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Abstract

The smallest eigenvalue of a graph is the smallest eigenvalue of its adjacency matrix. We show that the family of
graphs with smallest eigenvalue at least —A can be defined by a finite set of forbidden induced subgraphs if and
only if 1 < A*, where 1* = ,01/2 + p_l/2 ~ 2.01980, and p is the unique real root of x3 = x + 1. This resolves a
question raised by Bussemaker and Neumaier. As a byproduct, we find all the limit points of smallest eigenvalues
of graphs, supplementing Hoffman’s work on those limit points in [-2, o).

We also prove that the same conclusion about forbidden subgraph characterization holds for signed graphs.
Our impetus for the study of signed graphs is to determine the maximum cardinality of a spherical two-distance
set with two fixed angles (one acute and one obtuse) in high dimensions. Denote by N4 g(d) the maximum
number of unit vectors in R where all pairwise inner products lie in {e, 8} with -1 < 8 < 0 < @ < 1. Very
recently Jiang, Tidor, Yao, Zhang, and Zhao determined the limit of Ny g(d)/d as d — oo when a + 28 < 0 or
(1-a)/(a-pB) € {1,V2,V3}, and they proposed a conjecture on the limit in terms of eigenvalue multiplicities of
signed graphs. We establish their conjecture whenever (1 — a)/(a — 8) < A*.
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2 Z. Jiang and A. Polyanskii

1. Introduction

A fundamental problem in spectral graph theory is the classification and characterization of graphs
with bounded eigenvalues. When we talk about eigenvalues of a graph we always refer to its adjacency
matrix. In this paper, we study the families of graphs with eigenvalues bounded from below. Let G(1)
be the family of graphs with smallest eigenvalue at least —A. For the sake of comparison, we mention
the family G’(1) of graphs with spectral radius (or, equivalently, largest eigenvalue) at most A.

Remark. Since we rarely work with subgraphs that are not induced, all subgraphs are induced throughout
this paper. We refer to subgraphs that are not necessarily induced as general subgraphs.

The Cauchy interlacing theorem implies that both G’ (1) and G (1) are closed under taking subgraphs.
It is a natural question to ask whether it is possible to define each of these families by a finite set of
forbidden subgraphs.

Definition 1.1. Given a family G of graphs that is closed under taking subgraphs, a family F of graphs
is a forbidden subgraph characterization of G if the family G consists exactly of graphs that do not
contain any member of F as a subgraph, and a graph F is a minimal forbidden subgraph for G if F itself
is not in G but every proper subgraph of F is in G.

Note that the most economical forbidden subgraph characterization of G consists precisely of the
minimal forbidden subgraphs for G. Thus the existence of a finite forbidden subgraph characterization
of G is equivalent to the finiteness of the minimal forbidden subgraphs for G. In 1992 Bussemaker and
Neumaier made the following remark in [6, p 599]:

It would be interesting to know the set of numbers m, —m such that g,ﬁ; [the set of minimal forbidden
subgraphs for G’(m)] or gfm [the set of minimal forbidden subgraphs for G(m)] are finite; however,
these seem to be very difficult problems.

The specific families G’(2) and G(2) are well understood. One of the earliest results dates back to
1970 when Smith [29] determined all the connected graphs in G’(2) — they are general subgraphs of the
extended Dynkin diagrams in Figure 1. The family G(2) is much richer and more complex — it contains
not only all the graphs in G’(2), but also all the line graphs.! The classification of G(2) culminated in
a beautiful theorem of Cameron, Goethals, Seidel, and Shult [7] who related G(2) to root systems that
occur in the classification of semisimple Lie algebras (see Theorem 2.17). We refer the reader to the
monograph [12] for a comprehensive account of G(2).

These classification theorems can be used to establish quantitative answers to Bussemaker and
Neumaier’s problems. For G’(2), Cvetkovi¢, Doob, and Gutman [9, Theorem 2.8] determined that there
are 18 minimal forbidden subgraphs. For G(2), Rao, Singhi, and Vijayan [26, Theorem 4.1] observed
that the number of vertices in any minimal forbidden subgraph is at most 37, which was eventually
perfected to 10 by Kumar, Rao, and Singhi [23]. A computer search by Bussemaker and Neumaier
[6, p 596] established that there are, in total, 1, 812 minimal forbidden subgraphs for G(2).

In a recent work, the authors of the current paper resolved the first problem of Bussemaker and
Neumaier.?

Theorem 1.2 (Theorem 1 of Jiang and Polyanskii [20]). For every integer m > 2, let B, be the largest

root of X = 1 +x+ - +x™! and let a,, = ﬁ,l,{2 + ﬁ;llﬁ. The family G'(A) of graphs with

1A line graph L(H) of a graph H is obtained by creating a vertex per edge in H, and connecting two vertices if and only if the
corresponding edges in H have a vertex in common. The adjacency matrix of L(H) can be written as BT B — 21, where B is the
vertex-edge incidence matrix of H, hence the smallest eigenvalue of L(H) is at least —2.

2The original statement of [20, Theorem 1] determines the set of A for which the subfamily of connected graphs in G’ (1) (or
equivalently, the entire family G’ (1)) can be defined by a finite set of forbidden general subgraphs. Using the well-known fact that
the spectral radius of G is at most that of G, whenever G| is a general subgraph of G, one can show thatif G is a forbidden general
subgraph characterization for G’ (1), then the family {H : 3G € G s.t. G is a general subgraph of H on the same vertex set} is
a forbidden (induced) subgraph characterization for G’ (), and so the original statement of [20, Theorem 1] is equivalent to
Theorem 1.2.
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Figure 1. Maximal connected graphs with spectral radius at most 2. The number of vertices is one more
than the given index. In particular, Dy is actually a star with four leaves.

spectral radius at most A has a finite forbidden subgraph characterization if and only if 1 < A’ and
A ¢ {ar,as,...}, where

= lim = @2+ o712 =424+ V5 ~ 2.05817,

m—o0

and @ is the golden ratio (1 + V5)/2.

The first main theorem of this paper resolves the remaining problem of Bussemaker and Neumaier —
G(A) enjoys a straightforward threshold phenomenon.

Theorem 1.3. The family G(Q) of graphs with smallest eigenvalue at least —A has a finite forbidden
subgraph characterization if and only if 1 < A*, where

Q= pl/2 +P_1/2 ~ 2.01980,

and p is the unique real root of x> = x + 1.

Remark. The constants defined in Theorems 1.2 and 1.3 satisfy 2 < 1 = ap < a3 < --- < A’. The
constant p defined in Theorem 1.3, known as the plastic number, is the smallest Pisot—Vijayaraghavan
number.>

As a byproduct, we determine all the limit points of the set of smallest eigenvalues of graphs. Let
A consist of 4 € R such that —A is the smallest eigenvalue of some graph. Here we invert the smallest
eigenvalues of graphs similarly to how we define G(1). Before our work, Hoffman [18] characterized
all the limit points of A in (—oo, 2]. His result involves a technical qualification, which was conjectured
to be always true, and was later established by Greaves et al. [15, Theorem 1]. Doob [14, Theorem 9]
observed that every real number in {a3, @3, a4, ...} U [4, ) is a limit point of Aj, and conjectured
that @, (which equals 2*), @3, a4 . .. are the only limit points of A} in (2, 1”). We refute this conjecture
by finding all the limit points of A; in (2, 1").

Corollary 1.4. For every A > 2, the negative number —A is a limit point of the set of smallest eigenvalues
of graphs if and only if 1 > A*.

We next turn our attention to signed graphs, which are graphs whose edges are each labeled by
+ or —. Throughout the paper we decorate variables for signed graphs with the + superscript. When we
talk about eigenvalues of a signed graph G* on n vertices, we refer to its signed adjacency matrix — the
n X n matrix whose (i, j)-th entry is 1 if ij is a positive edge, —1 if ij is a negative edge, and 0 otherwise.

It still makes sense to speak of forbidden subgraph characterization of a family of signed graphs with
eigenvalues bounded from below. Our second main theorem establishes the same threshold phenomenon
for the family of signed graphs with smallest eigenvalue at least —A.

3The exact value of p is 3/(9 +V69)/18 + 3/(9 - 69)/18.
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Theorem 1.5. The family G*(Q) of signed graphs with smallest eigenvalue at least —A has a finite
forbidden subgraph characterization if and only if A < A*.

Notice that if F* is a finite forbidden subgraph characterization of G* (), then the set of all-positive
signed graphs in F* is a finite forbidden subgraph characterization of G(1). Therefore, for 1 < A%,
Theorem 1.5 implies Theorem [.3. However, in Section 2, we still provide the complete proof of
Theorem 1.3 to illustrate the key ideas.

Finally, we turn our attention to the largest eigenvalue of a signed graph. We denote the eigenvalues of
a signed graph G* by 1;(G*) < 1,(G*) < ... in ascending order, and by 1'(G*) > A2(G*) > ... in
descending order. Observing that for every signed graph G*, 1;(G*) > —1 if and only if 1! (-G*) < A,
where —G* reverses all the edge signs of G*, we obtain an immediate consequence of Theorem 1.5.

Corollary 1.6. The family G* (1) of signed graphs with largest eigenvalue at most A has a finite forbidden
subgraph characterization if and only if 1 < A*.

Our motivation to understand the forbidden subgraph characterization of G¥ (A1) comes from the
problem of determining the maximum size of a spherical two-distance set with two fixed angles
(one acute and one obtuse) in high dimensions. For fixed -1 < 8 <0 < @ < 1, let N, g(d) denote the
maximum number of unit vectors in R? where all pairwise inner products lie in {a, 8}.

In the special case @ = —f3, which corresponds to equiangular lines, recent work [5, 2, 20] culminated
in a solution [21] of Jiang, Tidor, Yao, Zhang and Zhao to the problem of determining N, _o(d) for
sufficiently large d. We refer the reader to [21, Section 1] for earlier developments on equiangular lines
with fixed angles in high dimensions.

For the general case —1 < 8 < 0 < @ < 1, in their subsequent work [22], Jiang et al. proposed
a conjecture on the limit of N, g(d)/d as d — oo. To state their conjecture, we need the following
spectral graph theoretic quantity.

Definition 1.7. Given A > 0 and p € N, define the quantity
|G*|

kp(/l) = lnf{m X(Gi) < P and ﬂ](Gi) = /l},

where |G*| is the number of vertices of G*, mult(2, G*) is the multiplicity of A as an eigenvalue of G*,
and y(G?*) is the chromatic number of the signed graph G*.

We postpone the definition of y (G*), which takes values in N*U{co}, to Section 4 (see Definition 4.1).
We now state the conjecture on N, g(d).

Conjecture 1.8 (Conjecture 1.11 of Jiangetal. [22]). Fix—1 < <0< a < 1. Setd = (1-a)/(a-p)
and p = |—a/B] + 1. Then
L | o(d) ifk,(d) < oo,

N (d — ) kp(D)-1
ap(d) {d+o(d) otherwise.

Conjecture 1.8 was confirmed in [22] for p < 2 and for A € {1, V2, \/5} separately. Building on the

framework developed there, forall 4 < 1, we establish Conjecture 1.8 as an application of Corollary 1.6,
and we reduce the error term o(d) to a constant depending only on @ and .

The rest of the paper is organized as follows. We prove Theorem 1.3 and Corollary 1.4 in Section 2,
and we prove Theorem 1.5 in Section 3. Part of the proofs are computer-assisted with validated numerics.
In Appendix A we explain our computer-aided proof and how anyone can recreate it independently. In
Section 4 we give an application of Theorem 1.5 to spherical two-distance sets. In Section 5, we discuss
open problems related to the classification of graphs in G(1*) \ G(2), and a possible way to establish
more instances of Conjecture 1.8.
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2. Forbidden subgraphs for G(1)

We break the proof of Theorem 1.3 into three cases 4 < 2, 1 € [2,4%) and 2 > A*, where 1* = 2.01980
is defined as in Theorem 1.3. It is worth pointing out the spectral graph theoretic interpretation of the
peculiar constant A*.

Proposition 2.1 [20, Lemma 5(e)]. For every n € N*, define the graph E; , as in Figure 2. As n — oo,
AV (E,.p) increases to A%, or equivalently A1 (E,.,) decreases to —A*.%

2.1. Proof of Theorem 1.3 for A < 2

Hoffman demonstrated several sequences of graphs G, G, ... such that G, is a subgraph of G4 for
every m and lim,,, o 41 (G,,) < —2. To state these results, we introduce the following notions.

Definition 2.2. Given a nonempty vertex subset A of a graph F, £ € N, and m € N*,

(a) the path extension (F, A, {) is obtained from F by adding a path vy . . . v, of length ¢, and connecting
vo to every vertex in A;°

(b) the path-clique extension (F, A, £, K,;,) is further obtained from (F, A, £) by adding a clique of order
m, and connecting every vertex in the clique to v,;

(c) the clique extension (F, A, K,,) is obtained from F by adding a clique of order m, and connecting
every vertex in the clique to every vertex in A.

The following figure consists of schematic drawings of the path extension (F, A, {), the path-clique
extension (F, A, ¢, K,;,), and the clique extension (F, A, K,;,).

We compile some of Hoffman’s computation [18] and two classical results in the following lemma.

Lemma 2.3. Denote by C,, the cycle of length n, and V(C,,) a set of two adjacent vertices of C,,. The
path-clique extensions and clique-extensions of C,, satisfy:

(cl) limy,—00 A1 (Cy, Vo2 (Cy), €, Kyy) < =2 for fixedn > 3 and € € N;
(€2) limy, 0 A1 (Cp, V2 (Cr), Kin) = =2 for fixed n > 3.

Denote by K,, the complete graphs with n vertices. The path-clique extensions of K,, satisfy:
(k) limyy—e0 A1 (Ki, V(Ki), €, Kiyy) = =2 for fixed € € N.

Denote by K, the null graph with 2 vertices. The path-clique extensions and the clique extensions of K»
satisfy:

(n1) limy—eo 21 (K2, V(K2), €, Kpn) = =2 for fixed € € N;

(n2) limm_,oo /11 (Kz, V(Kz), Km) =-2.

4The equivalence is due to the fact that the spectrum of a bipartite graph (e.g., a tree) is symmetric around 0.
SWhen € = 0, the path of length ¢ is simply a single vertex.
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&) (2)
Q3 oo
© Q
Figure 3. The claw graph C and the diamond graph D.

Denote by P,, the path of length n (with n + 1 vertices), and S,, the star with n leaves. Their smallest
eigenvalues satisfy:

(P) limn—wo /ll (Pn) = _2;
(s) A1(Sn) = —Vn.

Remark. In Lemma 2.3, (cl) to (n2) are taken directly from [18, Lemmas 2.4 to 2.9], and (p) and (s)
follow from the classical results ' (P,) = 2cos(n/(n+2)) and 1'(S,) = Vn.

Lemma 2.3 allows us to build a finite set of forbidden subgraphs for G(1). To state the result, we
introduce the following definition.

Definition 2.4 (Extension family). Given a graph F and £, m € N*, the extension family X (F,{,m) of F
consists of the path-extension (F, A, £), the path-clique extension (F, A, £y, K,,), and the clique extension
(F, A, K,;,), where A ranges over the nonempty vertex subsets of F, and £, ranges over {0, ...,{ — 1}.

Lemma 2.5. For every 1 < 2, there exist {,m € N* such that the extension families X (C, €, m) and
X (D, t, m) are both disjoint from G(Q), where C is the claw graph and D is the diamond graph (see
Figure 3).

Proof. From Lemma 2.3(p), we obtain £ € N* such that P, ¢ G(2). Clearly, for every nonempty A, the
path extensions (C, A, £) and (D, A, £), each of which contains P, as a subgraph, are not in G(1). With
hindsight, using Lemma 2.3(c1, ¢2, n1, n2), we choose m € N* such that none of the following graphs

(C3,Va(C3), €0, Km), (C3,Va(C3), K, (K2, V(K2), €o, Ki), (K2, V(K2), Ki), (1

where £y € {0,...,¢+ 1}, is in G(Q).

It suffices to prove that every clique extension and every path-clique extension in the extension
families X'(C, ¢, m) and X (D, £, m) contains one of the graphs in (1) as a subgraph. Label the vertices
of C and D as in Figure 3, and pick an arbitrary €y € {0, ...,¢ — 1}. The clique extension (C, A, K;,)
and the path-clique extension (C, A, £y, K,;,) respectively contain

(K2, V(K>),0,Ky,) and (K2, V(K3), 6o+ 1,K,,) when 0 € A and |A N {1,2,3}| < 1;
(K2,V(K3), 1,K,,) and (K2, V(K»), € +2,K,,) when 0 ¢ A and |A N {1,2,3}| = I;
(fZ’ V(Ez), Km) and (§27 V(?Z)’ €O7 Km) When |A m {1, 2a 3}' Z 2a

and the clique extension (D, A, K,;) and the path-clique extension (D, A, €y, K;;) respectively contain

(K2,V(K>),0,K,,) and (K2,V(K>),€ +1,K,,) when A C {0,2} and A # @;
(C3,V5(C3),0,K,,) and (C3, Va(C3), € + 1, K,y) when A € {{1}, {3}};

(K2, V(K>),Kn) and (K2, V(K»), €y, Kim) when A 2 {1,3};

(C3,Va(C3), Kp) and (C3, Va(C3), o, Kp) when |A N {0,2}] > 1and [AN {1,3}| = 1.

Therefore the extension families X (C, ¢, m) and X (D, £, m) are both disjoint from G(2). O
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The next result shows that forbidding a star and an extension family of F effectively forbids F itself
in every sufficiently large connected graph.

Lemma 2.6. For every graph F and k, €, m € N*, there exists N € N such that for every connected graph
G with more than N vertices, if no member in {Si} U X (F, €, m) is a subgraph of G, then neither is F.

Proof. With hindsight, we choose N = vd®, where d is the Ramsey number R(k, 2Vt 4 v), and v is
the number of vertices of F. Suppose that G is a connected graph with more than N vertices that contains
no member in {Si} U X'(F, ¢, m) as a subgraph. Assume for the sake of contradiction that the subgraph
of G induced on a vertex subset, say V, is isomorphic to F.

Since G is a connected graph with more than vd’ vertices, we claim that either there exists a
vertex u at distance at least £ from V, or the maximum degree of G is at least d. Indeed, assume for
the sake of contradiction that every vertex of G is within distance £ — 1 from V, and the maximum
degree of G is less than d. Fori € {0,1,...,¢— 1}, let V; be the set of vertices at distance i from V.
Clearly Vp = V, and so |Vy| = v. Using the assumption on the maximum degree of G, one can
inductively show that |V;| < vd®. Therefore the number of vertices in G expressed as Zf.:ol |V;] is at most
Yoa vd' =v(df - 1)/(d - 1) < vd’, which yields a contradiction.

We break the rest of the proof into two cases.

Case 1: There exists a vertex u at distance at least £ from V. Thus the subgraph G[V] and a shortest
path from V to u contains the path extension (F, A, ) as a subgraph for some nonempty A C V, which
is a contradiction.

Case 2: The maximum degree of G is at least d. Let u be a vertex of G with the maximum degree, and let
N (u) be the set of neighbors of u in G. Since Sy, is not a subgraph of G, the subgraph G[N(u)] cannot
have an independent set of size k. Because d = R(k,2"*'m + v), the subgraph G[N(u)] contains a
clique of order 2"*!m + v, and so there exists a clique G[U] of size 2"*!m that is vertex-disjoint from F.

We further partition the vertices in U as follows. For every subset A of V, let U(A) be the set of vertices
in U that are adjacent to all vertices in A and not adjacent to any vertex in V \ A. By the pigeonhole
principle, there exists a subset A of V such that [U(A)| > 2m. If A is nonempty, then G[V U U(A)]
contains the clique extension (F, A, K,,;) as a subgraph, which is a contradiction.

Hereafter we may assume that |U(@)| > 2m, hence the distance between V and U (@) is at least 2. Let
Vo ... Vg, be a shortest path between V and U (@), where v and vy, are respectively at distance 1 from
V and U(@). Let A; be the nonempty set of vertices in V that are adjacent to v¢, and denote by v+
an arbitrary vertex in U(@) that is adjacent to v4,. We may assume that £y < £ — 1 because otherwise
G[V U {v(), ce Ve v[0+1}] would contain the path extension (F, A,f) as a subgraph, which is a
contradiction. Let A, be the nonempty set of vertices in U(@) that are adjacent to vg,. If |A2| > m, then
G[VuU {vo, e Wo} U A;] contains the path-clique extension (F, Ay, £y, K;;;) as a subgraph. Otherwise
|U(@) \ Az| > m,and so G[V U {vo, U ng+1} U (U(@) \ Az)] contains the path-clique extension
(F, A1, 6+ 1,Ky,). O

Combining Lemmas 2.5 and 2.6, we obtain a finite set of forbidden subgraphs for G(21) that forbids
the claw graph and the diamond graph in every sufficiently large connected graph. The following result,
which is an immediate consequence of [27, Theorem 4], gives a sufficient condition for line graphs.

Theorem 2.7 (Theorem 4 of van Rooij and Wilf [27]). Every graph that contains neither the claw graph
nor the diamond graph as a subgraph is a line graph.

Furthermore, we can bootstrap to obtain a finite set of forbidden subgraphs for G (1) that forces every
sufficiently large connected graph to be the line graph of a tree whose complexity is uniformly bounded.

Lemma 2.8. Forevery A < 2, there exist N € N and a finite family F) that is disjoint from G(Q) such that
for every connected graph G with more than N vertices, if G contains no member in JF| as a subgraph,
then there exists a rooted tree H € Ty such that G is the line graph of H, where Ty is the family of rooted
trees such that every connected component obtained from removing the root has at most N vertices.
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Proof. We obtain £, m € N* from Lemmas 2.3 and 2.5 such that the following family

F1:={84, P} UX(C,l,m) U X (D,{,m)
U{(Cp,Vo(Cp), o, Kin):ne{3,...,0+1},6€{0,...,£—1}}
U{(Cp,Vo(Cp),Kpp):ne {3,...,+1}}
U{(Kn, V(Kin), €0, Kin): €0 € {0, ..., —1}}

is disjoint from G(1).

We obtain Ny from Lemma 2.6 such that for every connected graph G with more than Ny vertices,
if no member in {S4} U X(C,¢,m) U X(D,{,m) is a subgraph of G, then neither is C nor D. With
hindsight, we choose N = max(Ny, (m + 1)¢*?). Suppose that G is a connected graph with more than
N vertices, and suppose that no member in F; is a subgraph of G. By our choice of Ny, we know that
neither C nor D is a subgraph of G.

Theorem 2.7 implies that G is the line graph of another connected graph, say H. Since P, is not a
subgraph of G, the path P,,; cannot be a general subgraph of H. In particular, the diameter® of H is at
most £. Let d be the maximum degree of H. If d < m + 2, then H has at most (m + 1)”rl vertices, and
at most (m + 1)¢*? edges, and so G has at most (m + 1)¢*? vertices, which is a contradiction.

We may assume that d > m + 2. Let u be a vertex of H with degree d. We claim that H is a tree.
Suppose on the contrary that H contains a cycle as a general subgraph. Since H does not contain Pgyg
as a general subgraph, the length of any cycle in H cannot exceed ¢ + 1. Suppose in addition that u is
on a cycle in H. Let C,, be a shortest cycle containing u, where n € {3,...,¢+ 1}. By the choice of
C,, the vertex u has at least d — 2 > m neighbors outside C,,. Thus H contains C,, with S,,, attached at
u as a general subgraph, and so G contains (C,, V2(C,), K,,) as a subgraph, which is a contradiction.
Therefore u is not on any cycle in H. Let C,, be any cycle in H, where n € {3,...,{+1}. Let Py, be
a shortest path between u and C,,, where £y € {1,...,£}. Since u is not on any cycle, u has at least
d — 1 > m neighbors outside C,, and Pg,. Thus H contains C,, U Py, with S,, attached at « as a general
subgraph, and so G contains (C,,, V2(C,), {o — 1, K;;;) as a subgraph, which is a contradiction.

We now view H as a tree rooted at u. We claim that u is the only vertex with degree larger than m.
Suppose on the contrary that there is another vertex u’ with degree at least m + 1 in H. Let Py, be a
shortest path between u and u’, where £y € {1, ..., ¢}. Thus H contains Py, with two vertex-disjoint stars
S respectively attached to u and u” as a (general) subgraph, and so G contains (K,,,, V(K,,), € — 1, K;)
as a subgraph, which is a contradiction. Therefore all the vertices but u in H has degree at most m. After
the root u is removed from H, each connected component has diameter at most ¢ and degree at most m,
and so each connected component has at most m‘*! < N vertices. O

The last ingredient for the proof of Theorem 1.3 for 4 < 2 is the following lemma attributed to
Dickson, who used it to prove a result about perfect numbers in number theory.

Lemma 2.9 (Lemma A of Dickson [13]). For every n € N*, the partially ordered set (N", <), in which
(ai,...an) < (by,...,by) ifand only if a; < b, for every i, does not contain infinite antichains.

Dickson gave two proofs of Lemma 2.9, one of which uses induction, while the other uses Hilbert’s
basis theorem. For the reader’s convenience, we provide a short combinatorial proof based on the infinite
Ramsey’s theorem.

Proof. Suppose that 51, 52, . .. is an infinite sequence of distinct tuples in N”. For every i < j, color the
edge s;s; by 0if 5; < s;, otherwise by any k € {1,...,n} such that s; x > s; r. The infinite Ramsey’s
theorem provides an infinite subset / C N* such that the edges s;s;, where i,j € I and i # j, all
receive the same color c¢. Because (N, <) does not contain infinite descending chains, it must be the case

6Recall that the diameter of a graph is the maximum distance between a pair of vertices in the graph.
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that ¢ = 0. This implies that {s;: i € I} is an infinite ascending chain, and in particular {s;, 53, ...} is
not an antichain. O

We are ready to establish the first main theorem for 4 < 2.

Proof of Theorem 1.3 for A < 2. Let N € N and F; be given by Lemma 2.8, and set

Fo:={G ¢ G(1): G has at most N vertices},
F>:={G ¢ G(1): 3H € Ty s.t. G = L(H)},

where Ty is the family of rooted trees such that every connected component obtained from removing
the root has at most NV vertices. Setting > to be the family of graphs that are minimal in /, under taking
subgraphs, one can check that Fy U F| U JF; is a forbidden subgraph characterization of G(1).

It suffices to prove that F; is finite. Let 71, . .., T, be an enumeration of rooted trees on at most N
vertices. We encode G € F, by tg € N as follows. Let H be the rooted tree in 7 such that G = L(H).
After removing the root u from H, we view each connected component as a tree rooted at the vertex that
is a child of u in H. Set tg := (t1,...,t,), where t; is the number of occurrences of 7; as a connected
component in the graph obtained by removing u from H. Because no member of F is a subgraph of any
other, one can deduce that {tG : G € F5} is an antichain in (N", <), and so F; is finite by Lemma 2.9. O

2.2. Proof of Theorem 1.3 for A € [2,1%)

We prove a stronger result from which the first main theorem for 4 € [2,1%) and its corollary for
A € (2,2%) follow.

Theorem 2.10. For every A € [2, A7), the number of connected graphs in G(A) \ G(2) is finite.

Proof of Theorem 1.3 for A € [2, 1*) assuming Theorem 2.10. It is known that G(2) has a finite forbid-
den subgraph characterization — in fact, there are 1, 812 minimal forbidden subgraphs for G(2); see [6].
In view of Theorem 2.10, it suffices to show that if G is a minimal forbidden subgraph for G(1), then
G is a minimal forbidden subgraph for G(2), or G, after removing some vertex, is a connected graph in
G\G(2).

Indeed, let G be a minimal forbidden subgraph for G(1). Because 1;(G) < —1 < -2, the graph
G contains a minimal forbidden subgraph for G(2) as a subgraph, say F. Clearly both G and F are
connected. We may assume that F is a proper subgraph of G because otherwise we are done already.
Consider the graph H obtained after removing v from G, where v is a vertex of G that is furthest from F.
Using the connectivity of F, one can then show that H is connected. Finally, H € G(1) because of the
minimality of G, and H ¢ G(2) because F is a subgraph of H. O

Proof of Corollary 1.4 for A € (2,1%). It follows immediately from Theorem 2.10 that —2 is not a limit
point of the set of smallest eigenvalues of graphs for 1 € (2, 1%) O

The proof of Theorem 2.10 centers around the notion of generalized line graphs. Although we do
not need their definition, we state it nevertheless for concreteness.

Definition 2.11 (Cocktail party graphs and generalized line graphs). The cocktail party graph aK, is
obtained from the complete graph on 2a vertices by deleting a perfect matching. Given a graph G with
vertices vi,..., vy, and ay,...a, € N, the generalized line graph L(G;ay,...,a,) is obtained from
the line graph L(G) of G by adjoining n vertex-disjoint cocktail party graphs a;K>, ..., a,K> where
every vertex of the ith cocktail party graph a;K> is adjacent to every vertex of L(G) that contains v;.
See Figure 4 for an example.

Just like line graphs, all the generalized line graphs are in G(2), and they have a finite forbidden
subgraph characterization.
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Figure 4. A graph G and a schematic drawing of its generalized line graph L(G;2, 1,0, 3).

Theorem 2.12 (Theorem 2.1 of Hoffman [17]). The smallest eigenvalue of a generalized line graph is
at least -2.

Theorem 2.13 (Cvetkovi¢, Doob, and Simi¢ [10, 11], and Rao, Singhi, and Vijayan [26]). The minimal
forbidden subgraphs for the family Dy, of generalized line graphs are listed in Figure 5.

The key observation for the proof of Theorem 2.10 is that for every minimal forbidden subgraph F
for D, there exists an extension family of F' disjoint from G(1). We first deal with path extensions and
clique extensions.

Lemma 2.14. For every minimal forbidden subgraph F in Figure 5 for the family D, of generalized
line graphs, and every nonempty vertex subset A of F, the path extensions and the clique extensions of
F satisfy

(]im A (F,A€) <-A" and lim A;(F,A,K,;,) < -1".
f—00 m-—-0oo

Moreover, the equality holds in the first inequality if and only if F = G4 and A € {{3}, {4}}.

We prove Lemma 2.14 under computer assistance in Appendix A. The next result takes care of
path-clique extensions.

Lemma 2.15. Suppose that A is a nonempty vertex subset of a graph F and A > 2. If the path extensions
of F satisfy

Jim 41(F,A,0) < =1,

then there exists m € N such that the path-clique extensions of F satisfy
M(F,A, ¢, K,;,;) < —Aforevery{ € N,

Proof. Pick {y € Nsuchthat 1|(F,A,{) < —Aforevery € > {y. Clearly A, (F, A, {, K,,) < —A for every
¢ > {y and every m € N*. It suffices to show that for every € € {0, ..., ¢ — 1} there exists m € N* such
that A, (F, A, ¢, K;,) < —A.

Let vg ... vg be the path added to F to obtain (F, A, {), where the vertex vg is connected to every
vertex inA. Set Ao := =11 (F, A, {),and letx: V(F)U{vo,..., v} — Rbeaneigenvector of (F, A, £)
associated with —A.

Now fix £ € N with £ < £y, and let m € N* be determined later. Set V, := V(F) U {vg,...,v¢}, and
identify the vertex set of (F, A, ¢, K,,,) with V, UV(K,,). We abuse notation and write x; in place of x,,
fori e {¢,...,£{}. Definex: V, UV(K,) — Rby

- Xy if v e Vy;
X, =
Y xer1/m ifv e V(Ky,).

We claim that }, .y, x2 > 0. Indeed, assume for the sake of contradiction that x, = 0 for v € V.

Using —Apx; = Zu~vi x, fori € {¢,...,¢ — 1}, where the sum is taken over all vertices u that are
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Figure 5. Minimal forbidden subgraphs for De,.

adjacent to the vertex v; in (F, A, {y), one can prove inductively that x; = 0 fori € {€+1,..., 60},
which contradicts the assumption that x is a nonzero vector.
Because ), cy, x2 > 0, clearly ¥ is a nonzero vector. We compute

Xx= Z x‘z, +m(xpsr /m)>.
veVe

Moreover we can compute XTA(r 4 ¢.k,,)% as follows

XTA(F AL KX = Z XuXy +2X¢Xes1 +m(m — 1) (xee1 /m)?.

u,veVe: u~v

https://doi.org/10.1017/fms.2025.10110 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10110

12 Z. Jiang and A. Polyanskii

Since x is an eigenvector of (F, A, {p) associated with —1, we obtain that

2
Z XuXy + XeXpg) = Z Xy qu =-Ay Z Xy

u,veVe: u~v veVe u~v vevVy

Thus ¥TA(F a,¢ k,,)% can be simplified to

XTA(F AL KX =10 Z X2+ Xexeat +m(m — 1) (xes1 /m)>.
veVy

The Rayleigh principle says that A;(F, A, €, K,;,) is at most

Ao ZVEV( x% +xexeer +m(m — 1) (xp4 /m)z

Yvev, X5+ m(xee1/m)?

)

which, as m — oo, approaches

N (x¢ +Xp41) X041

_/10 3
ZVGVf xv

Here we used the above claim that the denominator in the limit is positive.

Recall that 19 = =2, (F, A, {y) > A > 2. It suffices to show that (x; + xp+1)xe+1 < 0. In fact, we
prove inductively that (x; +x;41)x;41 < Ofori € {£,...,€y — 1}. The base case where i = £, — 1 follows
immediately from —Aoxg, = x¢,-1 and Ap > 2. For the inductive step, using —Aox;+1 = x; + x;42 and
Ao > 2, we obtain

(Xi + Xir1)Xix1 = (—A0Xi1 = Xix2 + Xip1)Xia1 = —(Ao — 2)x7,; — (Xl + Xp42) X141

2
< = (X1 +Xi2)Xin1 = = (X1 +X042) 7+ (Xin +X042) X2 < (Xiwt + Xi42) X142,
which is nonpositive by the inductive hypothesis. O
We are ready to prove Theorem 2.10.

Proof of Theorem 2.10. Suppose that A € [2, 1%). Let F denote the set of minimal forbidden subgraphs
for the family Ds,. Combining Lemmas 2.14 and 2.15, we choose ¢, m € N* such that for every F € F,
the extension family X (F, ¢, m) is disjoint from G(1). From Lemma 2.3(s), we know that Ss ¢ G(A).
In particular, no graph in G(2) contains any member in the following family

{ssyu () X(F.em) @

FeF

as a subgraph. Using Lemma 2.6, we obtain N € N such that for every connected graph G with more
than N vertices, if no member in (2) is a subgraph of G, then neither is any F' € F, and so G is a
generalized line graph and is in G(2) by Theorems 2.12 and 2.13. This implies that every connected
graph in G(1) \ G(2) has at most N vertices. O

We end this subsection with a remark on an alternative proof of Theorem 2.10. Instead of working
with the family D.,, one should be able to establish Lemma 2.14 for every minimal forbidden subgraph
for G(2), and then prove Theorem 2.10 similarly. This alternative approach is more direct as it does not
rely on generalized line graphs. However the drawback is obvious — there are 1, 812 minimal forbidden
subgraphs for G(2). To the best of our knowledge, there is no easily accessible database for these 1, 812
graphs; for example, a complete list of these graphs was printed to microfiche in [6], and a list of only
92 of these graphs up to 8 vertices was available in [12, Fig. 2.4 and Table A1.2]. One certainly can
implement the reasonably fast algorithm in [6] to enumerate the minimal forbidden subgraphs for G(2).
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However as we strive to keep the computer-assisted part of the proof to a minimum, we work with the
31 minimal forbidden subgraphs for D.

In fact, the family G(2) and its subfamily D, are interchangeable when both families are restricted
to sufficiently large connected graphs because of a characterization of G(2) due to Cameron, Goethals,
Seidel, and Shult. To state their characterization, we introduce the following definitions.

Definition 2.16 (Representation of graphs and root systems D,, and Es). Given a graph G and V C R",
we say that G is represented by V if the Gram matrix of V is equal to Ag +21, where A is the adjacency
matrix of G. The root systems D, and Eg are defined by the standard basis ey, .. . e, of R" as follows

8 8
. . 1
D, :={cie;+erej: 1,62 =%1,1<i<j<n}, Eg:= DSU{EZ&'&': & =il,!:[ei= 1}.

i=1

Theorem 2.17 (Theorems 4.2, 4.3 and 4.10 of Cameron et al. [7]). For every connected graph G, the
smallest eigenvalue of G is at least =2 if and only if G is represented by a subset of D, or E3. Moreover

(a) a graph (not necessarily connected) is represented by a subset of D,, if and only if it is a generalized
line graph, and
(b) a graph represented by a subset of Eg has at most 36 vertices, and its maximum degree is at most 28.

In particular, Theorem 2.17 implies that every connected graph in G(2) with more than 36 vertices
is a generalized line graph.

2.3. Proof of Theorem 1.3 for A > 1*

Suppose that {F1, ..., F, } is a finite forbidden subgraph characterization of G(1). Because every graph
that is not in G (1) contains F; as a subgraph for some i € {1,...,n}, no graph has its smallest eigenvalue
in the open interval (max{A,(F;): i € {1,...,n}},—1). Recall that A consists of A € R such that —1 is
the smallest eigenvalue of some graph. The contrapositive of the above observation says the following.

Proposition 2.18. Lerlim, A| := {1 € R: (A,1+¢&) N A| # @ for every & > 0} be the set of right-sided
limit points of Ay. The family G(Q) does not have a finite forbidden subgraph characterization for any
A € limy Aj.

In fact, we prove that A is dense in (1%, c0), from which the first main theorem and its corollary for
A > A% follow.

Theorem 2.19. For every A > A%, there exist graphs G, G2, ... such that lim,,_,. 11(G,) = —A.

Proof of Theorem 1.3 for A > A*. Theorem 2.19 implies that lim, A; 2 [1%, co), which implies through
Proposition 2.18 that G(A) has no finite forbidden subgraph characterization for any 1 > 1*. O

Proof of Corollary 1.4 for A > A*. It follows immediately from Theorem 2.19 that —A is a limit point
of the set of smallest eigenvalues of graphs for 1 > A*. O

A large chunk of Theorem 2.19 is essentially established by Shearer [28], who proved that the set of

spectral radii of all graphs is dense in (1’, o), where 1’ = V2 + V5. As was pointed out in [14], Shearer
actually proved that the set of spectral radii of all caterpillar trees’ is dense in (1’, c0) already. Since a
caterpillar tree is bipartite, we rephrase Shearer’s result in terms of smallest eigenvalues.

Theorem 2.20 (Shearer [28]; cf. Theorem 3 of Doob [14]). For every A > A, there exist caterpillar
trees G, Ga, ... such that lim, . 1,(G,) = -A.

To fill the gap between 1" =~ 2.01980 and A’ =~ 2.05817, we use the following graphs.

7A caterpillar tree is a tree in which all the vertices are within distance 1 of a central path.
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Figure 6. A schematic drawing of the rowing graph R(2,0,2,1,0,8,3,1).

Definition 2.21 (Rowing graphs). Given a sequence (ay, ..., a,) of natural numbers, a rowing graph
R(ay,...,a,) is obtained from the path v_pv_jvgv ... v, (called the central path) by attaching a vertex
(called the coxswain) to vq, and attaching a clique of order a; to both v;_; and v; foreveryi € {1,...,n}.
See Figure 6 for an example of a rowing graph.

We consider rowing graphs for the following two heuristics. On the one hand, a rowing graph is
almost a line graph, whose smallest eigenvalue is at least —2 — when the coxwain is removed from
a rowing graph, it becomes the line graph of a caterpillar tree. On the other hand, the rowing graph
R(ai,...,ay,) contains E, , (see Figure 2), whose smallest eigenvalue decreases to —A™ as n — co.

We adopt the shorthand

(al’~--7ak—]90([)9ak7~-~7al’1) = (al’~--7ak—]90’~--707ak9-~~7an)'
———
14

Lemma 2.22. Rowing graphs satisfy the following properties.

(a) The smallest eigenvalue of a rowing graph is at least —1 — V2.
(b) There exists ay € N such that 11 (R(ay)) < -1’ ~ =2.05817.
(¢) For every € > 0 there exists { € N* such that

AI(R(ah e ’anl’o(f), bl, . ~,bn2)) > /ll(R(ah e 7an1,0(€))) - &
foreveryni,ny €N, (ai,...,an) € N and (by, ..., b,,) € N,

(d) Foreveryn,t € N* and (ay, ... ,a,) € N" with a, > 0, if 11(R(ay, . ..,an,0©)) < =2, then for
every € > 0 there exists a,1 € N* such that

A(R@ay,... an-1,an—1,ans1,0C™)) < 21 (R(ar, . .., an, 09)) +&.
(e) Forevery &€ > 0, there exists m € N* such that for every n > m and every (ay, ..., a,) € N" there
exists k € {1,...,m} such that

/ll(R(al, e ,ak_l,O,ak, A ,an)) < /ll(R(al, A ,an)) +ée.

In the proof of Lemma 2.22, we work with vectors x on the vertex set of a rowing graph, whose
coxswain and central path are denoted by v, and v_»v_; ..., and we abuse notation and write x. and x;
in place of x,, and x,, respectively.

Proof of (a). Seta = (ay,...,a,) and 1 = A;(R(a)). Let v_, ...v, denote the central path of R(a),
and let v, denote the coxswain attached to vg. Let x: V(R(a)) — R be a unit eigenvector of R(a)
associated with A. Clearly we have Ax. = xo, which implies that
2., .2
2o Xg + x5 - 1
1422 T 1422

3
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Let L be the rowing graph R(a) with v, removed, and let x ;. be x restricted to V(L). Notice that L is a
line graph of a caterpillar tree, and so 4;(L) > —2 (see Footnote 1 on Page 2). Finally, we bound the
smallest eigenvalue of R(a) as follows:

A=XTAR@X =X]ALxp +2xcX0 = = 2x [ XL + 2X:Xo
3) 2+24

=21 -x2) 42262 = 2+ (242)x% > 24+ ——
1+A2

which implies that > —1 — V2. In the above inequality, we assumed that 1 < —1 which follows from
the fact that R(a) has an edge. O

Proof of (b). Let x be the vector that assigns 1 to v_,, =2 to v_1, 4 to vy, 0 to v;, —2 to the coxswain,
and —4/a to every vertex in the clique of size a;. The Rayleigh principle says that 11 (R(a)) is at most

XTAR(aX  =2(1-2+2-4+4-2+ay-4-(4/ay)) +ai(a; - 1) - (-4/ay)*

xXTx 12+(—2)2+42+(—2)2+a1 : (—4/611)2

[l

which approaches —52/25 = —-2.08 as a; — co. O

Proof of (c). Take £ = [2/e] +5. Let v_a ...V, 4+¢4n, denote the central path of the rowing graph
R(a,09,b), where @ = (ay,...,a,,) and b = (by,...,b,,), and let x: V(R(a,0!,b)) — R be a
unit eigenvector of R(a,0), b) associated with the smallest eigenvalue. Choose k € {0,...,£—1}
such that x, 4+xXn +k+1 reaches the minimum in absolute value. In particular, using the inequality
ix"1+ixn1+i+1| S (xleﬂ' +xr211+i+1>/2’ we obtain

-1 ¢
1 1 2 1 E
|xn1+kxn1+k+l| < 7 E |xn1+i~xn1+i+l| < 7 E Xpysi S 7 < 3 4)
i=0 i=0

Notice that removing the edge v, +kVn, +k+1 disconnects R(a, 0, b) into two subgraphs, one of
which is R(a,0%)), while the other is a line graph, denoted L, of a caterpillar tree. Clearly

A(R(a,0%)) > 21 (R(a,01)). (5)

As ¢ > 6, the graph Eg in Figure 1 is a proper subgraph of R(a,0"), and so 1;(R(a,0)) < 2.
Together with A;(L) > —2 (see Footnote 1 on Page 2), we obtain

A (L) > A1(R(a,0)). (6)

Let xg and x;, be the unit eigenvector x restricted to V(R(a,0%))) and V(L). Finally, we bound the
smallest eigenvalue of R(a, 0, b) as follows:

A1 (R(a,09, b))

xAR(a’O({') ’b)x

T T
X RAR(@,00)XR + 2Xn 4k Xn+k+1 + X ALX L

> Ai(R(a, O(k)))x,T;xR + 2%, kX ake1 + A1 (L)X [ XL
(4,5,6) © T T
> A(R(a,0"))(xpxr+x/x1) — &
= A(R(a,09)) —&. o
Proof of (d). Seta = (ay,...,a,,0) and 1 = 1;(R(a)). Letx: V(R(a)) — R be an eigenvector of

R(a) associated with A. Let v_; . .. v, denote the central path of the rowing graph R(a). In R(a), let
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K denote the clique of size a, attached to both v,_; and v, and pick an arbitrary vertex u from K. We
clearly have

AXy = Xp_1 + O + Xy,

@)
AXy = Xp_1 + 0 + Xy +Xnyls
where o = Zurev(K)\{u} x,».The above identities imply that A(x,, — x,) = x;, — X, — Xn+1, and so
Xn+1
Xy =Xp — 1'_1:/1. (8)

Let R(&) be the rowing graph obtained from R(a) by removing u and attaching a clique, denoted K,
to both v,, and v,.,1, where @ = (ay, ..., an — 1, ans1,0"), and the order a,,; of K is chosen later.
In particular, V(R(@)) = V(R(a)) \ {u} UV(K).

We define a vector ¥: V(R(a@)) — R as follows:

Xn + Xy ifv=v,;
Xy = =(xn + x4 + Xp11)/an  ifv € V(K);
Xy otherwise.

Because x is a nonzero vector, one can check that so is ¥. We compute

2 (Xn + x4 +xn+l)2

I 2 2
XX =x"x—x, —x;, + (x, +x,)" +

Ap+l

Moreover we can compare X7 Ag )X and x T Ag 4)X as follows

XTAR@X = XxTAR@)X—2xu (Xp—1 + T +Xp) + 2%, (Xp—1 + O + Xp41)

2

X + Xy +xn+1)

nTouT Al )
An+l

- 2()(,, + Xy '|'xn+l)2 + an+l (an+1 - 1)(

which simplifies via (7) to

XTAg@)X = AxTx — 2/bcL2l + 2x, (Axy, — xy) — (1 + )(x,, + Xy + Xne1)

An+l

The Rayleigh principle says that A; (R(&)) is at most

¥TAR@X AxTx - ZMi + 200, (A, —x0) = (1 1/ ane1) (Xn + Xy + Xne1)?

xTX xTx _xr21 _XLZ¢ + (xp +xu)2 + (Xp + Xy +xn+l)2/an+1

i

which, as a,+; — co, approaches

AxTx — Z/let + 22, (A — xu) — (X0 + X + Xna1 )2

XTX —x2 —x2 4 (Xp +x,)2

Here we assumed that the denominator in the limit is nonzero. Indeed, suppose on the contrary that
XTX = x5+ x5 — (X +x,)? = —2x,X,. Because —2x,x, < x5 + x5 < x2+x%+x2,, < xTx, it must be
the case that x,, + x,, = 0 and x,,+; = 0. In view of (8), we have x,, = x,, = 0 and hence x = 0, which is a
contradiction.

It suffices to prove that

n

AxTx — 2/1x3 + 2%, (Ax,, — xu) — (X + x4 +xn+1)2 < A(xTx -x2 xi + (x5, +xu)2),
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which is equivalent to
(n + x4 +Xne1)? + 2(1 + /l)x,i > 0.
Using (8), we know that the left hand side of the last inequality is equal to

2
A X
(2Xn + man) + 2(/1 + 1)<xn - l'-l:il

2 4 1
) = (2/1 + 6)xi - mxnx,m + (1 + m)xiﬂ.

From Lemma 2.22(a), we know that > —1 — V2 in addition to the assumption that 4 < —2. One can
check
1 4

1
4+ — >2046>—— . 250, forde[-1-v2,-2].
(1+2° “T1+1 2 or L € [~1-V2,-2]

We are left to prove x2 — Ax, x4 +x2,, > 0. In fact, we prove inductively that x? — Ax;x;4 +x2,, > 0
fori € {n,...,n+ ¢ — 1}. The base case where i = n + £ — 1 follows immediately from Ax;,+¢ = X+¢-1.
For the inductive step, using Ax;4+1 = X; + Xx;42, we obtain

2 2 2 2 2 2
X; = Axixip + X5 = (A1 — Xig2)” — A1 — Xa2)Xie1 + X0 = X7y — AXip1 X2 + X7,
which is nonnegative by the inductive hypothesis. O

Proof of (e). Takem = [5/¢]+1.Letv_,...v, denote the central path of the rowing graph R(a), where

a=(ay,...,a,),andletx: V(R(a)) — R be aunit eigenvector associated with the smallest eigenvalue
of R(a). Choose k € {1,...,m} such that x;_; reaches the minimum in absolute value. In particular,
1S 1 ¢
2 2
Xi £ — ) xi<— <. 9
RPN LR ©
Letv_p...Vg_1V«Vk ...V, denote the central path of R(a), where & = (ay,...,ax-1,0,ar,...,a,).

We naturally view the vertex set of R(@) as V(R(a)) U {v.}, and we extend the unit eigenvector
x:V(R(a)) » RtoXx: V(R(a)) — R by setting . = xx_;. The Rayleigh principle says that 11 (R(&))
is at most

XTAR@a)X _xTAR(a)x + in_l 3 A (R(a)) + 2xi_1

T XTX X7 L+x7
= L (R(a)) + @- /111 ErR;;)l))xil < L (R(@) + (2= L (R(@))x2_,.
From Lemma 2.22(a), we obtain
Q-LR@)E, <2+ (1+V2)2, e o

We now have all of the ingredients needed to establish Theorem 2.19.

Proof of Theorem 2.19. In view of Theorem 2.20, we may assume that 2 € (1*,1"). Fix &€ > 0. We
assume for the sake of contradiction that no rowing graph has its smallest eigenvalue in (-1 — &, -2)
because otherwise we are done. Define

S:={(ai,...,ay) eN": n € N*and a, > 0},
A :={(a],...,an) es: /ll(R(a],...,an,O([))) < —A for some € EN}.
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Claim. For every m € N* there exists (ai,...,a,) € A with exactly m nonzero entries such that
(ai,...,ar-1,0,ag,...,a,) ¢ Aforevery k € {1,...,n}. (10)
Proof of Claim. We order the elements in S as follows:

(ai,....an) <(b1,...,by,) if and only if
(ai,...,an,, 0("2)) strictly precedes (b1, . .., bp,, 0("‘)) lexicographically.

Alternatively, (ai,...,an,) < (b1,...,by,) if and only if there exists § > O such that Z;‘:‘I aix' <
Z:’jl bix" for every x € (0, ). We shall repeatedly use the fact that for every £ € N* the set

S¢ :={a € §: the length of a is at most ¢}

does not contain an infinite descending chain, hence (S¢, <) is well-founded, that is, every nonempty
subset of Sy has a minimal element.® This fact can be established by a simple induction on ¢.

In particular, the ordering on S implies that (ay,...ax-1,0,ag,...,a,) < (ai,...,a,) when both
sequences arein S and k € {1, ..., n}. Thus it suffices to construct, for every m € N*, a minimal element
a™ of A,,, where

Ay ={(ai,...,ay) € A: (ay,...,a,) has m nonzero entries}.

Our inductive construction additionally requires that aV.a® q® . forma descending chain.
Apply Lemma 2.22(c) to obtain £ € N* such that

A1 (R(ay,. .. ,anl,O(‘}),bl, b)) > 4(R(ay, ... ’anl’o(f))) —-&
for every ny,n, € N, (ay,...,a,,) € N and (by, ..., b,,) € N2 (11

In particular, when n; = 0, we have
(RO, by, ... by)) > 21 (RO0YD)) — g forevery (by,...,bp,) € N"™.

For the base case where m = 1, note that R(0")) is just E; ¢ defined in Proposition 2.1, which
satisfies that

L (R(0D)) = A1 (Eae) > -A" > -2
Since no rowing graph has its smallest eigenvalue in (-4 — &, —1), the above two inequalities imply
/ll(R(O(f), bi,...,by,)) = —Aforevery (by,...,by,) € N2,

which further implies that the length of every sequence in A is at most ¢, that is, A} € S¢. Moreover,
Lemma 2.22(b) implies that A; is nonempty. Therefore there exists a minimal element of A;.

For the inductive step, suppose that m € N*, and that 'V > --- > a™ are minimal elements of
Ay, ..., A, respectively. Say a™ = (by,...,b,). Lemma 2.22(d) shows that there exists b,,; € N*
such that 5"V := (by, ..., bp_1,bn — 1, bps1) € A. Since bV < a™ and @™ is minimal in A,
it must be the case that b,, > 1 or equivalently pm+D) ¢ A 4. It suffices to show that

{b €Ans1: b =< b(mH)} - S(m+1)g.

8 Assuming the axiom of dependent choice, a weak form of the axiom of choice, (S¢, <) is well-founded if it contains no
countable infinite descending chains.
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Assume for the sake of contradiction that there exists b € A,,4; such that b < b and the length
of b is more than (m + 1)¢. By the pigeonhole principle, there exists an initial segment, denoted b’, of
b such that (b’,0()) is an initial segment of b. We may require in addition that either b’ is the empty
sequence or the last entry of b’ is positive. If b is the empty sequence, then we can argue similarly to
the base case that

A (R(b,cy,...,cn)) = —Aforevery (ci,...,cp) € N",

which contradicts b € A, 4.

We may assume that the last entry of b is positive. Because (b’,0()) is an initial segment of b, and
the last entry of b is positive, the number of nonzero entries in b, denoted i € N*, is at most m. Since
b’ <b <b"™) <am < a® and a? is minimal in A;, we know that b’ ¢ A, and in particular

A (R(B,01)) > -a.
From (11), we know that
L(R(b,cr,....,cn)) > A (R(B',0)) — & for every (ci,...,cn) € N,

Since no rowing graph has its smallest eigenvalue in (-4 — &, —1), the above two inequalities imply

A (R(b,cy,...,cp)) > —Aforevery (ci,...,cn) € N,
which contradicts b € A,,,41. ]
Finally, let m be given by Lemma 2.22(e). The claim provides (ay,...,a,) € A with m nonzero

entries such that (10) holds. Let £ € N be such that

Ai(R(ay, ... an,09)) < -2

Since the length of (ay, ..., a,, ()(l’)) is at least m, Lemma 2.22(e) says that there exists k € {1,...,m}
such that
A(R(ar, ... ak-1,0,ak, .. .,an,09)) < Li(R(ay, . ..,a,, 0)) +e,
However (10) asserts that (ay, ..., ar-1,0,ag,...,a,) ¢ A, which implies that
M (R(ay,...,ak-1,0,ag,... ,an,()([))) > —A.

Combining the last three inequalities, we obtain that

“A-& <A (R(ay,...,an,09)) < —A. O

3. Forbidden subgraphs for G*(1)

A useful tool in spectral graph theory for signed graphs is switching — two signed graphs are switching
equivalent if one graph can be obtained from the other by reversing all the edges in a cut-set. An
important feature of switching equivalence is that the switching equivalent signed graphs all have the
same spectrum.

Hereinafter we adopt the following convention for an unsigned graph G. With a slight abuse of
notation, we denote by G the all-positive signed graph with underlying graph G. We also denote by —G
the all-negative signed graph with the same underlying graph.

To prove the second main theorem, we need to extend the concepts and results from the previous
section. We recommend that the reader go through the rest of the section alongside Section 2.
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3.1. Proof of Theorem 1.5 for 1 < 2
We first generalize path extensions, path-clique extensions, clique extensions, and Lemma 2.3(c1, c2).

Definition 3.1. Given a nonempty vertex subset A of a signed graph F*, a signed vertex subset A* of
F* is the vertex subset A together with an assignment of signs (positive or negative). Given, in addition,
¢ € Nand m € N*,

(a) the path extension (F*, A*, ) is obtained from F* by adding an all-positive path vy . .. v, of length
¢ and connecting v to every vertex v in A by an edge signed according to the sign of v in A%;

(b) the path-clique extension (F*, A%, {, K,,) is further obtained from (F*, A%, ¢) by adding an all-
positive clique of size m and connecting every vertex in the clique to v, by a positive edge;

(c) the clique extension (F*, A*, K,;,) is obtained from F* by adding a clique of order m and connecting
every vertex in the clique to every vertex v in A by an edge signed according to the sign of v in A*.

Lemma 3.2. For every signed cycle C; of length n and every signed set A* of two adjacent vertices of
C%, the path-clique extensions and the clique extensions of C satisfy:

(c1) limye A1 (CE, A%, €, Kyy) < =2 for fixed £ € N;
(2) limposeo 11 (CE, A, Kp) < —2.

Proof. Let v, vi,...,v,—1 be the vertices of Cf, and let o: E(C;) — {+1} be the signing of C%.
Suppose that A* is a signed set of {vg, v,—1}. By switching a suitable subset of {vg,v,—1}, we may
assume that A* = {v{,v¥_ }. If C;; has an even number of positive edges, then C;; is already switching
equivalent to the all-negative cycle of length n, whose smallest eigenvalue is —2. If the edge vov,,—1 is
negative, then both (C;;, A*, ¢, K,,) and (C;;, A*, K,,,) contain a subgraph that is switching equivalent
to the all-negative triangle —K3, and so their smallest eigenvalues are at most A;(—K3) = —2.

Hereafter we assume that C has an odd number of positive edges and the edge vov,_; is positive.
Furthermore, by switching a suitable subset of {vy,...,v,_»}, we may assume that vov,_ is the only
positive edge of the signed cycle C:.

For (c1), we define a vector x : V(C;, A*,{, K,;,) — R as follows. Let v,,v,41 . .. vyip and K, be the
path and the clique added to C: to obtain the path-clique extension (C, A*, ¢, K,,,), where v,, is adjacent

to vo and v,_;, and v, is adjacent to every vertex in K,,. Assign x,, = —1 fori € {0,...,n— 1},
Xv,,; = 2(=1) fori € {0,...,¢}, and x, = —xp4¢/m for every u € V(K,,). We abuse notation and
write x; in place of x,, for i € {0,...,n+¢}. The Rayleigh principle says that the smallest eigenvalue

of (C;r, A*, ¢, K,,,) is at most

n-2 -1

2

( -2 Z XiXigl + 2X0Xpn-1+2(x0 + Xp1)Xp + 2 Z Xn+iXnsivl — 2X, o+
i=0 i=0

¢
xl-z + Z xiﬂ» + m()c,H_g/m)2 ,

P 1>(xn+f/m>2) / ( _

which is equal to (—2n — 8(£ + 1) —4/m)/(n+4(£ + 1) + 4/m), and approaches —2 as m — oo.

For (c2), we define a vector x: V(Ci, A*,K,,) — R as follows. Let K,, be the clique added to
C> to obtain the clique extension (C;, A*, K,,). Assign x,, = —1 fori € {0,...,n—1} and x,, =
—(x0+x,-1)/mforeveryu € V(K,,). We abuse notation and write x; in place of x,, fori € {0,...,n — 1}.
The Rayleigh principle says that the smallest eigenvalue of (C, A%, K,,) is at most

2 3 E XiXiat + 2X0Xn—1 — 2(xX0 + Xp—1) + m(m — 1)((x0 + Xp_1)/m)?

Sio X7 +m((x0 +xp-1)/m)?

>

which is equal to (-2n — 4/m)/(n +4/m), and approaches —2 as m — co. O

We naturally generalize extension families as well as Lemma 2.5.
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Definition 3.3 (Signed extension family). Given a signed graph F* and ¢,m € N*, the signed
extension family X*(F*,{,m) of F* consists of the path-extension (F*, A%, (), the path-clique ex-
tensions (F*, A%, {y, K,,,), and the clique extension (F*, A%, K,,), where A* ranges over the nonempty
signed vertex subsets of F*, and £, ranges over {0, ..., —1}.

Note that for an unsigned graph F and ¢,m € N*, the extension family X (F, ¢, m) (defined in
Definition 2.4) is a subfamily of the signed extension family X*(F, £, m).

Lemma 3.4. For every A < 2, there exist {,m € N* such that both the signed extension family
X*(C, t,m) of the claw graph C and the signed extension family X* (D, €, m) of the diamond graph D

are disjoint from G*=(Q).
Proof. From Lemma 2.3(nl, n2, p) and Lemma 2.5, we obtain £,m € N* such that P, ¢ G*(1), none
of the following graphs

(K2,V(K3),0,Ky), ..., (K2, V(K2), - 1,K,,), and (K2, V(K>), Kn) (12)

isin G*(1), and X(C, ¢, m) U X (D, ¢, m) is disjoint from G*(1). Since Py ¢ G*(1), no path extension
in X*(C,¢,m) U X*(D, {,m) is in G*(Q).
We are left to deal with the path-clique extensions and the clique extension

(F’ Ai,O? Km)’ ) (FaA:t9£_ I,Km)7 and (F, Ai’Km)5 (13)

where F is C or D, and A% is the signed set of a nonempty vertex subset A of F. We break the rest of the
proof into three cases.

Case 1: A* is all-positive or all-negative. This case follows since the signed graphs in (13), after
switching the cut-set between V(F) and its complement in case A* is all-negative, become respectively
(F,A,0,Ky),...,(F,A,{ - 1,K,,), and (F, A, K,;,) from the extension family X (F, ¢, m), which is
disjoint from G*(1).

Case 2: There exists an edge uv of F such that {u=,v*} C A*. Since the all-negative triangle —K3,
whose smallest eigenvalue is —2, is switching equivalent to a subgraph of (F, A*, 0), no signed graph
in (13)is in G*(A).

Case 3: A* is neither all-positive nor all-negative, and no edge uv of F satisfies that {u~, v*} C A*. Label
the vertices of C and D as in Figure 3. We may assume without loss of generality that {17,3*} C A*.
One can check that, for F € {C, D}, the signed graphs in (12), after switching at the vertex labeled by 1,
are respectively subgraphs of those in (13), and hence no signed graph in (13) is in G*(1). O

Next, generalizing Lemma 2.6, we show that forbidding a star, an all-negative complete graph, and a
signed extension family of F* effectively forbids F= itself in every sufficiently large connected signed
graph.

Lemma 3.5. For every signed graph F* and k1, ky,{,m € N*, there exists N € N such that for every
connected signed graph G* with more than N vertices, if G* does not contain any subgraph that is
switching equivalent to any member in {Sk, , —Kkz} U X*(F*,¢,m), then G* does not contain any
subgraph that is switching equivalent to F* either.

We leave the proof to the reader as one can make the proof of Lemma 2.6 into that for Lemma 3.5
by mutatis mutandis. To get started, one might want to take N = vd’, where d is the Ramsey number
R(k[, ko, 3V im + V).

The last ingredient is a sufficient condition for signed line graphs, which generalizes Theorem 2.7.

Definition 3.6 (Bidirected graph and signed line graph). A bidirected graph is a graph in which each
vertex-edge incidence has a positive or negative sign. We decorate variables for bidirected graphs with
an arrow on the top. A signed graph G* is the signed line graph of a bidirected graph H if the underlying
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Figure 7. A bidirected graph and its signed line graph. In a signed graph, the positive edges are
represented by solid segments and the negative edges are represented by dashed segments.

graph of G* is the line graph of H, and moreover for every two distinct edges e and e of H having a
vertex v in common, the sign of the edge eje; in G* is the product of the signs of the two incidences
(v,e1) and (v, e;) in H.

Pictorially we place a sign close to each incidence in a bidirected graph. See Figure 7 for an example
of a bidirected graph and its signed line graph.

Remark. Our definition of a signed line graph is different from the existing literature — the conventional
definition (e.g., Zaslavsky [34]) reverses all the edge signs of G* in Definition 3.6. Our choice of the
definition is based on aesthetic reasons: the signed line graph of an all-positive bidirected graph is still
all-positive, and the smallest eigenvalue of a signed line graph is at least —2.

Lemma 3.7 (Proposition 2.2 of Vijayakumar [31]). For every signed graph G*, if G* does not contain
any subgraph that is switching equivalent to the claw graph, the diamond graph, or the all-negative
triangle, then G* is a signed line graph.

Although the conclusion in [31, Proposition 2.2] is weaker than that in Lemma 3.7, Vijayakumar’s
proof already gives Lemma 3.7. Below we reproduce his proof in terms of signed line graphs.

Proof. Let G be the underlying graph of G*. One can check that G contains neither the claw graph nor
the diamond graph as a subgraph. Thus Theorem 2.7 implies that G is a line graph of another graph,
denoted H, without isolated vertices. We may identify the vertex set of G* with the edge set of H.

For every v € V(H), let E, (H) be the set of edges that are incident to v in H. Define a signing
o:{(v,e):veV(H),e € E,(H)} — {£1} such that for every v € V(H),

o(v,e))o(v,er) = Ag=(ey, ep) for distinct ey, e; € E, (H). (14)

Such a signing o can be chosen as follows: for every v € V(H), define o (v, eg) = 1 for some arbitrary
eo € E,(H), and define o (v, e) = Ag=(ep, ¢) for any other ¢ € E, (H). Since G* does not contain
any subgraph that is switching equivalent to the all-negative triangle, it can be seen that (14) holds.
Assigning o (v, ) to every incidence (v, e) of H, we obtain a bidirected graph H whose signed line
graph is G*. O

Similar to Lemma 2.8, we obtain a finite set of forbidden subgraphs for G*(1) that forces every
sufficiently large connected signed graph to be the singed line graph of a bidirected tree whose complexity
is uniformly bounded.

Lemma 3.8. For every A < 2, there exist N € N and a finite family F;" that is disjoint from G* (1) such
that for every connected signed graph G* with more than N vertices, if G* contains no member in F

asa subgraph then there exists a bidirected rooted tree H € TN such that G* is the signed line graph
of H, where TN is the family of bidirected rooted tree such that every connected component obtained
from removing the root has at most N vertices.

Proof. Denote C the set of signed cycles of length n. We obtain £, m € N* from Lemmas 2.3, 3.2 and
3.4 such that the following family
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FE = {84, Pr,—K3} UX*(C,€,m) U X*(D,{,m)
U{(C Va(Cp) €0, Km) i n€{3,..., 6+ 1},Cy € Cr by €{0,..., € - 1}}
U{(Cr Va(Cp), Km):n e {3,...,6+1},Cr € Cr}
U {(Kp, V(Km), o, K) : €0 € {0,...,0—1}}

is disjoint from G*(1). Let F;° be the smallest family, that is closed under switching, containing F i
Clearly F7 is also disjoint from G*(1).

We omit the rest of the proof as it, mutatis mutandis, is very much like the one in the proof of
Theorem 1.3 for 4 < 2 on Page 7. We point out that one should make use of Lemmas 3.5 and 3.7 in
place of Lemma 2.6 and Theorem 2.7 respectively. O

We are ready to present the proof of the second main theorem for 1 < 2.
Proof of Theorem 1.5 for A < 2. Let N € N and F;* be given by Lemma 3.8, and set

Fi :={G* ¢ G*(1): G* has at most N vertices},
Fi= {GJ—' ¢ G*(1): 3H € Ty s.t. G* is the signed line graph of ﬁ}

where T ~ is the family of bidirected rooted tree such that every connected component obtained from
removing the root has at most N vertices. Setting 5" to be the family of signed graphs that are minimal in

}~"2i under taking subgraphs, one can check that F; U " U F5 is a forbidden subgraph characterization
of G*().

It suffices to prove that ]-'21 is finite. Let ﬂ, R fn be an enumeration of bidirected rooted trees
T on at most N + 1 vertices. We encode G* € F5 by tg= € N as follows. Let H be the bidirected

rooted tree in ’7'1\1 such that G* is the signed line graph of H. After removing the root u from H,

let U, Uz, ..., Uy, be the vertex sets of the connected components. For i € {1,...,m}, we view the
subgraph Hl = H[{u} U U;] as a bidirected tree rooted at u. Set tG= = (1,...,1n), where f; is the
number of occurrences of 7; in Hj, ..., H,,. Because no member of F5isa subgraph of any other,

one can deduce that {lGi :G*e .7-'5-’} is an antichain in (N, <), and so .7-"+ is finite by Lemma 2.9. O

3.2. Proof of Theorem 1.5 for A € [2,17)
We prove a generalization of Theorem 2.10, from which the second main theorem for A € [2, 1*) follows.
Theorem 3.9. For every A € [2, 1*), the number of connected signed graphs in G=(1) \ G*(2) is finite.

Proof of Theorem 1.5 for A € [2,A%). Using the fact that every minimal forbidden subgraph for G*(2)
has at most 10 vertices (see [31]), and Theorem 3.9, one can prove this case by following the argument
in the proof of Theorem 1.3 for A € [2,2*) on Page 9. O

Recall from Theorem 2.17(a) that a graph is a generalized line graph if and only if it is represented
by a subset of the root system D,, defined in Definition 2.16. For signed graphs, we work directly with
those that are represented by a subset of D,.

Definition 3.10 (Representation of signed graphs). Given a signed graph G* and a subset V of R", we
say that G* is represented by V if the Gram matrix of V is equal to Ag+ + 21, where Ag= is the signed
adjacency matrix of G*.

These signed graphs that are represented by a subset of D, like generalized line graphs, also have a
finite forbidden subgraph characterization.
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Figure 8. Additional minimal forbidden subgraphs for DX (up to switching equivalence).

Theorem 3.11 (Chawathe and Vijayakumar [8]). The minimal forbidden subgraphs for the family D
of signed graphs that are represented by a subset of D, are listed in Figures 5 and 8 up to switching
equivalence.

Next, generalizing Lemma 2.14, we carry out the following computation.

Lemma 3.12. For every minimal forbidden subgraph F* for the family D%, and every nonempty signed
vertex subset A* of F*, the path extensions and the clique extensions of F* satisfy

Jim A1(F*,A*,0) < =0 and  lim 4i(F*,A* Kp) < =",
—00 m—00

Moreover, the equality holds in the first inequality if and only if F* = G4 and A* € {{3*}, {4*}}.

We prove Lemma 3.12 under computer assistance in Appendix A. Lastly, the proof of Lemma 2.15
can be taken almost verbatim to show the following generalization.

Lemma 3.13. Suppose that A* is a nonempty vertex subset of a signed graph F* and A > 2. If the path
extensions of F* satisfy

{}ngo/ll(Fi,Ai,f) < =4,
then there exists m € N* such that the path-clique extensions of F* satisfy
A(F*, A%, 0, K,,) < —A forevery £ € N,
We are ready to prove Theorem 3.9.
Proof of Theorem 3.9. Suppose that A € [2, 1*). Let = denote the set of minimal forbidden subgraphs

for the family DZ. According to Theorem 3.11, the family F* is finite. Combining Lemmas 3.12 and
3.13, we choose ¢, m € N* such that for every F* € F*, the signed extension family X*(F=*, ¢, m) is
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Figure 9. A valid 3-coloring of a signed graph.

disjoint from G*(1). We know that S5 ¢ G*(2) and —K4 ¢ G*(Q). In particular, no graph in G*(1)
contains a subgraph that is switching equivalent to any member in the following family

{Ss5, —K4} U U XE(F*,€,m). (15)
FreF*

Using Lemma 3.5, we obtain N € N such that for every connected signed graph G* with more than N
vertices, if no member in (15) is switching equivalent to a subgraph of G*, then neither is any F* € F=,
and so G* is represented by a subset of D,, and is clearly in G*(2). This implies that every connected
graph in G* (1) \ G*(2) has at most N vertices. O

3.3. Proof of Theorem 1.5 for 1 > 1*

Proof of Theorem 1.5 for A > A*. If F* is a finite forbidden subgraph characterization of G*(2), then
the all-positive signed graphs in F* would form a finite forbidden subgraph characterization of G(Q),
which contradicts Theorem 1.3 for 4 > A*. O

4. Spherical two-distance sets

We introduce the definition of chromatic number for signed graphs.

Definition 4.1 (Chromatic number). A valid p-coloring of a signed graph G* is a coloring of the vertices
using p colors such that the endpoints of every negative edge receive different colors, and the endpoints
of every positive edge receive identical colors. (See Figure 9 for an example.) The chromatic number
x(G*) of a signed graph G* is the smallest p for which G* has a valid p-coloring. If G* does not have
a valid p-coloring for any p, we write y(G*) = oo.

Recall from Section 1 the following spectral graph theoretic quantity,
G|

— i . + Loty =
kp(2) _lnf{mult(/l,Gi) : x(G¥) < pand A (G7) —/l}. (16)

We say that k,(A) is achievable if it is finite and the infimum can be attained. The spectral graph
theoretic quantity k, (1) can be seen as a generalization of the spectral radius order k(1) defined by

k(1) = min{|G|: 2'(G) = 4}.
Indeed, k() = k2(2) = k(). However, the behavior of k , (1) is far more mysterious when p > 3 (see

the remark after [22, Definition 1.10] for more details). The technique developed in the current paper
enables us to certify values of k(1) whenever A < 1"
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Theorem 4.2. For every p > 3 and A < A%, there exists N € N such that

. |Gi| + + 1 +
kp(A) = —— |GT| < N, x(G7) < dA1 (GT) =24y,
p(A) mm{mult(/l,G”—') | |_ x(G¥) < pand A (G™)
and in particular, k(1) is achievable whenever it is finite. Moreover, for A = 2, there exists pg > 3
such that k,(2) = p?/(p=1)?forall p > po.

We will return to the proof of Theorem 4.2 towards the end of the subsection. The next result
constructs large spherical codes with two fixed angles.

Proposition 4.3 (Proposition 2.2 of Jiang et al. [22]). Fix -1 < <0 < a < 1. Then No g(d) > d for
every d € N*. Moreover if k,(1) < oo, where A = (1 —a)/(a — B) and p = | —a/B] + 1, then

kp, (D)d . . .
—04p5(1) ifk,(Q) is achievable,
kp (-1 B P
Nap(d) 2 { o

kIJ(/l)*l - O(d) otherwise.

Conjecture 1.8 asserts that the constructions in Proposition 4.3 are optimal up to an error sublinear
in d. A framework to bound N, g(d) from above was formulated in [22].

Definition 4.4 (Definition 5.2 of Jiang et al. [22]). Given p € N* and a family H of signed graphs, let
M), 3,(A, N) be the maximum possible value of mult(1, G*) over all signed graphs G* on at most N
vertices that do not contain any member of A as a subgraph and satisfy y(G*) < p and 1P*1(G*) < A.

Theorem 4.5 (Theorem 5.3 of Jiang et al. [22]). Fix-1 < <0< a < 1. SetA=(1-a)/(a—-p) and
p = |—a/B] + 1. Let H be a finite family of signed graphs with ' (H*) > A for each H* € H. Then

Nap(d) <d+Mp (A, Nopg(d)) +O0qpn(1).
A proper choice of the finite family # in the last theorem establishes Conjecture 1.8 for 4 < A*.
Corollary 4.6. Fix -1 < B<0<a<l.Setd=(1-a)/(e=B)and p = |-a/B]+ 1. If 1 < A%, then
kp(Dd

o L 00 p(1) ifkp(d) < oo,
d+0qp(1) otherwise.

Na,,B(d) = {

Proof. According to Corollary 1.6, we can take a finite forbidden subgraph characterization, denoted
H, of the family G¥ (1) of signed graphs with largest eigenvalue at most A. Thus M, 3 (4, N) is the
maximum possible value of mult(4, G*) over all signed graphs G* on at most N vertices that satisfy
x(G*) < pand 2'(G*) < A. Note that M, 7.(4, N) is anondecreasing function of N. We break the rest
of the proof into two cases.

Case 1: Mp 3,(A,N) = 0 for every N € N*. In other words, there is no signed graph G* that satisfy
x(G*) < p and A'(G*) = A. Thus this case corresponds to the case where kp(A) = co. According to
Proposition 4.3 and Theorem 4.5, we have Ny g(d) = d + O o g(1).

Case 2: My, 3,(A,N) > 0O for every N > dp. This case corresponds to the case where k(1) < oo.
Suppose that d > dy. Proposition 4.3 says that Ny g(d) > d, and so M, 3,(1,No g(d)) > 0. Let
G* be a signed graph with at most N, g(d) vertices that satisfy y(G*) < p, 11(G*) < A and
mult(2, G*) = M, 1(A, No g(d)). Thus

IGi| < Na/,,B(d)
mult(2, G*) = M}, 3(A, Nog(d))’

k() <
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Theorem 4.5 then implies that

kp(D)d
Nop(d) < m +04.5(1),

which, in view of Theorem 4.2 and Proposition 4.3, gives N g(d) = k,,(1)d/(k,(1)—1)+045(1). O

Lastly, we come back to the achievability of the spectral graph theoretic quantity k,(1). Actually
we may assume in the definition (16) of k(1) that G* is connected by passing to a suitable connected
component of G* in case G* is not connected. Furthermore, as we shall mainly work with the signed
graph that reverses all the edge signs of G* in (16), we redefine k(1) as follows:

Gi
kp(d) = inf{ G : G* is connected, y (-G*) < p, and 1;(G*) = —,1},

mult(-4, G*)
where —G* reverses all the edge signs of G*.
We break the proof of Theorem 4.2 into three cases 1 < 2, 1 € (2,4%),and 1 = 2.

Proof of Theorem 4.2 for A < 2. We obtain £ € N* from Lemma 2.3(p) such that Py, ¢ G=(1). Apply-
ing Lemma 3.5 to F* = K (the 1-vertex graph), k; = 4, k, = 3 and m = 2p, we obtain N € N such that
for every connected signed graph G*, if G* does not contain any subgraph that is switching equivalent
to any member in {S4, —K3} U X* (K1, ¢,2p), then G* contains at most N vertices.

It suffices to show that for every connected signed graph G* with more than N vertices, either
x(=G*) > p or G* ¢ G*(1). By our choice of N, the signed graph G* contains a subgraph that is
switching equivalent to a member in {S4, —K3} U X*(K}, £, 2p). We break the rest of the proof into two
cases.

Case 1: G* contains a subgraph that is switching equivalent to S4, —K3, or a path extension in
X*(K1,¢,2p). Since 11(S4) = 11(—K3) = =2 and every path extension in X* (K, {,2p) is switching
equivalent to Pg,, the signed graph G* is not in G*(1).

Case 2: G* contains a subgraph that is switching equivalent to a path-clique extension or a clique
extension in X*(Ky,{,2p). Observe that every path-clique extension and every clique extension in
X*(K,,{,2p) contains a subgraph that is switching equivalent to K>, and moreover every signed
graph that is switching equivalent to K5, always contains K, as a subgraph. Thus the signed graph G*
contains K, as a subgraph. Therefore —~G* contains —K 1 as a subgraph, andso x (-G*) > p+1. O

The proof of Theorem 4.2 for A € (2, 1*) follows immediately from Theorem 3.9.

Proof of Theorem 4.2 for A € (2,1*). Theorem 3.9 implies that there exists N € N such that every
connected signed graph G* with 4;(G*) = —1 has at most N vertices. o

The proof of Theorem 4.2 for A = 2 is trickier. We need the following generalization of Theorem 2.17.
This generalization was explicitly recognized by Chawathe and Vijayakumar [8, Theorem 1.1], who
attributed the result to Witt [33], and referred the reader to [7] for a combinatorial proof.

Theorem 4.7 (Witt [33] and Cameron et al. [7]). For every connected signed graph G=, the smallest
eigenvalue of G* is at least =2 if and only if G* is represented by a subset of D,, or Eg.

Recall that D% denotes the family of signed graphs that are represented by a subset of D,, for some
n € Nt where

D, = {slei+szej: eL,e==x,1<i<j< n}

We shall focus on the signed graphs in DZ . To that end, we generalize bidirected graphs to multigraphs
as follows.
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Figure 10. A proper 3-edge-coloring of a bidirected multigraph.

Definition 4.8 (Bidirected multigraph). A bidirected multigraph is a multigraph (allowing parallel
edges, but no loops) in which each vertex-edge incidence (v, ¢) has a positive or negative sign, denoted
o(v,e) € {1}, such that every pair of parallel edges e; and e, satisfies the following condition: for
one of the shared endpoints, say vy, the incidences (vy, e;) and (v}, e;) have the same sign, while for
the other shared endpoint v,, the incidences (v, 1) and (v, e2) have opposite signs. In particular,
there are at most two edges between any two vertices in a bidirected multigraph.

As we transfer relevant properties of a signed graph G* € DZ to a bidirected multigraph H, a vertex
coloring of G* will correspond to an edge coloring of H.

Definition 4.9 (Intersecting edges and proper edge colorings). As opposed to parallel edges, we say that
two edges of a bidirected multigraph intersect at a vertex v if v is the only vertex they have in common.
A proper p-edge-coloring of a bidirected multigraph Hisa coloring of the edges using p colors such
that for each pair of edges ey, e, that intersect at one vertex, say v, the edges e¢; and e, receive different
colors when the incidences (v, e1) and (v, e;) have the same sign, whereas e and e, receive identical
colors when (v, e1) and (v, e;) have opposite signs. See Figure 10 for an example.

Definition 4.10 (Associated vectors and uniform vertices). Suppose that vy, ..., v, are the vertices of
a bidirected multigraph H. For every edge e € E(H) with endpoints v; and v;, define the associated
vector of the edge e by

e:=0(vi,e)e;+o(vj,e)ej € D,.

We say that a vertex v of His uniform if the sign o (v, €) is the same for every edge e incident to v.

Proposition 4.11. There is a one-to-one correspondence between signed graphs G* in DZ and bidi-
rected multigraphs H without isolated vertices such that the following properties hold.

(1) The underlying graph of G* is the line graph of H, in particular, the number of vertices of G* is
equal to the number of edges of H.

(2) The signed graph G* is connected if and only if H is connected except when H consists of a single
pair of parallel edges.

(3) The signed graph —G* has a valid p-coloring if and only if H has a proper p-edge-coloring.

(4) The multiplicity mult(—2, G*) is equal to m — rank V, where m is the number of edges offl and
V={¢eD,:ecEH)?}

(5) The signed graph G* is all-positive if and only if every vertex of His uniform.

Proof. Suppose that G* is represented by V C D,,. Construct a bidirected multigraph H with vertices
V1,...,V, and incidence signing o as follows. For each vector in V of the form g1e; + £2¢; with
i < j, we put an edge e connecting v; and v;, and we assign o (v;,e) = &1 and o(v;,e) = &;. For
every pair of parallel edges e; and e;, which connect v; and v}, since o (v;,e1)e; + o(v;, e1)e; and
o(vi,ex)e; + o (vj,er)e; are two distinct vectors from V, their inner product satisfies

{0,£2} 3 o(vi,e1)o(vi,e2) +o(vj,e)o(v),ez) = Ag=(ey, e2) € {0, +1},

and so their inner product must be 0. Therefore H is a bona fide bidirected multigraph. We may remove
all the isolated vertices (if any) from H.

Conversely one can read off the vectors in V from H — for every edge e, include the associated vector
€ € D, in V. Furthermore one can reconstruct G* from H as follows. We identify the vertex set of
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G* with the edge set of H, and for each pair of distinct vertices ¢ and e, of G*, they are adjacent in
G* if and only if e and e; intersect at one vertex, say v, in H, and the sign of the edge eje; in G* is
o(v,e1)o (v, e2). One can then check that the reconstructed G* is indeed represented by V.

Finally, it is routine to transfer properties back and forth between G* and H. )

Now we are ready to strengthen the last case of Theorem 4.2.

Lemma 4.12. For every p > 3, every connected signed graph G* in DX with y(-G*) < p and
A1(G*) = =2 satisfies

+ 2
G (.p
mult(-2,G*) ~\p-1)~
and equality holds if and only if G is the all-positive line graph of the complete bipartite graph K, p.

Proof. According to Proposition 4.11, it suffices to show that for every connected bidirected multigraph
H with n vertices and m edges, if Hhasa proper p-edge-coloring, then

2

2
- > ( P 1) or equlvalently L where V := {E’ €D, ec E(I:i)},
D

p
m — rank V ankV = 2p -1’

and equality holds if and only if H is the complete bipartite graph K, ,, with uniform vertices.

Suppose that c: E(Ijl) — {cl, .. .,cp} is a proper p-edge-coloring of H. One can deduce from
Definition 4.9 the following properties.

(a) Fortwo edges e| and e, that intersect at a vertex v, if (v, e1) = (v, e2), then c(e}) # c(e2).
(b) For two edges e; and e, that intersect at a vertex v, if o(v, e1) # o (v, e3), then c(e;) = c(e3), and
any other edge incident to v has to be parallel to either e; or e;.

We break the rest of the proof on the upper bound of m /rank V into two cases.

Case 1: H has no parallel edges. We claim that the maximum degree of H is at most p. Suppose on
the contrary that k edges ey, ..., e pairwise intersect at a vertex v, where k > p. Because k > p > 3,
the contrapositive of (b) implies that o-(v, e;) is the same for i € {1,...,k}. Moreover (a) says that
c(er),...,c(ey) are distinct, which contradicts the assumption that ¢ is a proper p-edge-coloring. In
particular, the claim implies that

m/n < p/2. a7

Since H is connected, one can check that the set of vectors {€€eD,:ec E(T)}, where T is a
spanning tree of H, is linearly independent. Therefore rank V € {n — 1, n}. We may assume that

4<n<2p and rankV =n-1.

Indeed, in the case where n < 3, we have

n 2
mo. " 3(2)=Es§<2s L
rankV " n-1"n-1 272 57 2p-1
in the case where n > 2p, we have
m m (1<7) p/2 p/2 B p?

< < < = .
rankV = n-1 1-1/n 1-1/2p) 2p-1
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and in the case where rank V = n, we also have

2

m__mQp_ P
rankV  n 2 2p-1

Let U be the vertex set of H , and define the vertex subset
Up :={u € U: u is not uniform}.

We claim that H [U\ Up] is bipartite. To specify its bipartition, letx : U — R be a nonzero vector in the
orthogonal complement of V. For every edge e € E(H) with endpoints x| and u,, since x is orthogonal
to the vector € associated to e, we know that

o (ur,e)x(ur) + o (uz, e)x(uz) =0, (18)

hence |x(u;)| = |x(uz)|. Because H is connected, we deduce that |x(u)| is constant for every u € U,
and in particular, x (1) # 0 for every u € U. Since every vertex in U \ Uy is uniform, we partition U \ Uy
as follows:

Uy :={uecU\Uy: o(u,e)x(u) > 0 for every edge e incident to u},
U, ={ucU\Uy: o(u,e)x(u) <0 for every edge e incident to u}.

In view of (18), we deduce that H [U \ Uy] is a bipartite graph with parts U and U,, and so the number
of edges in H[U \ Up] is at most |U;||U,|. According to (b), every vertex in Uy has degree at most 2.
Thus, we can estimate m using ng := |Up| as follows:

— 2 2
m < |Up||Uz| +2|Up| < (n no) +2ng < max(nz,2n—3),

where the last inequality assumes that O < ny < n — 2. In the corner case where ngp > n — 1, we can
estimate m by

2m < (n= D) (Ui +|U2]) +2|Uo| = (n = 1) (n = no) +2np < 3(n - 1),

which implies m < 3(n — 1)/2 < 2n — 3. Therefore, we always have

m _ m
rankV = n-1

n? 2n -3\ _ 2,:‘:13 ifn <6,
4n-1 n-1/] ifn > 6,

< max( 2

4(n=1)
which, as a function of n, increases on (1, ). Asn < 2p and p > 3, the function reaches its maximum
p?/(2p —1)atn =2p, and so m/rank V < p?/(2p — 1). It is easy to see that equality holds if and only
if H is the complete bipartite graph K, , with uniform vertices.

Case 2: H has parallel edges. Let e; and e, be a pair of parallel edges. Since H is connected, there is
a spanning tree T that contains e;. One can check that the set of vectors {¢ € D,,: e € E(T) U {e3}} is
linearly independent. Therefore

rankV = n.
We next use the discharging method to bound the average degree 2m/n of H. Bach vertex v starts
with the charge d(v), that is, the degree of v. We claim that for every vertex v with d(v) > p, exactly

one of the following two situations happens.
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(I) The vertex v is uniform, that is, the sign o-(v, e) is the same for every edge e incident to v.
(II) The edges incident to v are precisely two pairs (e, e]) and (e, e)) of parallel edges satisfying
o(v,ey) # (v, ep), and in particular d(v) =4 and p = 3.

Indeed, suppose that d(v) > p, and suppose that situation (I) does not happen, that is, there exist two
edges e and e incident to v such that o(v,e;) # o (v, ez). Because d(v) > p > 3, we may further
assume that e and e, intersect at v by replacing e; or e, with another edge incident to v in case e and
ey are parallel. Because d(v) > 4, according to (b), situation (II) must happen.

To describe the discharging rules, we say that two edges e; and e, are twin if they are parallel and
c(e1) = c(ey), and for every vertex v with d(v) > p, we call v a type I vertex when (I) happens, and a
type II vertex when (II) happens.

o The first discharging rule sends 1 from every type I vertex v to each of its neighbors v’ that are
connected to v through twin edges.
o The second discharging rule sends 1/2 from every type II vertex v to each of its two neighbors.

One can further deduce from Definition 4.9 the following property of twin edges.

(c) For twin edges e] and e; incident to a vertex v, if (v, e1) # o (v, e2), then e and e, are the only
two edges incident to v.

We first consider the charge of each vertex after the first discharging rule is applied. Suppose that v
is a type I vertex, and v’ is an arbitrary vertex that is connected to v through a pair of parallel edges ¢
and e;. Since o (v, e1) = o (v, e3), it must be the case that o(v’, e1) # o (v, e2), and so v’ is not a type
I vertex. Thus v does not receive any charge from its neighbors. According to (a), among all the edges
incident to v, only the parallel ones can receive identical colors. Thus after v sends out charges to its
neighbors, its charge decreases exactly to the number of distinct colors assigned to the edges incident
to v, and so the charge of v is at most p now. Suppose in addition that e; and e, are twin edges, or in
other words, v’ receives 1 from v. According to (c), the only edges incident to v’ are e and e, and so
the charge of v’ is at most 3, which is at most p, now.

We then consider the charge of each vertex after the second discharging rule is applied. Notice that the
second discharging rule only kicks in when p = 3. Suppose that v is a type II vertex, and two pairs (ey, e])
and (e2, €}) of parallel edges connect v respectively to vy and v, such that (v, 1) # o (v, e2). Without
loss of generality, we may assume that o-(v, e;) = +1 and o (v, e;) = —1. We have the four possibilities
for o(v, e]) and o (v, e}). Once o (v, e}) and o (v, e}) are chosen, we can determine, according to (a)
and (b), which edges incident to v receive identical or distinct colors. We summarize the four possibilities
in the following figure. For each possibility, it is easy to check that v did not receive any charge from
v1 or vo when the first discharging rule was applied. Therefore the final charge of v is 3, which is

equal to p.
v v
/_\&ﬁ/\

Vi V2

V10O o] oV2
v ~_ _oHhve_ “~

We are left to decide the final charge of v; and v,. Observe that for i € {1, 2} there are, au fond, only
three possible ways, as shown below, to color e; and e; and to assign o (vi,e;) and o (v;, e;). For the
first possibility, according to (c), the only edges incident to v; are e; and e;, and so the final charge of
v; is 5/2, which is less than p. For the other two possibilities, the contrapositive of (b) implies that v;
must be uniform, and so its charge was at most p after the first discharging rule was applied. Assume for
the sake of contradiction that v; is connected to another type II vertex w through edges f; and f;. Since
v; is uniform, in view of the three possibilities above, we know that c(e;) # c(e]) and c(f;) # c(f).
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In view of (a), we know that {c(el-), c(el’.)} N {c(ﬁ), c(fl.’)} = @. Thus the four edges e;, e;, f; and f/
receive distinct colors under ¢, which contradicts the assumption that p = 3. Therefore v is the only type
II neighbor of v;, and the final charge of v; is at most p + 1/2.

Since the discharging rules preserve the total charge, the average degree 2m /n is at most the maximum
final charge, which is at most p + 1/2. Finally, we obtain that

m m _p+1/2 p?
n

=—< < . O
rank V 2 2p -1

Proof of Theorem 4.2 for A = 2. From Theorem 4.7 and Lemma 4.12, we know that k , (2) is the smaller
of the two quantities p?/(p — 1) and

Gj:
k;, = inf{m: G* is represented by a subset of Eg and y(-G*) < p}.

Because there are only finitely many signed graphs that are represented by a subset of Eg, the infimum
in the definition of k7, is in fact a minimum, hence k p(2) is achievable. Moreover k, > k*, where

Gi
k* = min{m : G* is represented by a subset of Eg}. (19)
Since k* > 1, there exists pg > 3 such that p?/(p — 1)> < k* < k,, for every p > po. O

5. Concluding remarks

Extending Smith’s classification [29] of connected graphs with spectral radius at most 2, Cvetkovi¢,
Doob and Gutman [9, Theorem 3.8] characterized the connected graphs with spectral radius in (2, 1"),

which were later explicitly classified by Brouwer and Neumaier [4]. Recall that 1’ = V2 + V5 ~ 2.05817.
Retrospectively, perhaps both Theorem 1.2 and the fact that A" is the smallest A € R such that the set
of graph spectral radii is dense in (4, o) (cf. [16, 28]) indicated that it is possible to classify connected
graphs with spectral radius at most A’.

A similar line of research was carried out for signed graphs. McKee and Smyth [24] determined all
the connected signed graphs with spectral radius at most 2 — they are switching equivalent to subgraphs
of Si4,S16, and T3, for n > 3 in Figure 11. When investigating Lehmer’s Mahler measure problem,
McKee and Smyth [25, Theorem 3] further determined the 17 connected signed graphs with spectral
radius in (2,2.019). Belardo, Cioaba, Koolen and Wang [3, Problem 3.11] raised the question on the
classification of connected signed graphs with spectral radius at most A’. This question was very recently
resolved by Wang, Dong, Hou and Li [32].

With regard to smallest eigenvalues, we would like to extend Theorem 2.17 of Cameron et al. [7]
beyond G(2).

Problem 5.1. Classify all the connected graphs with smallest eigenvalue in (—1*, —2). In particular,
classify such graphs that have sufficiently many vertices.

It is worth mentioning that Bussemaker and Neumaier [6, Theorem 2.5] showed that E; ¢ defined
in Proposition 2.1 is the only connected graph with smallest eigenvalue in [-A'(E»¢), —2), where
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S14 Trn (n 2 3)

Figure 11. Maximal connected signed graphs with spectral radius at most 2 up to switching equivalence.
The number of vertices in T»,, is 2n.

A (Ea) = 2.00659. Very recently, Acharya and Jiang [1] provided a complete solution to Problem 5.1
— there are 794 infinite families of graphs and 4,752 exceptional graphs.
We can ask the same question for signed graphs, extending Theorem 4.7 beyond G*(2).

Problem 5.2. Classify all the connected signed graphs with smallest eigenvalue in (-2, —2). In partic-
ular, classify such signed graphs that have sufficiently many vertices.

Turning to spherical two-distance sets with two fixed angles, it is plausible to establish more instances
of Conjecture 1.8 by taking advantage of y (G*) in Definition 4.4. Denote by g; (4) the family of signed
graphs G* with y(G*) < p and 1'(G*) < A. Observe that G5 (), just like G¥(2), is still closed
under taking subgraphs. We raise the following question, whose solution could possibly establish more
instances of Conjecture 1.8.

Problem 5.3. For every p € N*, determine the set of 4 € R for which G(2) has a finite forbidden
subgraph characterization.

Notice that G (1) consists of unsigned graphs only, and G5 (1) consists of signed graphs that are
switching equivalent to unsigned graphs. Thus Theorem 1.2 essentially answers Problem 5.3 when
pe{1,2}.

Finally, we point out that the proof of Theorem 4.2 for 4 = 2 actually shows that k,(2) =
p2/(p — 1)2 for every p > 1/(1 — 1/Vk*), where k* is defined as in (19). We compute k* = 15/14
hence 1/(1 — 1/Vk*) ~ 29.49. Indeed, Stani¢ noted in [30] that, up to switching equivalence, there is
a unique maximal signed graph, denoted M7, that is represented by a subset of Eg, and moreover, the
spectrum of M is {28%, (-2)!'2}. By the Cauchy interlacing theorem, every signed graph G* that is
represented by a subset of Eg satisfies 1! (G*) < 28, and thus

0= Z 2:(G*) < (=2) mult(-2, G*) +28(|G*| - mult(-2, G¥)),

which implies that [G*|/mult(-2,G*) > 15/14. Since equality holds when G* = M, we obtain
k* = 15/14. We leave the determination of k,(2) for small p as an open problem.

Problem 5.4. For every p € {3,4,...,29}, determine the value of k,(2).

A. Computer-assisted proofs

Notice that the path extensions (G4, {3*},¢) and (G4, {4*}, €) are switching equivalent to E; 43 (see
Figure 2), and so Proposition 2.1 implies that equality holds for F = G4 and A € {{3},{4}} in
Lemma 2.14, and for F* = G4 and A € {{3*}, {4*}} in Lemma 3.12.

The termination of a program that solves the following computational problem is a proof of the
strict inequalities in Lemmas 2.14 and 3.12. In fact, we strengthen these strict inequalities by replacing
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Table 1. Input

49 Gl 0312142334

G2 020412142334 G3 02030412142334

G4 0102052345 G5 0102030534

G6 0102030405 G7 011215233445

G8 020304051234 G9 010203040534

G10 01020512152345 G11 01020305121545

G12 01020304052345 G13 0102051215233445

G14 0312131415233445 G15 0205121523253435

G16 0102030405233445 G17 0205121523253545

G18 020304051215232534 G19 010203051215232534

G20 010203040512152345 G21 010203040512152325

G22 020512152324253545 G23 02121314152324343545
G24 01020304051215233445 G25 01030412131415233445
G26 01020304051213141534 G27 0102030412131415233445
G28 0102030405121314152345 G29 010203040512131415233445
G30 010203040512152324253545 G31 01020304051215232425343545
S32 011213-23 S33 02031213-23

S34 02031213-0123 S35 0102031213-23

S36 0112152345-34 S37 0304121523-01

S38 030412152345-10 S39 030412152334-01

S40 010203052345-34 S41 03041215233445-01

S42 01020512152345-34 S43 01020405121523-34

S44 02030515232545-34 S45 0203121415232545-34

S46 0203051215232545-34 S47 010203051214152345-34
S48 010203051215232545-34 S49 01020305121415232545-34

A* ~2.0198 with 101/50 = 2.02. Note that —101/50 is not an algebraic integer, and hence it cannot be
an eigenvalue of any signed graph.

Input. The first line of the input gives the number N of minimal forbidden subgraphs for DZ (up
to switching equivalence). Each of the N lines that follow represents a signed graph in Figures 5 and
8 by two strings. The first string is the label of the signed graph. The second string is of the form
ul[lJu[2]...u[2e-1]Ju[2e] possibly followed by -v[1]v[2]...v[2f-1]v[2£], which lists the pos-
itive edges u[1Ju[2],...,u[2e-1]Ju[2e] and the negative edges v[1]v[2],...,v[2f-1]v[2f].

Output. For each of the N signed graphs F*, output one line containing x y z, where x is the label of
F*,y and z are both -1 if A;(F*) < —101/50 already, otherwise y is, in all but one case, the minimum
¢ such that A; (F*, A*, ) < —101/50 for every nonempty signed vertex subset A* of F*, and z is the
minimum m such that 1, (F*, A*, K,,) < —101/50 for every nonempty signed vertex subset A* of F*.
In the exceptional case where the label of F* is G4, y is defined similarly but A* cannot be {3*} or
{4*}, and an extra * is appended to y.

Our implementation is straightforward. We iterate through the minimal forbidden subgraphs F* for
DZ. In each iteration, we compute y and z as follows. We first check whether Ap: + (101/50)7 is
positive definite — if not we output -1 -1 for y z and continue to the next iteration. We test whether
a matrix is positive definite by checking whether its leading principal minors are all positive. If the
smallest eigenvalue of F* turns out to be more than —101/50, we then go through all possible nonempty
signed vertex subsets A* of F*. For each A*, we increase ¢ from 0 until the determinant of A (g= 4+ ¢) +
(101/50)1 is negative, and we increase m from 1 until the determinant of A (p= 4+ g, ) + (101/50)1 is
negative. We record the largest £ and m when we go through A*, and output them as y and z. In the
exceptional case where the label of F* is G4, we skip the computation of £ when A* is {3*} or {4*}.
We avoid floating-point errors by representing every number as a rational number.

The actual code, written in Ruby, is available as the ancillary file maximum_extensions.rb in the
arXiv version of this paper. As our code halts, we obtain a proof of Lemmas 2.14 and 3.12. We provide
the input in Table | for the convenience of anyone who wants to program independently, and we provide
in addition the output in Table 2 for cross-check.
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Table 2. Output

Gl -1 -1 G2 -1 -1 G3 -1 -1 G4 8* 7 G5 -1 -1 G6 -1 -1
G7 6 5 G8 11 7 G9 -1 -1 Gl0 7 6 Gl1 7 6 Gl2 6 6
G13 4 4 Gl4 5 5 G15 -1 -1 Gl6 5 5 G17 -1 -1 G18 4 5
G19 6 5 G20 4 5 G21 55 G22 -1 -1 G23 6 5 G24 4 4
G25 4 4 G26 -1 -1 G27 4 4 G28 4 5 G29 4 4 G30 -1 -1
G31 4 4 S32 -1 -1 S33 -1 -1 S34 -1 -1 S35 -1 -1 S36 -1 -1
S37 6 5 S38 4 4 S39 6 5 S40 5 5 S41 4 4 S42 -1 -1
S43 4 5 S44 5 5 S45 5 5 S46 4 4 S47 4 4 S48 4 4
S49 4 4
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