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ASYMPTOTIC PROPERTIES
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Detecting multiple structural breaks at unknown dates is a central challenge in time-
series econometrics. Step-indicator saturation (SIS) addresses this challenge during
model selection, and we develop its asymptotic theory for tuning parameter choice.
We study its frequency gauge—the false detection rate—and show it is consistent
and asymptotically normal. Simulations suggest that a smaller gauge minimizes bias
in post-selection regression estimates. For the small gauge situation, we develop a
complementary Poisson theory. We compare the local power of SIS to detect shifts
with that of Andrews’ break test. We find that SIS excels when breaks are near the
sample end or closely spaced. An application to U.K. labor productivity reveals a
growth slowdown after the 2008 financial crisis.

1. INTRODUCTION

Step-indicator saturation (SIS), suggested by Castle et al. (2015), is a model selec-
tion algorithm designed to address location shifts in time series without restrictions
on their number, date, and distance from each other or sample boundaries. In its
most general form, the initial specification has a k-variate regressor x;, which can
be of the exogenous, (trend-)stationary, or random walk type, and as many step
indicators as observations:

yi:,B,Xi-f-Z(Sjl(ii/‘)—l—&‘,‘ fOfizl,...,I’l, (1)
Jj=1

where the parameters satisfy 8 € RF and (8,,...,8,) € R". Thus, level shifts are
deterministic. If the number of §; # 0 and their location j were small and known,
the model could be estimated by least squares. In practice, the nature of location
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shifts is often unknown, so the general specification (1) must be estimated through
repeated use of least squares over subsets of step-indicators. For each j, there is a
binary choice of whether §; = 0 or not. Taken together, this gives 2" relevant sub-
models. An exhaustive search is computationally infeasible and must be replaced
by a good approximation. A block-search algorithm has been proposed by Doornik
(2009) based on Hoover and Perez (1999) and Hendry and Krolzig (2005). Such
algorithms depend on a tuning parameter, which can be chosen indirectly by
controlling the type I error. Castle et al. (2015) measured type I errors in terms
of the frequency of falsely detected shifts, which we will refer to as the gauge.
We develop an asymptotic theory to understand the gauge of SIS. Research on
the related impulse-indicator saturation (IIS) algorithm indicates that an analysis
of the Doornik (2009) algorithm would be difficult. A better starting point would
be to analyze the exhaustive algorithm or a simplified algorithm as done for IIS
in Berenguer-Rico, Johansen, and Nielsen (2023) and in Johansen and Nielsen
(2009, 2016b), respectively. Here, we develop an asymptotic theory to understand
the gauge of simplified versions of SIS, and show that for conformable values of
the gauge, the procedure maintains power to detect shifts.

Location shifts are a common phenomenon in observed time series (Perron,
1989; Andrews, 1993; Bai and Perron, 1998), and a failure to address them
can affect model selection probabilities of variables (Castle and Hendry, 2014),
distort parameter estimation (Hendry and Mizon, 2011), and result in forecast
failure (Clements and Hendry, 1998). The growing importance of SIS in tackling
location shifts is reflected in its applications in fields as varied as economics
(Chuffart and Hooper, 2019; Bernstein and Martinez, 202 1; Pellini, 2021), climate
science (Raggad, 2018; Pretis et al., 2018b; Koch et al., 2022; O’Callaghan, Yau,
and Hepburn, 2022), and public health (Doornik, Castle, and Hendry, 2022).
However, despite its popularity, no study of its asymptotic properties exists.
This study fills the gap using theoretical insights to shed light on four pivotal
areas for practitioners: First, the tuning parameter (gauge) can be closely aligned
with the investigator’s preferences without detailed knowledge of the regressor
type. Second, the bias in post-selection regression estimates can be addressed by
choosing a small gauge, or switching to the Poisson theory for the gauge when it
is vanishing. Third, SIS can detect minor shifts after a short period of upheaval
and maintains power near the end of the sample. Fourth, SIS has weak regularity
conditions for the regressors.

In this article, we study the split-half SIS algorithm. This is a simplified version
of the SIS algorithm as implemented in tools like EViews (2020), gets in R
(Pretis, Reade, and Sucarrat, 2018a; Sucarrat, 2020), and Autometrics in Oxmetrics
(Doornik, 2009). Simulations by Castle et al. (2015) indicate that the general SIS
has the same gauge properties as split-half SIS, but detects a broader range of shifts
with greater power. Split-half SIS splits the sample into two subsets with #; and
n —nj observations. It then applies stylized SIS to both subsamples. Stylized SIS,
when applied to the second subsample, excludes the first set of step-indicators. For
example, it is imposed that §; = 0 for j < n; in (1). The model is then estimated
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by OLS to determine which of the coefficients §; for j > n; are significant. An
analysis of split-half SIS can shed light on more general versions of the algorithm
and provide mathematical tools for examining related algorithms.

Split-half SIS results in n decisions about the inclusion of step-indicators 1;<;y.
This method requires setting a tuning parameter: a common cut-off ¢ for selecting
step-indicators. Drawing inspiration from classical test theory, we aim to determine
the cut-off ¢ indirectly from a measure of type I error. Classical testing problems
focus on single-decision problems in which the critical value—or the cut-off—is
chosen from the size of the test, which is the probability of a type I error of falsely
rejecting the hypothesis. In multiple-decision problems, there are many alternative
ways of measuring type I error. We study the gauge, which is based on a count of
the false rejections. The gauge is also referred to as the expected error rate (Miller,
1981) or the per-comparison error rate (Dudoit and van der Laan, 2010). A concept
similar to the gauge was introduced by Hoover and Perez (1999). The term gauge
originates in Hendry and Santos (2010) and Castle, Doornik, and Hendry (2011)
(see also Hendry and Doornik, 2014, p. 122).

When comparing the gauge to alternative measures of type I error in the context
of multiple-decision testing problems, we note that the gauge is more amenable to
asymptotic analysis. These alternatives include the probability error rate (Miller,
1981; Dudoit and van der Laan, 2010), also called the family-wise error rate
(Dudoit and van der Laan, 2010), and the false discovery rate (Benjamini and
Hochberg, 1995). The probability error rate is the probability of at least one false
detection. It requires a detailed assessment of the dependence of the individual
decisions. In contrast, the gauge ignores this dependence structure. The false
discovery rate is the expected value of the proportion of type I errors among the
rejected hypotheses. Under our null hypothesis of no location shift in the data-
generating process, the false discovery rate equals unity.

To formalize the notion of the gauge, consider two equivalent approaches to
formulate stylized SIS. We introduced this algorithm by imposing §; = 0 forj < n;
in (1), estimating the model by least squares and then investigating the significance
of the remaining step-indicators. An equivalent alternative formulation is to first
regress y; on x; and an intercept for i < n;. This yields least squares estimators
B 1 and 812. These estimators will be consistent if there are no location shifts in the
first subsample. We then compute the scaled residuals in the second subsample. As
pointed out by Castle et al. (2015) and as shown in Section 2, we can then inspect
the forward differenced residuals for outliers. That is, if there are n observations
of (1), compute

(Vyi—BiVx)/V261  fori=ni+1,...,n—1, Q)
with Vy; = y; — yi11, and where the ~/2-factor arises since the variance of Ve;
is twice the variance of &;. A location shift is declared if the absolute value of

the forward differenced residual exceeds a cut-off, c. The frequency of declared
location shifts in the stylized SIS algorithm is the frequency gauge:
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-1
. 1 3
Yn= n—ns—1 Z I(IV)’i—ﬁiVXi\Zﬁ51€)‘ &)
1 i=n1+1

If the data-generating process has no location shifts, then all declarations of shifts
are false, so that y, is the average type I error. We show the consistency

Pu >y =P(|Vei| = V200), @)

for a wide range of time-series regressors x;, including stationary and non-
stationary regressors. We can then choose the cut-off ¢ from the limiting gauge y.
In simulations, we confirm the consistency result and provide some further
analysis. In our considerations of the gauge, we focus on the situation where
the data-generating process has no location shifts although the concept could
be adapted to the situation where there are shifts (Hendry and Doornik, 2014;
Johansen and Nielsen, 2016c, p. 122).

The consistency of the frequency gauge for a variety of time-series regressors
shows that it is possible to control the type I error of SIS without prior knowledge
of the detailed time-series structure. The regressors do have a second-order effect
on this consistency result, which we investigate through an asymptotic expansion
of the normalized frequency gauge n'/?(y, — y). We find that it is asymptotically
zero mean normal, but its variance depends on the correlation structure of Vux;
and Ve;. Numerical approximations confirm that the asymptotic variance of the
frequency gauge is strictly larger for split-half SIS than for split-half IIS. In contrast
to split-half IIS, the asymptotic variance of split-half SIS depends on the temporal
persistence of the time series. A small gauge substantially reduces its asymptotic
variance.

A challenge to the asymptotic analysis of the frequency gauge for SIS is the
temporal and cross-sectional correlation due to the forward differencing of x; and
g; in (2). For instance, in the autoregression x,; = px; 4+ &; with independent &;
and x;, we get that Ve; = &; — €;41 is temporally and cross-sectionally correlated
with Vx; = x; —x;41 = (1 — p)x; — ¢;. In the related asymptotic analysis of IIS
by Hendry, Johansen, and Santos (2008) and Johansen and Nielsen (2009, 2013,
20164, 2016b), the use of impulse-indicators of the form 1 avoids the temporal
and cross-sectional correlation structure. Therefore, IIS can be analyzed using
a version of the empirical process theory of Koul and Ossiander (1994) (see
also Giraitis, Koul, and Surgailis, 2012). Our analysis of the SIS overcomes the
correlation problem by combining the empirical process theory with mixingale
theory of McLeish (1977).

A simulation study shows that split-half SIS can introduce a bias in the updated
estimates for 8 in (1) that does not vanish asymptotically. The bias is largest when
regressors are lagged dependent variables with an autoregressive coefficient close
to unity, and when the frequency gauge is large. For split-half SIS, the empirical
setting after the selection over the step-indicators resembles an unbalanced panel
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regression with a small temporal and large cross-sectional range. Each interval in
between two consecutive retained step-indicators can be interpreted as another i in
the panel that introduces a new individual fixed effect. The incidental parameter
problem arises because with a nonzero frequency gauge y, the number of breaks
is approximately ny, so that the number of observations in each interval is on
average 1/y and therefore finite even as the sample size increases. This matches
the situation of a panel data model with large cross-sectional dimension and finite
time-series dimension, in which biases arise for the dynamic parameter estimators.
We conjecture that the bias is due to a combination of the incidental parameter
problem (Lancaster, 2000, 2002) and the correlation of the retained step-indicators
with the innovations (Arellano and Bond, 1991).

We suggest two different approaches to address the bias in the estimation of
B under split-half SIS. First, simulations suggest investigators to use a small
frequency gauge, as a smaller frequency gauge is associated with a smaller bias.
In a sample of 100 observations, we would recommend a frequency gauge of 1%
if one would normally conduct inference at the 5% level. Second, we develop a
theory for shrinking the gauge with increasing sample sizes. For this, we consider
the absolute gauge

n—1

Fo= D Lyvymfivuizvasion ®)

i=ny+1

for increasing sequences of the cut-off ¢, that satisfy, for some A > 0,
P(|Ve;| > x/iocn) =A/n. (6)

As the ¢, increases with the sample size, the absolute gauge is smaller than the
frequency gauge as the sample grows. By modifying the theory of Johansen and
Nielsen (2016b), we show that the absolute gauge I, is asymptotically Poisson
distributed. The asymptotic result is the same whether the regressors are stationary
or non-stationary. In the proof, we encounter the same dependence issue between
Vx; and Ve;. We address this using the Poisson limit theorem of Chen (1975).
An alternative to SIS is the Bai and Perron (1998) procedure. It builds on the
Andrews (1993) breaks test and provides estimates for timing and location of
breaks. Comparing the power properties of SIS and the Bai—Perron procedure is
challenging due to the inherent complexity of both methods. Instead, we compare
stylized SIS with the Andrews test. We consider two types of scenarios: first,
scenarios where the Andrews test is consistent, with power approaching unity
as the sample size increases, while the stylized SIS has power less than unity;
second, scenarios where the stylized SIS achieves power approaching unity as the
parameter magnitude increases, while the Andrews test has only trivial power. On
balance, we find that the Andrews test is preferable if there is one break or two
well-separated breaks in the middle of the sample. SIS is preferable for a break
near the end of the sample. Such a break is important to discover and address in
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forecasting contexts (Clements and Hendry, 1998). In turn, SIS is also preferable if
two close breaks offset each other, for instance, if the growth rate moves from one
level to a slightly different level through a short period of upheavel (see Castle,
Hendry, and Martinez (2023) and the empirical illustration). We argue that the
results carry over to a comparison with the Bai—Perron procedure.

The proof of the local power results uses convergence on the D[0, 1] space
of discontinuous functions. We handle the one-break case by the Skorokhod
(1956) Ji-metric discussed by Billingsley (1968). However, in order to establish
convergence in the two-close-breaks case, we use Skorokhod’s M metric in line
with Whitt (2002).

Our theory for simplified versions of SIS requires knowledge of the innovation
distribution. The normal distribution is the standard choice. Just as in a standard
regression, the normality assumption will be testable from the residuals once the
model has been fitted. With a finite cut-off, the standard cumulant-based normality
test may have to be adjusted. Indeed, this is the case when applying outlier
detection with finite cut-off (Berenguer-Rico and Nielsen, 2023). In contrast,
standard heteroscedasticity tests remain valid after outlier detection with finite cut-
off (Berenguer-Rico and Wilms, 2021). It should be noted that other procedures,
such as that of Andrews (1993) only require distributional assumptions that
are sufficient to apply a Central Limit Theorem. In turn, SIS requires weaker
assumptions to the regressors.

We apply our split-half SIS theory to analyze the U.K. labor productivity from
1980 to 2021. While there is a growing consensus about the decline of productivity
growth in the United Kingdom (Chadha, 2022), a simple autoregressive model is
not rejected by the standard diagnostic tests. This indicates that location shifts
are not always obvious to the investigator. Using a 1% gauge, the split-half SIS
algorithm identified multiple shifts in U.K. productivity growth: 0.56% before
2000, 0.37% up to 2008 and 0.04% up to 2020. These findings also illustrate the
ability of SIS to find minor shifts around episodes of upheaval, in our case, the
2008 financial crisis and the 2020 COVID pandemic.

Section 2 outlines the model and the SIS algorithm. Sections 3 and 4 present
the asymptotic results on the frequency gauge for the stylized and split-half SIS,
respectively, while Section 5 presents the Poisson theory for the absolute gauge.
Power analysis is found in Section 6. Simulation results are given in Section 7. An
empirical illustration follows in Section 8. Section 9 concludes. Proofs are given
in an online appendix.

2. MODEL AND ALGORITHMS

We begin by presenting the linear regression model to which we apply the SIS
algorithm. Subsequently, we introduce two simplified versions of the SIS: stylized
SIS and split-half SIS. Lastly, given that the decision rules on the retaining
of step-indicators pertain to differenced innovations, we discuss their notable
properties.
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2.1. The Model

SIS aims to detect location shifts within the model:
yi=u+pB'xi+e fori=1,...,n. @)

By saturating with step-indicators of the type 1<, we obtain equation (1) with
8, = . In practice, one would expect that only a few of the §; parameters in (1) are
nonzero, but their number and location are unknown. The regressor x; is a k-vector,
which does not include an intercept. It can include stationary, trend-stationary,
and random walk variables, but excludes explosive regressors. The innovations
&; are independent, identically, distributed with a continuous distribution that is
known up to the scale. Further, the innovations are independent of current and past
regressors x; for j < i. The coefficient of the intercept is identified when Ee; = 0,
but the asymptotic theory does not depend on this constraint.

As a model selection algorithm, the idea of SIS is grounded in the general-
to-specific approach to regressor selection of Hoover and Perez (1999). Its core
mechanism revolves around iterative backward elimination: in each step, a regres-
sion is estimated, the least significant regressor is eliminated, and the smaller
model is re-estimated. The iteration stops when the fit of the model deteriorates
too much. While a single backward elimination has poor properties for correlated
regressors, Hoover and Perez (1999) found that multiple backward eliminations
with different starting points have better properties in recovering the original data-
generating process. Algorithms, such as PcGets (Hendry and Krolzig, 2005) and
Autometrics (Doornik, 2009) adopt this multi-path approach but search over many
more paths to get closer to evaluating all possible subsets of regressors. Automet-
rics allows situations with more regressors than observations by searching over
blocks of regressors. This permits saturation with indicators for each observation
as in IIS and SIS. The saturation approach allows a simultaneous search over
regressors x; and indicator variables. The simultaneous search is helpful when there
is a high sample correlation between regressors and indicator variables (see Hendry
and Doornik, 2014). SIS is implemented in the R package gets (Pretis et al., 2018a;
Sucarrat, 2020), in EViews (2020), and within a structural time-series model in
Marczak and Proietti (2016). It is worth noting that Autometrics employs indicators
of the form 1(;<; as here, while gets utilizes 1. A related algorithm based on
sensitivity analysis was presented by Becker, Paruolo, and Saltelli (2021).

2.2. Stylized SIS Estimation and Forward Differencing

The simplest block search algorithm is stylized SIS. We apply it to (1). It begins by
dividing the observations into two parts: the first #; observations and the remaining
ny = n —n; observations. For the first half, we keep only an intercept and otherwise
drop the indicator variables. This gives the model equation

yi = B'xi+ ulizn) + Z 8ili<y +&i fori=1,...,n ®)
j=n1+1
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Stylized SIS declares an outlier at observation £ for n; < £ < n if the ¢-statistic for
8¢ = 0 exceeds a cut-off c. Subsequently, we analyze the gauge, which is the count
of falsely detected level shifts. We will show that when the cut-off ¢ is chosen as
the two-sided 1 — y quantile of the standard normal distribution, the frequency
gauge approaches y.

Itis useful to rewrite equation (8) to get a simple expression for the decision rule.
Since the second half-sample is saturated with indicators, that half will have perfect
fit. The consequence of this observation is best seen through reparameterization.
Multiply x; by unity, written as a sum of indicators for the first half (i < n,) and for
the impulses (i = £) for n; < £ < n. Decompose the indicator for (i <j) likewise.
This gives

n

n n J
Yizﬂ/xil(i§n1)+(“+ > 5/)1(i§n1)+ Yo Bila=o+ D & Y li=o+en

j=n1+1 {=n;+1 j=n1+1 {=n;+1

Interchanging the summation order in the last -term gives the reparameterization

Vi = B'Xiliizny) +V1(i<n,) + Z Neli=e), )
l=n1+1
where
n ny
v=pd Yo 8 me=put) s (10)
j=ni+1 =t

As the indicators are orthogonal in (9), the least squares estimators for 8, v, o>

are found by standard multiple regression on x; and the intercept using the first
sample, while 5, is estimated by 7, = y,. Solving the expression for , in (10) for
8¢ shows that

~

8¢ = (e —B'xe) = (Rest — Bxen1) = Vye—B'Vxe  form <€<n, (1D

while 8, = Ny — ;§’x,l =y, — B/x,,. The ¢-statistics for §, = 0 are &/(a)g&ﬁ), where

-1
o =1+ (Vx) {2 =T -] v,

kfnl

with % =n; 'Y x; and where n; < € < n.

Figure 1 illustrates stylized SIS. Panels (a) and (b) show data generated with and
without a location shift. The data-generating processes are, respectively, y; = €; and
vi =4 x 1(>75) + ¢;, with standard normal errors ;. The sample size is n = 100.
The horizontal lines show the expected values of the observations. In panel (b), the
vertical line at i = 75 indicates the level shift.

Panels (c) and (d) show the results of applying stylized SIS to a first-order
autoregressive model. The vertical line at i = 50 indicates the split. The first half-
sample is used to estimate B, u,02. Panels (c) and (d) show the z-statistics for
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F1GURE 1. Illustration of the stylized SIS algorithm.

testing §; = 0 for 50 < £ < 100. The horizontal lines indicate the cut-offs with
frequency gauge of 5% (dotted line) and 1% (dashed line). For panel (d), we
see that stylized SIS picks up the level shift and some large errors. This is the
usual trade-off between errors of types I and II. The true location shift is correctly
identified using both gauge values, while level shifts are only falsely detected with
the higher gauge level.

2.3. SIS Algorithms

We present two simplified SIS algorithms in a more formal way. The algorithms
involve splitting the sample into two consecutive parts for the n first observations
and the n, = n — n; last observations. When working with differenced variables,
one observation is lost from each subsample. We define index sets

L=>{<m), LK=(>G(<m), h=m<i<n), IJ=(0 <i<n), 12)
and counts n} =n; — 1, n5 =ny — 1, and n° = n{ +n3 = n— 2. For each subsample

I;, forj=1,2, we estimate the constant intercept regression model y; = u + f'x; +¢;
by least squares regression and get the estimators

X=n' in, B = { Z(Xi = X)) (x; _)_Cj)/}_l Z(xi —X})Vis 13)

iel; iel; i€l

_ _ R 1 . 3 _2

y.,-=nj12yh OJZZ,TZ{(”_YI')_ﬁ.;(X"_Xi)} : (14
i€l J i€l
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We will use the estimates from the first subsample to predict location shifts in
the second subsample. This corresponds to predicting outliers for the differenced
series using Vy; — B, Vx;. This gives the forecast correction factors

~1
ol =1+ (Vx,-)/[ZZ(xk —E) (e —xl)/} Vx,  forieb, (15)

kel}

and we define w3 ; vice versa when replacing the index sets 15,1, by I7,1;. The

factors arise as follows. First, rewrite Vy; — ﬁ{Vx,- = Vg, — (,él — B)'Vx; by
applying equation (7). Then, assuming fixed regressors and independent normal
N(0,0?) innovations, we get that Vy; — B{ Vx; is normal N (0, 202a)i ;). Later, we
show that under mild regularity conditions a)g’ ; is uniformly close to unity and it
can indeed be replaced by unity for asymptotic purposes. We define the stylized

SIS algorithm, which searches for location shifts in the second subsample.
Algorithm 2.1. The stylized SIS algorithm.

1. Choose a cut-off value ¢ > 0 to select breakpoints.

2. Calculate the least squares estimators (,31,812) based on sample 1.
3. Calculate forecast correction factors w% Joriel.

4. Declare a location shift at i+ 1 if

|Vyi— B Vx| = V26101c foriels. (16)
The frequency of location shifts declared by Algorithm 2.1 is
, 1
o stylized _ R
J/Vfr} “= ; Z I(Wyi*ﬂ{VXiIZﬁ&lwl,iC)' an
iely

When the data-generating process has no location shifts, so that u; = u, the
expression y, is the frequency gauge of the algorithm, which is the object of interest
in this article.

Castle et al. (2015) refer to a split-half SIS algorithm, which is a symmetrized
version of the above algorithm. For reference, we define that algorithm, including
a statement on how to update the estimators for 8,02 in light of the identified
location shifts. We allow the subsamples to be of unequal size, but retain the split-
half descriptor.

Algorithm 2.2. The split-half SIS algorithm.

1. Choose a cut-off value c > 0 to select breakpoints.
2. Calculate the least squares estimators (B}, &jz) based on sample I; for j = 1,2.

3. Calculate forecast correction factors ‘0_/2,,' foridglandj=1,2.
4. Declare a location shift ati+ 1 if

IVyi— BjVxil = V26, forielf jandj=12. (18)

For notational simplicity, we do not consider the possibility of a location shift
from i = n; to i = n; + 1. The split-half SIS algorithm of Castle et al. (2015)
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continues to re-estimate §, o on the full sample while taking the detected location
shifts into account.
The frequency of declared location shifts by Algorithm 2.2 is

|
~ split
= ;{ Z 1(\Vyi—3§VXiIZ«/§52w2.iC) + Z I(Wyi—Ei Vai|=v26101,50) } (19)

ielf ieI‘2J

2.4. Properties of the Differenced Innovations

The scaled innovations &;/0 have density f. In applications, we often assume f to
be the normal density. The forward differenced innovations are denoted

Vei=¢g—ein1,  xi=Ve/(V20). (20)

The scaled forward differenced innovations x; have the convolution density
h(x) =2 f f(y)f(v2x +y) dy, 1)
—00

and distribution function H. Following (4), let

Y =P(xl = o). (22)

We highlight four properties of the density h.

THEOREM 2.3. Assume ¢;/o are i.i.d. and continuous with density f. The density
h then satisfies the following properties:

(a) symmetry: h(x) = h(—x);

(b) suppose f has a second moment. Then, f = h if and only if f is standard normal;
(c) for k € Ny: sup,cr [v*(v) < oo = SUp,cr [vIFh(v) < oo;

(d) fork € No: sup, g (1+v[)[f(v)| < 00 and E|e¥| < 00 = sup, g [V¥h(v)| < oco.

Theorem 2.3 implies that when the reference distribution f for ¢ is standard
normal, so is the distribution h for ;. Thus, the gauge y is associated with a cut-off
¢ chosen as the normal (1 — y/2) quantile.

3. THE MAIN RESULTS FOR STYLIZED SIS

We present an asymptotic theory for the frequency gauge of stylized SIS. The first-
order result is consistency. This allows us to choose the cut-off ¢ indirectly from
the gauge. We obtain consistency for a wide range of stationary and non-stationary
regressors. We will also develop a second-order expansion of the gauge with a
view to understand how uniform the consistency result is. In this section, we give
an asymptotic expansion, which is developed into an asymptotic theory for split-
half SIS in the subsequent section. We then find that the asymptotic distribution is
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normal for a wide range of regressors, but with an asymptotic variance depending
on the type of regressors.

We require the following time-series structure for innovations ¢&; and
regressors X;.

Assumption 3.1. Let F; be a filtration so that &;_; and x; are F;_-adapted, and
&;/o has unit variance and is independent of F;_; with distribution function F and
positive density f on R with derivative f.

Assumption 3.1 implies that ¢; are i.i.d. distributed. Endogeneity of the form
Cov(x;, &;) # 0 is ruled out, but pre-determined time-series regressors are allowed.
The innovations need not have zero mean, as Theorem 2.3(a) implies EVe; =0
even if Eeg; # 0. Jiao (2019) exploits the techniques developed here to analyze
situations with endogeneity.

The theory results allow for stationary and non-stationary regressors. For this
purpose, we introduce normalization matrices N; for each subsample j = 1,2. This
yields normalized regressors

Xin = Nixi, VX =Nj(x;—x11) foriel}, (23)

where we have suppressed the index j in the definition of the normalized regressor
Xin. We choose the normalizations depending on the stochastic properties of x; so
that

Sin=Y N(xi—%)(xi—%)N; where ,'=0p(l). (24)
i€l

In the asymptotic theory, we will require that

V=) Nx—%)(ei—Es) =0p(1);  EY_|Vxu[>=0(1). (25)

iEIj iEI;’

For the practitioner, it will be possible to choose the cut-off ¢ without precise
knowledge of the type of regressors and hence the normalization. The knowledge
of the type is only needed for the second-order theory.

We give some examples of normahzatlons If x; is stationary, then Vx; is also
stationary. Thus, we let N; = n Idlmx and find that 21,,, Vl,, and IEZ i |me|

converge under mild regularlty conditions. If x; is a random walk, then Vx; is
iid. and we let N; = n_lldlmx Then, under mild regularity conditions, 21,1,

Vin converge, while EZIE[S |Vx;,|? vanishes. Thus, the asymptotic expansions

simplify in the latter case. As an example of cointegrated regressors, we could
have

20N (1 =1\ . 1)
Nl:< 0 I’l71 (0 1 if Xi = 1 Zlgl+zl
j=

for some stationary, bivariate process z;. We note that this N; is non-diagonal.
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In most applications, the density of the innovations &; will be normal. However,
the density needs neither be centered at zero nor be symmetric, as the theory
results will only depend on the implied density for the differenced innovations
Ve; = ¢; —€;i1+1. Our theory does require that the density f of the innovations ¢; and
its derivative are bounded. The condition is satisfied for a wide range of densities,
including the normal density. Moreover, the differenced innovations’ conditional
density, given the differenced regressors and the past, should also be bounded.
If the regressors are pre-determined, this reduces to the boundedness of the density
of the differenced innovations and follows from the boundedness of the density f
of the innovations ¢; due to Theorem 2.3.

Assumption 3.2. Suppose that

(1) the density f satisfies (a) sup, g f(v) < 00, (b)sup, p(1+ V) [Fv)| < oo;

(ii) the conditional density m;(y|x) of x; given Vx; and F;_; exists for
i=n+1,...,n,itis differentiable in y and satisfies max,, +1<j<n SUPycR rerr
(1+yD Im;(ylx)| < oo; PR

(iii) the regressors x; satisfy, with X, Vi, defined in (24) and (25):

@Z, = 0p(1), (B)Vin = Op(1), and (©E Y cse [ Vxinl* = O(D);

(iv) the subsample lengths satisfy (m2/n;)'/2, N;'N; = o(n;/4_”) for some

n > 0.

We start by showing that the forecast correction factor a)ii can be replaced by
unity with negligible asymptotic consequences.

THEOREM 3.3. Consider the gauge of the stylized SIS Algorithm 2.1. Suppose
Assumptions 3.1 and 3.2(ia, iii, iv) apply and that no location shifts are present, so
that p; = . Then, we get for fixed c € R that

. 1 1
~stylized R N N —172
Voo =05 > Ly aisvane = " ) N R SIS
iel3 iely

The next result presents the expansion for the frequency gauge )?,flylized of
stylized SIS as defined in (17) around the population gauge y = P(|x;| > ¢) =
P(|Vei| > v/20¢). The data-generating process is assumed to have no location
shifts.

THEOREM 3.4. Consider the gauge of the stylized SIS Algorithm 2.1. Suppose
Assumptions 3.1 and 3.2 apply and that no location shifts are present so that

wi = . Let

Ean(0) =y Y i 1 (Vo | xi =) = Op(1).

: o
lel2
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Then, we get for fixed c € R that

2@ —y) =Y 1 giz0 — Blggizo) (26)
iely
—ch(@)(ma/n)"?ny 2> (e o — 1)
iel;

—h () (V20) HE2,(€) — E2, (=) YNy !N 211 Vi, 4 0p (1),

Finally, )?,fmmd is consistent in that )?,frylmd — y in probability and in mean.

The consistency statement in Theorem 3.4 for the stylized SIS algorithm is
nuisance parameter-free. It can be used for calibrating the SIS algorithm. The result
provides the rationale for choosing ¢ to match the desired population gauge y:
We specify our tolerance for false positives expressed by y. Given the innovation
density f, we obtain a selection quantile c¢. For example, if the innovations &;
are normal, then the forward differenced innovations x; are standard normal by
Theorem 2.3. If the sample is n = 100 and y = 1%, we choose ¢ = 2.58, which is
the normal 99.5% quantile.

The expansion in Theorem 3.4 has three components. The first component is a
binomial term. The next two components relate to the estimation uncertainty from
the initial estimation. They involve factors ny/n; and N, N1, respectively, where
Ny 'N, is an increasing function of ny/n;. These factors are allowed to diverge
at an o(n'/477") rate. This means that the expansion would apply if we choose, in
a stationary context, n; = n’/% and n, = n — ny, so that ny/n; = O(n'/®), which
requires that n < 1/8 in Assumption 3.2(iv). In other words, the length of the
subsample used for the initial estimation may be of a lower order of magnitude
than the subsample used to search for location shifts. This feature is implicitly
exploited in more complicated versions of the algorithm, which search for small
subsets of observations without location shifts.

The third term in the Theorem 3.4 expansion involves the nuisance quan-
tity &»,(c). It vanishes in two distinct cases. First, if the regressors are strictly
exogenous, then E;,_|(Vx; | x; = ¢) = E,_1Vx; does not depend on ¢ so that
& (c) — &,(—c) = 0. Second, for random walk-type regressors with stationary
Vx;, the normalization is N> = n~! so that &, (c) vanishes. The third term simplifies
if the sequence (Vx;, x;) is stationary. In this case, we let N, = n, 12 and get
&n(c)=n, ! Zie 1 E;—1 (Vx;| xi = ¢). Under regularity conditions, this converges in
probability to EEy (Vx| x; = ¢) = E(Vx;|x1 = ¢). Under a normality assumption,
this can be computed explicitly. Thus, suppose that (Vxj, x;) are normal given J
with conditional mean (vo, 0), where vy is Fy-measurable with expectation Evy = 0.
Noting that x; has unit variance, we have

Vxi D Vo ovv oy
(Cariz2ad{(5)-Cre )} @)
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Then, &,(c) — Evg + covy, = coy, in probability, while &5,(c) — &2,(—c) —
2cov,. For example, in the autoregression y; = u + ay;—1 +¢&; so that x; = y;_,
we find that oy, = Eo(x1 —x2) (61 — £2)/(v/20) = Eo(yo — y1) (61 — £2) /(v/20) =
—o/ V2.

In the statement of Theorem 3.4, the initial least squares estimation is based
on observations with indices I; = (i < n;), while the search for location shifts is
based on observations with indices I, = (i > n;). The consecutive nature of the
sets I} and I, is convenient in the proof to simplify notation. However, the result
extends to situations where the sets /; and I, are more complicated. Indeed, this is
possible because Theorem 3.4 is derived under the hypothesis of no location shifts.
It would be possible to choose /; as all odd and I, as all even indices. In that case,
all observations will be involved when computing the forward differences arising
from the set I,.

4. THE MAIN RESULTS FOR SPLIT-HALF SIS

We provide an asymptotic expansion for split-half SIS and analyze the asymptotic
distribution of the frequency gauge for stationary and for random walk regressors.
4.1. Expansion of the Gauge for Split-Half SIS

We expand the gauge for split-half SIS by applying Theorem 3.4 to each
subsample. This requires a symmetrized version of Assumption 3.2.

Assumption 4.1. Suppose that

(i) the density f satisfies sup, g f(v) < 00, sup, g (1 + V) [F(v)| < oo;

(ii) the conditional density m;(y|x) of x; given Vx; and F;_; existsfori=1,...,n,
it is differentiable in y and satisfies max;<;<, supyeRxeR,,(l =+ [y]) [m; (y]x)]
< 00;

(iii) the regressors x; satisfy for j = 1,2, with /E\jn, ’\7]7, defined in (24) and (25):
(@ 23, = Op(1), (0)Vju = Op(1), and (B Y e | Vainl* = O(1):

(iv) the subsample lengths satisfy (n,/n1)"/?, Ny 'N; = o(n;/4_"), and (n1/ny) '/,
Ni'Ny = o(n)/*™") for some 5 > 0.

THEOREM 4.2. Consider the gauge of the split-half SIS Algorithm 2.2. Suppose
Assumptions 3.1 and 4.1 apply and that no location shifts are present so that
wi = . Let &y,(c) = nj_l/2 Zie,jIE,»,l(l\lJfo,- | xi = c¢) for j = 1,2. Then, we get
for fixed c € R that '

n—1

V@I —y) =17y 1m0 — El gz )

i=1

n
—ch(@n™"2> " {mam ™ ey +mim ™ ey J (70> = 1)

i=1
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—h(©)(v20) " [(n1 /)2 (£1,(0) — E1a(—O)Y N ' N 25V,
+ (n2/m)"*{824(0) — E20(— )Y N5 "N 1V, ] 0 (1),

. « split . . . . spli . .. .
Finally, ;""" is consistent in that 7,0 — y in probability and in mean.

Once again, the consistency statement in Theorem 4.2 for the split-half SIS
algorithm is nuisance parameter-free.

4.2. Asymptotic Distribution in the Stationary Case

We now consider the expansion of split-half SIS when the regressors x; are
stationary. We start by introducing some notations for various moments for the
innovations &;:

x =Eeg;/o, Xy = IEesiz/a2 =1, x4 = Esf/o“, (28)
so =E{l(yi=0lax1z0h (29)
62 =EB{l (20 (651 /0° = D} =E{1 (1120 (67 /0> = 1)}. (30)

Further, for the stationary regressor x;, we denote

wy = Ex;, Y, = Varyx;, 31

and finally, for a cross moment for innovations and regressors, we denote

Six = E{Vx;(1(,5120) — V) (&i/0 — x1)}, (32)
Ec=E(Vxi| xi=c) =E(Vx; | xi = —o). (33)

Then, the vector s; = {1y, — y,ef/oz —1,(ei/0 — 1)) (x; — /Lx)/E;l}’ has
variance and first-order autocovariance of the form

yl—y) o 0 so—v? & ¢,
QOI (%) %4—1 0 . Ql = 0 0 0
0 0 I '1-ux) 0 0 0

(34)

Finally, we define long-run variances for the summands of the frequency gauge
in (19). Let (j, k) be (1,2) or (2,1) and define with n;/n — A; > 0 for j = 1,2

1
di=| —ch©@Ou/2) |, o =dQdi+2¢|Qd;. (35)
—h(©)& e/ 1)/ V2

The long-run variances a)jz will be assumed to be positive in order to exploit
the Functional Central Limit Theorem for non-stationary mixingales in McLeish
(1977).
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Example 4.1. If ¢;/0 has standard normal density ¢ and distribution function
®, then h(x) = ¢(x), while »; = 0 and x4 = 3. It is argued in Section A.9 of the
Supplementary Material that

G0 =2y —HT(c,1/V3)+T(c,N3)),  c1=colc). (36)

Here, T(c,a) = fcoow(x) o @()dydx following Owen (1980, formula 2.2; 2.8).
In particular, T'(c,a) is positive and decreasing in ¢ with 7(0, 1/ V3) = 1/12 and
T(O, «/§) = 1/6. Finally, if Vx,, x; are jointly normal given Fy as in (27) then
S;'C = 2CO'VX .

Assumption 4.3. Suppose

(1) the density f satisfies sup,.p [v|f(v) < 0o and fR VW) dy < 00;

(ii) the pairs x;, ; are stationary with IEIxf+| < 00;

(iii) a)%,a)% > 0;

(iv) let z; be either of x;, x;x} or Vx;1(,,=c)(€i/0 — 1) and suppose E|E;_,n~
Zi::-r’; (zi—Ez)| — 0 as min(k,m,n) — o0;

(v) n! Z,‘:] Xi =y +op(l).

1

THEOREM 4.4. Consider the gauge of the split-half SIS Algorithm 2.2 with
nj/n— A; > 0 for j = 1,2, so that Ay + Ay = 1. Suppose Assumptions 3.1, 4.1,
and 4.3 apply and that no location shifts are present so that ju; = jt. Then, for

fixed c € R, we get nl/z()?,fplit -¥) 2 N(0,B), where
B =\t + Ao}
=y (1—y)+2(s0—y*) —4ch(c)s2 — V2h(0)s| B &,
+ (A /A + 25 /AR (e — D) + (1 = xDESE/2). 37

Example 4.2. Let y; = u + «y;_; + ¢; be stationary so that |«¢| < 1 and ¢;/0
is standard normal. Then, x; = y;—; has mean u, = u/(1 — «) and variance
¥, =02/(1 —a?). Itis argued in Section A.9 of the Supplementary Material that
Ovy = —0/\/5 in (27), that ¢, = —o ¢, and that condition (iv) of Assumption 4.3
holds.

Example 4.3. We consider the asymptotic distribution of the gauge for standard
normally distributed error terms ¢;/o, so that »; = 0 and x4 = 3. Further, assume
that the sample size in the two subsamples is equal and that the regressors x; are
stationary. The asymptotic variance (37) in Theorem 4.4 then reduces to

B=y(l—y)4+2(c—y? —4ch(c)e» — V2h(c)g] =&,
+h3 ()2 +£/2'E./2). (38)

Recall that if, in addition, Vx|, x; are normal given Fy as in (27) then & =
2cov,y . Further, in a first-order autoregression y; = u + oy;_; + &;, the conditional
covariance oy, equals —a/\/i while ¢, = —¢» and X, = Varx; = 02/(1 —a?).
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4.3. Distribution of Split-Half SIS When §,; Vanishes

The Theorem 4.2 expansion for the split-half SIS’s frequency gauge simplifies
when the term &,; vanishes so that the third term in the expansion falls away. As
remarked after Theorem 3.4, this happens for strictly exogenous or random walk
regressors. The limiting long-run variance simplifies so that

5} =y (1—y)+2(c0—y?) —4ch(©) /M) S2 + 07 (©) O/ 2))* e — 1), (39)
We will require that d)f > 0.

THEOREM 4.5. Consider the gauge of the split-half SIS Algorithm 2.2 with
nj/n — A > 0 for j = 1,2, so that Ay + Xy = 1. Let §, = op(1). Suppose
Assumptions 3.1, 4.1, and 4.3(i) apply, d)jz > 0 forj=1,2 and that no location shifts

are present so that ju; = . Then, for fixed c € R, we get nl/z()?,f”lil ) 2 N(0,B),
where
B =M@ + h@?

=y(1—y)+2(s0—y*») —4ch(c) g2+ ()W} [y + 23 /1) g — 1), (40)

5. POISSON APPROXIMATION

We present a theory for a vanishing frequency gauge. We set the cut-off so as to
control the absolute gauge, the number of falsely discovered outliers. This gives
a Poisson exceedance theory. For stylized and split-half SIS, the absolute gauges

are
stylized __ .
D =Y 1 5y fr 9510 s D
iely
2
(split __ R . . A
B =D L0y frvaisvasionson T D L09yimfyvnisvasson son) 42)
ieI§’ ielf

Here, we choose the cut-off ¢, so that, for some A > 0,
P(IVeil > v20¢,) = P(Ixil > ¢u) = A/n. 43)

The analysis builds on the Poisson exceedance theory for IIS (Johansen and
Nielsen, 2016b). The analysis has two parts. The first part is a Poisson limit
theorem for the case without estimation errors. For IIS, the standard Poisson limit
theorem could be used. For SIS, we have that the forward differenced innovations
are 1-dependent. We can then apply the Chen (1975) Poisson limit theorem.
The second part is an argument that the estimation errors do not matter for the
asymptotic theory. This argument is similar to that of the IIS analysis. For the
analysis, we need the following high-level assumptions.
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Assumption 5.1. Suppose that

(i) the innovations ¢; are i.i.d., so that y; = Vg;/ (+/20) has continuous
distribution function H with density h satisfying
(a) E|x|" < oo for some r > 4;
(®) h(cp)/len{l —H(cn)}] = O(1);
(©) h(c, —n~Y4A)/h(c,) = O(1) for all A > 0;
(d) given A > 0 choose ¢, so that for all i then P(| x;| > ¢,) = A /n and suppose

MEL(gi1>en Ly en} = 03 L

(i1) the Tegressors X; satisfy, with j = 1,2 and X;,, V}, defined in (24) and (25):

(a) EJ-ZI = Op(1), (b)Vj, = Op(1), and (c) EZ,;,; |Vxi|* = O™ 1);

(iii) the subsample lengths satisfy N, Ny, Ny 'N, = 0p(1).

Remark 5.1. Assumption 5.1(7) is satisfied when the innovations ¢; are normal.
For parts (a)—(c), this follows from Lemma A.14 in Section A.10 of the Supple-
mentary Material. For part (d), this follows from Lemma A.13.

THEOREM 5.2. Suppose Assumption 5.1, that np /n — ¥ for 0 < ¥ < 1 and that
the cut-off is chosen through P(| x;| > ¢,) = A/n for all i. Then,
@ B! = 3 e 10 +0p(1) = Poisson(u);
(b) [P = S M imoen +0p(1) 2 poisson(1).

The Poisson result shows that the absolute gauge is not consistent for the

target A. Rather, it has a Poisson variation around the target. The asymptotic
Poisson variation depends neither on the regressors nor on the estimation error.

6. POWER

We consider local power for stylized SIS and for the Andrews (1993) test and argue
that the results carry over to the Bai and Perron (1998) procedure. Proofs are given
in Section A.11 of the Supplementary Material.

6.1. Power of Stylized SIS

The power properties of the SIS algorithm are discussed by Castle et al. (2015).
We give further discussion for the stylized SIS algorithm. For simplicity, we focus
on the case without regressors, so the model in (8) reduces to

inO'le(iSnl)—i- Z O'Sjl(,'sj)-i-é‘,' fori=1,...,n, 44)
Jj=n1+1

with independent, normal A/(0,o%) innovations and where x and d; are reparam-
eterized using the scale o. This data-generating process allows up to n —n; — 1
breaks.
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The stylized SIS Algorithm 2.1 estimates the error variance from the first
sample-half and uses forward differences throughout the second sample-half to
detect location shifts (see Section 2.2). Thus, stylized SIS declares step-shifts for
any observation in the second sample half, n; < i < n, if

|Vyi| > /261c. 45)

Theorem 3.4 analyzes the gauge of the procedure. Under normality, we choose
the cut-off from the equation y = 2{1 — ®(c)} (see (22)); for example, y = 1%
corresponds to ¢ = 2.58.

By the temporal independence, then y; for i > n is independent of the variance
estimator &7, which is asymptotically oy, _,/(n; — 1)-distributed. Assuming
also normality, then the 7-statistics defined from (45) are non-central ¢-distributed
(Johnson, Kotz, and Balakrishnan, 1993). We note that for an index i in the second
sample-half, then (44) can be written as y; = Zj’f:iaSj + ¢;. Thus, we find with

xi = Vei/(+/20) that

Vyi  xi+8/vV2 o

S :
T = aia _tn1_1<ﬁ> forn, <i<n. (46)

A single step-shift at time 7 + 1 of size § comes about in model (44) if u = §; = -6,
with &, indicating the post-break level, while all other §; are zero. If x represents
a standard normal variable then the power to detect such a shift is

21,' =

P{lzc| > c} = P{tn,-1(—8/v2)}

= P(|x —8/v2| > ¢) = ®(—c+8/v2) + (—c—5/V2).
(47)

We learn a number of properties from this result. First, the power does not depend
on the sign of the shift. Second, the power of the difference decision rule (45) is
invariant to time 7. The power stays the same even in the boundaries of the sample.
Third, the #-tests have power approaching unity when |§] is increasing. Fourth, two
decisions are dependent if they concern consecutive time periods. Otherwise, they
are independent. Thus, the power is invariant to the number, magnitude, and timing
of other shifts as long as they are at least two periods away. SIS can detect shifts,
even if their number is large. Fifth, a slight location shift can be detected with high
probability if the two episodes are separated by a short period of upheaval. For
analytic simplicity, this short period is at least two periods long. Thus, suppose
there is one level until t, a location shift of size § at T + 1 followed by an opposite
location shift of size v —§ at T + 3, to a new level that is v larger than the first
level and where v may be small. In terms of the model (44), this comes about
through u = §; = —4 and 8,4, = § — v, while §, gives the post-break level. The
joint probability of correct detection is
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P{lzel > ¢ 22l > ¢} > {®(—c+8/vV2) + ®(—c—38/V2)}

x[@{—c+@—v)/V2}+@{—c—(—)/V2}].
(48)

Thus, for large n and small v, we find
Pllzel > ¢, lze4al > ¢} = [®(—c+8/v2) + ®(—c—8/v2) ) +0().

As a consequence, a small location shift can be discovered with large probability,
if the upheaval § is large. Once it has been established that there is, for instance,
a shift of this type and no other shifts, it can be tested whether v = 0. This test
will be consistent if /n and 1 — 7/n have nonzero limits as no search is involved
anymore.

While the fifth case may seem contrived, it occurs empirically. Castle et al.
(2023) find that the U.K. annual real wage growth rate increases from 0.8% prior to
World War II to 1.7% after the war, with a large impulse during the war. Similarly,
the U.K. annual productivity per worker increases from 1.2% prior to World War
I to 1.7% after a huge deflation episode in the wake of the war. Such changes
have profound implications for the economy, even if they are small relative to the
residual standard error.

6.2. Local Power for Andrews Test

We consider the Andrews (1993) test for a single break at an unknown time in the
central part of the sample. This test is consistent for a shift of fixed magnitude that
is not at the ends of the sample. We consider local power for various alternatives.
The test is based on the simple one-shift model

yi=opu+08li<y+e; fori=1,...,n,

with independent, normal N (0,0%) innovations. If the break point is known,
we can form the #-statistic, Z; say, for the hypothesis § = 0 (see (A.28) in the
Supplementary Material for a detailed expression). For the case of an unknown
break point, 7, we may suppose # < t <z for some user-chosen bounds satisfying
0 < n <n < n. The likelihood ratio test is then formed by maximizing the squared
t-statistic over location. This gives the test statistic

LRpay = max Z2. (49)

n<t<n

Distribution under hypothesis: Critical values are found from the distribution of
the test statistic under the hypothesis of no break. There are two relevant limits.
We note two differences from stylized SIS. On the one hand, the Andrews test
asymptotics applies for unknown error distributions while SIS requires a known
error distribution. On the other hand, the Andrews test generalizes to the case of
stationary regressors, but in contrast to SIS, it does not generalize to the case of
non-stationary regressors.

https://doi.org/10.1017/50266466625100145 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466625100145

22 BENT NIELSEN AND MATTHIAS QIAN

First, when there are no restrictions on the search range, so that 1 = n and
n =n— 1, then the likelihood ratio statistic diverges at a rate of 2loglogn due to the
behavior of a Brownian motion near the origin as described by the law of iterated
logarithms. With an appropriate logarithmic normalization, the statistic converges
to an extreme value distribution (Yao and Davis, 1986; Hidalgo and Seo, 2013).
This test is not so common. Perhaps because it is felt that too much power is lost
by the additional normalization.

Second, when the search range is trimmed, the likelihood ratio statistic con-
verges to a supremum of a standardized Brownian bridge (Andrews, 1993). That
is, if B, is a standard Brownian bridge for 0 < u < 1, which has variance u(1 —u),
then for large n and with n/n — A > 0 and7i/n — A < 1, we get

BZ

D
LRpyax = max Z> — sup £

n<t<n s<u<z (1 —u)

The critical values increase with decreasing trimming, reaching the extreme value
asymptotics when there is no trimming. Andrews provided simulated critical
values. A 15% trimming is commonly used with critical value 12.35 for a 1%
sized test. Bai and Perron (1998) preferred 5% trimming. The test is known to be
consistent for a central break of finite magnitude §. This contrasts with SIS. We
investigate local power in various cases.

A Single Break: We consider the power against an alternative with a shift of
vanishing magnitude at time t = An. We allow 0 < A < 1, while noting that the
Andrews test is aimed at the trimmed interval 0 < A < A < A < 1. Local power is
found when the magnitude of the break vanishes as § = ¢ /+/n for fixed ¢. We find
in Section A.11 of the Supplementary Material that, for fixed 0 < A < 1,

A2
LRy > sup Bt es,)°

u(l —u)

A<us

; (50)

where the function s’ increases linearly from 0 at u = 0 to A(1 — A) at u = X after
which it decreases linearly to 0 at u = 1 as given by

st = (1= 2l <y + A1 =) (o). (51)

The non-centrality term is largest for u = A, taking the value ¢{A(1 —A)}!/2. Thus,
the Andrews test has local power for this alternative, whereas asymptotically,
stylized SIS has trivial power. For a finite sample, we compare the maximal
pointwise non-centrality for the Andrews test of ¢p{A(1 —A)}"/? = §{nA(1 — 1)}/
with the SIS non-centrality of 8/+/2 arising from (46). Notably, the magnitude
of the break § will give neither method an advantage in the power comparison.
Instead, the positioning A and the sample size n determine the comparative
performance. We compare the two non-centralities, while ignoring the simultaneity
of decisions within the two procedures. The Andrews test with 15% trimming
and 1% size has critical value 12.35 = (3.51)2, while stylized SIS has 1%
critical value 2.57 = (6.63)'/2. Dividing the non-centralities with 3.51 and 2.57,
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respectively, equating and solving gives n = (12.35/6.63) /{21(1 — 1)}, with SIS
being advantageous for n smaller than those values. The implied n-values for
central values A = (0.5,0.75,0.85) are n = (4,5,7) so that the Andrews test is
favorable. However, this changes when the break occurs in the trimmed period. The
largest u considered by the test statistic is A, so that the Andrews test has maximal
pointwise non-centrality of §{nA/(1 — A)}!/>(1 — A). Proceeding as before, we
find n = (12.35/6.63)(1/2){(1 —1)/A}/(1 — ). Thus, for A = 0.85, the implied
n-values for A = (0.9,0.95,0.99) are n = (16,66, 1650). The comparison indicates
that stylized SIS may be competitive in small samples with a late break.

Next, consider the consequence of a break close to the sample boundaries. The
above derivation can be modified to the case where §(1 — t/n) = ¥//n while
7/n — 1 and fixed ¥. These constraints imply |8|/+/n < || with equality when
T =n— 1. Thus, we let §/i/n — n, where 0 < |n| < || while ny > 0. For large n,
we get

2
LR .x —D> sup M (52)
s<ust WL =) (L +nv)

To see that (52) conforms with (50), note that u <A < 1 and 7 /n — 1 imply that
u < t/nso that sy = (1 —t/n)u for large n, while a small § corresponds to n = 0.
The result (52) shows that when § diverges, then the Andrews test has local power,
while the stylized SIS has power approaching unity (see (46)). In particular, we
can let § diverge at a slow rate with t sufficiently close to n to achieve ¥y = 0, so
that the Andrews test has trivial power, while stylized SIS has power approaching
unity.

Two Breaks: Let y; = o+ 00811 (<s)) + 0821 (i<cy) + &;, where g; is i.i.d. N(0,6?)
so that the level is changed twice at 7 < 7,. Again, this alternative is outside those
the Andrews test is optimized against, but relevant in practice. We consider the
situation where two large location shifts are close and nearly offset each other so
that 7, — 7; and 8; + &, are close to zero. This is an empirically relevant situation
where SIS performs well. Thus, we investigate local power when 8; +8, = £/./n
and 8,(t, — 71) = Y+/n while 7;/n = A and (1o — 71)/n — O for fixed &, ¥, A.
These constraints imply |8>|/+/n < || with equality when 7, = 7; + 1. Thus, we
let 8,/+/n — n, where 0 < || < ||, while n¥ > 0. We find in Section A.11 of
the Supplementary Material using the Skorokhod (1956) M|-metric that

Bu . 1 u=r) — ?
LR ax 3 sup [ sV ilaey u}] . (53)

Again, when §, and hence §; diverge, then the Andrews test has local power while
split-half SIS has power approaching unity. In particular, when §, diverges slowly
while 7, and 7; are so close that ¥y = 0, then the Andrews test has trivial power
while stylized SIS has power approaching unity.
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6.3. Discussion of Bai and Perron Procedure

We first summarize the findings for the Andrews test. This test is consistent for a
fixed-sized central break in contrast with stylized SIS, which only has local power
in that situation. Otherwise, SIS can be competitive. We found that SIS has power
approaching unity, while the Andrews test has trivial power in two situations. The
first case has a break near the end point of the sample. Detecting such a break
is highly relevant when forecasting (Clements and Hendry, 1998). The second
case is when two breaks are close and nearly offsetting. This can reveal small but
important changes in, for instance, growth series (Castle et al., 2023). Thus, the
Andrews test is preferable if one is content that there is only one central break or
perhaps two well-separated central breaks. With more complicated series, SIS will
be competitive.

The Bai and Perron (1998) (BP) procedure is developed for the situation where
there is an unknown, but bounded, number of multiple well-separated breaks.
This procedure provides estimates of the number of breaks and their timing. This
requires trimming between breaks and at the end points of the sample and a
maximal number of breaks. The usual 15% trimming eliminates too much of the
sample and a 5% trimming is recommended. The above analysis suggests that the
BP procedure will consistently detect fixed-sized breaks that are not too close. But,
with many breaks or with close breaks, the BP procedure may have near trivial
power, while SIS could have high power.

As a further point of comparison, we note that the BP procedure allows an
unknown error distribution and it generalizes to stationary, but not non-stationary
regressors. The SIS procedure requires a known error distribution, but allows
both stationary and non-stationary regressors. We note that for many macro-
economic time series, normality is not unreasonable, but assuming stationarity of
the regressors may not be appropriate.

Finally, the general SIS algorithm is designed to work jointly with regression
selection, whereas the BP procedure requires a fixed set of regressors.

7. SIMULATIONS AND NUMERICAL APPROXIMATIONS

We complement the asymptotic analysis of split-half SIS with simulations and
numerical approximations. These results confirm the validity of the asymptotic
theory, allow comparisons to other algorithms, and inform us about the small
sample properties of SIS. First, we confirm the consistency of the frequency gauge
and characterize its small sample bias. Second, we use numerical approximations
to decompose the components of the asymptotic variance. Third, we confirm with
simulations the distributional convergence of the frequency gauge. Fourth, we
consider the bias of an updated regression estimator. Fifth, we compare the power
of split-half SIS with that of Andrews (1993).

All simulations have 10* repetitions. Each time we increase the sample size, we
redraw all n observations. The simulations have been coded in MATLAB using
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FIGURE 2. Finite sample properties of the frequency gauge.

the MFE toolbox (Sheppard, 2018). When we do not explicitly mention otherwise,
we set &)]2 ; = 1 for simplification, as we are mainly concerned with evaluating the
asymptotic distributions. Given a target frequency gauge y, we choose the cut-off
c in the SIS algorithm as the normal (1 — y/2) quantile.

7.1. Analysis of Consistency of Frequency Gauge

We validate the consistency of the frequency gauge of split-half SIS as analyzed
in Theorem 4.2. We consider two data-generating processes. In both cases, the
algorithm is based on the model (7) with one univariate regressor x; and n; = nj.

DGP1 includes an exogenous regressor y; = Bx; + &;, so that x; and ¢; are
independent standard normal. DGP1 is white noise if 8 = 0, in which case y;
is also independent standard normal. As the regressor x; is strictly exogenous,
Theorem 4.5 applies.

DGP2 is a first-order auto-regression y; = «y;_; + &;, where |o| < 1, ¢&; is
independent standard normal and yy = 0. Thus, §; = 0 for all j and 8 = o in (1)
while Xi=Yi-1-

Figure 2(a) uses DGP1 with exogenous regressor and coefficient § = 0. It shows
the frequency gauge y for an increasing sample size and different gauges . We use
the white noise version of DGP1. We find that the small sample bias of the gauge
is positive. The bias vanishes quickly with growing samples and it is modest for
n = 100.

Figure 2(b) uses the autoregressive DGP2. It considers different values of the
first-order autoregressive coefficient o for two sample sizes n = 100 and 1, 000.
We also consider the effect of including the weights a)jz ;- For constant n, the small
sample bias appears to decrease for increasing «. This could reflect that as the
autoregressive coefficient « increases, the sample correlation between the retained
step-indicators and the autoregressive process increases. Consistent with theory,
the small sample bias vanishes asymptotically. The rescaling of the estimated
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FIGURE 3. Analysis of the asymptotic variance of the frequency gauge for varying c.

variance, using the forward correction factors a)/2 ;» reduces the small sample bias
by about one-third.

7.2. Analysis of Asymptotic Distribution of Frequency Gauge

We decompose the asymptotic variance of the frequency gauge of split-half SIS as
a function of the cut-off ¢ to understand the contributions of the various terms, and
compare the variance to IIS. We continue to use DGP1 and DGP2.

Figure 3(a) presents a decomposition of the individual terms of the asymptotic
variance of the gauge as functions of the cut-off ¢ for the autoregressive DGP2
with o = 0.5 as given by Theorem 4.4 and Example 4.3. The terms that do not
depend on estimation errors are (1 — )y and 2(¢; — ¥2); the terms that depend
on the scale estimation error are —4ch(c) ¢, and 2c¢?h(c)? and the terms that depend
on the location estimation error are ¢*h*(c)(1 —a) and —2ch(c) ¢ (1 —a). Some
terms increase the asymptotic variance, while one of the location terms and one of
the scale terms decrease it.

Figure 3(b) compares the asymptotic variance of the gauge of the split-half IIS
to split-half SIS.

Johansen and Nielsen (2016b, Cor. 5) gives the asymptotic distribution of the
IIS gauge as

291 (¢) — y} B N0,y (1 — ) 4 2ch(c)it + 222 (0), (54)

where %, = ffc(u2 — D)f(u)du is a truncated moment. Figure 3(b) displays the
different asymptotic variance curves of the gauge as functions of the cut-off ¢ for
IIS and SIS for different DGPs. For IIS, we consider white noise DGP1. For SIS,
we first consider the same DGP1, and second consider the autoregressive DGP2
with @ = 0.5 and o = 0.9. Finally, we reconsider DGP1, but assume the error
variance is known, so that (f)le =02 =1 and two components of the asymptotic
variance become zero.
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TABLE 1. Simulated and asymptotic variance of the frequency
gauge of split-half SIS

y vs.n 100 400 1,600 00

DGP1 5% 0.0516 0.0399 0.0363 0.0347
B=0 1% 0.0160 0.0104 0.0094 0.0089
6)121 =1 0.5% 0.0093 0.0057 0.0051 0.0047

0.1% 0.0025 0.0013 0.0011 0.0010
DGP2 5% 0.0411 0.0284 0.0261 0.0249
a=05 1% 0.0149 0.0094 0.0085 0.0079
é)jzl =1 0.5% 0.0089 0.0056 0.0044 0.0044

0.1% 0.0024 0.0013 0.0011 0.0010
DGP2 5% 0.0425 0.0348 0.0331 0.0323
a=0.9 1% 0.0134 0.0097 0.0087 0.0086
c?)]zl =1 0.5% 0.0075 0.0052 0.0049 0.0046

0.1% 0.0019 0.0012 0.0010 0.0010
DGP1 5% 0.0649 0.0627 0.0606 0.0610
B=0 1% 0.0132 0.0124 0.0118 0.0117

62 =02 0.5% 0.0063 0.0060 0.0057 0.0057
0.1% 0.0013 0.0011 0.0011 0.0010

We make the following observations. First, for all ¢, the asymptotic variance
of the gauge in IIS is lower than for all four competing SIS models. Second,
running SIS knowing the variance o2 results in a higher asymptotic variance of
the frequency gauge. Third, in the autoregressive model, the « coefficient changes
the asymptotic variance. The asymptotic variance is larger with o = 0.9 than
o = 0.5. This is different from IIS, where the asymptotic variance does not include
regressor-dependent terms. Finally, we observe that the asymptotic variance of the
gauge falls rapidly for growing c. This motivates the choice of a large ¢ in empirical
applications, corresponding to a gauge of 1% or lower, as recommended by Castle
et al. (2015).

7.3. Analysis of Distribution Convergence of Frequency Gauge

We now verify the asymptotic distribution results of the frequency gauge of split-
half SIS and evaluate small sample properties. Table | tabulates the simulated
variance and computed asymptotic variance of the frequency gauge of split-half
SIS for the target gauges y = 5%, 1%, 0.5%, and 0.1% and sample sizes n = 100,
400, and 1,600. We consider the same models for split-half SIS as in Figure 3(b).
Overall, the finite sample variance is quite close to the asymptotic variance when
n =400 and not too bad when n = 100. Our findings are consistent with the results
in Figure 3.
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FI1GURE 4. Bias of updated regression estimator as a function of sample size.

7.4. Updating Estimation of Regression Coefficients

In this section, we use simulation to show that split-half SIS can introduce a bias
when updating the estimates for 8 in (1). We conjecture that this bias can persist
asymptotically with a fixed frequency gauge.

Suppose the split-half SIS Algorithm 2.1 is applied to data generated from an
autoregressive model y; = ay;_; + &;. This may result in m — 1 level shifts at
locations 1o =0 < 71 < -+ < Tp— < T,, = n. We update the o estimate by the
regression

Vi= Wi+ ayi_1+u; forti_<i<tgandj=1,...,m. (55)

With a frequency gauge of y, we will have approximately m = yn breaks
so that the subsample lengths are approximately n/m ~ 1/y. Thus, estimation
of (55) corresponds to the estimation of an unbalanced dynamic panel model,
with a (random) increasing cross-sectional dimension and a (random) finite time
dimension. It seems like we are faced with the same issues as in the panel data of
an incidental parameter problem (Lancaster, 2000, 2002) and a correlation of the
retained (random) step-indicators with the dynamic regressors (Arellano and Bond,
1991). As with panel data, we would expect the bias to disappear asymptotically
in a model with strictly exogenous regressors.

Figure 4 shows simulated biases of the updated estimator of the regression
coefficients as a function of sample length n for different frequency gauges. Panel
(a) uses the autoregressive DGP2 with « = 0.5. As a baseline, we estimate the
AR(1) model without split-half SIS. This shows the well-known negative finite
sample bias that disappears asymptotically (Marriott and Pope, 1954). Then, we
use split-half SIS with the frequency gauge at 1% (green), 5% (black), and 10%
(blue). We find that a larger frequency gauge is associated with a larger bias that
does not appear to vanish asymptotically. When we repeat this exercise in panel
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F1GURE 5. Bias of updated regression estimator as a function of autoregressive coefficient.

(b) for exogenous regressors, we find that the bias is an order of magnitude smaller
than before.

Figure 5 uses the autoregressive DGP2 and shows simulated biases as a function
of the autoregressive coefficient @ when the sample size is n = 1,000. Both panels
use a standard autoregressive estimation without SIS as a benchmark along with
split-half SIS estimation results. The frequency gauge is 10% in panel (a) and 1%
in panel (b). We find a bias across all values of «, and it grows together with the
value of «. The bias is much larger with the frequency gauge at 10% than at 1%.

Overall, the simulations provide evidence toward the presence of an incidental
parameter bias when applying SIS with dynamic regressors and calibrated through
the frequency gauge. The bias increases with the gauge and with the autoregressive
coefficients.

75. Analysis of Power

We compare the power of split-half SIS and the Andrews (1993) test. We consider
a one-shift data-generating process in order to validate the asymptotic theory in
(46) for SIS and (50) and (52) for the Andrews test.

DGP3 has one location shift and is given by

Vi =0yi—1 + 01z + & fori=1,...,n, (56)

with independent standard normal innovations. We will vary «, §, A, and n.

We subject the model (56) to split-half SIS and the Andrews test. For SIS, we
use a 1% gauge and compute the retention frequency for the indicator at An. The
Andrews F test for detecting a single location shift with 15% trimming has a 1%
critical value of 12.35. We report the power for the (maximum) test.

Table 2 shows the simulation results. The magnitude § of the location shift is
explored along columns. The location A is explored along rows. Panels (1) and (2)
consider a non-dynamic process a = 0 for n = 100 and 66. Panel (3) considers a
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TABLE 2. Simulated power for the Andrews (A) test and split-half SIS

5=0 5=2 5=4 5=8
A A SIS A SIS A SIS A SIS

n=100 090 13% 10% 88.6% 12.0% 100.0% 57.0% 100.0% 99.9%
a=0 095 11% 11% 192% 11.9% 51.7% 583%  39.5% 99.8%
099 11% 12% 21% 11.3% 34% 58.1% 0.6% 99.9%
n=66 090 14% 11% 765% 128% 99.9% 584% 100.0% 99.8%
a=0 095 12% 11% 11.0% 129% 249% 571% 13.0% 99.7%
099 13% 12% 3.0% 12.3% 37% 58.2% 0.6% 99.7%
n=66 090 23% 04% 196% 85% 74.0% 55.6% 99.8% 99.9%
a=05 095 24% 04% 43% 83% 74% 56.0% 6.4% 99.9%
099 23% 03% 27% 8.8% 2.6% 56.4% 0.8% 99.9%

dynamic process o = 0.5 for n = 66. The value 66 is chosen to find the § where
Andrews and SIS have equal power for > = 0.95 as discussed in theory Section 6.

The columns marked § = O show the finite sample size and frequency gauge.
We notice that the Andrews size is always larger than the SIS gauge. We note that
the distortion is larger for o = 0.5 than for o = 0. The power simulations are not
size corrected and are therefore favorable to the Andrews test.

The table confirms three predictions of our power theory. First, our theory
predicts that the power increases with 6: We see that the SIS power is always
increasing in §. The Andrews power is also increasing in § = 0, 2, and 4, but it
declines at § = 8 for A = 0.95 and 0.99. For A = 0.99, it even dips below the size.
This may be a finite sample effect. Second, our theory predicts that the power of
split-half SIS is invariant with respect to the location of A, whereas the power of the
Andrew test declines as A approaches unity. This is confirmed in the simulations.
Third, our theory predicts that the Andrews test has higher power than split-half
SIS when A is away from 1 while SIS is more powerful for A that are close to 1.
Indeed, our simulations are in favor of the Andrews test for A = 0.9 and in favor of
SIS when A = 0.99. For the in-between case A = 0.95, the results are mixed, with
SIS being more powerful except in the first panel with n = 100 for § = 2.

Finally, we see that the power declines with increasing temporal persistence by
looking at panels (2) and (3) where n = 66, but the autoregressive coefficient is
a = 0 and o = 0.5, respectively. There is an indication that the decline in
performance is larger for the Andrews test than for SIS.

8. EMPIRICAL ILLUSTRATION

As an empirical example of the use of stylized SIS, consider the log U.K. labor
productivity, y;, from the first quarter of 1980 to the third quarter of 2021. This
gives a sample of length n = 167 plus initial values. The labor productivity is
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FIGURE 6. U.K. labor productivity.

measured by the U.K.’s Office of National Statistics as a chain volume measure
of gross value added at basic prices divided by the number of hours worked. We
used PcGive in OxMetrics 8 for the analysis (Doornik and Hendry, 2013).

Figure 6(a) shows the log labor productivity y with a marked decline in its
growth rate after the 2008 financial crisis. There is considerable movement through
the COVID-19 pandemic from 2020. The post-2008 decline has been of concern
in the political debate for some years, see, for example, Chadha (2022), and the
submission to the Treasury Committee in October 2021 by the Bank of England’s
Chief Economist, Huw Pill:

“Before the global financial crisis, U.K. productivity growth averaged over two per cent per year. Since
then, labor productivity (growth) has fallen considerably.”

Panel (b) shows the labor productivity growth rate measured as the log difference
Ay; =y; —yi—1. Note that the y-axis has been truncated to better visualize the pre-
COVID periods. We make the following observations. The series is very noisy, and
one can just about visually discern a gradual decline over time. We will model the
growth rate as a first-order autoregression, thus imposing that the series in levels
has a unit root. We will show how SIS can help in capturing the declining level of
the growth rate.

We start by fitting a first-order autoregression to the growth rate for the whole
period. While not reported here, the results point to a very misspecified model, and
diagnostics point to difficulties matching movements through the COVID period.
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An investigator may, therefore, drop that period and focus on the period until
2019:4. We then find the model:

5 =G a0sain + Q055 &
o = 0.0069, n =160, RSS = 0.0074, (58)
x2,m[2]1=5.00(p = 0.082), Far—5)[5,153]1 = 1.96 (p = 0.088), 39)
max C? = 8.49 (p = 0.482) {argmax = 2008 : 3}, (60)
max F = 3.52 (p = 0.01) {argmax = 2004 : 1}. (61)

The fitted model is reported in (57) and in Figure 6(d). The fit indicates an overall
constant level for the quarterly growth rate of 0.0035/(1 —0.104) = 0.39%.

We subjected the model (to 2019:4) to various misspecification tests. These do
not tend to reject the model. A normality test based on cumulants (Kilian and
Demiroglu, 2000; Doornik and Hansen, 2008) and a test for residual autocorrela-
tion (Godfrey, 1978; Nielsen, 20006) are reported in (59). Figure 6(c) shows a one-
step recursive Chow test with pointwise 1% critical values. This indicates a slight
rejection in 2008:3, but the practitioner may not wish to give too much attention
to this, given that about 144 tests were conducted (Hendry and Nielsen, 2007).
Indeed, a joint test as shown in (60) does not reject the model (Nielsen and Whitby,
2015). The Andrews test reported in (61), used for detecting a single location shift,
gives a marginal decision indicating a possible break in 2004:1. It appears that
minor location-shifts are not reliably detected by conventional misspecification
tests. Yet, Figure 6(a) does show a marked decline in the log labor productivity y;
since 2008.

We now apply the stylized SIS algorithm to the full sample until 2021:3. First,
we fit the first-order autoregression to the first sample-half until 1999:4. This is the
same as fitting the autoregression to the full sample combined with step-indicators
for each observation from 2000:1 to 2021:3. We get

167
Ay, = 0.201 Ay;_; +0.0045 3132, 62

(53;’ o1 i+ 0.0010) +1=28:1 476z (62)

o = 0.0068, n=167, RSS = 0.0036, (63)
X,%mm[z] =3.78(p =0.151), Fara-515,73]1 = 1.39 (p = 0.237). (64)

This fit indicates a constant quarterly growth rate of 0.0045/(1 —0.201) = 0.56%
prior to 2000. Test for normality and residual autocorrelation do not reject
(see (64)).

There are 87 estimated coefficients for the step-indicators. Computing the
t-statistics for these 87 estimates, we find that the most extreme t-statistics are:
10.4 for 2020:3, —9.57 for 2020:4, 4.28 for 2021:1, —3.21 for 2000:2, —2.69 for
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2008:3, 2.65 for 2016:1, 2.53 for 2000:1, 2.17 for 2004:2, and 2.00 for 2008:2.
Using the 1% cut-off for the normal distribution of 2.576, we keep the six most
significant step-indicators. Rerunning the model gives

Ay = —0. 008Ayl 1 +0 0056

(52) 0.0 0.0009)
+0.0183i=001) — 00202100 — 0.0033 /=08
(0.00 (0.0015) ~—
+0.0801220:3) — 0.1197i20:4) + 0.03611=21.1), (65)
(0.007) (0.012) (0.010)
=0.0068, n=167,  RSS=0.0072, (66)
X221 =539 (p=0.068),  Fur1_s)[5 154] =2.39 (p = 0.041). (67)

The autoregressive coefficient is now insignificant. Adding up the constant terms
and correcting for the modest autoregressive coefficient gives long-run means of
0.56% prior to 2000, then 0.37% until 2008, then 0.043% until 2020.

We identify two significant drops in productivity in 2000 and 2008, correspond-
ing to the burst of the dot-com bubble and the financial crises, respectively. Both
are characterized by pairs of offsetting step-indicators. However, the split half-SIS
retains only one of the two step-indicators from 2008, which results in less accurate
tracking of the series during the financial crisis.

The more comprehensive SIS algorithm in OxMetrics yields a similar model
to split-half SIS, but it manages to retain two offsetting step-indicators for 2008
instead of just one. In the updated OxMetrics model, these indicators have larger
t-statistics than the single 2008 indicator found in (65). It appears that the split-half
SIS is too simple to track the somewhat protracted upheaval during the financial
Crisis.

9. CONCLUSION

In this article, we investigated the properties of the SIS algorithm that addresses
location shifts in time series in the context of model selection. The growing
importance of SIS in tackling location shifts is reflected in its applications in fields
as varied as economics (Chuffart and Hooper, 2019; Bernstein and Martinez, 2021;
Pellini, 2021), climate science (Raggad, 2018; Pretis et al., 2018b; Koch et al.,
2022; O’Callaghan et al., 2022), and public health (Doornik et al., 2022). In this
section, we summarize the insights gained through a study of SIS with asymptotic
analysis, simulations, and numerical approximations.

The first insight is that the frequency gauge is consistent for a wide range of both
stationary and non-stationary regressors. This means that even without detailed
knowledge of the regressor types, an investigator can choose the cut-off of SIS
from the limiting gauge. To address the sensitivity of this result, we demonstrated
that the variation of the frequency gauge around its limit asymptotically follows
a normal distribution. However, its variance depends on the type of regressors.
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Simulations revealed that this variation remains limited, even in small samples. As
a result, the sole tuning parameter of the SIS algorithm can be finely adjusted to
align with the investigator’s preferences.

The second insight concerns the link between the frequency gauge and the
bias in the updated regression estimator after selecting over step-indicators. This
bias appears to emerge in the presence of dynamic regressors when searching
for location shifts. This contrasts with the theory of IIS, where there is no such
bias (Johansen and Nielsen, 2016b). The bias diminishes as the gauge decreases,
suggesting that the gauge should be chosen small and possibly vanishing with
sample size. For that purpose, we developed a Poisson theory for the absolute
gauge. For a sample size of n = 100 observations, we recommend setting the
absolute gauge to 1, which is equal to the frequency gauge of 1%, in line with
Castleetal. (2015). In larger samples, we advise targeting the absolute gauge rather
than the frequency gauge, so that the cut-off drifts slowly to infinity.

The third insight pertains to the circumstances in which stylized SIS demon-
strates higher statistical power compared to the Andrews (1993) test. We developed
a local power theory for stylized SIS and the Andrews test. Our findings suggest
that the Andrews test maintains consistency when faced with one or two well-
separated, central location shifts, whereas the SIS shows trivial power. Conversely,
for location shifts near the end of the sample or for two offsetting location shifts
close to each other, the SIS maintains power, while the power of the Andrews
test goes down to its size. In time series observed over extended periods, major
upheavals like the 2008 financial crisis and the 2020 COVID-19 pandemic might
recur. Consequently, we anticipate multiple breaks in the data. These breaks may
occur closely together or toward the end of the sample. In such scenarios, SIS
appears to be preferable to the Andrews test. The same conclusions hold for the
Bai and Perron (1998) procedure that allows more breaks but inherits the power
trade-offs from the Andrews test.

The fourth insight relates to the regularity conditions of SIS compared to the
Andrews test. SIS assumes a known error distribution, while the Andrews test
does not. The assumption is testable and contributes to the power of SIS to
detect breaks that occur closely together. The first-order theory for SIS applies
to a variety of stationary and non-stationary regressors. In order to do this, the
present theory is formulated in terms of normalization matrices. This implies
that the theory works regardless of the choice of the normalization matrix. In
contrast, the asymptotic theory for the Andrews test requires stationary regressors,
introducing an additional risk of mistakes, as the investigator must carefully
determine the appropriate normalization of the regressors. Furthermore, SIS is
designed to be implemented along with regressor selection, which is useful when
there is uncertainty about the choice of regressors.

The theory for SIS is complicated because SIS operates on the differenced
residuals which are temporally dependent even for well-behaved errors. We found
various technical solutions that may be useful elsewhere. The empirical process
theory was developed using ideas from the McLeish (1977) mixingale theory.
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The Poisson theory requires the Chen (1975) Poisson limit theorem for dependent
binary variables. In addition, to allow two close breaks in the power theory, we
relied on the Skorokhod (1956) M;-metric favored by Whitt (2002) rather than the
Ji-metric favored by Billingsley (1968).

A potential further development is to develop a test for the presence of location
shifts along the lines of the IIS test for outliers of Jiao and Pretis (2022). The
techniques for dealing with correlation between (differenced) errors and regressors
turn out to be useful for analyzing instrumental variable estimation (Jiao, 2019).

Overall, our results provide theoretical underpinnings that recast SIS as an
interpretable and tunable break-detection tool: its gauge can be chosen ex ante and
justified ex post, its post-selection bias controlled through gauge calibration, and
its power advantages are located precisely where applied work often struggles—
near sample endpoints and during short, offsetting upheavals. In settings with
non-stationary regressors, SIS should be the default search device; when a few
well-separated breaks are suspected, the Andrews/Bai—Perron procedures remain
preferable. The empirical-process, Poisson, and M, techniques we develop both
underwrite these claims and open a path to new analysis in the model selection
theory.

SUPPLEMENTARY MATERIAL

Proofs of all results are provided in Nielsen and Qian (2025): Supplement
to “Asymptotic Properties of the Gauge and Power of Step-Indicator Satu-
ration,” Econometric Theory Supplementary Material. To view, please visit:
https://doi.org/10.1017/S0266466625100145.
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