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Abstract

Differential item functioning (DIF) screening has long been suggested to ensure assessment fairness.
Traditional DIF methods typically focus on the main effects of demographic variables on item parameters,
overlooking the interactions among multiple identities. Drawing on the intersectionality framework,
we define intersectional DIF as deviations in item parameters that arise from the interactions among
demographic variables beyond their main effects and propose a novel item response theory (IRT) approach
for detecting intersectional DIF. Under our framework, fixed effects are used to account for traditional
DIF, while random item effects are introduced to capture intersectional DIF. We further introduce the
concept of intersectional impact, which refers to interaction effects on group-level mean ability. Depending
on which item parameters are affected and whether intersectional impact is considered, we propose four
models, which aim to detect intersectional uniform DIF (UDIF), intersectional UDIF with intersectional
impact, intersectional non-uniform DIF (NUDIF), and intersectional NUDIF with intersectional impact,
respectively. For efficient model estimation, a regularized Gaussian variational expectation–maximization
algorithm is developed. Simulation studies demonstrate that our methods can effectively detect intersec-
tional UDIF, although their detection of intersectional NUDIF is more limited.

Keywords: differential item functioning; intersectional DIF; regularization; variational estimation

1. Introduction

The heavy reliance on assessments in critical social decision-making, such as college admission, per-
sonnel selection and placement, and resource allocation, highlights the need for a thorough evaluation
of assessment fairness, particularly in light of ongoing concerns about equity. For decades, assessment
fairness has been a central focus in psychometrics. American Educational Research Association et al.
(2014) further emphasizes the importance of ensuring assessment fairness throughout the test develop-
ment process, including the standard practice of screening for differential item functioning (DIF).

DIF refers to the phenomenon in which people from different subgroups, usually defined by
demographic variables, such as gender, race, or ethnicity, differ in the probability of correctly answering
an item after controlling for their ability. Although DIF does not necessarily indicate measurement
bias, DIF detection is a critical first step for further investigation. Two types of DIF are often discussed
in the literature: uniform DIF (UDIF) and non-uniform DIF (NUDIF). Specifically, UDIF assumes a
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consistent difference in item responses between groups across ability levels, whereas NUDIF allows this
difference to vary across ability levels. Various DIF detection methods have been developed, including
Lord’s chi-square test, logistic regression, and regularized DIF (Lord, 1980; Swaminathan & Rogers,
1990; Tutz & Schauberger, 2015; Wang et al., 2023). While these methods differ in many ways, they
typically treat DIF as the main effect of each demographic variable.

Recently, two criticisms have emerged concerning the quantitative methodologies used in inequality
studies, including those employed in DIF analysis. First, existing methods often overlook intersection-
ality. In reality, people’s multiple identities do not function in isolation but are interlinked to collectively
shape the privilege and discrimination. Intersectionality, a theoretical framework rooted in feminist
scholarship, highlights this complexity and is increasingly used in fields, such as health, psychology,
and education studies (Cole, 2009; Núñez, 2014). In the context of DIF, this framework gives rise to the
concept of intersectional DIF, which refers to the DIF that results from the interaction effect of multiple
demographic variables. Unlike traditional DIF, which only considers the main effect of demographic
variables separately, intersectional DIF captures the potential bias that arises at the intersection of
multiple identities. For example, individuals belonging to multiple marginalized groups may experience
DIF effects that are not simply the sum of the effect of each grouping variable, but amplified or
diminished due to their intersecting social positions. Empirical results from a recent intersectional DIF
study suggest that traditional DIF methods that ignore intersectionality may lead to substantial bias
(Albano et al., 2024). Second, existing studies often require the specification of a reference group. DIF
is usually detected by comparing each focal group to the reference group, while comparisons among
focal groups themselves are rarely made. Although mathematically any group can be designated as the
reference with no difference, the routine choice of the privileged group may unintentionally reinforce
the notion that privileged groups represent the norm, positioning all other groups as deviations (Johfre
& Freese, 2021).

In response to these concerns, recent studies have begun to address intersectional DIF (Albano
et al., 2024; Belzak, 2023; Muthén & Asparouhov, 2018; Russell & Kaplan, 2021; Russell et al., 2021,
2022). These methods typically model intersectional DIF by either incorporating both demographic
variables and their interactions (i.e., product terms) into the measurement model, or by defining
a single synthetic categorical variable that encodes all combinations of demographic characteristics.
The synthetic group method is mathematically equivalent to modeling all-way interactions. However,
both methods treat intersectional DIF as fixed effects, which limits scalability. As more demographic
variables are included, the number of intersectional groups and corresponding parameters increases
geometrically, while the sample size per group decreases. This leads to challenges for model estimation.
For example, the combination of gender (e.g., male, female, and non-binary) and race (e.g., White, Black,
or African American, American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific
Islander) results in 15 intersectional groups, and this number expands rapidly as additional variables
are considered.

In contrast to traditional fixed-effect methods for DIF detection, intersectionality can be modeled
as random effects within the multilevel modeling framework. This approach is inspired by multilevel
analysis of individual heterogeneity and discriminatory accuracy (MAIHDA), an emerging quantita-
tive approach developed in health inequality. MAIHDA treats individuals (level 1) as nested within
intersectional strata (level 2), where each stratum represents a unique combination of social identities,
that is, a specific level of the synthetic intersectional group variable. MAIHDA models incorporate the
main effect for each demographic variable and a stratum-level random effect. Rather than modeling
all-way interaction terms explicitly through fixed effects, the random effect captures the total between-
strata variance that is not explained by the additive main effects. Compared to traditional fixed-effect
methods, this multilevel framework promotes model parsimony and scalability in the presence of
many demographic variables and enables the decomposition of covariate effects into additive and
interactive components (Evans et al., 2024; Evans et al., 2018; Merlo, 2018). It is worth noting that, in
MAIHDA, the same demographic variables that characterize individuals at level 1 also define the level
2 strata. While this seems to introduce collinearity, there is a conceptual distinction. As clarified in the
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MAIHDA literature, unlike in conventional multilevel models where demographic variables are treated
as individual-level covariates, these variables are conceptualized as properties of the strata at level 2. This
framing is fundamental to the MAIHDA framework and is discussed in detail by Evans et al. (2024).

Similar to the MAIHDA framework, we propose applying random effects to item parameters for
detecting intersectional DIF. In this approach, the main effects of demographic variables on item
parameters are explicitly modeled to account for traditional DIF, while random effects are introduced
to capture additional variations across intersectional groups without requiring the explicit specification
of interaction terms. A random item effect with nonzero variance, after controlling for main effects, is
interpreted as evidence of intersectional DIF. Using random effects, the proposed model inherits the
advantages of MAIHDA, including interpretability, scalability, and parsimony.

Although this multilevel approach is new to DIF detection, it builds on the well-known random item
effect framework in psychometrics. Specifically, random-item item response theory (IRT) models allow
item parameters to vary across groups following specific distributions. These models have been applied
in various measurement invariance contexts, such as longitudinal designs with randomly drawn item
samples, international large-scale assessments, and automatic item generation (AIG) or item cloning
(De Boeck, 2008; Jong et al., 2007; Lathrop & Cheng, 2017; Muthén & Asparouhov, 2018; Rijmen &
Jeon, 2013). However, existing random item effect models cannot be used directly for intersectional
DIF detection. First, most existing models define groups using a single demographic variable (e.g.,
country) and do not involve the decomposition of main and interaction effects. When extended to
intersectional groups formed by multiple identities, using only random effects confounds interactions
with main effects. In other words, without explicitly modeling main effects, the random effect cannot
be directly interpreted as intersectional DIF (Jong et al., 2007; Muthén & Asparouhov, 2018; Rijmen
& Jeon, 2013). Second, existing models typically assume random effects on all items, requiring post
hoc tests to identify DIF items. Third, model estimation is computationally intensive. Although Rijmen
& Jeon (2013) employ variational inference to reduce computational efforts, their algorithm still lacks
closed-form solutions and remains computationally demanding.

Our proposed methods address these limitations through three innovations. First, as mentioned
above, the proposed models incorporate both main effects of demographic variables and random effects,
enabling separation between traditional and intersectional DIF. Second, we impose a log penalty on the
random item effects, effectively shrinking the variance to zero for items free from intersectional DIF.
Notably, due to this regularization, our methods do not require anchors for random effects. However,
anchor items are still needed for main effects, as we assume that both traditional and intersectional
DIF can appear on the same item. Since the primary focus of this study is on intersectional DIF, the
anchor requirement applies only to main effects and thus plays a limited role. Third, for efficient model
estimation, we develop a Gaussian variational expectation–maximization (GVEM) algorithm. Origi-
nally introduced to psychometrics for multidimensional IRT (MIRT) estimation, GVEM circumvents
the high-dimensional integral in model estimation, achieves a closed-form solution within the EM
algorithm, and significantly reduces computational complexity (Cho et al., 2021).

Our methods accommodate both intersectional UDIF and NUDIF detection by applying a unified
modeling strategy to different item parameters (i.e., difficulty and discrimination). In addition, we
extend the model to capture intersectional impact. Impact refers to differences in the group-level
mean abilities. Traditionally, impact is limited to the main effects of demographic variables on group-
level ability means. However, as emphasized by intersectionality, interactions among multiple identities
could also influence group-level abilities. We define intersectional impact as different group-level
mean abilities arising from these interactions. Similar to intersectional DIF, we use random effects on
group-level mean abilities (i.e., multilevel latent trait) to capture intersectional impact. Beyond studying
intersectionality, our proposed approach is also well suited for nested structures, such as students within
different countries, especially in large-scale assessments (Pastor, 2003; Sulis & Toland, 2017).

In summary, the major contributions of this article are fourfold: (1) quantifying the intersectional
DIF as random item effects, (2) introducing the concept of intersectional impact, (3) applying a log
penalty to detect nonzero item-level variation reflective of intersectional DIF, and (4) applying efficient
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Table 1. Proposed IRT models in this study

2PL-Ri 2PL-RiM 2PL-Ris 2PL-RisM

Random intercept Yes Yes Yes Yes

Random slope No No Yes Yes

Multilevel latent trait No Yes No Yes

DIF scenario UDIF UDIF with impact UDIF and NUDIF UDIF and NUDIF with impact

Note: DIF and impact refer to intersectional DIF and intersectional impact, respectively.

variational methods for model estimation. The rest of the article is organized as follows. We first
introduce the four random item IRT models proposed in this study, followed by the regularized GVEM
algorithm. Then, we present four simulation studies and an empirical study to evaluate the performance
of the proposed intersectional DIF detection methods. Finally, we conclude with a discussion of
limitations and future directions.

2. Methods

This study aims to detect intersectional DIF, defined as interactions among demographic variables
on item parameters. We also consider scenarios both with and without intersectional impact,
defined as interactions among demographic variables that affect group-level mean abilities. The two-
parameter logistic (2PL) IRT model is used as the foundational model, upon which four extended
models are developed. These models incorporate random item intercepts for intersectional UDIF,
random item slopes for intersectional NUDIF, and a multilevel ability structure for intersectional
impact. Specifically, the four proposed models are 2PL with random item intercept (2PL-Ri),
2PL with random item intercept and with multilevel latent trait (2PL-RiM), 2PL with random
item intercept and slope (2PL-Ris), and 2PL with random item intercept and slope and with
multilevel latent trait (2PL-RisM). The structure and applicability of these models are summarized in
Table 1.

Let yijs denote the binary response of person i (i = 1,2, . . . ,Ns) in group s (s = 1,2, . . . ,S) on item j
(j = 1,2, . . . ,J). For 2PL-RisM, the most flexible model in this study, the item response function of yijs is

P(yijs = 1 ∣ θis,ajs,bjs) =
1

1+exp[−(ajsθis +bjs)]
, (1)

where the random effects are

θis ∣ α0s ∼N(α0s +αT
1 Xs,σ2

θ),
α0s ∼N(0,σ2

α0),
bjs ∼N(βT

j X̃s,σ2
bj),

ajs ∼N+(γ̄T
j X̃s,σ̄2

aj).

(2)

Before interpreting the model, it is necessary to clarify several notations. Let D denote the number
of demographic variables of interest. An intersectional group is defined as a unique combination of
levels across these D variables. Let S be the total number of such intersectional groups, equal to the
product of the number of levels across all variables. That is, S = ∏D

d=1 Kd, where Kd is the number of
levels for the d-th variable. For each group s ∈ {1, . . . ,S}, let Xs be a P-dimensional dummy coded
vector. The total number of dummy variables is P = ∑D

d=1(Kd − 1). For example, if there are D = 2
variables, race and gender, where race has K = 5 categories and gender has K = 3 categories, then
S = 5×3 = 15, and P = (5−1)+(3−1) = 6. To accommodate the intercept, let X̃s = [1,XT

s ]T be a (P+1)-
dimensional vector. Correspondingly, βT

j = [bj,β̇
T
j ], where bj denotes the intercept parameter for item j
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in the reference group, and β̇T
j is the vector of coefficients representing the main effects of demographic

variables on the intercept. Note that in the current model, one intersectional group serves as the
reference group because demographic variables are dummy coded to capture main effects. However,
by using effect coding instead, no single intersectional group is treated as the reference; rather, effects
are interpreted relative to the overall mean across all groups. Similarly, γ̄T

j = [aj, ˙̄γT
j ], where aj denotes

the slope parameter for item j in the reference group, and ˙̄γT
j represents the main effects on the slope.

Finally,N andN+ denote the normal distribution and the truncated normal distribution (left-truncated
at zero), respectively. We place bars over parameters associated with ajs to indicate that γ̄T

j X̃s and σ̄2
aj

represent the mean and variance of the untruncated latent variable underlying ajs, rather than those of ajs
itself.

In Equation (1), θis is the ability of person i in subgroup s, where abilities within each subgroup
follow a normal distribution with mean α0s + αT

1 Xs. Recall that Xs is the dummy coding vector that
corresponds to group s. αT

1 Xs represents the main effect of demographics on the group-level mean
ability, that is, the traditional impact in DIF literature. In addition, we introduce the random intercept
α0s ∼ N(0,σ2

α0). As in the MAIHDA literature, we do not explicitly model any high-order interactions
among the demographic variables. Instead, the random effect α0s is used to capture these additional
deviations, that is, the intersectional impact. Moreover, bjs represents the group-specific intercept
parameter for item j in subgroup s, following a normal distribution with mean βT

j X̃s and variance σ2
bj

.
The term βT

j X̃s represents the group-specific intercept due to the main effects of demographic variables,
corresponding to the traditional UDIF. The variance of the random intercept σ2

bj
captures deviations

from the main effect across intersectional groups and is intended to reflect intersectional DIF on the
intercept. Similarly, the group-specific slope parameter ajs follows a truncated normal distribution. Its
pre-truncation mean, γ̄T

j X̃s, captures the main effects of demographics on the slope (i.e., traditional
NUDIF), while the variance σ̄2

aj is specifically introduced to capture intersectional DIF on the slope.
Accordingly, the model is parameterized so that item j is free of intersectional NUDIF when σ̄2

aj = 0, and
further free of intersectional UDIF when σ2

bj
= 0 as well.

Please note that the 2PL-RisM model shown above combines features of the random item effect
model and multilevel IRT model. It treats item parameters similarly to a linear logistic test model with
error (LLTM with error), but instead of using a property matrix to explain the difficulty (De Boeck,
2008; Kim & Wilson, 2020), the mean of each item’s difficulties is determined by the main effects of
demographics to capture traditional DIF, while the variance accounts for additional variations (i.e.,
intersectional DIF). In addition, the other three models in Table 1 are simplified version of the 2PL-
RisM model: the 2PL-Ris model sets α0s = 0, the 2PL-RiM model sets ajs = aj, and the 2PL-Ri model sets
both α0s = 0 and ajs = aj.

2.1. Model estimation
In this section, we introduce a novel algorithm for model estimation based on variational inference.
The key idea of variational approximation is to approximate the intractable marginal likelihood with
a computationally feasible lower bound. The lower bound derived in this article follows the local
variational methods by Bishop (2006) and Cho et al. (2021). Compared to the variational methods
by Rijmen & Jeon (2013), the GVEM method in this article results in closed-form solutions for most
parameters. To ensure clarity, we begin with the simplest model in this study, 2PL-Ri. The item response
function of yijs can still be written as in Equation (1), with random effects

θis ∼N(αT
1 Xs,σ2

θ),
bjs ∼N(βT

j X̃s,σ2
bj).

(3)

Let Z =⋃S
s=1⋃Ns

i=1⋃
J
j=1{θis,bjs}be the set of all latent variables, including both latent traits and random

item effects, in the 2PL-Ri model. The joint likelihood of responses Y = ⋃S
s=1⋃Ns

i=1⋃
J
j=1{yijs} and latent
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variables Z is

p(Y,Z) = P(Y ∣ Z)p(Z)

=
S
∏
s=1

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

Ns

∏
i=1

J
∏
j=1

P(Yijs = yijs ∣ θis,bjs)
⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

J
∏
j=1

pbj(bjs)
⎤⎥⎥⎥⎥⎦
[

Ns

∏
i=1

pθis(θis)]
⎫⎪⎪⎬⎪⎪⎭
,

(4)

where P(Yijs = yijs ∣ θis,bjs) = P(Yijs = 1 ∣ θis,bjs)yijsP(Yijs = 0 ∣ θis,bjs)1−yijs . With any probability density
function q(Z) for Z, the log marginal likelihood of Y can be written as

�(Y) = logP(Y)

= ∫ [logP(Y)]q(Z)dZ

= ∫ [log p(Y,Z)
p(Z ∣ Y)]q(Z)dZ

= ∫ [log p(Y,Z)
q(Z) ]q(Z)dZ+∫ [log q(Z)

p(Z ∣ Y)]q(Z)dZ

≥ ∫ [log p(Y,Z)
q(Z) ]q(Z)dZ

≡ ELBO

= ∫ [logp(Y,Z)]q(Z)dZ−constant,

(5)

where ELBO refers to the evidence lower bound, and the difference �(Y)−ELBO corresponds to the
Kullback–Leibler (KL) divergence (Kullback & Leibler, 1951) from q(Z) to p(Z ∣ Y), given by

KL[q(Z) ∥ p(Z ∣ Y)] = ∫ [log q(Z)
p(Z ∣ Y)]q(Z)dZ ≥ 0.

Note that the constant in Equation (5), ∫ [logq(Z)]q(Z)dZ, depends only on q and can therefore be
omitted from the optimization. Optimizing �(Y) is thus reduced to maximizing ∫ [logp(Y,Z)]q(Z)dZ.
The EM algorithm achieves this by setting q(Z) such that KL[q(Z) ∥ p(Z ∣ Y)] = 0. In the E-step,
it computes the expectation of the log-likelihood (i.e., ∫ [logp(Y,Z)]q(Z)dZ). In the M-step, this
expectation is maximized with respect to model parameters. However, the regular EM algorithm
requires that the expectation is computationally feasible, which hardly holds in the random item effect
models. In the 2PL-Ri model, for example, the expectation in Equation (5) involves a high-dimensional
integral with respect to Z, a latent variable of dimension SJ +N, where N = ∑S

s=1 Ns is the total sample
size. We address this challenge by applying variational inference for estimation.

In the context of 2PL-Ri, given Equations (1) and (3)–(4), we have

∫ [logp(Y,Z)]q(Z)dZ

=∫ [logP(Y ∣ Z)+ logp(Z)]q(Z)dZ

=∫ [
S
∑
s=1

Ns

∑
i=1

J
∑
j=1

{yijs log 1
1+exp[−(ajθis +bjs)]

+(1−yijs) log 1
1+exp(ajθis +bjs)

}

+
S
∑
s=1

{
Ns

∑
i=1

logpθis(θis)+
J
∑
j=1

logpbjs(bjs)}]q(Z)dZ
(6)
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=∫ [
S
∑
s=1

Ns

∑
i=1

J
∑
j=1

{yijs log 1
1+exp[−(ajθis +bjs)]

+(1−yijs) log 1
1+exp(ajθis +bjs)

}

− 1
2

S
∑
s=1

{(Ns + J) log2π+
Ns

∑
i=1

[logσ2
θ +

(θis −αT
1 Xs)2

σ2
θ

]

+
J
∑
j=1

⎡⎢⎢⎢⎢⎣
logσ2

bj +
(bjs −βT

j X̃s)2

σ2
bj

⎤⎥⎥⎥⎥⎦
}]q(Z)dZ.

The difficulty in computing the marginal log-likelihood in Equation (6) primarily arises from the
sigmoid function, which prevents closed-form integration. We adopted a local variational method
(Bishop, 2006) to approximate the sigmoid function with a computationally feasible lower bound. As
demonstrated in Cho et al. (2021), a sigmoid function can be expressed as

f (x) = exp(x)
1+exp(x) = max

ξ

exp(ξ)
1+exp(ξ) exp[(x− ξ)

2
−η(ξ)(x2 − ξ2)]

≥ exp(ξ)
1+exp(ξ) exp[(x− ξ)

2
−η(ξ)(x2 − ξ2)],

(7)

where η(ξ) = (2ξ)−1{1/[1+exp(−ξ)]−1/2}, and ξ is the variational parameter used to approximate the
sigmoid function, which is updated iteratively in the EM algorithm. Applying Equation (7) to Equation
(6), we obtain

∫ [logp(Y,Z)]q(Z)dZ

≥ ∫ [
S
∑
s=1

Ns

∑
i=1

J
∑
j=1

{ log 1
1+e−ξijs

+(yijs −
1
2
)(ajθis −bjs)−

1
2

ξijs −η(ξijs)[(ajθis −bjs)2 − ξ2
ijs]}

− 1
2

S
∑
s=1

{(Ns + J) log2π+
Ns

∑
i=1

[logσ2
θ +

(θis −αT
1 Xs)2

σ2
θ

]

+
J
∑
j=1

⎡⎢⎢⎢⎢⎣
logσ2

bj +
(bjs −βT

j X̃s)2

σ2
bj

⎤⎥⎥⎥⎥⎦
}]q(Z)dZ

≡ ∫ B(Y,Z)q(Z)dZ

≡Q(Y),

(8)

where B(Y,Z) denotes a lower bound of logp(Y,Z) under the local variational approximation.
Next, we need to determine a variational density q(Z) that closely approximates the true posterior

p(Z ∣ Y), such that KL[q(Z) ∥ p(Z ∣ Y)] is minimized. This ensures that the ELBO provides a tight
approximation to the marginal log-likelihood �(Y), as shown in Equation (5). Under the mean-field
variational assumption (Bishop, 2006), we approximate the posterior distribution of the latent variables
using a product of independent factors, each corresponding to a separate latent variable, i.e.,

q(Z) =
S
∏
s=1

⎡⎢⎢⎢⎢⎣

Ns

∏
i=1

qθis(θis)
J
∏
j=1

qbjs(bjs)
⎤⎥⎥⎥⎥⎦
.

Note that the latent variables in Z need not be truly independent, as the goal is to approximate its true
posterior distribution while simplifying the computation. Then, for any latent variable z� ∈Z, its optimal
variational distribution qz� takes the form

qz�(z�) ∝ expEZ/{z�}[logp(Y,Z)],
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where EZ/{z�} refers to the expectation over all latent variables in Z other than z� (Bishop, 2006; Blei
et al., 2017). With the lower bound B(Y,Z), we update the variational distribution as

qz�(z�) ∝ expEZ/{z�}[B(Y,Z)].

Thus, the optimal qθis(θis) and qbjs(bjs) that maximize the ELBO (i.e., minimize the KL divergence) are
given by

qθis(θis) ∝ expEZ/{θis} [B(Y,Z)]

∝ expEZ/{θis}

⎧⎪⎪⎨⎪⎪⎩

J
∑
j=1

[(yijs −
1
2
)ajθis −η(ξijs)(ajθis −bjs)2]− (θis −αT

1 Xs)2

2σ2
θ

⎫⎪⎪⎬⎪⎪⎭

∝ exp
⎧⎪⎪⎨⎪⎪⎩

J
∑
j=1

[(yijs −
1
2
)ajθis −η(ξijs)(a2

j θ2
is −2ajθisμbjs +μ2

bjs +σ2
bjs)]−

(θis −αT
1 Xs)2

2σ2
θ

⎫⎪⎪⎬⎪⎪⎭

∝ exp
⎧⎪⎪⎨⎪⎪⎩

J
∑
j=1

aj [(yijs −
1
2
)+2η(ξijs)μbjs]θis −

J
∑
j=1

[η(ξijs)a2
j ]θ2

is −
θ2

is −2αT
1 Xsθis

2σ2
θ

⎫⎪⎪⎬⎪⎪⎭

∝ exp
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

J
∑
j=1

aj{(yijs −
1
2
)+2η(ξijs)μbjs}+ αT

1 Xs

σ2
θ

⎤⎥⎥⎥⎥⎦
θis −

⎡⎢⎢⎢⎢⎣

J
∑
j=1

η(ξijs)a2
j +

1
2σ2

θ

⎤⎥⎥⎥⎥⎦
θ2

is

⎫⎪⎪⎬⎪⎪⎭

(9)

and
qbjs(bjs) ∝ expEZ/{bjs} [B(Y,Z)]

∝ expEZ/{bjs}

⎧⎪⎪⎨⎪⎪⎩
−

Ns

∑
i=1

[(yijs −
1
2
)bjs +η(ξijs)(bjs −ajθis)2]−

(bjs −βT
j X̃s)2

2σ2
bj

⎫⎪⎪⎬⎪⎪⎭

∝ exp
⎧⎪⎪⎨⎪⎪⎩
−

Ns

∑
i=1

[(yijs −
1
2
)bjs +η(ξijs){b2

js −2bjsajμθis +a2
j (μ2

θis +σ2
θis)}]−

(bjs −βT
j X̃s)2

2σ2
bj

⎫⎪⎪⎬⎪⎪⎭

∝ exp
⎧⎪⎪⎨⎪⎪⎩

Ns

∑
i=1

[2η(ξijs)ajμθis −(yijs −
1
2
)]bjs −

Ns

∑
i=1

η(ξijs)b2
js −

b2
js −2βT

j X̃sbjs

2σ2
bj

⎫⎪⎪⎬⎪⎪⎭

∝ exp
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

Ns

∑
i=1

{2η(ξijs)ajμθis −(yijs −
1
2
)}+

βT
j X̃s

σ2
bj

⎤⎥⎥⎥⎥⎦
bjs −

⎡⎢⎢⎢⎢⎣

Ns

∑
i=1

η(ξijs)+
1

2σ2
bj

⎤⎥⎥⎥⎥⎦
b2

js

⎫⎪⎪⎬⎪⎪⎭
,

(10)

respectively. As shown in Equation (9), the variational density of θis is an exponential family with
sufficient statistics θis and θ2

is, and thus qθis(θis) =N(μθis,σ
2
θis
), where

σ2
θis =

σ2
θ

1+2σ2
θ ∑

J
j=1 η(ξijs)a2

j

μθis =
αT

1 Xs +σ2
θ ∑J

j=1 aj [yijs − 1
2 +2η(ξijs)μbjs]

1+2σ2
θ ∑

J
j=1 η(ξijs)a2

j
.

(11)

Similarly, the variational density of bis shown in Equation (10) also follows a normal distribution, that
is, qbis(bis) =N(μbjs,σ

2
bjs
), where

σ2
bjs =

σ2
bj

1+2σ2
bj
∑Ns

i=1 η(ξijs)

μbjs =
βT

j X̃s −σ2
bj ∑

Ns
i=1 [yijs − 1

2 −2η(ξijs)ajμθis]
1+2σ2

bj
∑Ns

i=1 η(ξijs)
.

(12)
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Given the optimal variational distributions derived above and the mean-field variational assumption,
we compute the expectation over all latent variables with respect to the variational distribution q(Z) in
Equation (8), yielding

Q(Y) =
S
∑
s=1

Ns

∑
i=1

J
∑
j=1

{ log 1
1+e−ξijs

+(yijs −
1
2
)(ajμθis −μbjs)−

1
2

ξijs

−η(ξijs)[a2
j (μ2

θis +σ2
θis)−2ajμθis μbjs +μ2

bjs +σ2
bjs − ξ2

ijs]}

− 1
2

S
∑
s=1

{(Ns + J) log2π+
Ns

∑
i=1

⎡⎢⎢⎢⎣
logσ2

θ +
σ2

θis
+(μθis −αT

1 Xs)2

σ2
θ

⎤⎥⎥⎥⎦

+
J
∑
j=1

⎡⎢⎢⎢⎢⎣
logσ2

bj +
σ2

bjs
+(μbjs −βT

j X̃s)2

σ2
bj

⎤⎥⎥⎥⎥⎦
}.

(13)

In addition, a log penalty is imposed on σ2
bj

in Equation (13) to encourage sparsity in item random
effects for intersectional DIF detection. The log penalty has been employed for identifying permissible
attribute patterns in cognitive diagnostic models (Gu & Xu, 2019; Ma et al., 2023; Wang, 2024). Note
that logσ2

bj
is already included in Q(Y). On the one hand, incorporating the log penalty preserves

closed-form solutions in the M-step, thereby ensuring computational efficiency. On the other hand,
as shown by Ma et al. (2023), the log penalty has a Bayesian interpretation: it corresponds to placing a
Dirichlet prior with parameter 1−λ on the variances. When 1−λ < 0, the prior becomes an improper
Dirichlet distribution, which promotes the selection of significant variances more aggressively than
traditional proper Dirichlet priors. Overall, a regularized GVEM algorithm is proposed, where the
objective function to be maximized is given by

Q′(Y) = Q(Y)−λ
J
∑
j=1

logσ2
bj,

where λ > 0 is a tuning parameter and larger values of λ result in greater sparsity in σ2
bj

.
In each EM iteration, variational densities in Equations (11) and (12) are updated in the E-step. In the

M-step, Q′(Y) is maximized to update all model parameters. This is achieved by setting the derivative of
the objective function with respect to each model parameter to be zero. We will show that all parameters
of the 2PL-Ri model can be updated with closed-form solutions, leading to a computationally efficient
algorithm. We fix σθ to 1 for model identification, and the update rules for all other model parameters
are presented below:

ξ2
ijs = μ2

bjs +σ2
bjs −2ajμθis μbjs +a2

j (μ2
θis +σ2

θis),

aj =
∑S

s=1∑Ns
i=1 [(yijs − 1

2)μθis +2η(ξijs)μθis μbjs]
2∑S

s=1∑Ns
i=1 η(ξijs)(μ2

θis
+σ2

θis
)

,

α1 = (
S
∑
s=1

Ns

∑
i=1

XsXT
s )
−1

(
S
∑
s=1

Ns

∑
i=1

μθis Xs),

βj = (
S
∑
s=1

X̃sX̃T
s )
−1

(
S
∑
s=1

μbjs X̃s),

σ2
bj =

1
S+2λ

S
∑
s=1

[σ2
bjs +(βT

j X̃s −μbjs)
2] .

(14)
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Following the derivation shown above, similar variational lower bounds can be derived for the other
three proposed models. The detailed derivation for the most complex model in this study, 2PL-RisM, is
provided in the Appendix.

Lastly, we employ the generalized information criterion (GIC) to select an appropriate value of λ, as it
has been shown to have desirable theoretical properties (Cho et al., 2024; Fan & Tang, 2013). Specifically,
GIC takes the form of

GIC = −2�(Y)+k× cN, (15)

where k is the number of DIF parameters and cN = c logN loglogN, with c being a constant that controls
the degree of model sparsity. When cN = logN, GIC reduces to the Bayesian information criterion (BIC).
Since �(Y) is computationally intractable due to high-dimensional integration, we instead use Q(Y) as
a surrogate in Equation (15) to compute the GIC.

The regularized GVEM algorithm for DIF detection in the 2PL-Ri model is summarized in Algo-
rithm 1. Two remarks are worth noting.

Remark 1. The log penalty term logx might lead to numerical instability when x approaches zero.
Although logx does not appear in the iterations of the GVEM algorithm as shown in Equations (11),
(12), and (14), it is required for computing the GIC. Therefore, we replace σ2

bj
with max{0.1,σ2

bj
} in the

GIC calculation whenever σbj ≠ 0.

Remark 2. We do not penalize main DIF effects (i.e., β̇j and/or ˙̄γj) because the primary goal of this study
is to detect intersectional DIF, which is defined through nonzero variance terms. As a result, anchor
items must be prespecified, in contrast to approaches in the literature that penalize main effects directly
(see, e.g., Wang et al., 2023). If an additional penalty term, such as the lasso, were imposed on these main
effects, anchor items would no longer be required. In this study, we use four anchor items, corresponding
to 20% of the total test length.

Algorithm 1 Regularized GVEM algorithm for DIF detection in the 2PL-Ri model.
GICbest ←+∞
for each value of λ do

Initialize all model parameters: ξ2
ijs,α1,aj,βj,σ

2
bj
,σ2

θ
while not converged do ▷ Convergence is achieved when the maximum change in parameter
estimates across successive EM iterations is less than ε = 0.001

E-step: Given current model parameters, update the means and variances of the variational
distributions using Equations (11) and (12)
M-step: Given current variational distributions, update model parameters using Equation
(14)

kλ ← 0 ▷ Count the number of nonzero variance parameters
for j ← 1 to J do

if σ2
bj
< ρb then ▷ Threshold set to ρb = 0.001

σ2
bj
← 0

else
kλ ← kλ +1

Rerun the EM algorithm without penalty (i.e., set λ = 0), allowing only items with σbj ≠ 0 to retain
random item effects, to obtain the final estimates
GICλ ←−2Q(Y)+kc logN loglogN
if GICbest > GICλ then

GICbest ← GICλ
Store current parameter estimates as optimal
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3. Simulation studies

Four simulation studies are conducted to evaluate the performance of the proposed regularized
GVEM algorithm in detecting intersectional DIF. Studies I–IV corresponded to the four models,
2PL-Ri, 2PL-RiM, 2PL-Ris, and 2PL-RisM, respectively, each targeting at a different DIF scenario,
as detailed in the Methods section. In all studies, the number of items is fixed to J = 20. Following
Huang et al. (2024), the slope parameters aj (j = 1,2, . . . ,J) are drawn from Lognormal(0,0.252), and
intercept bj (j = 1,2, . . . ,J) are drawn from Uniform[−2,2]. The true item parameters are given in
Table 2.

Each simulation study systematically manipulates four common factors. First, the number of
intersectional groups is set to either 10 or 40. For the 10-group conditions (i.e., S = 10), groups are
defined by two demographic variables, one binary (e.g., sex) and one five-category variable (e.g.,
occupational status), resulting in P = 5 for the dummy-coded variables. For the 40-group conditions,
groups are defined by four demographic variables, three binary (e.g., sex, immigrant background, and
dichotomous education level) and one five-category variable (e.g., occupational status), resulting in
P = 7 for the dummy-coded variables. This setup aligns with an empirical study on intersectionality
(Keller et al., 2023). Second, the sample size per group is set to either 50 or 100. Third, the proportion
of items with intersectional DIF is set at 20% (Items 1–4) or 60% (Items 1–12). Intersectional DIF
is introduced by nonzero random item effects. For items with intersectional UDIF, half are assigned
σ2

bj
= 0.54 and the other half σ2

bj
= 1. For items with intersectional NUDIF, half are assigned σ̄2

aj = 0.33
and the other half σ̄2

aj = 1. These magnitudes are derived from a pilot study using PISA data, where the
variances for intersectional DIF ranged from 0.31 to 0.98 for intercepts (centered at 0.54) and from
0.22 to 0.46 for slopes (centered at 0.33). All items with intersectional NUDIF include both random
intercept and random slope, reflecting real-world scenarios where NUDIF often coexists with UDIF
(Wang et al., 2023). Fourth, traditional impact, defined as mean ability differences due to the main
effects by demographic variables, is either absent or present. When present, the traditional impact is set
at α1 = 0.1, yielding ability mean differences ranging from 0.1 to 0.2 for the 10-group conditions and up
to 0.4 for the 40-group conditions.

Beyond the four common factors, Studies II and IV also consider intersectional impact. This is
introduced by the variance of the group-level random intercept on ability (σ2

α0 ), set to either 0 (absence)
or 0.5 (presence). These values correspond to intra-class correlation (ICC) values of approximately 0 and
0.1, aligning with the ICC in empirical intersectional educational assessment literature (Keller et al.,
2023). Overall, Studies I and III included 16 experimental conditions each, while Studies II and IV
included 32 conditions each. A summary of all manipulated factors is provided in Table 3.

We note again that this study focuses on detecting intersectional DIF, rather than traditional DIF.
To avoid confounding due to traditional DIF and to demonstrate the models’ ability to disentangle
traditional and intersectional DIF, all items are designed to exhibit traditional DIF, which is introduced
through fixed main effects of demographic variables. More specifically, we set βT

j = [bj,0.2× 1T
P] and

γ̄T
j = [āj,0.1 × 1T

P] in Equation (2). Under the 10-group conditions, this setup results in traditional
DIF magnitudes ranging from 0.2 to 0.4 for intercepts and 0.1 to 0.2 for slopes across groups. For the

Table 2. True fixed item parameters for the simulation studies

Item 1 2 3 4 5 6 7 8 9 10

aj 0.691 1.483 0.787 0.795 0.607 0.934 0.924 0.855 0.974 1.113

bj 0.354 0.122 1.911 −1.209 1.377 −1.620 −0.475 −1.816 −1.390 1.099

Item 11 12 13 14 15 16 17 18 19 20

aj 0.823 0.724 0.823 1.003 0.963 0.839 1.346 1.089 1.135 0.929

bj −0.422 −0.554 −0.316 −0.712 0.209 1.885 0.232 0.297 0.565 1.296
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Table 3. Illustration of simulation designs

Simulation I Simulation II Simulation III Simulation IV

(2PL-Ri) (2PL-RiM) (2PL-Ris) (2PL-RisM)

Number of groups (S) 10, 40 10, 40 10, 40 10, 40

Sample size per group (Ns) 50, 100 50, 100 50, 100 50, 100

Proportion of DIF items 20%, 60% 20%, 60% 20%, 60% 20%, 60%

Traditional impact (α1) 0.1, 0 0.1, 0 0.1, 0 0.1, 0

Intersectional impact (σ2
α0

) — 0.5, 0 — 0.5, 0

40-group conditions, these ranges increase to 0.2 to 0.8 for intercepts and 0.1 to 0.4 for slopes, following
the design by Belzak & Bauer (2020). To ensure model identification in the presence of traditional DIF
across all items, 20% of items (Items 17–20) are designated as anchors with main effects fixed at zero
(i.e., β̇j = 0 and ˙̄γ = 0). However, their random effects are still freely estimated, meaning that they are not
anchored with respect to intersectional DIF.

The flagging procedure for intersectional DIF has been shown in Algorithm 1. Each condition is
replicated 50 times, and the performance is measured by false positive (FP) and true positive (TP) rates.
Specifically, the FP rate refers to the proportion of items free from intersectional DIF mistakenly flagged
as DIF items, while the TP rate refers to the proportion of items with intersectional DIF that are correctly
detected. We consider 50 replications sufficient since the TP and FP rates are averaged across all the
DIF-free and DIF-related item parameters, rather than being evaluated for a single parameter in each
replication.

3.1. Simulation I: UDIF detection
We evaluate 2PL-Ri in this simulation, where slope parameters are fixed across groups. Figure 1 shows
the TP and FP rates of Simulation I across 50 replications. Under most conditions, except when S = 10
and Ns = 50, the new method performs well. Overall, the 2PL-Ri model performs better with more
groups and larger sample sizes per group. As intersectional DIF is modeled by random effects, such
results are not surprising but consistent with the findings from the multilevel modeling literature (Adam
et al., 2021; Maas & Hox, 2005; Moineddin et al., 2007). In addition, the proportion of DIF items and
the presence or absence of intersectional impact have minimal influence on the results.

3.2. Simulation II: UDIF detection with intersectional impact
We study 2PL-RiM in Simulation II, where intersectional impact is considered. As shown in Figure 2,
the new method follows a pattern similar to Simulation I. That is, the proposed method performs well
under most conditions except when S= 10 and Ns = 50, and unsurprisingly, it performs better with more
groups and larger sample sizes per group. In addition, the proportion of DIF items has a small effect on
performance, with a lower proportion yielding slightly better results. Similarly, the presence or absence
of traditional and intersectional impact has minimal influence on the results.

3.3. Simulation III: UDIF and NUDIF detection
2PL-Ris is evaluated with both UDIF and NUDIF incorporated. Figure 3a and 3b summarizes the
DIF detection results on intercept and slope parameters, respectively. With intersectional NUDIF,
the proposed method maintains desirable performance on intercepts with S= 40 while resulting in worse
performance with the smaller group number S = 10. The DIF detection results for slope parameters
are generally unsatisfactory. Relatively better performance was observed under conditions involving
a large number of groups and either the absence of traditional impact or the combination of the
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Figure 1. Simulation I results.

presence of traditional impact and a low proportion of DIF items. In general, this is consistent with
prior studies, which found that it is more challenging to identify DIF effects on slope parameters than on
intercepts (Bauer et al., 2020; Wang et al., 2023). Regarding the manipulated factors, while the number
of groups and the sample size per group have consistent effects across Simulations I–III, the influence
of DIF proportion and traditional impact becomes more pronounced in this study. Lastly, compared
to Simulation I, DIF detection results for the intercept exhibit lower TP rates when S = 10. Additional
guidance on the use of this method is provided in the Discussion section.

3.4. Simulation IV: UDIF and NUDIF detection with intersectional impact
The final simulation study evaluates the 2PL-RisM model, with the TP and FP rates summarized
in Figure 4. In general, the method results in desirable TP and FP rates for detecting intersectional
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Figure 2. Simulation II results.
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Figure 3. Simulation III results.

UDIF, but performs poorly in detecting intersectional NUDIF. In fact, the NUDIF detection results are
generally unacceptable across nearly all conditions.

4. Empirical study

A real data set from the Programme for International Student Assessment (PISA) is used to demonstrate
the performance of the four methods in this article. PISA is a well-known international large-scale
assessment that tests the skills and knowledge of 15-year-old students in mathematics, reading, and
science (OECD, 2019). In this study, we use a subset of the PISA 2018 science assessment, including
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Figure 3. Continued.

dichotomous responses of 7,002 students on 19 items. Three demographic variables are considered:
(1) country (eight countries in the subset), (2) sex (male or female), and (3) highest parental education
(below or at least college level). These variables are chosen due to their frequent consideration in studies
on educational equity. The full combination of these variables results in 32 intersectional groups, with
their corresponding sample sizes summarized in Table 4.

Before discussing our empirical findings, we introduce a feasible way to tune the hyperparameter c
in GIC (Lyu et al., 2025). Figure 5 illustrates the procedure, where c is plotted against JDIF, the number
of items exhibiting intersectional DIF. Similar to the scree plots in factor analysis, Figure 5 suggests that
the models chosen by GIC with c = 1.05, which corresponds to the “elbow” of the plot. In practice, the
choice of c can also depend on research goals. In certain high-stakes testing contexts, a higher FP rate
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Figure 4. Simulation IV results.
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Figure 4. Continued.
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Table 4. Sample size for each group in the empirical

study

Below college At least college

Male Female Male Female

ALB 175 120 93 94

ARE 300 233 951 927

AUS 258 282 536 522

AUT 110 133 184 189

BEL 115 98 255 293

BGR 71 62 100 111

BIH 68 68 53 86

BLR 38 35 205 237
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Figure 5. Relationship between the number of items exhibiting intersectional DIF and c.

Table 5. DIF detection results of the empirical study

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2PL-Ri b b b b

2PL-RiM b b b b b

2PL-Ris b b b b b

2PL-RisM b b b

Note: b indicates UDIF, and NUDIF is not detected.

may be acceptable in order to achieve a high TP rate, as undetected DIF can lead to serious fairness
concerns.

The empirical data set is analyzed using each of the four models, and the results are summarized in
Table 5, where a and b refer to (intersectional) NUDIF and UDIF, respectively. Items 7, 17, 18, and 19
are flagged as UDIF items by most models, and no item is flagged as NUDIF.

Given the simulation results indicating unsatisfactory performance in detecting NUDIF, we focus
our empirical analysis on the results from the 2PL-Ri and 2PL-RiM models. To validate the empirical
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results, we estimate the RiM and Ri model using Markov chain Monte Carlo (MCMC) via the rstan
package (Stan Development Team, 2024), allowing random item effects only for the consistently flagged
items (i.e., items 7, 17, 18, and 19). For comparison, we also fit a constrained version of the model without
random item effects. Model comparison based on the leave-one-out information criterion (LOOIC)
reveals that the model with random item effects provides a significantly better fit, with a LOOIC
difference of 107 and a standard error of 21.8. Furthermore, for comparison, a total score-based method
is also employed to examine intersectional DIF (Belzak, 2023). Specifically, Belzak’s method (2023) uses
regularized logistic regression, with total score as the matching criterion and intersectionality modeled
through interactions among demographic variables. This method is chosen due to its similarity to our
proposed methods, as it accounts for both main and intersectional DIF effects with a primary focus on
UDIF. However, this method has two limitations: (1) it does not automatically account for impact, since
the total score is not directly regressed on demographic variables and (2) it may struggle with a large
number of demographic variables, given that interactions are modeled using fixed effects. Despite these
limitations, the method identifies UDIF in items 2, 5, 7, 14, 18, and 19, which largely aligns with the
findings from our proposed methods.

5. Discussion

This study proposes a novel random effects IRT approach for detecting intersectional DIF and demon-
strates the feasibility of applying a regularized GVEM algorithm in this context. By including both item-
level and person-level random effects, the model accounts for intersectional DIF and impact effects
arising from multiple demographic variables. Through the GVEM framework, all model parameters
can be updated by closed-form solutions when detecting UDIF, resulting in a computationally efficient
model estimation procedure. Simulation results show that the proposed methods can effectively detect
UDIF. We have further extended the method to detect intersectional NUDIF, which is known to be
more challenging. In this setting, all model parameters except the main and random effects on item
discrimination (i.e., γj and σ̄2

aj ) have closed-form solutions (see the Appendix for details). The simulation
results reveal that the number of groups has the most substantial impact on performance, followed by
the sample size per group, the proportion of DIF items, and the presence or absence of impact. In terms
of computational efficiency, the method performs well on standard hardware. On a laptop with an Intel
i7-12700H CPU, the runtimes for a typical setting (i.e., 20 items, 20% DIF items, 40 groups, and 100
people per group) with a single regularization parameter range from 7.23 to 12.41 seconds, depending
on the model used. These results underscore the scalability of the proposed approach for large-scale
assessments.

In this study, intersectional DIF is modeled using random effects, and variation in group sizes may
influence the methods’ performance. Literature on multilevel modeling has shown that unequal cluster
sizes can reduce both the power to detect true effects and the efficiency of estimating fixed and random
components (Candel & Breukelen, 2009; Kush et al., 2022; Manatunga et al., 2001). Specifically, Candel &
Breukelen (2009) found that the relative efficiency (RE) of the random intercept variance estimator can
drop to between 84% and 95%, depending on the distribution and range of the cluster sizes. They also
found that the loss in RE can be recovered by increasing the number of clusters, where the compensatory
adjustment is given by 1/RE−1. For example, if the RE is 84%, then 1/0.84−1 ≈ 0.19, suggesting that
an increase of 19% more clusters is needed to restore the original efficiency.

While we explore intersectional NUDIF detection alongside UDIF, the results for intersectional
NUDIF detection are unsatisfactory, particularly when the model simultaneously accounts for inter-
sectional impact. A supplementary simulation study demonstrates that even when response data are
generated from the 2PL-Ris model, which includes intersectional NUDIF, the 2PL-Ri model still
effectively identified items exhibiting intersectional UDIF. This suggests that, in practice, researchers
should mainly rely on the detection results for intersectional UDIF when using the proposed methods.
The results for intersectional NUDIF should be interpreted with caution and be used primarily in cases
where intersectional impact is not included and when both the sample size and the number of groups
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are sufficiently large. Despite these challenges, our framework provides a foundation for future advances
in intersectional NUDIF detection. In a pilot study where only random effects, but not main effects,
were considered, the methods demonstrate better results for NUDIF detection, suggesting potential
for improvement. Future studies could explore the incorporation of regularization in both random
effects and main effects to overcome estimation challenges. In addition, modeling slope parameters with
lognormal distributions instead of truncated normal distributions may offer further improvement.

Another limitation of the simulation studies is that how demographic variables affect the variance
of ability is not considered. Specifically, while mean latent traits are allowed to vary across groups,
the within-group variance is assumed to be constant. Although this assumption aligns with most DIF
research, several educational studies, such as Baye & Monseur (2016) and Gray et al. (2019), have
discovered differences in latent trait variances among demographic groups. Future research may explore
how demographic variables influence the variance of latent traits.

This study employs a variational approach to approximate the log marginal likelihood. Although
parameter estimation may be biased due to the use of a mean-field Gaussian distribution family to
approximate the posterior distribution of the latent variables, the approximation becomes increasingly
accurate with larger sample sizes. Nevertheless, the estimation of latent variables, including group-
specific item parameters with random effects and person abilities, may not be sufficiently accurate. To
address this issue, we propose applying the standard MCMC procedure for their estimation, as described
in the empirical study. Alternatively, future research could consider using best linear unbiased prediction
(BLUP) as a complementary or alternative approach to MCMC.

Lastly, it is important to recognize that DIF arises within a complex social context. Each individual
carries a unique set of experiences that shape their learning and life trajectories. However, when
patterns of advantage or disadvantage emerge at the group level, they serve as a reminder that systemic
discrimination continues to persist. Thus, while detecting DIF is a crucial first step in examining issues of
fairness, it must be followed by deeper investigations into the underlying causes of structural inequality.
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A. Appendix

The derivation of the 2PL-RisM model estimation procedure is shown below. The model is presented in Equations (1) and (2).
Applying the local variational method in Equation (7), we obtain
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Then, the corresponding optimal variational distributions for the latent variables are

qα0s(α0s) ∝ expEZ/{α0s} [B(Y,Z)]

∝ expEZ/{α0s}

⎡⎢⎢⎢⎣
− α2

0s

2σ2
α0

−
Ns

∑
i=1

(α0s +αT
1 Xs −θis)2

2σ2
θ

⎤⎥⎥⎥⎦
∼N(μα0s,σ

2
α0s
),

where

σ2
α0s
=

σ2
α0

σ2
θ

Nsσ2
α0
+σ2

θ
,

μα0s =
σ2

α0

Nsσ2
α0
+σ2

θ

⎛
⎝

Ns

∑
i=1

μθis −NsαT
1 Xs

⎞
⎠

;

qθis(θis) ∝ expEZ/{θis} [B(Y,Z)]

∝ expEZ/{θis}{
J
∑
j=1
[(yijs −

1
2
)ajsθis −η(ξijs)(ajsθis −bjs)2]

− (θis −α0s −αT
1 Xs)2

2σ2
θ

}

∼N(μθis,σ
2
θis
),

where

σ2
θis
=

σ2
θ

1+2σ2
θ ∑

J
j=1 η(ξijs)(μ2

ajs
+σ2

ajs
)
,

μθis =
μα0s +αT

1 Xs +σ2
θ ∑

J
j=1 μajs [yijs − 1

2 +2η(ξijs)μbjs]
1+2σ2

θ ∑
J
j=1 η(ξijs)(μ2

ajs
+σ2

ajs
)

;

qajs(ajs) ∝ expEZ/{ajs} [B(Y,Z)]

∝ expEZ/{ajs}{
Ns

∑
i=1
[(yijs −

1
2
)ajsθis −η(ξijs)(ajsθis −bjs)2]

−
(ajs − γ̄T

j X̃s)2

2σ̄2
aj

−
log1{ajs ≥ 0}

2
}

∼N+(μ̄ajs,σ̄
2
ajs
),

where

σ̄2
ajs
=

σ̄2
aj

1+2σ̄2
aj ∑

Ns
i=1 η(ξijs)(μ2

θis
+σ2

θis
)
,

μ̄ajs =
γ̄T

j X̃s + σ̄2
aj ∑

Ns
i=1 [yijs − 1

2 +2η(ξijs)μbjs]μθis

1+2σ̄2
aj ∑

Ns
i=1 η(ξijs)(μ2

θis
+σ2

θis
)

,

σ2
ajs
= σ̄2

ajs

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−
μ̄ajs

√
2πσ̄ajs Φ(

μ̄ajs

σ̄ajs
)

exp
⎛
⎝
−

μ̄2
ajs

2σ̄2
ajs

⎞
⎠
− 1

2π[Φ(
μ̄ajs

σ̄ajs
)]

2 exp
⎛
⎝
−

μ̄2
ajs

σ̄2
ajs

⎞
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

μajs = μ̄ajs +
σ̄ajs

√
2πΦ(

μ̄ajs

σ̄ajs
)

exp
⎛
⎝
−

μ̄2
ajs

2σ̄2
ajs

⎞
⎠

;

qbjs(bjs) ∝ expEZ/{bjs} [B(Y,Z)]

∝ expEZ/{bjs}

⎧⎪⎪⎨⎪⎪⎩
−

Ns

∑
i=1
[(yijs −

1
2
)bjs +η(ξijs)(bjs −ajsθis)2]−

(bjs −βT
j X̃s)2

2σ2
bj

⎫⎪⎪⎬⎪⎪⎭
∼N(μbjs,σ

2
bjs
),
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where

σ2
bjs
=

σ2
bj

1+2σ2
bj
∑Ns

i=1 η(ξijs)
,

μbjs =
βT

j X̃s −σ2
bj
∑Ns

i=1 [yijs − 1
2 −2η(ξijs)μajs μθis]

1+2σ2
bj
∑Ns

i=1 η(ξijs)
.

Given the optimal variational distributions derived above and the mean-field variational assumption, the expectation (i.e.,
the integral) in Equation (A1) can be computed as

Q(Y) =
S
∑
s=1

Ns

∑
i=1

J
∑
j=1
{ log

1
1+ e−ξijs

+(yijs −
1
2
)(μajs μθis −μbjs)−

1
2

ξijs

−η(ξijs)[(μ2
ajs
+σ2

ajs
)(μ2

θis
+σ2

θis
)−2μajs μθis μbjs +μ2

bjs
+σ2

bjs
− ξ2

ijs]}

− 1
2

S
∑
s=1
{(Ns +2J+1) log2π+[logσ2

α0
+

μ2
α0s
+σ2

α0s

σ2
α0

]

+
Ns

∑
i=1

⎡⎢⎢⎢⎢⎣
logσ2

θ +
σ2

θis
+σ2

α0s
+(μθis −μα0s −αT

1 Xs)2

σ2
θ

⎤⎥⎥⎥⎥⎦

+
J
∑
j=1

⎡⎢⎢⎢⎢⎣
log σ̄2

aj
+

σ2
ajs
+(μajs − γ̄T

j X̃s)2

σ̄2
aj

+2logΦ
⎛
⎝

γ̄T
j X̃s

σ̄aj

⎞
⎠

⎤⎥⎥⎥⎥⎦

+
J
∑
j=1

⎡⎢⎢⎢⎢⎣
logσ2

bj
+

σ2
bjs
+(μbjs −βT

j X̃s)2

σ2
bj

⎤⎥⎥⎥⎥⎦
}.

The objective function with log penalty is

Q′(Y) =Q(Y)−λ
J
∑
j=1
(log σ̄2

aj
+ logσ2

bj
).

By setting the derivative of the objective function with respect to each model parameter to be zero, we get the following
parameters update rules:

ξ2
ijs = (μ2

ajs
+σ2

ajs
)(μ2

θis
+σ2

θis
)−2μajs μθis μbjs +μ2

bjs
+σ2

bjs
,

σ2
α0
= 1

S

S
∑
s=1
(σ2

α0s
+μ2

α0s
),

σ2
θ =

1
∑S

s=1 Ns

S
∑
s=1

⎧⎪⎪⎨⎪⎪⎩
Ns [σ2

α0s
+(μα0s +αT

1 Xs)2]+
Ns

∑
i=1
[σ2

θis
+μ2

θis
−2μθis(μα0s +αT

1 Xs)]
⎫⎪⎪⎬⎪⎪⎭
,

α1 = (
S
∑
s=1

Ns

σ2
θ

XsXT
s )
−1⎛
⎝

S
∑
s=1

∑Ns
i=1 μθis −Nsμα0s

σ2
θ

Xs
⎞
⎠
,

(γ̄j,σ̄
2
aj
) = argmin

(γ̄j,σ̄2
aj
)

S
∑
s=1

⎧⎪⎪⎨⎪⎪⎩
log σ̄2

aj
+

σ2
ajs
+(μajs − γ̄T

j X̃s)2

σ̄2
aj

+2logΦ
⎛
⎝

γ̄T
j X̃s

σ̄aj

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
+2λ log σ̄2

aj
,

βj = (
S
∑
s=1

X̃sX̃T
s )
−1

(
S
∑
s=1

μbjs X̃s),

σ2
bj
= 1

S+2λ

S
∑
s=1
[σ2

bjs
+(μbjs −βT

j X̃s)2] .
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