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Large-scale spanwise motions in shock wave–turbulent boundary-layer interactions
over a 25◦ compression ramp at Mach 2.95 are investigated using large-eddy
simulations. Spectral proper orthogonal decomposition (SPOD) identifies coherent
structures characterised by low-frequency features and a large-scale spanwise wavelength
of O(15δ0), where δ0 is the incoming boundary-layer thickness. The dominant frequency
is at least one order of magnitude lower than that of the shock motions. These large-scale
spanwise structures are excited near the shock foot and are sustained along the separation
shock. Global stability analysis (GSA) is then employed to investigate the potential
mechanisms driving these structures. The GSA identifies a stationary three-dimensional
(3-D) mode at a wavelength of 15δ0 with a similar perturbation field, particularly near the
separation shock. Good agreement is achieved between the leading SPOD mode and the
3-D GSA mode both qualitatively and quantitatively, which indicates that global instability
is primarily responsible for the large-scale spanwise structures surrounding the shock. The
reconstructed turbulent separation bubble (TSB) using the 3-D global mode manifests as
spanwise undulations, which directly induce the spanwise rippling of the separation shock.
Furthermore, the coupled TSB motions in the streamwise and spanwise directions are
examined. The TSB oscillates in the streamwise direction while simultaneously exhibiting
spanwise undulations. The filtered wall-pressure signals indicate the dominant role of the
streamwise motions.
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1. Introduction
Shock wave–turbulent boundary-layer interactions (STBLIs) occur in a broad range
of high-speed devices, including supersonic intakes, over-expanded rocket nozzles and
transonic airfoils. The presence of low-frequency unsteadiness and large-scale flow
structures in STBLIs has been extensively reported in previous studies (Dussauge,
Dupont & Debiève 2006; Clemens & Narayanaswamy 2014).

Significant efforts have been devoted to exploring the physical origin of low-frequency
unsteadiness in STBLIs. Two main mechanisms have been proposed to explain the
unsteadiness: upstream and downstream mechanisms (Souverein et al. 2010; Clemens &
Narayanaswamy 2014). The upstream mechanism suggests that the shock motions are
influenced by the upstream turbulent boundary layer (TBL). Beresh, Clemens & Dolling
(2002) identified a relationship between the upstream TBL and the shock motions: a fuller
velocity profile causes the shock to move downstream (and vice versa). This relationship
was verified by Hou, Clemens & Dolling (2003) using particle image velocimetry (PIV)
experimentally. Later, Ganapathisubramani et al. (2007, 2009) discovered superstructures
in the upstream TBL with streamwise lengths of (40−50)δ0 using PIV and Taylor’s
hypothesis, where δ0 is the boundary-layer thickness. These superstructures were believed
to be vital in driving the low-frequency unsteadiness. Regarding the downstream mecha-
nism, much attention has been paid to connecting the dynamics of the separation bubble
with the unsteady separation shock movement. Pirozzoli & Grasso (2006) performed a
short-time direct numerical simulation in a Mach 2.25 impinging shock interaction. They
modelled the low-frequency unsteadiness as acoustic resonance similar to Rossiter modes
(Rossiter 1964) in cavity flows. Piponniau et al. (2009) investigated the relation between
the shock position and the turbulent separation bubble (TSB) size based on conditionally
averaged PIV velocity fields of an impinging shock interaction. They found that the shock
moves upstream when the TSB size is large and downstream when the TSB size is small.
They proposed a self-sustained model in which mass loss due to fluid entrainment is
recharged by the flapping of the TSB. Subsequently, Touber & Sandham (2011) developed
a mathematical model to illustrate the low-frequency motions, similar to the Plotkin model
(Plotkin 1975). They argued that the low-frequency unsteadiness is an intrinsic property
but needs to be excited by extrinsic low-frequency disturbances. Grilli et al. (2012) and
Pasquariello, Hickel & Adams (2017) also numerically verified the intrinsic mode in a
compression ramp and impinging shock interaction, respectively. Recently, Hao (2023)
drew a similar conclusion based on Reynolds-averaged Navier–Stokes (RANS) equations
and linear stability analysis. Clemens & Narayanaswamy (2014) summarised that both
upstream and downstream mechanisms may work in shock-induced turbulent separated
flows, whereas the dominant mechanism may depend on the interaction strengths.

Although much work has been done to understand the nominally two-dimensional (2-D)
dynamics of STBLIs, three-dimensional (3-D) effects associated with TSBs have received
less attention, particularly concerning large-scale spanwise structures. These spanwise
structures may lead to streaks of low and high heat flux distributions. Two types of
large-scale spanwise structures have been reported: Görtler-like vortices downstream of
the interaction region and large-scale spanwise motions within the interaction region.
Generally, the scale of Görtler-like vortices is comparable to the boundary-layer thickness,
while the latter’s size is comparable to that of the separation region.

Streamwise vortices downstream of the interaction region have been widely reported in
turbulent flows by numerical simulations (Loginov, Adams & Zheltovodov 2006; Priebe
et al. 2016; Pasquariello et al. 2017) and experiments (Schuelein & Trofimov 2011;
Li et al. 2022). These streamwise vortices, often referred to as Görtler-like vortices,
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exhibit wavelengths of approximately 2δ0 and are primarily caused by centrifugal effects.
Floryan (1991) suggested that the Görtler-like vortices are influenced by disturbances in
the upstream TBL and classified them as either steady or unsteady. The steady pattern
means these vortices are visible in the time-averaged flow, typically represented by the
contour of the mean skin-friction coefficient. For turbulent separated flows, both steady
(Loginov et al. 2006; Grilli, Hickel & Adams 2013; Tong et al. 2017; Helm & Martín
2021) and unsteady (Priebe et al. 2016; Pasquariello et al. 2017; Li et al. 2022) patterns
have been reported. However, there is no comprehensive research to elucidate the essential
reasons for these different patterns, to the best of the authors’ knowledge.

For the large-scale spanwise structures within the interaction region, Jenquin, Johnson &
Narayanaswamy (2023) observed large-scale spanwise pressure undulations within the
intermittent region at Mach 2.5 using 2-D surface pressure field imaging. They found
that the shear layer events induced the upstream-propagating pressure perturbations in
the vicinity of the reattachment region, which influenced the streamwise motions of the
separation shock. However, the authors clearly noted that the sources of spanwise rippling
in the separation shock could not be identified due to limitations in the signal-to-noise
ratio. Ceci et al. (2023, 2024) conducted a series of non-swept and swept impinging
shock interactions in wide computational domains. Their results revealed that spanwise
structures near the mean separation line are proportional to the separation bubble size
Lsep, with a characteristic spanwise wavelength of λz ≈ 2Lsep. They proposed that these
spanwise structures were responsible for the rippling of the separation line, behaving as
large-scale spanwise corrugations. For non-swept STBLIs, they regarded these structures
as the signatures of 2-D breathing motions. Liu et al. (2024) investigated multiscale
spanwise unsteadiness in a sidewall-confined 25◦ compression ramp interaction. Their
modal analysis revealed that low-frequency unsteadiness in the intermittent region consists
of quasi-2-D streamwise oscillations and spanwise unsteadiness. While the streamwise
oscillations correspond to the 2-D shock motions, the origins of the large-scale spanwise
unsteadiness remained unknown. Similar large-scale structures associated with TSBs
have also been reported in incompressible flows by Dau et al. (2023) and Borgmann
et al. (2024). They observed spanwise structures with a wavelength of 0.8Lsep using
spectral proper orthogonal decomposition (SPOD) of PIV data. Despite the differences
in flow conditions and reported spanwise wavelengths, these studies consistently indicate
the potential existence of large-scale spanwise structures associated with TSBs. These
structures may provide a basis for understanding and modelling the 3-D motions of TSBs
in nominally 2-D STBLIs.

Regarding the origins of the two types of large-scale spanwise structures: (i) Görtler-
like vortices, which primarily arise from streamline concave curvature effects induced by
TSBs; (ii) the recently reported structures within the intermittent region, whose physical
explanation remains an open question. As suggested by Liu et al. (2024), stability analysis
methods may provide valuable insights to the origins of the latter spanwise structures.
Stability analysis methods, including resolvent analysis (McKeon & Sharma 2010) and
global stability analysis (GSA), have recently gained popularity for uncovering linear
mechanisms in turbulent flows. Resolvent analysis has been widely used to investigate
dominant coherent structures in turbulent jets and channel flows (McKeon & Sharma 2010;
Luhar, Sharma & McKeon 2014; Schmidt et al. 2018; Abreu et al. 2020), while two recent
studies by Hao (2023) and Cura et al. (2024) effectively applied it to model low-frequency
bubble dynamics. Global stability analysis has also been successfully utilised to analyse
low-frequency shock motions in STBLIs (Touber & Sandham 2009; Pirozzoli et al. 2010;
Nichols et al. 2017; Hao 2023). Notably, a comparison of the resolvent analysis and GSA
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Figure 1. Computational domain and boundary conditions.

results reveals a modal resonance mechanism that drives low-frequency bubble breathing
in both supersonic and low-speed flows (Hao 2023; Cura et al. 2024).

The objective of this study is to identify the mechanisms driving large-scale spanwise
motions and to characterise the role of these motions in the dynamics of STBLIs.
Specifically, this work focuses on three main aims: (i) validate the existence of these large-
scale spanwise structures using modal analysis based on the large-eddy simulation (LES)
database, as discussed in § 3.2; (ii) examine the origins of these structures through stability
analysis, as detailed in § 4.1; (iii) analyse the 3-D motions of the TSB using pressure
fluctuations in the interaction region, as discussed in § 4.2.

2. Computational set-up and numerical approach

2.1. Computational set-up
Figure 1 depicts the compression ramp configuration with a ramp angle of 25◦. Throughout
the paper, x , y and z denote the Cartesian coordinates, with the origin located at the
corner. The domain sizes are as follows: Lx1 = 39.6δ0, Lx2 = 17.6δ0, L y = 7.3δ0 and
Lz = 15δ0, where δ0 = 2.27 mm is the TBL thickness at the reference position x0. Stations
x0 − x5 are located at x = −17.5δ0, −4.9δ0, −2δ0, 0, δ0 and 3.5δ0, respectively. The
computational mesh consists of 1321 × 136 × 682 grid points in the streamwise, wall-
normal and spanwise directions. The mesh resolution is �x+ ≈ 20, �z+ ≈ 10, and �y+

w ≈
1.1 (at the reference station x0), which meets the grid requirement of LES (Choi & Moin
2012).

The free-stream parameters match those of the experiment conducted by Zheltovodov
et al. (1990), with density ρ∞ = 0.314 kg m−3, temperature T∞ = 108 K, Mach number
M∞ = 2.95 and Reynolds number Reδ0 = 63500. Implicit LES are performed using an
in-house multi-block parallel finite-volume solver named PHAROS (Hao, Wen & Wang
2019; Hao & Wen 2020; Hao et al. 2021). The inviscid fluxes are solved by means
of the low-dissipative sixth-order kinetic preserving scheme (Pirozzoli 2010) and the
Ausm+-up scheme (Liou 2006) with the fifth-order weighted essentially non-oscillatory
reconstruction (Jiang & Shu 1996), using a switch based on the Jameson sensor (Jameson,
Schmidt & Turkel 1981). The viscous terms are computed using the second-order central
scheme. The third-order low-storage Runge–Kutta scheme is applied for time integration
with a time step of 8 ns. The total simulation time is approximately 12.7 ms. Flow samples
are collected for a duration of 11.2 ms (3024δ0/u∞) once the separation zone is fully
established, which occurs after approximately 1.5 ms. Here, u∞ represents the free-stream
velocity. A perfect gas assumption is applied, with a Prandtl number of 0.72, a specific heat
ratio of 1.4 and a turbulent Prandtl number of 0.9. The molecular viscosity μ is obtained
from Sutherland’s law.
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Boundary conditions are also listed in the figure. The extended digital filter technique
(Touber & Sandham 2009; Ceci et al. 2022) is employed to introduce inflow turbulence.
A supersonic outflow boundary condition is applied to the outlet boundary. A sponge zone
approximately 2δ0 thick is placed at the far-field boundary to eliminate any reflections
(Mani 2012). An isothermal no-slip boundary condition is implemented at the wall, with
a fixed wall temperature Tw = 275.4 K, consistent with Loginov et al. (2006). Periodic
boundary conditions are used in the spanwise directions.

2.2. Global stability analysis
Global stability analysis is based on the assumption of a triple decomposition of unsteady
flow into three parts: mean flow, coherent structures and turbulent (or incoherent)
fluctuations (Reynolds & Hussain 1972), given as

Q(x, y, z, t) = Q2−D(x, y) + Q′(x, y, z, t) + Q′,t (x, y, z, t), (2.1)

where Q is the vector of conservative variables, Q2−D is the 2-D Favre-averaged base
flow, Q′ is the 3-D perturbation (coherent) and Q′,t is the vector of turbulent fluctuations
(incoherent). Substituting (2.1) into the Navier–Stokes (N-S) equations and neglecting
higher-order terms leads to

∂ Q′

∂t
=A( Q2−D) Q′, (2.2)

where A is the linearised N-S operator. The terms involving the incoherent term Q′,t in
the operator A are modelled by the eddy viscosity μt . This modelling approach, however,
is valid when a sufficient scale separation exists between coherent structures and turbulent
fluctuations, as demonstrated by Reynolds & Hussain (1972) and Reau & Tumin (2002).
The perturbation Q′ is written in the following modal form:

Q′(x, y, z, t) = Q̂(x, y)exp[iβz − i(ωr + iωi )t], (2.3)

where Q̂ is the 2-D eigenfunction, β is the spanwise wavenumber, ωr is the angular
frequency and ωi is the growth rate. The flow is globally stable for ωi < 0 and unstable
for ωi > 0. Substituting (2.3) into (2.2) leads to an eigenvalue problem, which is solved
using the implicitly restarted Arnoldi method implemented in ARPACK (Sorensen et al.
1996) at a given wavenumber β. The key point in solving the problem is constructing and
discretising the operator A, which consists of inviscid and viscous Jacobians. To improve
the accuracy, the inviscid fluxes are computed using the modified Steger–Warming scheme
near discontinuities and a central scheme in smooth regions, as detected by a modified
Ducros sensor (Hendrickson, Kartha & Candler 2018). The viscous fluxes are obtained
using a second-order central difference scheme. Boundary conditions are consistent with
those in figure 1, except for the left boundary, which is set as the far field. Influences of
grid resolution and domain size in GSA are verified in Appendix A.

Based on the Boussinesq approximation, μt can be calculated using a least-squares
method (Lilly 1992), which has been widely applied in turbulent flows (Raiesi, Piomelli &
Pollard 2011; Abe et al. 2012; Coleman, Rumsey & Spalart 2018; Fan et al. 2024).
Furthermore, the frozen eddy-viscosity strategy (Carini et al. 2017) is employed. The
GSA solver for laminar flows (Hao et al. 2021) is used, adopting the effective viscosity
μeff = μt + μ.
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δ0 (mm)−1 δ∗ (mm)−1 θ (mm)−1 C f × 103

Zheltovodov et al. (1990) 2.27 0.795 0.150 1.79
Loginov et al. (2006) 2.27 0.840 0.161 2.05
Present LES 2.27 0.783 0.161 2.05

Table 1. Summary of mean-flow parameters for the TBL at the reference position x0. δ0, the nominal thickness
of the TBL, based on 0.99u∞; δ∗, the displacement thickness of the TBL; θ , the momentum thickness of the
TBL; C f , the skin-friction coefficient.

2.3. Spectral proper orthogonal decomposition
Spectral proper orthogonal decomposition (Lumley 2007) is utilised to identify coherent
structures of turbulent flows. Similar to ”standard” POD (Lumley 2007), SPOD aims to
find an optimal orthogonal basis for flow data. However, SPOD modes evolve both in time
and space. According to Towne, Schmidt & Colonius (2018), SPOD modes combine the
features of both POD and dynamic mode decomposition, allowing for the identification of
optimal coherent structures.

In this study, we follow the procedures outlined by Towne et al. (2018) and utilise their
code to seek SPOD modes. First, the discrete Fourier transform is applied to the LES
database, combining Welch’s method (Welch 1967) and a standard Hamming window to
minimise spectral leakage. This step transforms the flow data in time space into frequency
space ˆ(·). Then, the cross-spectral density tensor S can be constructed at each frequency,
given as

S = ÛÛ
∗
, (2.4)

where Û is a data matrix containing flow data at the same frequency, and (·)∗ is the
Hermitian transpose. The next step is to solve an eigenvalue problem to obtain the
eigenvalues Λ and the corresponding SPOD modes Ψ̂ at each frequency, given as

SW Ψ̂ = Ψ̂ Λ, (2.5)

where W is the weight matrix. For compressible flows, the compressible energy form
defined by Chu (1965) is applied to W . The SPOD modes are sorted by decreasing energy,
i.e. λ1

f k � λ2
f k � . . .� λnblk

f k . The subscript f k represents the kth frequency, while the
superscript nblk indicates the mode number. The first SPOD mode is referred to as the
optimal mode because it is optimal in terms of energy. The second and subsequent modes
are referred to as suboptimal modes.

3. Large-eddy simulation results

3.1. Instantaneous and mean flow features
Table 1 presents key properties of the TBL at the reference station x0. Our results align
well with previous experimental data (Zheltovodov et al. 1990) and LES results (Loginov
et al. 2006). Figure 2(a) shows the Van Driest transformed mean velocity profile (Van
Driest 1951) at x0, where

y+ = ρ̄wuτ y

μ̄w

, U+
V D = 1

uτ

∫ ū

0

√
ρ̄

ρ̄w

dū. (3.1)
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Figure 2. (a) Van Driest transformed mean velocity profile and (b) distributions of mean qualities of the TBL
at the reference station x0.

In these expressions, ρ̄w is the mean wall density, μ̄w is the mean wall viscosity, uτ is
the friction velocity and ρ̄ and ū represent the mean density and streamwise velocity,
respectively. Good agreement is achieved between the transformed velocity profile with
the classical solutions U+

V D = y+ and U+
V D = (1/0.41)lny+ + 5.1, as well as with the

experimental data (Zheltovodov et al. 1990). Figure 2(b) presents a comparison of the
distributions of mean density ρ̄, velocity ū and temperature T̄ with the experimental
results, normalised by the free-stream parameters ρ∞, u∞ and T∞. The computed density
and velocity profiles show good agreement with the experimental data, while minor
discrepancies are noted in the temperature profile.

The density-scaled root-mean-square (r.m.s.) intensities
√

ρ̄/ρ̄w(·)′rms/uτ (where (·)
denotes streamwise velocity u, vertical velocity v and spanwise velocity w) of our results
are compared with direct numerical simulations (DNS) results of incompressible and
compressible TBLs (Wu & Moin 2009; Bernardini & Pirozzoli 2011) in figure 3. In the
inner layer, the density-scaled r.m.s. values fall within two DNS databases. In the outer
layer, the decreasing trends are also similar, with the velocity fluctuations approaching
zero at y = 1.4δ0.

Figure 4 compares the distributions of the skin-friction coefficient C f and the pressure
coefficient C p of our results with the experimental and LES results (Loginov et al. 2006).
The values of C f and C p are defined by

C f = 2τw

ρ∞u2∞
, C p = 2 p̄w

ρ∞u2∞
, (3.2)

where τw and p̄w are the averaged wall shear stress and wall pressure, respectively. On
the flat plate, the two LES results for C f are nearly identical but slightly higher than
the experimental data. Near the separation point, the skin friction decreases suddenly to
negative values and recovers after reattachment. The separation and reattachment points
of the previous LES results (Loginov et al. 2006) are located further downstream, while
the separation lengths Lsep are both 7δ0. As noted by Loginov et al. (2006), the minor
discrepancy between the LES and experimental results in C f distributions is influenced by
two main factors: (i) experimental uncertainty (6 %−10 %) in skin-friction measurements
(Borisov et al. 1993, 1999), and (ii) localised discrepancies stemming from the unspecified
spatial alignment of experimental data relative to convergence–divergence-line pairs.
Furthermore, 3-D flow relieving effects in experiments tend to decrease the separation
length. Regarding C p, all three distributions exhibit similar increases near the separation
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Figure 3. Density-scaled r.m.s.
√

ρ̄/ρ̄w(·)′rms/uτ (where (·) denotes streamwise velocity u, vertical velocity v

and spanwise velocity w) at the reference station x0 in inner layer (a) and outer layer (b). Wu & Moin (2009),
incompressible DNS data; Bernardini & Pirozzoli (2011), compressible DNS data at Reθ = 4300.
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quantities are averaged over time and spanwise direction.
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u/u∞ from −0.4 to 0.4. The iso-surface value of Q is set to 5 % of its maximum. The contour in the x-y plane
represents the density distribution.

and reattachment points. Overall, the present LES results agree well with previous LES
results and experimental data. The current grid resolutions are adequate.

Instantaneous 3-D vortical structures identified using the Q criterion are shown in
figure 5, along with the density contour in the x-y plane. Vortices are primarily generated
near the shock foot and propagate downstream over the TSB. These vortices are in
the form of streamwise vortices with a spanwise wavelength of approximately 2δ0,
referred to as Görtler-like vortices. Zhuang et al. (2017) also observed these Görtler-
like vortices immediately downstream of the separation shock using a Rayleigh scattering
technique. No apparent large-scale spanwise structures (generally larger than the Görtler-
like vortices) are observed.

Spectral analysis is performed on wall-pressure signals. Welch’s method (Welch 1967)
is employed for spectral estimation, using a standard Hamming window to weight the
data. The signals are divided into three segments with a 50 % overlap and the length of
each segment is approximately 1500δ0/u∞ (214Lsep/u∞). Figure 6 shows the spanwise-
averaged spectrum of wall pressure as a function of Strouhal number St = f Lsep/u∞
along the streamwise direction. The mean separation line, corner and reattachment line
are marked in the figure.

Upstream of the interaction region, the contour presents a broadband bump centred
around St = 5 − 7, with no significant low-frequency content. This broadband bump
corresponds to energetic scales in the undisturbed TBL. In the intermittent region, the
energy is primarily concentrated in the low-frequency region, with a peak frequency of
St = 0.042 and an intermittent length of approximately 2δ0. The peak frequency falls
within the range of St = 0.02−0.05 (Dussauge et al. 2006). Downstream of the interaction
region, the energetic scales shift back to the high-frequency zone, although some low-
frequency structures persist. Interestingly, Jenquin et al. (2023) identified a prominent
peak in the frequency range St = 0.2−0.4 near the mean reattachment line, they concluded
that it is the signature of Görtler-like structures. However, this peak is not evident in our
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Figure 6. Contour of weighted power spectral density (WPSD) of wall-pressure signals. The dashed line
indicates the mean separation point xs , the dashed dotted line denotes the mean reattachment point xr and
the solid line marks the corner.

spectrum and in other simulations (Touber & Sandham 2009; Grilli et al. 2012; Priebe &
Martín 2012; Pasquariello et al. 2017; Ceci et al. 2023), which needs further investigations
in future studies.

3.2. Evidence of large-scale spanwise motions

3.2.1. Proper orthogonal decomposition results
Space-only POD is performed on wall pressure to examine potential spanwise structures
surrounding the mean separation line. Figure 7(a,b) shows the leading POD mode and
the mode energy distribution of the first 100 modes. Spanwise structures near the mean
separation line can be observed in the mode, characterised by a large spanwise wavelength
of the order of O(15δ0). According to Ceci et al. (2023, 2024), the spanwise structures
are signatures of the rippling of the separation line. Interestingly, O(15δ0)-scale structures
with opposing signs emerge near the mean reattachment line. The correlation between the
structures near the mean separation and reattachment lines indicates these structures may
be associated with motions of the whole TSB. Most of the energy is captured by numerous
high-order modes, with the leading mode occupying only approximately 1.2 % of the total
energy. The low energy ratio may be attributed to extra acoustic disturbances arising at
the inlet (Ceci et al. 2022). The cumulative energy of the first 100 POD modes accounts
for 30 % of the total energy. Consequently, the motions surrounding the mean separation
line are multimodally coupled and cannot be simply reconstructed using only the first few
energetic modes.

A low-pass filter is commonly used to investigate the low-frequency dynamics in
STBLIs, as noted by Priebe & Martín (2012) and Tong et al. (2017). Therefore, we apply a
low-pass filter with a cutoff frequency Stcut = 0.05 to the raw wall pressure to isolate low-
frequency fluctuations. This cutoff frequency is around the characteristic frequency band
of the shock motions. Figure 7(c) displays the leading POD mode derived from the filtered
wall pressure. Compared with the unfiltered leading POD mode, the spanwise structures
near the mean separation and reattachment lines are nearly identical in shape and position,
which indicates that the large-scale spanwise structures are primarily associated with the
low-frequency dynamics. Figure 7(d) shows the corresponding energy distribution for the
first 100 modes and the cumulative energy. The leading mode captures 25 % of the total
energy, exhibiting a low-rank feature. The first 40 POD modes collectively account for
nearly 100 % of the total energy. It is clear that the low-pass filter effectively removes high-
frequency components while preserving low-frequency large-scale structures. The leading
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Figure 7. (a) Leading POD mode and (b) corresponding energy distribution of the first 100 POD modes
from the raw wall-pressure signals; (c) filtered (low-pass filter, Stcut = 0.05) leading POD mode and (d) its
associated energy distribution of the first 100 POD modes. The dashed lines in (a,c) indicate the mean
separation point xs , while the dash dot lines represent the mean reattachment point xr .

POD modes shown in figure 7(a,c) resemble those observed in the non-swept case noted
by Ceci et al. (2023, 2024).

3.2.2. Spectral proper orthogonal decomposition results
Spectral proper orthogonal decomposition is then applied to extract coherent structures
based on the LES data. A segment length of 1500δ0/u∞ with a 90 % overlap is used,
leading to 11 realisations. A standard Hamming window is applied to minimise spectral
leakage. It is noted that the results are nearly identical when using a Hann window or
a relatively short segment of 1300δ0/u∞. Figure 8(a) presents the normalised SPOD
eigenvalues at station x3 (x = 0, at the corner). The energy decreases with increasing
frequency across different modes. The dominant frequency for mode 1 is the lowest
resolvable frequency, St = 0.0046. This frequency is almost an order of magnitude lower
than the quasi-2-D shock motion frequency St = 0.02 − 0.05 (Dussauge et al. 2006). The
normalised eigenvalues of the SPOD modes at St = 0.0046 are depicted in figure 8(b).
The optimal mode is significantly more energetic than the other, capturing 61 % of the
total energy. This indicates the presence of low-rank features in the dynamical system in
the spanwise direction at this frequency.

Figure 9 depicts three velocity components of the leading SPOD mode at St = 0.0046 at
station x3. From the streamwise velocity perturbation û, two types of coherent structures
located at different wall-normal locations are observed: large-scale spanwise structures
of O(15δ0) surrounding the separation shock (referred to as the shock component) and
structures near the wall (referred to as the near-wall component). The near-wall component
seems to contain structures with spanwise wavelengths of both O(15δ0) and O(2δ0),
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Figure 9. Real parts of (a) û, (b) v̂ and (c) ŵ of the leading SPOD mode at St = 0.0046 at station x3. The
black dashed lines indicate the separation shock locations and yn is the wall-normal distance.

while the large-scale structures are modulated by the Görtler-like vortices immediately
downstream of separation point, as shown in figure 5. Similar modulation effects between
structures of different scales inside TSBs have also been documented by Borgmann et al.
(2024). For the vertical velocity perturbation v̂, most fluctuations are attributed to the
shock component, while the near-wall component can be barely seen. The near-wall
structures remain evident in the spanwise velocity perturbation ŵ, whereas the shock
component is not present around the separation shock but is located beneath it.

Figure 10 (a,c,e) presents the leading SPOD modes at stations x1 − x5 at St = 0.0046,
along with the iso-lines of ū/u∞ = 0.99 that mark the separation shock. At station
x1 (within the intermittent region), the two components merge into a common large-
scale spanwise structure. Downstream of x1, the coherent structures at different stations
resemble those in figure 9 and maintain the two components. The shock components
remain of the order of 15δ0 in the spanwise direction, suggesting the presence of
persistent large-scale structures. The near-wall components remain modulated by Görtler-
like structure up to x5, where modulation ceases and Görtler-like vortices become
dominant. These near-wall structures at x5 in figure 10 (a) resemble the turbulent Görtler
vortices reported by Zhang, Hao & Uy (2025), which are characterised by counter-rotating
pairs.

A clear streamwise evolution of the two types of structures is shown in figure 10(b,d, f ),
which presents the leading SPOD mode in the mid-span plane at St = 0.0046. The
perturbation û is excited near the shock foot and develops into the shock and near-wall
components. The two components correspond to the two components in the spanwise
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Figure 10. Real parts of (a,b) û, (c,d) v̂ and (e, f ) ŵ of the leading SPOD modes at St = 0.0046. (a,c,e)
Results for the y-z planes at stations x1 − x5; (b,d, f ) results for the mid-span plane. The mean streamwise
velocity contours on the x-y plane through z/δ0 = 0 are shown in (a,c,e), along with black dashed lines
indicating the iso-lines of ū/u∞ = 0.99. The streamlines in (b,d, f ) pass through the point (xs , 0.01δ0).

direction shown in figure 10(a,c,e). The near-wall component continues along both the
separation bubble and the reattached boundary layer. In contrast, the shock component
persists solely along the shock. Furthermore, û keeps nearly the same sign throughout the
computational domain. Most of v̂ is concentrated along the separation shock, with only
slight fluctuations occurring close to the wall. The sign of ŵ changes inside the separation
bubble.
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Figure 11. Real part of the leading SPOD mode of wall pressure at St = 0.0046. The dashed line indicates the
mean separation point xs , the dashed dot line denotes the mean reattachment point xr .

Figure 11 presents the real part of the leading SPOD mode of wall pressure at
St = 0.0046. As expected, the large-scale spanwise structures are observed surrounding
the mean separation line, consistent with the leading POD modes in figures 7(a,c).
Furthermore, similar large-scale spanwise structures with opposite signs also appear near
the mean reattachment point xr , though these are less organised than those near xs . This
irregularity is likely caused by the near-wall Görtler-like vortices, which modulate the
large-scale spanwise structures near xr . The corresponding relationship between structures
at xs and xr indicates that the spanwise rippling may be associated with the entire
TSB motions. Combined with the observation of shock rippling at various streamwise
locations, this leads to the following hypothesis: the TSB motions induce the rippling
of the separation line, which, in turn, causes the rippling of the separation shock. The
dynamics of this system is elaborated later.

All in all, the SPOD method successfully extracts the low-frequency coherent structures
in the spanwise direction which are excited near the shock foot and persist along the
separation shock. These structures manifest as spanwise rippling, with wavelengths of the
order of O(15δ0).

3.3. Influence of spanwise width
To confirm that the captured 15δ0 (2Lsep) structures are not artefacts arising from spanwise
domain constraints, a larger domain width of Lz = 30δ0 (≈ 4Lsep) is adopted. A coarser
mesh is used in the x and z directions to save the computational cost, with resolutions of
�x+ ≈ 30, and �z+ ≈ 15. The total physical time is reduced to 1300δ0/u∞.

The SPOD analysis is performed on y-z planes at different streamwise stations and on
wall-pressure signals. The segment length is 650δ0/u∞, with a 90 % overlap. Figure 12
shows the leading SPOD modes at the lowest frequency St = 0.0096 at stations x2, x3, x4
and x5. These modes consist of a near-wall component and a large-scale shock component,
resembling the leading modes in figure 10(a,c). Two pairs of large-scale spanwise
structures surrounding the separation shock are observed at different stations, with a
wavelength approximately λz = 15δ0 (≈ 2Lsep). The wavelength and mode shape align
well with those captured in the relatively narrow computational domain (15δ0), confirming
domain-size independence.

Furthermore, figure 13 presents the leading SPOD mode at St = 0.0096 for wall-
pressure fluctuations. Consistent large-scale spanwise structures are observed around the
mean separation line, accompanied by opposing-sign structures near the reattachment line.
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Figure 13. Real part of the leading SPOD mode of wall pressure at St = 0.0096 from the 30δ0 case. The
dashed line indicates the mean separation point xs , the dashed dot line denotes the mean reattachment
point xr .

The spatial coherence between the leading SPOD modes across streamwise stations
and wall-pressure data confirms that these structures are physical features rather than
numerical artefacts.

4. Discussion

4.1. Origins of large-scale spanwise motions
A GSA is conducted to investigate potential global modes of the dynamical system
associated with the TSB. Figure 14 shows the most unstable modes at different
wavenumbers βδ0. As the wavenumber increases, the growth rates rise to the peak
at βδ0 = 0.43 and subsequently decline, becoming stable when βδ0 exceeds 1.1. The
wavelength of the peak roughly corresponds to λz ≈ 15δ0, which justifies the choice of Lz .
Furthermore, all these modes are stationary with ωr = 0. Zero-frequency globally unstable
modes indicate that small perturbations will grow exponentially without oscillations until
nonlinear saturation.
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Note that the GSA modes are normalised using the L2 norm. Consequently, only
the relative spatial distributions within each mode are physically meaningful. The
eigenfunctions of the 2-D mode (referred to as the shock mode) is shown in figure 15(a).
The streamwise velocity perturbation û is predominantly concentrated around the shock
foot and the separation shock. Downstream of the shock foot, û diminishes and becomes
barely visible within the separation bubble. Nichols et al. (2017) and Hao (2023) captured
similar 2-D shock modes that were thought to contribute to low-frequency shock motions,
but this mode is not the focus of our study.

Of particular interest is the most unstable 3-D mode (referred to as the bubble mode)
shown in figure 15(b−c). Two-component structures appear in this mode: one along
the separation shock and another near the wall. Unlike the shock mode, û remains at a
high level within the separation bubble and downstream of the corner. Additionally, û
maintains the same sign throughout the computational domain, while ŵ exhibits sign
reversal beneath the shear layer. The characteristics of both the shock mode and the bubble
mode align well with previous RANS-based GSA results (Hao 2023), which indicate that
the linear dynamics of TSBs are largely insensitive to turbulence modelling.

Qualitatively, the eigenfunction of the bubble mode resembles the leading SPOD
mode of the mid-span plane presented in figure 10(b, f ), exhibiting a similar streamwise
evolution of the two components. The quantitative comparison of the two modes is made
using their projection, given by

γ =
∣∣∣‖ Ψ̂ SPOD(x, y), Q̂GSA(x, y) ‖E

∣∣∣
‖ Ψ̂SPOD(x, y) ‖E × ‖ Q̂GSA(x, y) ‖E

, (4.1)
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Figure 16. The projection coefficient between the leading SPOD mode of the mid-span plane at St = 0.0046
and the global modes over various spanwise wavenumbers. The red dashed line indicates the local maximum
βδ0 = 0.96.

where Ψ̂SPOD(x, y) represents the leading SPOD mode, while Q̂GSA(x, y) denote the
GSA modes over several spanwise wavenumbers. The notation ‖ · ‖E denotes the Chu
norm (Chu 1965). A value of γ = 0 indicates orthogonality between the two modes, while
γ = 1 signifies perfect alignment (Abreu et al. 2020). It should be noted that Ψ̂SPOD(x, y)

aggregates structures at different wavenumbers implicitly, whereas Q̂GSA(x, y) represents
structures at a specific wavenumber. Consequently, the projection can illustrate the
similarities between the two types of modes and identify the wavenumber of dominant
structures through the peak γ (βθ0). Cura et al. (2024) applied a similar projection strategy
to compare the optimal SPOD mode (derived from planar PIV data) with resolvent modes
at different wavenumbers.

Figure 16 depicts the projection coefficient as a function of spanwise wavenumbers.
The projection coefficient increases to a peak at βδ0 = 0.96 and then decreases as βδ0
continues to increase. The peak value is γ = 0.88, which indicates a strong alignment
between the two modes. The small discrepancy in the peak wavenumber primarily arises
from the different wavelengths of the near-wall component from GSA and SPOD. The
GSA models perturbations as 15δ0 coherent structures for both shock and near-wall
components, while the near-wall Görtler-like vortices are approximately 2δ0 in SPOD.
The difference in wavelength leads to a decrease in the peak value of γ and an increase in
the wavenumber of the peak γ .

The spanwise structures of the two components from SPOD and GSA are then
examined. For ease of comparison, figure 17 presents a comparison of the leading SPOD
modes shown in figure 10 and the reconstructed 3-D perturbations using the bubble mode
at the same stations x1 − x5. Qualitatively, the shock components of the bubble mode
resemble the coherent structures surrounding the separation shock in the SPOD modes,
especially in terms of origin and development path. However, the near-wall component
of the perturbations from the bubble mode is not fully reflected in the leading SPOD
modes. The centrifugal effects dominate over the global instability near the wall, leading
to the modulating effects of the Görtler-like structures on the near-wall spanwise mode of
O(15δ0). The effects of global instability are concentrated mainly near the shock foot and
along the separation shock. It should be noted that the biased shock components observed
in SPOD may be caused by nonlinear effects. Moreover, the bubble mode is stationary,
indicating an extremely low characteristic frequency, which is also a key feature of the
leading SPOD modes, as previously mentioned.
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Figure 17. Comparisons of the leading SPOD modes (a,c,e) at St = 0.0046 and reconstructed 3-D
perturbations (b,d, f ) using the bubble mode at stations x1 − x5.

Figure 18 compares the distributions of the spanwise-averaged Chu energy density along
the wall-normal direction for the leading SPOD modes at St = 0.0046 and the bubble
mode at stations x2, x3 and x4. The Chu energy density is used to represent fluctuating
energy distribution along the wall-normal direction, defined as

Chu energy density = ρ̄|u′|2 + T̄

ρ̄γ M∞2 (ρ′)2 + ρ̄

(γ − 1)γ M∞2T̄
(T ′)2, (4.2)

where u = [u, v, w]T . The trends of Chu energy density at different stations are similar,
with a first peak close to the wall and a second peak near the shock. The shock
components from SPOD and GSA are almost identical, while the near-wall components
show significant differences in both strength and position, particularly at station x4. These
discrepancies are attributed to the modulation effects of the Görtler-like structures. Despite
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Figure 19. Reconstructed perturbed flow field using the bubble mode from (2.1), superimposed with
wall-pressure fluctuations. The y-z slices are located at stations x2, x3 and x4, with black lines denoting
u/u∞ = 0.

the near-wall differences, the similarities near the separation shock indicate that large-scale
spanwise structures captured by SPOD are consistent with those detected by GSA.

Qualitative and quantitative comparisons are made between GSA and SPOD results to
demonstrate that the spanwise rippling captured by SPOD primarily arise from global
instability. Recall the hypothesis given in § 3.2.2 that the spanwise undulations of the
TSB are suspected to be the direct cause of the rippling. To model the spanwise motions
of the TSB influenced by global instability, we reconstruct a perturbation field Q′
superimposed with the 2-D mean flow Q2−D, as illustrated in figure 19. The perturbation
field Q′ is reconstructed using (2.3). The time factor is simplified as a constant by setting
|ŵ|max/u∞ = 0.05, which is appropriate for the TSB shape.

At different stations, the TSB size varies in the spanwise direction, exhibiting peaks and
valleys. These spanwise variations are attributed to the TSB undulations, consistent with
the reconstruction by Borgmann et al. (2024) using a low-order model. The dynamical
system associated with the TSB is summarised as follows. As the TSB oscillates in the
streamwise direction, it also experiences spanwise undulations due to global instability.
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M∞ Reδ0 Interaction type Spanwise scale

Ceci et al. (2023) 2.28 15800 Shock impingement 2Lsep
Dau et al. (2023) 0.09 10000 Hump 0.8Lsep
Jenquin et al. (2023) 2.5 185500 Compression ramp –
Liu et al. (2024) 2.83 98600 Compression ramp –
Ceci et al. (2024) 5.0 55474 Shock impingement 2Lsep
Present case 2.95 63500 Compression ramp 2Lsep

Table 2. Summary of studies reporting large-scale spanwise structures. The symbol – indicates the observations
of large-scale spanwise pressure fluctuations near the mean separation line in these studies; however,
quantitative characterisation of the most energetic spanwise structures (e.g. dominant scales) caused by TSB
motions is not given explicitly.

These undulations affect the separation shock, causing its motion to become spanwise-
dependent rather than purely two-dimensional. As a result, the shock undergoes similar
spanwise undulations, which correspond to the large-scale spanwise structures identified
using SPOD in figure 10. The rippling serves as an intuitive representation of the
spanwise undulations of the TSB. Furthermore, the opposite-sign large-scale wall-pressure
fluctuations are consistent with the POD modes in figure 7(a,c) and leading SPOD mode
in figure 11.

Flow conditions for the present case and prior studies reporting large-scale spanwise
structures are summarised in table 2. The free-stream parameters and interaction types
vary across these cases, spanning subsonic to hypersonic regimes. While spanwise
undulations of TSBs have been observed in reported cases, other works report no such
modes. Three potential factors may explain this discrepancy. First, many prior STBLI
investigations employed narrow spanwise domains (typically 4δ0−6δ0), which may inade-
quately resolve large-scale spanwise motions. Second, the emergence of these motions may
critically depend on free-stream parameters such as Mach number, temperature ratio and
Reynolds number. Third, the separation scales (or the interaction strengths) may influence
the manifestation of such spanwise modes. For example, the linear bubble dynamics
may dominate in strongly separated flows, whereas other convective linear dynamics
may prevail in weakly separated flows. Our present study focuses solely on one case;
therefore, we do not assert generality. Future work will systematically investigate the
influence of parameters, including the Mach number, Reynolds number, temperature ratio
and interaction strength, to determine whether such bubble modes are intrinsic.

4.2. Coupling of spanwise unsteadiness and quasi-2-D streamwise motions
In previous STBLI studies focusing on the low-frequency unsteadiness in 2-D interactions
(e.g. compression ramp and shock impingement), the shock motions are usually modelled
as nominally 2-D structures, as summarised by Clemens & Narayanaswamy (2014). The
standard methodology for analysing the 2-D dynamics is to average flow variables in
the spanwise direction, as implemented by Grilli et al. (2012), Priebe & Martín (2012),
Priebe et al. (2016) and Pasquariello et al. (2017). However, this quasi-2-D framework
inherently excludes low-frequency spanwise unsteadiness, which remains unaccounted for
in such simplified models. Here, the spanwise unsteadiness and streamwise oscillations
are investigated to characterise their interplay, providing insights into 3-D bubble motions.

Given that the characteristic frequency of quasi-2-D shock motions lies around St =
0.02−0.05 (Dussauge et al. 2006), and the spanwise undulations of TSBs are characterised
by a very low-frequency dynamics, the range St = 0.0−0.05 can encompass both types
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Figure 20. (a)Four wall-pressure signals at xs : spanwise averaged (unfiltered), frequency filtered and spanwise
averaged (Stcut = 0.05), frequency-filtered mid-span (Stcut = 0.05) and frequency- and wavelength-filtered
mid-span (Stcut = 0.05, λz = 15δ0). The black arrows indicate some opposite motions between the filtered
spanwise-averaged and filtered mid-span signals. (b) Normalised r.m.s. of the frequency-filtered spanwise-
averaged pressure signal (blue) and three frequency-filtered wall-pressure signals within the intermittent region
at z/δ0 = 3.75 (dash dot), 7.5 (red solid) and 11.25 (dash dot dot). The black dashed line in (a) denotes the
mean value pw/p∞ = 1.3 at xs , and in (b) indicates xs .

of oscillations. To capture these dynamics, a low-pass filter with a cutoff frequency
Stcut = 0.05 is employed to the raw and spanwise-averaged wall-pressure signals. Since
the streamwise oscillations of the shock foot result in sharp increases or decreases in wall
pressure near xs , the instantaneous pressure fluctuations can effectively represent the shock
motions. Importantly, these shock motions are indicative of the TSB motions. Therefore,
the instantaneous pressure fluctuations also serve as a marker for the TSB motions.

Figure 20(a) compares four wall-pressure signals at the location xs : the spanwise-
averaged signal, the frequency-filtered spanwise-averaged signal (Stcut = 0.05), the
frequency-filtered mid-span signal (Stcut = 0.05) and the frequency- and wavelength-
filtered mid-span signal (Stcut = 0.05, λz = 15δ0). Wavelength filtering is achieved by
performing a discrete Fourier transform on the frequency-filtered spanwise pressure
distribution to isolate the specific λz = 15δ0 component. The mid-span signal is then
reconstructed from this wavelength-specific mode. The frequency-filtered spanwise-
averaged signal primarily reflects quasi-2-D oscillations, while the frequency-filtered
mid-span signal captures a combination of both spanwise and streamwise motions. The
trends of both frequency-filtered signals are similar most of the time, which indicates
that the streamwise shock motions remain dominant. However, at certain moments, the
two pressure signals diverge and appear on opposite sides of the line pw/p∞ = 1.3,
as marked in the black arrows in the figure. The frequency- and spanwise-filtered
mid-span signal almost overlaps with the frequency-filtered signal, which indicates the
dominant contribution of the 15δ0 spanwise undulations to the marked opposing pressure
fluctuations. Figure 20(b) shows a comparison between the r.m.s. values of the frequency-
filtered spanwise-averaged signal and three frequency-filtered signals at z/δ0 = 3.75, 7.5
and 11.25. The peak r.m.s. value from the filtered spanwise-averaged signal is lower than
those from the three filtered signals, accounting for approximately 66 %, 74 % and 58 %
of their respective peak r.m.s. values. The mean ratio of the r.m.s. at xs in the spanwise
direction is approximately 65 %. This high percentage highlights the dominant role of
streamwise motions in the 3-D shock dynamics.
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Figure 21. Time sequence of filtered wall-pressure fluctuations, normalised by the free-stream pressure, over a
duration of 1.92 ms: (a) t = 0.128 ms, (b) t = 0.768 ms, (c) t = 1.408 ms and (d) t = 2.048 ms. The black lines
denote the filtered iso-lines of C f = 0, while the green dashed lines represent the filtered spanwise-averaged
iso-lines of C f = 0. The cutoff frequency is Stcut = 0.05.

Figure 21 presents the time sequence of filtered wall-pressure fluctuations over a
duration of 1.92 ms (long-time evolution is shown in the Supplementary movie). The
filtered iso-lines of C f = 0 (marked in black solid lines) and the filtered spanwise-
averaged iso-lines of C f = 0 (marked in green dashed lines) indicate 3-D large-scale
spanwise undulations and quasi-2-D motions of the TSB, respectively. At different time
instants, the black lines contract and expand accompanying the green lines simultaneously
in the streamwise direction, which implies that both quasi-2-D breathing and spanwise
rippling are active. Furthermore, the black lines surround the green lines, with the
spanwise rippling corresponding to significant large-scale spanwise pressure fluctuations
of approximately 15δ0. These fluctuations indicate that, although the TSB oscillates
integrally in the streamwise direction, the spanwise rippling still causes locally opposing
pressure fluctuations, as shown in figure 20(a). The maximum streamwise distance
between the two lines at t = 2.048 ms is approximately 0.5δ0. This value is appreciable
and occupies approximately 25 % of the intermittent region. These large-scale pressure
fluctuations are consistent with previous experimental studies (Jenquin et al. 2023; Liu
et al. 2024) and are responsible for the modes in figure 7(a,c) and figure 11.

Similarly, dominant large-scale spanwise pressure fluctuations persist around the 2-D
reattachment lines. These fluctuations exhibit opposite signs relative to those near the
separation lines, consistent with both the optimal SPOD mode shown in figure 11 and
the GSA bubble mode in figure 19. The irregularities of the filtered reattachment lines and
the small-scale streamwise streaks of pressure fluctuations are attributed to Görtler-like
structures.

Our results demonstrate that streamwise oscillations and spanwise undulations of the
TSB coexist, with streamwise motions dominating over spanwise motions. However, the

1018 A2-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
49

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10496


Journal of Fluid Mechanics

observed 65 % dominance ratio may not hold universally. Future studies will therefore
investigate additional configurations to further quantify the roles of the two motions.

One may argue that the large-scale spanwise structures of the TSB are caused by
the Görtler-like vortices. However, our results demonstrated that the GSA bubble mode
primarily drives the large-scale spanwise oscillations of the TSB. The influence of the
Görtler-like vortices on the large-scale spanwise structures near the reattachment lines is
limited at St < 0.05, manifesting only as slight spanwise irregularities. In contrast, such
irregularities are absent in the structures near the separation line. Moreover, perturbations
originating from the Görtler-like structures can propagate both upstream and downstream,
potentially influencing the shock system. However, at different streamwise locations, the
shock components exhibit similar structures and spanwise wavelengths, suggesting that
the Görtler-like structures have minimal impact on the large-scale spanwise structures.
Overall, there is no direct evidence to suggest that the spanwise motions of the TSB are
driven by Görtler-like vortices.

5. Conclusions
Large-scale spanwise structures in STBLIs over a 25◦ compression ramp at Mach 2.95 are
investigated using LES. The leading POD mode of wall pressure within the intermittent
region exhibits a distinct spanwise corrugation centred on the mean separation line, with
a wavelength of O(15δ0) or O(2Lsep). When a low-pass filter with Stcut = 0.05 is applied,
the leading POD mode retains a similar structure and wavelength, which indicates that it
is primarily associated with low-frequency motions. The SPOD method is employed to
extract coherent structures in the spanwise direction from the LES database. At different
streamwise stations, the leading SPOD modes of the y-z planes are characterised by low-
frequency features. These modes consist of two components: the shock components with
large-scale spanwise structures and the near-wall components. The shock components are
excited near the shock foot and sustain along the separation shock, while the near-wall
structures seem to be modulated by the Görtler-like vortices.

The GSA identifies a 3-D stationary bubble mode at a spanwise wavelength of 15δ0.
Qualitative and quantitative comparisons between the leading SPOD modes and the GSA
bubble mode are conducted. Qualitatively, the streamwise evolution and spanwise scales
of the shock components observed in the SPOD modes closely resemble those predicted
by the bubble mode. Quantitatively, the peak projection coefficient between the leading
SPOD mode in the mid-span plane and the bubble mode is as high as 0.88, which strongly
indicates a high degree of alignment between the two modes. Furthermore, the Chu
energy density distribution trends at different streamwise stations derived from the leading
SPOD modes align well with those from the bubble mode, particularly near the separation
shock. The qualitative and quantitative evidence significantly suggest that global instability
is primarily responsible for the observed large-scale spanwise coherent structures. The
reconstructed TSB using the 3-D bubble mode exhibits spanwise undulations, which
directly cause the rippling of the shock. The dynamical system of the TSB can be
summarised as follows: global instability induces spanwise undulations of the TSB, which
in turn excite large-scale spanwise structures along the separation shock.

The coupling of shock motions in the spanwise and streamwise directions is also
examined using filtered wall-pressure signals with a cutoff frequency Stcut = 0.05. Filtered
signals from the three spanwise stations highlight the dominant role of streamwise
oscillations. The peak r.m.s. value of the filtered spanwise-averaged signals accounts for
65 % of the peak r.m.s. value in the full spanwise-direction-filtered signals. The contours
of pressure fluctuations superimposed with the iso-lines of C f = 0 at different time
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Figure 22. (a) Schematic of two computational domains in GSA and (b) growth rates as a function of βδ0.
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Figure 23. (a) Comparison of eigenvalues at βδ0 = 0.43 of two grids. Real parts of (b) û and (c) ŵ at
βδ0 = 0.43 from the fine grid.

instants reveal the TSB simultaneously undergoing streamwise oscillations and spanwise
undulations. Overall, the present study provides new insights into 3-D effects of TSBs in
nominally 2-D STBLIs.

However, our study focuses solely on one single case and cannot indicate the generality
of the captured structures. Hence, the 65 % dominance ratio only holds in the current case
and may vary in other cases under different parameters or interaction types. Future studies
will quantify the contributions of these two types of motions to the overall TSBs’ dynamics
in different cases.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10496.
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Appendix A. Verification of GSA
Figure 22 examines the effects of domain size on GSA mode growth rates. A relatively
small domain serves as the new base flow for GSA, as illustrated in figure 22(a). The
growth rates overlap between both domains and share a common peak at βδ0 = 0.43. These
results confirm that the current domain size is sufficiently large for stability analysis.

The influence of grid resolution on GSA is then investigated. Results from the original
grid ( 1321 × 136) and the fine grid (1821 × 173) share a common peak at βδ0 = 0.43.
Figure 23(a) compares the eigenvalues of the two meshes at βδ0 = 0.43. The eigenvalues
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from the fine mesh are slightly larger than those from the original mesh. Nonetheless,
the obtained eigenfunctions shown in figure 23(b−c) exhibit the same features as those
in figure 15 at βδ0 = 0.43. These similarities demonstrate that both meshes effectively
capture the key dynamical features of the TSB.
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