,u(x)[l, X € Q, [Z[*,
ot H, +$é Hy+§
9B, - (%, d) - . 3 .
— =n@) + ————B; — bi(x)éB; — §;(x)B;, x€Q, t>1",
Jt 0B,
dB - A(x,d) - - - (4.42)
9B 5B+ 2D g 3B — 5B, xe 121,
Jat 0B,
a1,
— =0, x€d, t>r,
Jv
L) =@, <L (1), Bi(x,t") = @3 < B\(-, 1), By(x,1") = @4 < By(-, 1).

Denote 1! as the principal eigenvalue of the following eigenvalue problem

a0, (X)(S* = 8)n(x o, (X)(S* — ()8, (x
dIAgo—/,L(x)(p—i—( 1(0( A)n()+ 2. )(A )77()1(2 )g0=)»(p,x€Q,
H (8,(x) — hi(x))  Hy(8,(x) — 7 (0))(82(x) — ha(x)) (4.43)
0
%% _0, xeoq.
av
Then A] is continuous in 8. The following eigenvalue problem
(S =8  a@)(S —6)
rpy =d A, + — 0+ — @4 — W(X)P2, X €2,
H, H,
Ay = +h -6 , XEQ,
3 =), A](x)ws 1(0@s, x (4.44)
A@y = 81(X)@3 + hy(X)@s — 82(X)@s, x € L,
d
99 _0, xeaq,
av

has a principal eigenvalue Xg with respect to positive eigenvector ((,o;3 (%), go§ x), gof (x)). We can choose a
small enough p; > 0 such that

(G, 15 90), Bi( 1 5.90), B, £ 590)) = py (wﬁ(X), @A), wf(@) :
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Then the linear model (4.42) with initial conditions (I, (x, 1), By(x, *), By (x, 1)) =
o1 (93(x), 93(x), 9;(x)) has a unique solution

(T 15 90), B, 15 00), Ba(x, 175 @) = pres@ ™" (<ﬂ§ (), (), wi(X)) :
By the comparison principle of quasimonotone model, we have
(1 (x, 15 90), Bi(x, 17 5 @), Ba(x, 1 5 ) > (71(X, 1 590), Bi(x, 1" 3 9o), Ba(x, 1* Hﬂo)) )

on Q x [, 00), which implies that lim,_, ., ||(Z;(-, % ; @o), B1(x, t; ¢o), Ba(x, 1 ; ¢))|| = 00, which contra-
dicts the boundedness of (I,(-, t), B (-, ), B>(-, t)) by Corollary 4.8. This establishes Claim 2.

Proof of Theorem 4.9 First, we prove that w(¢) = {F,}, ¢ € F,. For any ¢ € F,, we have Ji(D)g € F,,
t>0.Then, I,(-,f)=0or B,(-,t) =0 or B,(-,t) =0 for t > 0. In the case that /,(-, 1) =0, we can derive
that B,(-,#) =0 and B,(-,f) =0 from the second equation of model (4.40). Therefore, S(-, ) — S*(x)
uniformly for x € Q. In the case that B,(-, 1) =0, we can derive that 1,(-, /) = 0 from the third equation
of model (4.40), then B,(-,#) =0 and S(-, #) = S*(x) uniformly for x € Q. In the case that B,(-, 1) =0, we
can derive that B, (-, f) = 0 from the fourth equation of model (4.40), then /,(-, f) =0 and S(-, ) = S*(x)
uniformly for x € Q. This shows w(¢) = {F,). O

Define a continuous function
7(p) = min {min @2(x), min @;(x), min <ﬂ4(x)} , peE".
xeQ xeQ xeQ

Apparently, T7'(0, 00) C E,. The function t is a generalised distance function for the semiflow I, (1). In
view of Claim 1 and Claim 2, we know that the sigleton {F,} is an isolated invariant set for Ji() in E*,
then W*({F,}) N E, = ¥}, where W*({F,}) represents the stable subset of {F,}. Besides, no subset of {F;}
forms a cycle in 9E,. By [40, Theorem 3], there exists a ¢, > 0 satisfying lim,_, . inf (J,(t)p) > ¥, Yo €
E,. Moreover, from Corollary 4.8, there exists 7, > 0 satisfying that B,(-,7) < Mw, B,(-,1) < MOO for
x € Q and ¢t >7,. Then, we get

a8 X -
™ > dsAS+ A, — () + )M + ™S, xeQ, t>1.

Thus, we have lim,_,, inf S(x, 7; @) > 0,: = A, /(o + az)Moo + ™). Let & = min{?,, 9,}. This estab-
lishes the uniform persistence. It follows from [26, Theorem 4.7] that model (4.40) admits at least one
steady state in [£,, which is positive. This establishes Theorem 4.9.

Based on above theorem and [60, Theorem 1.3.6]. This establishes Theorem 3.8.

4.5 Proof of Theorem 3.10

We choose the Lyapunov function

- S ~ 1 ~ B
Ll(t):/S"Y (—) dx+/1‘;Y (~—1> dx+/12dx+11/3‘;y <—‘> dx
Q S Q If Q Q B
. /B,
+ lz B;Y - dx+ 13 de,
Q B Q

where the constants /; > 0,], >0,/; >0 are to be determined, and Y(x) =x — 1 — Inx(x > 0). By
calculating the derivative of L,(f), one gets

dLi(t Sa B.\S B»S
ﬁzf(l—g) <dSAS+A— dld it —;LS)dx
Q

dt Bl+H1_Bz+H2

I o,LB,S o,LB,S
+ 1——)4dAL+ + —uly ) dx
Q I (L+P)B,+H,) (L+P)B,+H,)
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+/ (dA] + ()l]PB|S n azszs I)d
— X
NPT W PGB A H)  LAP)B+Hy)

Ea
+1 / <1 - B_l) (m(B)) +nl, + ) — bB\P — §,B)) dx
Q 1

Ba
+l / (1 - B—> (hz(Bz) +4 Bl 8232) dx
Q

+l3/ (an12+X|b|B|P_mP)dx
Q

Since F | = (:S’“, 7;‘, 0, Bﬁ‘, f};, 0) is the phage-free steady state of model (2.4), we derive

~ 2
dL,(t VS VI, |2 S
1()_ d/S“' |dx—d,/ 1 1|d+d,/A12dx—/uS 1— =) ax
dr s e o o S
- B, I, LB - B, B, BB
+ [ (han —whdx+ | Inl} |1 — =+ = —= dx+ | LBl [1— =+ = — = dx
o o B¢ I¢ I'B o B:  B* BB,

= B Ba - h B h Ba
+/ L (Bl _Blll) ( I;l ) h; )) dx +/ L (Bz —Bg) ( 2;22) _ 2lgaz)> dx
Q a o «

o, 8B [2_g L _Bi/(Hi+B) SifBl/(H1+Bl):|dx

o H, + B S Iy Bi/(H +BY) SeI,B!/(H + B

wS'By |, 8 L By/(Hr+By) SEBy/(H>+By) |
o H, + B S I By/(H,+B3y SI,Bi/(H,+ B3

1B I
/ [b B“P( e A 1) —l3mP] dx.
o B B

After a simple calculation, we have
B, I, LB I I B B
1__‘+;_J_15(;_1n;)_(;_1n;),
B I IiB Iy Iy B B
BB BB <ﬁ—1ni> - (ﬁ—ln&).
B: B BB, \B B B B
By (H3), one gets

o (MB) (B o [(h2(B))  ha(BY)
(Bl_Bl) (B—l_ B‘{ )50’ (BZ Bz)( B, Bg )50'

Since 1 — x < — In x for x > 0, we have

S L By/(H +B) _ SEB/(H, +B)

S I ByH +B) SUB/H + B

(S L SEBJWH +B) | BiBY/H +B) B\ H(B By
Bi(H, + B{)(H, + B,)

S I SLBY/(H, + BY) BiB,/(H, +B)) B
S I SIB/(H +B) BiBj/(H +B) B
S It Se,Bi/(H, +B) BB/(H +B) B
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= (i - ~—> =)+ (- —Fi?lil/(Hl RV Y —?‘BT/(H‘ + B
Bi I S S“l,B{/(H, + BY) BiB,/(H, + B)
1y SEB\/(H +B) | BiBY/(H, +BY)

B, Il)
S — T = _1 ~
<B(11 I SeI, B 1/(H1 +Ba) B{B,/(H, + B,)

G

Similarly, we also have

o~

o S L B/ 4By SEB/(H+B) (g » @) B (1_1 _lnl_l)
S It By/(Hy+Bj) SBi/(H,+B3) ™ \B; B T
SeBe SeBe S4B !
Let/, = ~a1 L+ ~a2 Z_ l =#, 3=—l,wederive
nl{(H, +BY) = nl{(H,+ B) 8,B{(H, + B3) Xi

~ 2
dL(t AR AL S
'()5 d/S"' |d—d,/ o] ]|d—/uS 1= ) ax+ | (han — pwhdx
dt S? o Q S o

27

alS"Bj’ _({—1 —1In ﬂ) — (& —In i)i| dx + azS“f?:; |:<{—] —1In Il) — <ﬁ —In i)] dx
o H +BS L\[{ I B B o Hy+ B L\I{ I B B

SBe (B B B B SB* [(B B I
@05"B; (;_1n;)_<_2_1n_2)}dx+ 0“_3[<;_1n;)_(:_1n
o Hy+B: [\ B¢ B Be B o H + B [\ B B I¢

S‘aéa B B B [ ~
5B (~_2_1n~—2>—(—'—1 —)} dx+/llP <b13‘;—ﬂ) dx
o Hy+ B L\B: B A 2 Xi

-\ 2
8¢ -
<- / uS|1——) dc+ | (Lhan— ,u)Izdx+/ LP <b,B‘,‘ — ﬁ) dx.
Q N Q Q X1

Hence, based on I, <uyx/an and B“ <m/xby = ’1’, we have dL,(t)/dt <0. Moreover,
dL(t)/dt=0 if and only if S= 11—Ij’,Iz—O,BljBl,Bz:Bg,P:O. The largest invariant
set of {(S.1,, 1, By, By, P)|*22 =0} is the singleton {F}}. Then, from LaSalle invariant principle

[12, 15], F, is globally asymptotically stable.

4.6 Proof of Theorem 3.11

Before proving Theorem 3.11, we first give some preliminaries.
We define

Ho={peH" :9:(:)>0,0,(-) #0, 05(-) # 0, 04(-) £ 0, ¢5(-) # 0, ps(-) # 0},

and

0Hy:=H"\Hy={p € H" : ¢»(-) =0 or ¢3(-) = 0 or ¢4(-) =0 or ¢5(-) = 0 or ¢,(-) = 0}.

D_eﬁne Fa :={¢p € dH, :jl(t)cp € 0Hl,}, for > 0, and w(¢p) be the omega limit set of the orbit Gt:=
{J1(®)¢ : t > 0}. Similar to the proof of Theorem 4.9, H, is the positive invariant set for solution semiflow

J(t) of model (2.4), and we have the following claim.

Claim 1. If %70> 1, there exists 8§ >0 such that the semiflow J,(f) of model (2.4) satisfies

lim,_, o sup ||J;()p — Fyl| = & for all ¢ € H,.
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Claim 2. If %A’; > 1, and B‘l‘ > 1~311’ holds, there exists 8 > 0 such that the semiflow J,(t) of model (2.4)
satisfies lim,_, o, sup 7, (e — F, | > c§f0r all ¢ € H,,.

Based on B¢ > B?, we can choose a sufficiently small § > 0 such that
xib(BE —8) —m > x,b,B" —m=0. (4.45)
By way of contradiction, assuming that there exists a ¢, € H, satisfying lim sup ||J, (1)@, — F' || < §. This

implies that there exists a 7, > 0 satisfying B‘l‘ —5< Bi(x,1; ). Hence, we have

oP ~ A .
m > xiby(By —8)P—mP, xe€Q,t>t.
Since ¢, € Hj,, and the results mentioned above, it follows that P(x,t) > 0 for x € Q and ¢ > 0. This
implies that there is a constant p; > 0 such that P(x,;@,) > p,P°(x). By applying the standard
comparison principle, one gets

P(x, 1) > p PO (x)e(an ®=-mei) - y e Q1> 7,

From (4.45), we obtain lim,_, ., P(x, t) = oo, which contradicts the boundedness of P(x, #). This estab-
lishes Claim 2.

Proof of Theorem 3.11 First, we prove that @(p) = {FolU{F\}, @€ F,. For any ¢ € F,, we have
71(I)¢ € E, t>0.Thus, I,(-,t)=0or L,(-,)=0or B;(-,t)=0 or B,(-,1)=0or P(-,t)=0 for t > 0. In
the case that /,(-, t) =0, we can derive that B,(-, ) =0, B,(-, ) = 0 from the second equation of model
(2.4). Then we have I,(+, ) = 0 from the fourth equation of model (2.4). Besides, we obtain S(-, £) — S*(x)
uniformly for x € Q, then from the sixth equation of model (2.4), one gets lim,_, , P(, #) = 0. This shows
() = {F,}. In the case that B,(-, 1) =0, we can derive that I,(-,£) =0, L(-,t) =0. Similarly, we also
have B,(-,1) =0, S(-, f) = S*(x) uniformly for x € Q and lim,_, ., P(-, £) = 0. This shows (@) = {Fo}. In
the case that B,(-,7) =0, we can derive that B,(-, ) =0 from the fifth equation of model (2.4). Then
we have I,(-, 1) =0, L,(-,t) =0 and S(-, #) = S*(x) uniformly for x € Q and lim,_, o, P(-, #) =0. This also
shows w(p) = {FO}. In the case that P(-, 1) =0, it implies that I,(-, ) = 0. Conversely, if L,(-, ) =0, then
we also have P(-, t) = 0. Thus, model (2.4) becomes

a5

E =dsAS+ A —afi(B)S — ays(By)S — uS, xe€Q, t>0,

al,

o =d, Al + o,fi(B)S + axrfa(B)S — uly, x€Q, t>0,

dB,

— =h(B I, — 6,B,, e, t>0,

ar (B +nly by, X > (4.46)
B,

W =h2(B2) + 5131 — 82B2, xe, t> O,

asS 9l

—=—=0, x€0R, >0,

v Jv

S(-x9 O):Sﬂ(x)’ Il(-x9 O):I?(x)’ Bl(x5 O)ZB?(X)9 BZ(-x9 O):B(z)(x)’ x € Q.

It Qz > 1, model (4.46) has a positive steady state F;, = (8.1 L B‘f, Bg). We choose the Lyapunov function

% S ~ 11 Q]SHBIII (XzSHBtZZ ~. B|
L,(t)= SY | = )der+ 11Y — )dx+ = — + — = BIY — ) dx
Q Se Q I nli(H,+B{) nl{(H,+B3) ] Jo By
S4By G
TR S f By (—2> dx.
8,B{(H, + B3) Ja B;

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.9, on 28 Oct 2025 at 06:11:19, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956792525100156



https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792525100156
https://www.cambridge.org/core

European Journal of Applied Mathematics 29

By applying the similar proof in Theorem 3.10, we have

~ 2
dLy(t VS| Ak Se
2()§—d3/5<*| |d—d,/ al lldx—/uS 1—=) dx.

Apparently, we can_ obtaln dL,(t)/dt <0. Moreover, dL,(t)/dt=0 if and only if S =8
1 =ij‘,Bl B , B, =B;. The largest invariant set of {(S II,BI,Bz)ldLZ(’) _0} is the singleton {Fl}.
Then, from LaSalle 1nvar1ant principle [12], F i is globally asymptotically stable. Hence, we have
lim,_, o, (S(x, t) I (x, t) B,(x, 1), B5(x, t))_(S“ I" B“ B“) This also shows @(p)= {Fl} We conclude

that w(p) = {Fo)} U{F,} for any ¢ € F 5. Define a continuous function

T(¢) = min {mi_n ©,(x), min @;(x), min @,(x), min @s(x), min <p6(x)} , peHT.
xeQ xeQ xeQ xeQ xeQ

Apparently, 77'(0, oo) C H,. The function T is a generalised distance function for the semiflow Ji (1). By
the above discussions, we know that the sigleton @(¢p) = {Fy} U {F \} is an isolated invariant set for J,(¢)
in H', then WJ({FO}) NH, =¥, W{F,}) NH, = @, where WS({FO}) and W*({F\}) represent the stable
subset of {F,} and {F}, respectively. Besides, no subset of {Fo}U {Fl} forms a cycle in dH,. By [40,
Theorem 3], there exists a %, >0 satisfying lim,_, ,, inf (7, ) > D, V¢ € H,. Recall that ¢, in proof
of Theorem 4.9. Let & = mln{ﬁ, , ¥, }. The proof is complete. O

5 Concluding remarks

Cholera is a waterborne infectious disease that can easily lead to large-scale outbreaks in areas with poor
sanitation, causing persistent distress and threats. Consequently, researchers actively seek methods and
measures to control cholera outbreaks. Jensen et al. discovered that under biologically plausible condi-
tions, bacteriophages can mitigate cholera epidemics [19]. This is attributed to the cholera-specific lytic
bacteriophages potentially reducing cholera prevalence by eliminating bacteria present in reservoirs and
infected human hosts. Additionally, recent research findings in [14] indicated that V. cholerae exhibits
a hyperinfectious state upon entering the gastrointestinal tract, diminishing to a lower-infectious state
within hours. The different infectivity states of cholera vibrio influence the transmission dynamics of
cholera outbreaks differently.

This paper incorporated the interaction between bacteriophages and HI vibrios and LI vibrios, as well
as the intrinsic growth rate of V. cholerae, and proposed a degenerate reaction-diffusion cholera model.
We divided the infected human hosts into two parts for study: one part consists of human hosts infected
only with V. cholerae, denoted as I;, while the other part consists of human hosts that are simultaneously
infected with V. cholerae and bacteriophages, indicating the parasitism of bacteriophages within the host
cells (bacteria), denoted as I,. We also introduce the interaction between HI vibrios and LI vibrios and
bacteriophages in this process.

In this work, we originally established the existence and uniform boundedness of the solution, and
then derived the well-posedness of the solutions. In a spatially heterogeneous case, the basic repro-
duction number %, is defined as the spectral radius of the sum of two linear operators associated with
HI vibrios infection and LI vibrios infection. Generally speaking, it is very challenging to discuss the
threshold-type results in the case of multi-class steady states. Fortunately, in this paper, we derived the
existence and stability analysis of multi-class steady states for some special cases. We showed the exis-
tence of phage-free steady state in a heterogeneous environment. An appropriate Lyapunov function was
constructed to discuss the global stability of the phage-free steady state in a homogeneous environment.

In considering the constraints established by our mathematical model, which mandates that disease
transmission occurs through the consumption of bacteria rather than through human-to-human contact,
there is potential for future research to explore the incorporation of direct interpersonal transmission
pathways to enhance this approach. Furthermore, the examination of global stability of the phage-free
steady state in a homogeneous environment requires two additional conditions. Future studies could seek
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to investigate the global stability of the phage-free steady state independently of additional conditions.
The global stability of the phage-present steady state of model (2.4) also poses some challenges [54].
Moreover, the existence and uniform persistence of the phage-present steady state of model (2.1) are
difficult to obtain due to the spatial heterogeneity and other mathematical difficulties. The situation in
a heterogeneous environment presents several interesting open problems. We consider these challenges
for further investigation.
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