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EXTENDING ECONOMIC MODELS
WITH TESTABLE ASSUMPTIONS:

THEORY AND APPLICATIONS

MOYU LIAO

The University of Sydney

This article studies the identification of complete economic models with testable
assumptions. We start with a local average treatment effect (LATE) model where
the “No Defiers,” the independent IV assumption, and the exclusion restrictions can
be jointly refuted by some data distributions. We propose two relaxed assumptions
that are not refutable, with one assumption focusing on relaxing the “No Defiers”
assumption while the other relaxes the independent IV assumption. The identified
set of LATE under either of the two relaxed assumptions coincides with the classical
LATE Wald ratio expression whenever the original assumption is not refuted by the
observed data distribution. We propose an estimator for the identified LATE and
derive the estimator’s limit distribution. We then develop a general method to relax
a refutable assumption A. This relaxation method requires finding a function that
measures the deviation of an econometric structure from the original assumption
A, and a relaxed assumption Ã is constructed using this measure of deviation. We
characterize a condition to ensure the identified sets under Ã and A coincide whenever
A is not refuted by the observed data distribution and discuss the criteria to choose
among different relaxed assumptions.

1. INTRODUCTION

Empirical researchers often make convenient model assumptions which usually
come from economic theories or intuitions. For example, the “No Defiers” assump-
tion in Imbens and Angrist (1994) assumes that the instrument has a monotone
effect on the decision to take treatment, the “Monotone Instrument” assumption
in Manski and Pepper (2000) imposes that an instrument monotonically shifts the
conditional mean of the potential outcomes, and the “Perfect Sector Selection”
assumption in Roy (1951) assumes that employees perfectly observe their future
earnings in two job sectors and choose the job sector that maximizes discounted
lifetime earnings. Such assumptions simplify the identification and make the
results easier to interpret.
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2 MOYU LIAO

Unfortunately, assumptions in the three examples above, when combined with
some other reasonable assumptions, can be rejected by some distributions of
observables.1 When the imposed assumption is refuted by data, the econometrician
is faced with an empty identified set for the parameter of interest. As a result, the
econometrician cannot give a useful interpretation of the economic environment.

A way to prevent the data rejection problem is to find a relaxed assumption Ã
so that no distributions of observables can reject Ã. Such a relaxed assumption is
called non-refutable. One way to construct a non-refutable relaxed assumption is
to consider a data-dependent assumption selection method: For each possible data
distribution, we pick a particular assumption that can rationalize the data. When
picking the assumption, we also do not want to deviate too much from the original
assumption A, since it reflects the economic theory behind it. Specifically, given a
parameter of interest θ , we want the identified set under the relaxed assumption Ã
to be the same as the identified set under A whenever A is not rejected by the data
distribution. In other words, we want to preserve the identified set.

Constructing a non-refutable assumption Ã via a data-dependent approach also
allows us to view the identified set of parameters of interest as a correspondence
whose further properties will be discussed. In particular, we are interested to know
whether the identified set of the parameter of interest is continuous in the observed
data distribution under the relaxed assumption Ã. If such a continuity property fails
for the identified set under Ã, we may question the appropriateness of using Ã: On
the one hand, it is hard to use economic intuitions to justify why the identified
set changes abruptly due to a small change in the observed data distribution. On
the other hand, the discontinuity of the identified set also poses challenges to
estimating the identified set.2

We aim to provide a general method to construct a relaxed assumption from
the original assumption such that the relaxed assumption preserves the identified
set. To achieve this goal, we start with the local average treatment effect (LATE)

model (Imbens and Angrist, 1994) with the classical “No Defiers” assumption,
the independent IV assumption, and the exclusion restrictions, which are jointly
refutable (Kitagawa, 2015; Mourifié and Wan, 2017). We use this application
as a leading example to illustrate the way to construct relaxed assumptions that
preserve the identified set. The application also sheds light on some subtle issues
when we construct a relaxed assumption, and it serves as a running example
where abstract definitions in the later section can be matched. We then generalize
the insights in the LATE example and present a general approach to construct a
relaxed assumption. The general approach allows us to construct multiple relaxed
assumptions and we discuss several criteria for econometricians to decide which
relaxed assumptions to use.

1Kitagawa (2015) and Mourifié and Wan (2017) propose tests for the assumptions of the Imbens and Angrist (1994)
model. Hsu et al. (2019) propose a test for the monotone instrument assumption. Mourifié et al. (2020) study the
testability of the Roy model.
2We discuss the continuity of identified sets in Appendix B.
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EXTENDING ECONOMIC MODELS WITH TESTABLE ASSUMPTIONS 3

The rest of the article is organized as follows. Section 2 introduces the LATE
example. The classical LATE model makes three assumptions on the distribution
of potential outcomes, potential treatments, and instruments (denoted by G): the
“No Defiers” assumption, the independent IV assumption, and the exclusion
restrictions. We propose two relaxed assumptions that focus on relaxing the “No
Defiers” assumption and the independent IV assumption, respectively. To construct
the assumption that relaxes the “No Defiers” assumption, we use the probability
of defiers as a measure of the deviation from the “No Defiers” assumption. We
then construct a relaxed assumption by specifying what distributions G should be
put into the relaxed assumption when a particular data distribution is observed. For
each possible observed data distribution, we only consider the G that are consistent
with the observed data distribution and have the minimal probability of defiers. We
call this the minimal defiers relaxed assumption. In the construction of the minimal
defiers relaxed assumption, we also emphasize the importance of imposing a
weaker instrument independence condition: we require the instrument to be inde-
pendent of the potential outcomes conditional on economic agents’ compliance
types,3 which is weaker than the independent IV assumption. The assumption that
relaxes the independent IV assumption is constructed in a similar way: we first
define a function that measures the deviation of a G from the independent IV
assumption; we then specify what G to put in the relaxed assumption for each
possible observed data distribution, and call this the minimal marignal dependent
instrument relaxed assumption.4

In Section 2, we also characterize the identified sets of LATE under the two
relaxed assumptions, and the two identified sets of LATE coincide for all possible
data distributions. Moreover, the LATE is point-identified. We propose an estimator
of the LATE quantity and derive its asymptotic behavior. We then apply the iden-
tification results to study the return of college education using the dataset in Card
(1993). The empirical results show that the LATE identified under the minimal
defiers or the minimal marginal dependent instrument relaxed assumptions is more
reasonable compared to the classical Wald ratio LATE quantity.5

In Section 3, we formalize a general theory to construct a non-refutable
relaxed assumption out of a refutable assumption. We formalize the definitions
of econometric structures, refutable assumptions, and identified sets. A further
two-moment-inequality example is introduced to help illustrate the definitions.
We construct a relaxed assumption similarly as we did in the LATE example: we
consider a deviation measure mj and define the relaxed assumption that specifies
what econometric structures to be included in the relaxed assumption for each
observed data distribution. Moreover, all econometric structures included in the

3Compliance types include always-takers, never-takers, compliers, and defiers.
4Similarly, when we decide what G to put into the relaxed assumption, we only consider the G that achieves the
minimal deviation from the independent IV assumption.
5In Imbens and Angrist (1994), LATE is identified as the Wald ratio under the classical assumptions: LATEWald ≡
(E[Yi|Zi = 1]−E[Yi|Zi = 0])/(E[Di|Zi = 1]−E[Di|Zi = 0]).
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relaxed assumption are required to have a minimal deviation from the original
assumption measured by the mj function. We call such a construction the minimal
deviation relaxed assumption. We then characterize the conditions on mj such that
the identified set of parameters can be preserved under the minimal deviation
relaxed assumption whenever the original assumption is not refuted by the
observed data distribution. Multiple relaxed assumptions can be constructed with
different features, and we recommend using empirical relevance and continuity
of the identified set as criteria for selecting the appropriate relaxed assumption.
We conclude the section with an extension to the incomplete models, where the
minimal deviation construction of the relaxed assumption may fail to preserve the
identified set.

Section 4 concludes. All proofs are collected in the Appendixes.

Related Literature

First, we contribute to the literature on model misspecification and refutation. In
the macroeconomic literature, researchers use robust control to avoid the misspec-
ification issue in their baseline model (Hansen et al., 2006; Hansen and Sargent,
2007). The robust control approach aims to accommodate local perturbations to
the baseline model rather than solve the refutability of the baseline model. In
econometrics, Bonhomme and Weidner (2022) use the local asymptotics frame-
work to study the local perturbation of econometric models while Christensen
and Connault (2023) consider a moment inequality model with misspecified
parametric distributional assumption. Focusing on the model refutation issue,
Masten and Poirier (2021) studies the refuted linear IV model. Our analysis extends
the approach in Masten and Poirier (2021) to discuss several issues when using a
relaxed assumption for refutable models.

Second, we also contribute to the LATE literature. Since Kitagawa (2015) proves
the sharp testable implication of Imbens and Angrist (1994), literature relaxes the
“No Defiers” condition. De Chaisemartin (2017) discusses the economic meaning
of the conventional Wald ratio expression when defiers exist. He shows that,
under the additional assumption that a subgroup of compliers accounts for the
same population proportion as defiers and they have the same LATE, the Wald
ratio identifies the net average treatment effect of a subgroup of compliers after
deducting the average treatment effect of defiers.

Notations

Throughout this article, we use X to denote the vector of observed variables, and
we use F to denote the distribution of X. We use ε to denote the vector of primitive
variables, and we use G to denote the distribution of ε. We use s to denote an
econometric structure. We use A to denote a refutable assumption and use Ã to
denote a relaxed assumption. We use κ1 � κ2 to denote the same order of magnitude
between κ1 and κ2.
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EXTENDING ECONOMIC MODELS WITH TESTABLE ASSUMPTIONS 5

2. A LEADING EXAMPLE: THE TREATMENT EFFECTS APPLICATION

We start with an application with a binary treatment and a binary instrument
(Imbens and Angrist, 1994). We first set up the notations and then briefly sum-
marize the results in Kitagawa (2015) that the assumptions in Imbens and Angrist
(1994) can be rejected by some data distributions. Notations are consistently set up
to connect to definitions in Section 3. We characterize the identified LATE under
these relaxed assumptions. We conclude the section with an empirical illustration
with the Card (1993) data.

2.1. The Potential Outcome Framework

An econometrician observes an outcome variable Yi, a treatment decision Di, and
a binary instrument Zi. The observed outcome variable Yi and treatment decision
Di are generated through

Yi = Yi(1,1)DiZi +Yi(0,1)(1−Di)Zi +Yi(1,0)Di(1−Zi)+Yi(0,0)(1−Di)(1−Zi),

Di = Di(1)Zi +Di(0)(1−Zi),

(2.1)

where Di(1),Di(0) are potential treatment decisions, Yi(d,z) is the potential
outcome under (Di = d,Zi = z), and Zi is the binary instrument.

We collect all variables on the RHS of (2.1) in a vector and call them the prim-
itive variables: εi = (Di(1),Di(0),Yi(0,0),Yi(1,0),Yi(0,1),Yi(1,1),Zi). We collect
the observed variables in Xi = (Yi,Di,Zi). Let Y be the metric space of Yi and let
B be the Borel-sigma algebra on Y . The space of distributions of Xi is

F = {FX(y,d,z) : the support of FX is contained in Y ×{0,1}2}, (2.2)

and the space of distributions of primitive variables is

G = {
G(ε) : the support of G is contained in {0,1}2 ×Y4 ×{0,1}}. (2.3)

Given the potential outcome equation (2.1), we can define a unique mapping
M : G → F , such that for any Gs ∈ G:

M(Gs) = {
F ∈ F :PrF(Yi ∈ B,Di = d,Zi = z) = PrGs(Yi(d,z) ∈ B,Di(z) = d,Zi = z),

∀B ∈ B, d,z ∈ {0,1}}.

(2.4)

In other words, M(Gs) is the push-forward distribution of Gs under the mapping
(2.1), and M(Gs) contains a unique F.

In the potential outcome framework, we call Gs an econometric structure s:
different econometric structures have different primitive variable distributions, and
they may imply different economic interpretations through Gs through the same
M, which determines the economic relationship between primitive variables and
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observed variables. We therefore can consider the following set of structures as the
structural space:

S = {s| Gs ∈ G} . (2.5)

A commonly used assumption for the potential outcome model is the Imbens–
Angrist Monotonicity assumption (IA-M) where we assume the exogeneity, exclu-
sion, and monotonicity of the instrument Zi. We can write the IA-M assumption
(denoted by A) as a subset of S:

A = AND ∩AIV ∩AER, where

AND = {s : Di(1) ≥ Di(0), Gs − a.s.},
AIV = {s : Gs satisfies Zi ⊥ (Yi(1,1),Yi(0,1),Yi(1,0),Yi(0,0),Di(1),Di(0))},
AER = {s : Yi(1,1) = Yi(1,0) and Yi(0,1) = Yi(0,0), Gs − a.s.}.

(2.6)

In (2.6), we refer to AND as the “No Defiers” assumption, AIV as the independent IV
assumption, and AER as the exclusion restriction. Our main parameter of interest
is the LATE for compliers:

LATE(Gs) ≡ E[Yi(1,1)−Yi(0,0)|Di(1) = 1,Di(0) = 0]. (2.7)

We focus on the LATE because it is analyzed frequently in empirical papers as a
policy-relevant quantity and it can be identified as a simple Wald ratio (Imbens
and Angrist, 1994):

LATEWald(F) = EF[Yi|Zi = 1]−EF[Yi|Zi = 0]

EF[Di|Zi = 1]−EF[Di|Zi = 0]
, if IA-M (2.6) holds. (2.8)

2.2. The Sharp Testable Implication

While the IA-M assumption clearly identifies the LATE quantity, it can be rejected
by some data distributions. For example, EF[Di|Zi = 1] ≥ EF[Di|Zi = 0] must
hold under the observed data distribution F to satisfy the IA-M assumption.
We summarize the results in Kitagawa (2015), who derives the sharp testable
implications of the IA-M assumption (2.6). Let us define two quantities for all
B ∈ B and d ∈ {0,1}:
P(B,d) ≡ PrF(Yi ∈ B,Di = d|Zi = 1),

Q(B,d) ≡ PrF(Yi ∈ B,Di = d|Zi = 0).
(2.9)

We abuse the notation and suppress the dependence of P(·,d) and Q(·,d) on F.
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Lemma 2.1. Let P(·,d) and Q(·,d), d ∈ {0,1}, be absolutely continuous with
respect to some measure μF.6 For any structure s ∈ A, F ∈ M(Gs), and any Borel
set B ∈ B, the F must satisfy:

P(B,1) ≥ Q(B,1), and Q(B,0) ≥ P(B,0). (2.10)

Moreover, for any F satisfying (2.10), there is an s ∈ A such that F ∈ M(Gs).

Kitagawa (2015) proposes using the core determining class (Galichon and
Henry, 2011) to test (2.10). As shown in Lemma 2.1, the IA-M assumption A is
refutable. When A is rejected by data, then the identified set for LATE should be
empty because no LATE value implied by the IA-M assumption is consistent with
the data. In many empirical applications, researchers do not test this implication,
nor do they specify what should be done when the A is rejected. In the next section,
we use a relaxed assumption approach to find relaxed assumptions Ã that are non-
refutable, characterize the identified set under the relaxed assumptions, and discuss
the estimation and inference on LATE.

2.3. Relax the IA-M Assumption

Depending on the empirical contexts, researchers may consider different aspects
of the IA-M assumption to be the source of the model refutation. In this section, we
study two ways to relax the IA-M assumption: the first relaxed assumption mainly
targets the “No Defiers” assumption while maintaining part of the IV assumption;
the second approach maintains the “No Defiers” assumption and targets the IV
assumption. We maintain the exclusion restriction Yi(d,z) = Yi(d,1 − z) for the
rest of the section and leave the discussion of relaxing the exclusion restriction to
Section D of the Supplementary Material.

2.3.1. The Minimal Defiers Extension. In some contexts, the instrument may
have heterogeneous effects on economic agents’ decisions to take treatment and
defiers may exist. In such cases, the empirical researcher may want to relax the “No
Defiers” assumption. However, allowing for defiers alone cannot solve the model
refutation problem (Kitagawa, 2021). For example, if Yi ∈ {0,1} is also binary,
then the exclusion restriction and independent IV assumptions still imply that
PF(Yi = 1,Di = 0|Zi = 0) ≥ PF(Yi = 1,Di = 0|Zi = 1)− PF(Di = 1|Zi = 0)must
hold for the observed data distribution.7

To circumvent the refutability of the independent IV assumption, we introduce
a weaker version of the IV assumption, which is called the conditional type
independence assumption:

6Such dominating measure always exists, for example, define μF(B) = P(B,1)+Q(B,1)+P(B,0)+Q(B,0) for all
B ∈ B.
7To see this testable implication, we first impose the exclusion restriction and use Yi(d) to denote the potential
outcomes Yi(d,1) and Yi(d,0). We want to show a failure of (Yi(d),Di(1),Di(0)) ⊥ Zi. We look at two terms Term 1 ≡
PrG(Yi(0) = 1,Di(1) = Di(0) = 0|Zi = 0) and Term 2 ≡ PrG(Yi(0) = 1,Di(1) = Di(0) = 0|Zi = 1). These two terms
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ATI = {
s
∣∣Gs satisfies Zi ⊥ (Yi(1,1),Yi(0,1),Yi(1,0),Yi(0,0)) |Di(1),Di(0)

}
.

We call ATI the conditional type independence assumption because the condition-
ing variables Di(1),Di(0) define whether the individual i is an always-taker/never-
taker/complier/defier. The independent IV assumption implies the conditional type
independence assumption because AIV ⊆ ATI . The conditional type independence
assumption is also used in other empirical contexts to study the LATE (Kedagni,
2019). By using the conditional type independence assumption, we can avoid the
refutation issue.

We now state an equivalent representation of the IA-M assumption using the
conditional type independence representation.

Lemma 2.2. The IA-M assumption defined in (2.6) can be equivalently written
as the intersection A = AER ∩ATI ∩AEM−NTAT ∩AND, where AEM−NTAT is the set of
structures s such that:

EGs [1(Di(1) = Di(0) = 1)|Zi = 1] = EGs [1(Di(1) = Di(0) = 1)|Zi = 0],

EGs [1(Di(1) = Di(0) = 0)|Zi = 1] = EGs [1(Di(1) = Di(0) = 0)|Zi = 0].
(2.11)

The assumption AEM−NTAT says that the measure of always/never-takers is
independent of the instrument. It is weaker than the condition (Di(1),Di(0) ⊥
Zi) because it allows the probability of compliers or defiers to depend on the
instrument. It should be noted that AIV ⊆ AEM−NTAT so AEM−NTAT is also weaker
than the IV assumption. The alternative representation breaks the independent IV
assumption into the intersection of ATI and AEM−NTAT .

The alternative presentation in Lemma 2.2 comes with the following two desir-
able features: first, when the “No Defiers” assumption is effective, we preserve
the IA-M assumption; second, when the “No Defiers” assumption is given up,
as we will later see, the rest of the assumptions AER ∩ ATI ∩ AEM−NTAT are not
refutable. We will use the non-refutation feature to construct a non-refutable
relaxed assumption, and the preservation property will be used to show a good
property of the LATE quantity under the relaxed assumption.

must be equal because of the independent IV assumption. By the potential outcome model (2.1), Term 1 ≤ PrF(Yi =
1,Di = 0|Zi = 0). For Term 2, we can derive a sequence of relations:

Term 2 =(a) PrF(Yi = 1,Di = 0|Zi = 1)−PrG(Yi(0) = 1,Di(1) = 0,Di(0) = 1|Zi = 1)

=(b) PrF(Yi = 1,Di = 0|Zi = 1)−PrG(Yi(0) = 1,Di(1) = 0,Di(0) = 1|Zi = 0)

≥(c) PrF(Yi = 1,Di = 0|Zi = 1)−PrG(Di(1) = 0,Di(0) = 1|Zi = 0)

=(d) PrF(Yi = 1,Di = 0|Zi = 1)− [PrF(Di = 1|Zi = 0)−PrG(Di(1) = Di(0) = 1|Zi = 0)

≥ PrF(Yi = 1,Di = 0|Zi = 1)−PrF(Di = 1|Zi = 0),

where (a) follows by the potential outcome model (2.1), (b) follows by the independent IV assumption, (c) follows
because we subtract a larger probability, and (d) follows by the potential outcome model (2.1). When the lower
bound PrF(Yi = 1,Di = 0|Zi = 1)− PrF(Di = 1|Zi = 0) overtakes the upper bound PF(Yi = 1,Di = 0|Zi = 0), the
independent IV assumption must fail.
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We consider a relaxed assumption that uses the following measure of defiers:

md(s) = EGs [1{Di(1) = 0,Di(0) = 1}] . (2.12)

This quantity serves as a lens through which we can view the deviation of a
structure s from the “No Defiers” assumption. We relax the original IA-M by
allowing for a certain amount of defiers and it is characterized by the following.

Assumption 2.1. Let mmin,d(F) ≡ inf{md(s) : F ∈ Ms(Gs) and s ∈ AER ∩ ATI ∩
AEM−NTAT} be the minimal defier amount under F. We call

Ã = ∪F∈F
{
s ∈ AER ∩ATI ∩AEM−NTAT : md(s) = mmin,d(F), F ∈ M(Gs)

}
the minimal defiers relaxed assumption.

Assumption Ã is constructed by a data-dependent method which specifies what
we should consider in our relaxed assumption for every F in the observed data
distribution space. Assumption 2.1 says that for each F, we only focus on the set
of the structures that achieve the minimal deviation from the AND assumption. The
construction of Ã may be rationalized by an econometrician who has a belief about
the possible value of defiers. Since defiers are abnormal, her prior about the amount
of defiers is decreasing. The data-dependent approach for Ã is to first update her
belief for each possible F. The posterior of the defiers given the data distribution
F will be the prior belief conditioning on the set mmax,d(F) ≥ md(s) ≥ mmin,d(F).8

Since the prior is decreasing, the minimal defier md(s) = mmin,d(F) maximizes
the posterior likelihood and the data-dependent construction is to focus on these
posterior-likelihood-maximizing structures.

The construction of Ã is similar to the methods (Masten and Poirier, 2021), and
we add to the discussion by clarifying some subtle issues: first, the value of the
deviation measure mmin,d(F) can indicate the possibility of finding a non-refutable
relaxed assumption. If there still exists an F0 such that the infimum is taken over
an empty set, then mmin,d(F0) = +∞ and there is no hope we can construct a non-
refutable relaxed assumption using the md(s) function. Second, when constructing
Ã, the econometrician is also required to justify whether the relaxed assumption
is structurally reasonable. In particular, the econometrician needs to justify the
infimum quantity mmin,d(F) is achieved by some structure s so that the set Ã is
well-defined. These two concerns for Ã in Assumption 2.1 are addressed later in
Section 2.4 and further discussed in Section 3.

2.3.2. The Minimal Marginal Dependence Extension. Testable implications
(2.10) also arise due to the failure of the independent IV assumption, which
happens in many natural experiments. In this section, we provide another relaxed
assumption that uses the deviation from the independent IV assumptions but keeps
the “No Defiers” assumption.

8The upper bound mmax,d(F) ≡ sup{md(s) : F ∈ M(Gs) and s ∈ AER ∩ATI ∩AEM−NTAT } can be less than 1.
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The independent IV assumption is an infinite-dimensional constraint on the Gs.
As a result, there are infinitely many ways to relax the independent IV assumption,
and they may result in different identified sets when the IA-M assumption is
rejected. Here, we present a choice of the relaxation measure that will lead to a
clean identified LATE.

We start with a measurement of the deviation from the independent IV assump-
tion. By the M mapping defined in (2.4), the probability measures PrGs(Yi(d1,1) ∈
Bd11,Di(1) = d1,Di(0) = d0|Zi = 1) and PrGs(Yi(d0,0) ∈ Bd01,Di(1) = d1,Di(0) =
d0|Zi = 0) are absolutely continuous with respect to some dominating measure
μF.9 We can therefore derive the Radon–Nikodym densities for d1,d0 ∈ {0,1}
gs

y1(y,d1,d0|Zi = 1) ≡ dPrGs(Yi(d1,1) ∈ Bd11,Di(1) = d1,Di(0) = d0|Zi = 1)

dμF
,

gs
y0(y,d1,d0|Zi = 0) ≡ dPrGs(Yi(d0,0) ∈ Bd00,Di(1) = d1,Di(0) = d0|Zi = 0)

dμF
.

The gs
y1 and gs

y0 are the marginal densities of potential outcomes under different
instrument values. If the independent IV assumption holds, then the densities must
be the same. We therefore consider the following deviation measure:

mMI(s) =
1∑

d=0

∫
Y

[
gs

y1(y,d,d|Zi = 1)−gs
y0(y,d,d|Zi = 0)

]2
dμF(y).

The mMI measures the L2 distance of marginal distributions of the potential out-
comes when the instrument Zi takes different values. When d = 1, gs

yz(y,1,1|Zi = z)
is the marginal density of Yi(1,1) = Yi(1,0) and Di(1) = Di(0) = 1 conditional on
Zi = z, which focuses on the always-takers. Similarly, when d = 0, the density
concerns the never-takers group. In this measurement, the defiers group is omitted
because we maintain the “No Defiers” assumption. We also omit the marginal
distribution of y for the compliers. This is because for Zi = z, the observed Yi

only contains information about Yi(z,z) for compliers but not Yi(1 − z,z), and the
independent IV assumption does not imply a relationship between the marginal
densities of Yi(1,1) and Yi(0,0) for compliers. In fact, as it will be shown later, we
can always construct a Gs such that the conditional type independent IV condition
holds for the compliers.

The measure mMI also differs from the md in a significant way: when mMI(s) = 0,
it does not mean that s must satisfy the independent IV assumption. However, the
choice of mMI(s) is still plausible: note that for always-takers, only the Yi(1,1) =
Yi(1,0) matters because the untreated status never occurs for always-takers and
we can never get information about Yi(0,1) = Yi(0,0) for always-takers, so we
omitted the potential outcomes (Yi(0,1),Yi(0,0)) in mMI . A similar logic holds for
never-takers.

9Note that we maintain the exclusion restriction Yi(d,z) = Yi(d,1− z), so we can omit the Yi(d1,0) and Yi(d0,1).
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Before we proceed to the relaxed assumption, we also introduce the conditional
type independence condition for the compliers:

ATI−CP = {
s
∣∣Gs satisfies Zi ⊥ (Yi(1,1),Yi(0,1),Yi(1,0),Yi(0,0)) |Di(1) = 1,Di(0) = 0

}
.

We maintain this crucial assumption so that we can get an informative bound
on the LATE quantity. This is because, for Zi = z, Yi only contains information
about Yi(z,z) for compliers and we need some independence conditions across the
instrument values to make sure that we can combine the outcomes under Zi = 1
and Zi = 0 to identify the LATE.

Assumption 2.2 (Minimal Marginal Dependent Instrument). Let mmin,MI(F) ≡
inf{mMI(s) : F ∈ M(Gs) and s ∈ AER ∩ATI−CP ∩AND} be the minimal distance. We
call

Ã′ = ∪F∈F
{
s ∈ AER ∩ATI−CP ∩AND : mMI(s) = mmin,MI(F), F ∈ M(Gs)

}
the minimal marginal dependent instrument relaxed assumption.

Similar to Ã, the rationale behind Ã′ is also a data-dependent construction of
assumptions. However, it should be noted that when mmin,MI(F) = 0, Ã′ does not
equal the IA-M assumption because mMI(s) = 0 is not an equivalent characteriza-
tion of the independent instrument condition. Nonetheless, as we will see in the
next section, Ã′ produces a clean identified LATE expression.

2.4. The Identified Set Under Assumption 2.1 or 2.2

Before we characterize the identified LATE quantity, we first show that Ã in
Assumption 2.1 and Ã′ in Assumption 2.2 are well-defined and non-refutable.
In particular, we want to show that the minimal deviation functions (mmin,d(F)

and mmin,MI(F)) are finite so that the assumption is not refutable, and the minimal
deviation values can be achieved by some econometric structures.

Proposition 2.1. The Ã in Assumption 2.1 and Ã′ in Assumption 2.2 are well-
defined and non-refutable such that: (1) mmin,d(F) < ∞ and mmin,MI(F) < ∞ for
all F ∈ F; (2) for any F, there exist s1 and s2 such that md(s1) = mmin,d(F) and
mMI(s2) = mmin,MI(F).

The second condition in Proposition 2.1 is non-trivial. If the mmin,d(F) is finite
but not achieved by some structure s, then

{
s ∈ AER ∩ ATI ∩ AEM−NTAT : md(s) =

mmin,d(F), F ∈ M(Gs)
} = ∅ and the data-dependent construction of relaxed

assumptions does not specify what to consider when F is observed, and Ã becomes
refutable.

We first set up some notations and regularity conditions to describe the identified
LATE. We use the following notation to denote the identified set of LATE when F
is the observed data distribution and A0 is an imposed assumption:
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LATEID
A0

(F) =
{

EGs [Yi(1,1)−Yi(0,0)|Di(1) = 1,Di(0) = 0]

∣∣∣∣M(Gs) = F, s ∈ A0

}
.

In our later discussion of the relaxed assumption, it would be easier to use the
Radon–Nikodym derivatives of P(·,d) and Q(·,d) with respect to the μF measure.
Let μF be the common dominating measure in Lemma 2.1. Let p(y,d) and q(y,d)

be defined as:

p(y,d) = dP(B,d)

dμF
q(y,d) = dQ(B,d)

dμF
. (2.13)

The densities p(y,d) and q(y,d) will be used in our subsequent theorems and
proofs. We first set up some notations that will simplify the notations in the
identified LATE expression:

Yd = {
y : (−1)d(q(y,d)−p(y,d)) ≥ 0

}
, d ∈ {0,1},

which is the set of y such that when Di = d, the testable implication (2.10), in the
density form, is not violated.

Assumption 2.3. There exists a constant c ≥ 0 such that: (i) PrF(Zi = 1) ∈
(c,1− c); (ii) Q(Y0,0)−P(Y0,0) > c and P(Y1,1)−Q(Y1,1) > c.

Assumption 2.3 is a regularity assumption. For the identification result, we only
need Assumption 2.3 to hold with c = 0 so that LATE is well-defined. For inference
purposes, we will further require c > 0 to avoid the weak instrument issue.

Theorem 1. Suppose Assumption 2.3 holds. The minimal defiers probability is
identified as:

mmin,d(F) = (Q(Yc
1,1)−P(Yc

1,1))PF(Zi = 0)+ (P(Yc
0,0)−Q(Yc

0,0))PF(Zi = 1),

and the minimal marginal dependence distance is identified as:

mmin,MI(F) =
∫

max{q(y,1)−p(y,1),0}2 +max{p(y,0)−q(y,0),0}2dμF(y).

The identified LATEID
Ã

and LATEID
Ã′ satisfy

LATEID
Ã

(F) = LATEID
Ã′ (F) (2.14)

=
∫
Y1

y(p(y,1)−q(y,1))dμF(y)

P(Y1,1)−Q(Y1,1)
−

∫
Y0

y(q(y,0)−p(y,0))dμF(y)

Q(Y0,0)−P(Y0,0)
.

There are several notable implications from Theorem 1: first, whether we use
Ã or Ã′ as the relaxed assumption, we have the same identified LATE quantity
for all F; second, the identified LATE coincide with the Wald ratio expression
(2.8) whenever the testable implication (2.10) holds. When (2.10) is violated,
the expression (2.14) is the LATE for compliers under the model that selects the
minimal amount of defiers or minimal marginal dependence; and third, the LATE
quantity is always point-identified for all F.
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The equality of LATEID
Ã

(F) and LATEID
Ã′ (F) is not a coincidence. For each F,

the s1 and s2 that achieve the minimal deviations in Proposition 2.1 have the same
conditional distribution of Yi(z,z)|Zi = z for compliers. Also, both assumptions
require the conditional type independence condition for compliers. As a result, the
identified LATE is the same.

The second implication is due to the feature of our construction of md(s).
When F satisfies the testable implication (2.10), the minimal defier amount
mmin,d(F) = 0. Note that md(s) = 0 is an equivalent characterization of the AND

assumption, and Lemma 2.2 implies that md(s) = 0 will deliver the original IA-M
assumption. As a result, LATEID

Ã
(F) and the Wald ratio coincide for F that satisfies

(2.10).
The point identification result comes from the relationship of the minimal defiers

amount and the marginal distribution of Yi(z,z)|Zi = z for compliers. Whenever F
violates (2.10), we must add defiers to the model. Since we want to minimize the
probability of defiers, the priority is to deal with the values of y that (−1)d(q(y,d)−
p(y,d)) < 0, i.e., the values of y where (2.10) is violated locally. Moreover, there
is a unique way to make such an adjustment. Since the densities of Y for compliers
and defiers are related through the potential outcome equation (2.1),10 adjusting
the density of Y for defiers in a minimal way leads to the unique adjustment in
the density of Y for compliers. Since the LATE is a function of the conditional
densities of Y for compliers, LATE is point-identified. Similar logic holds for the
Ã′ assumption.

The identified quantity LATEID
Ã

(F) coincides with the LATE quantity in Dahl

et al. (2023). However, our rationale leading to the LATEID
Ã

(F) is quite different
from that in Dahl et al. (2023). In our setting, the econometrician wants to
minimize the deviation from the IA-M assumption because she believes defiers
are irregular. In contrast, Dahl et al. (2023) directly assume that given a value of
potential outcomes, compliers and defiers cannot coexist, which is called the local
monotonicity assumption. This assumption lacks a clear rationale to justify why
the compliers and defiers cannot co-exist.

We also want to stress the importance of the conditional type independence
assumption ATI , while Dahl et al. (2023) maintain the AIV assumption. Our iden-
tification theorem also illustrates why conditional type independence assumption
is crucial. In (2.14), the denominator of the first term, P(Y1,1)− Q(Y1,1), is the
probability of compliers given Zi = 1, and Q(Y0,0)−P(Y0,0) is the probability of
compliers given Zi = 0. These two quantities are not guaranteed to coincide, and
the independent IV assumption fails. The conditional type independence assump-
tion echoes the result in Kitagawa (2021), where he shows that the independent
instrument assumption is testable.

10Suppose we set a density for defiers hd(y) ≡ g(Yi(1,0) = y,Di(1) = 0,Di(0) = 1|Zi = 0), then the potential outcome
equation implies that the always-takers will have a density g(Yi(1,0) = y,Di(1) = Di(0) = 1|Zi = 0) = q(y,0)−hd(y).
Since we impose ATI ∩AEM−NTAT , we can change the instrument value for always-takers, which leads to g(Yi(1,0) =
y,Di(1) = Di(0) = 1|Zi = 1) = q(y,0) − hd(y). Again, we use the potential outcome to derive that the compliers
should have a density of p(y,1)− (q(y,1)−hd(y)).
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2.5. Estimation and Inference

The estimator in Dahl et al. (2023) is based on numerical integration of estimated
density, which can be hard to implement. In this section, we propose an estimator
of LATEID

Ã
(F) that only requires a sample average with appropriate trimming and

the computation is easier.
The identification results in Theorem 1 rely on the sets Y1,Y0. Throughout this

section, we focus on the estimation and inference problem when Yi is continuously
distributed on R, and μF is the Lebesgue measure.

Assumption 2.4. Yi is continuously distributed with unbounded support and
the measure P(B,d), Q(B,d) is absolutely continuous with respect to the Lebesgue
measure.

To estimate Y0,Y1, we first estimate the density p(y,d) and q(y,d) using kernel
density estimators with a bandwidth sequence hn:

fh(y,1) =
1
hn

∑n
i=1 K

(
Yi−y

hn

)
1(Dj = 1,Zj = 1)∑n

i=11(Zj = 1)
−

1
hn

∑n
i=1 K

(
Yi−y

hn

)
1(Dj = 1,Zj = 0)∑n

i=11(Zj = 0)
,

fh(y,0) =
1
hn

∑n
i=1 K

(
Yi−y

hn

)
1(Dj = 0,Zj = 0)∑n

i=11(Zj = 0)
−

1
hn

∑n
i=1 K

(
Yi−y

hn

)
1(Dj = 0,Zj = 1)∑n

i=11(Zj = 1)
.

(2.15)

Assumption 2.5. There exist constants Ml and Mu such that for d = 0,1 such
that Yd ∩ [Mu,∞) ∈ {∅,[Mu,∞)} and Yd ∩ (−∞,Ml] ∈ {∅,(−∞,Ml]}. Moreover,
we know Yd ∩ [Mu,∞) and Yd ∩ (−∞,Ml].

Assumption 2.5 requires that the sign of p(y,d)−q(y,d) is known and fixed for
large values of y. As a result, we only need to estimate the set Yd ∩ [Ml,Mu].11 By
controlling the tail behavior of the densities, we can avoid the ill behaviors in the
density estimation and maintain a good property for the LATE estimator. Define
the upper tail set Yut

d = Yd ∩ [Mu,∞), the lower tail set Y lt
d = Yd ∩ (−∞,Ml], and

we estimate Y1,Y0 by

Ŷd(bn) = {y ∈ (Ml,Mu) : fh(y,d) ≥ bn}∪Yut
d ∪Y lt

d ,

where bn is a sequence of positive constants that converge to zero. The estimated set
above only uses density fh(y,d) to distinguish whether y ∈Yd in the range (Ml,Mu)

and uses the known tail sign for large value of Yi in Assumption 2.5 directly. For
the Ã or the Ã′ relaxed assumptions in Theorem 1, we use the sample analog to
construct an estimator of (2.14) as:

11For example, suppose p(y,d) and q(y,d) have Gaussian tails: p(y,d) = Cpe−y2/σp(d)2
and q(y,d) = Cqe−y2/σq(d)2

for |y| > Ctail > 0, where Ctail defines the tail regions. If σp(1) > σq(1), then Y1 ∩ [Ctail,∞) = [Ctail,∞) and Y1 ∩
(−∞, −Ctail] = (−∞, −Ctail].
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L̂ATE =
1
n

∑n
i=1 Yi

[
1(Di=1,Zi=1)

1
n
∑n

j=1 1(Zj=1)
− 1(Di=1,Zi=0)

1
n
∑n

j=1 1(Zj=0)

]
1(Yi ∈ Ŷ1(bn))

1
n

∑n
i=1

[
1(Di=1,Zi=1)

1
n
∑n

j=1 1(Zj=1)
− 1(Di=1,Zi=0)

1
n
∑n

j=1 1(Zj=0)

]
1(Yi ∈ Ŷ1(bn))

−
1
n

∑n
i=1 Yi

[
1(Di=0,Zi=0)

1
n
∑n

j=1 1(Zj=0)
− 1(Di=0,Zi=1)

1
n
∑n

j=1 1(Zj=1)

]
1(Yi ∈ Ŷ0(bn))

1
n

∑n
i=1

[
1(Di=0,Zi=0)

1
n
∑n

j=1 1(Zj=0)
− 1(Di=0,Zi=1)

1
n
∑n

j=1 1(Zj=1)

]
1(Yi ∈ Ŷ0(bn))

.

(2.16)

Limit Distribution of L̂ATE. We present the limit distribution of L̂ATE defined
in (2.16). The following assumptions are sufficient to guarantee the L̂ATE in (2.16)
will converge to a normal distribution.

Assumption 2.6. The kernel function K satisfies: (i) K(u) is continuous
and supported on [−Ck,Ck] and

∫
u K(u)du = 1; (ii)

∫
u uK(u)du = 0; and (iii)∫

u2K(u)du < ∞.

Assumption 2.7. The conditional distributions F(y|Di = d,Zi = z) have den-
sities f (y|d,z) for all d,z ∈ {0,1}, and f ′′(y|d,z) exist and are uniformly bounded
above by a constant cf ; (iii) E(Y2+δ

i ) < ∞ for some δ > 0.

The above two assumptions are standard in the nonparametric density estimation
literature and guarantee that the density difference estimators fh(y,d) will converge
uniformly in probability to its limit (−1)1−d(p(y,d)−q(y,d)) at a polynomial rate.

Assumption 2.8. Let f (y,1) = p(y,1) − q(y,1) and f (y,0) = q(y,0) − p(y,0).
The following condition holds for any sequence bn → 0+:

∫ Mu
Ml

|f (y,d)|1(−bn ≤
f (y,d) ≤ bn)dy = O(b2

n).

Assumption 2.8 controls the bias from trimming {y ∈ [Ml,Mu] : 0 < f (y,d) < bn}
and removes the asymptotic bias and sampling variation in the kernel estimator
fh(y,d). Assumption 2.8 can be replaced by a sufficient primitive condition.

Assumption 2.9. Let M0 < ∞ be a positive integer. For d = 0,1, the set
Cd = {y : f (y,d) = 0, y ∈ [Ml,Mu]} has at most M0 points. Let B(Cd,δ) =
∪y∈Cd B(y,δ) be the δ-neighborhood of Cd for d = 0,1. For both d = 0,1, we
have supy∈B(Cd,δ) | d(f (y,d))

dy | > 1/C for some C,δ > 0.

Lemma 2.3. Assumption 2.9 implies Assumption 2.8.

Essentially, in Assumption 2.9, we rule out all data distributions whose {y :
f (y,d) = 0} have a positive measure, or whose density difference slops near the
zero points of f (y,d) = 0 are too flat.

Theorem 2. Let L̂ATE be defined in (2.16) and LATEID
Ã

(F) be defined in (2.14).
Suppose Assumption 2.3 holds for c > 0 and Assumptions 2.4–2.8 hold. Let bn �
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n−1/4/ logn and hn � n−1/5, then
√

n(L̂ATE − LATEID
Ã

(F)) →d N(0,�′�	�′�),
where

	 = Var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1(Zi = 0)

1(Zi = 1)

Yi1(Di = 1,Zi = 1)1(Yi ∈ Y1)

Yi1(Di = 1,Zi = 0)1(Yi ∈ Y1)

Yi1(Di = 0,Zi = 0)1(Yi ∈ Y0)

Yi1(Di = 0,Zi = 1)1(Yi ∈ Y0)

1(Di = 1,Zi = 1)1(Yi ∈ Y1)

1(Di = 1,Zi = 0)1(Yi ∈ Y1)

1(Di = 0,Zi = 0)1(Yi ∈ Y0)

1(Di = 0,Zi = 1)1(Yi ∈ Y0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and matrices � and � are specified as by

� =

⎛
⎜⎜⎜⎜⎝

1
π3− 1
π4− π1
π2

3
π2
π2

4

⎞
⎟⎟⎟⎟⎠, π ≡

⎛
⎜⎜⎝

π1

π2

π3

π4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
∫
Y1

y(p(y,1)−q(y,1))dy∫
Y0

y(q(y,0)−p(y,0))dy∫
Y1

(p(y,1)−q(y,1))dy∫
Y0

(q(y,0)−p(y,0))dy

⎞
⎟⎟⎟⎠,

� = 1

Pr(Zi = 1)Pr(Zi = 0)

(
�1 �3 02×4

�2 02×4 �3

)
,

where

�1 =
(

E[Yi1(Di = 1,Zi = 1)1(Yi ∈ Y1)] −E[Yi1(Di = 1,Zi = 0)1(Yi ∈ Y1)]
−E[Yi1(Di = 0,Zi = 1)1(Yi ∈ Y0)] E[Yi1(Di = 0,Zi = 0)1(Yi ∈ Y0)]

)
,

�2 =
(

E[1(Di = 1,Zi = 1)1(Yi ∈ Y1)] −E[1(Di = 1,Zi = 0)1(Yi ∈ Y1)]
−E[1(Di = 0,Zi = 1)1(Yi ∈ Y0)] E[1(Di = 0,Zi = 0)1(Yi ∈ Y0)]

)
,

�3 =
(

Pr(Zi = 0) −Pr(Zi = 1) 0 0
0 0 Pr(Zi = 1) −Pr(Zi = 0)

)
.

Corollary 2.1. Let (�̂,�̂,	̂) →p (�,�,	), and let σ̂ =
√

�̂′�̂	̂�̂′�̂. Then
the set[

L̂ATE − σ̂√
n
�(α/2),L̂ATE + σ̂√

n
�(1−α/2)

]
(2.17)

is a valid α-confidence interval for LATEID
Ã

(F), where � is the standard normal
CDF function.

Theorem 2 shows that the L̂ATE in (2.14) is
√

n consistent. Once the matrices
�, �, and 	 are estimated by consistent estimators, we can test hypotheses such
as H0 : LATEID

Ã
(F) = 0. However, Assumption 2.5 requires the econometrician to

know the sign of tail behavior of p(y,1) − q(y,1) and q(y,0) − p(y,0). In some
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empirical applications, we may want to be agnostic about tail signs or only impose
less restrictive conditions on tail signs. In this case, we can calculate the confidence
interval for each possible tail condition, and then take the union, but this confidence
interval will be conservative.

2.6. An Empirical Illustration

In this section, we apply our results in Theorems 1 and 2 to Card (1993), who
studies the causal effect of college attendance on earnings. In this application, the
outcome variable Yi is an individual i’s log wage in 1976, Di = 1 means individual
i attended a four-year college, and Zi = 1 means the individual was born near
a four-year college. This data set has been used by both Kitagawa (2015) and
Mourifié and Wan (2017) to test the IA-M assumption, and they both reject the
IA-M assumption. If a child grows up near a college, he or she may hear more
stories of heavy tuition burdens, which may discourage him or her from attending
college. On the other hand, if this child grew up far away from a college, he or
she may instead choose to attend college. Therefore, we would expect defiers to
exist in this empirical setting. Moreover, it is unclear why this instrument is fully
independent of the potential income, since the choice of residence may depend on
parents’ potential income, which may be correlated with their children’s income.

We conditioned (Yi,Di,Zi) on three characteristics: living in the south (S/NS),
living in a metropolitan area (M/NM), and being an African-American ethnic
group (B/NB). We follow Mourifié and Wan (2017) to exclude the subgroup
NS/NM/B due to the small sample size. We also exclude subgroup NS/M/B due to
the high frequency of Z = 1. We conduct estimation and inference on each of the
remaining six subgroups and the pooled African-American group. The choices of
trimming sequence bn, kernel bandwidth hn, upper and lower bands Mu,Ml, and
tail set Yut

d ,Y lt
d are available on request.

Estimation results are reported in Table 1. We also report the LATE estimates
when we directly use the IA-M assumption as the Wald statistics. The estimated
measure of compliers under Ã or Ã′ conditioned on Zi = 1 and Zi = 0 are, respec-
tively, reported as P(Y1,1)−Q(Y1,1) and Q(Y0,0)−P(Y0,0), while the estimated
measure of compliers under IA-M assumption is E[Di|Zi = 1]−E[Di|Zi = 0]. The
estimates of LATEID

Ã
and LATEWald differ the most for three groups: S/NM/NB,

S/M/NB, and S/M/B. It should be noted that for all these three groups, estimated
E[Di|Zi = 1] − E[Di|Zi = 0] differs from P(Y1,1) − Q(Y1,1) and Q(Y0,0) −
P(Y0,0). If we blindly use the identification result under the IA-M assumption
and use the standard LATEWald estimator, the “identified” LATE can be negative
(subgroups S/NM/NB and S/M/NB), or be unrealistically large (subgroup S/M/B).
Once we use Ã or Ã′, the estimated LATE for each of the six subgroups is positive,
and the values of LATE are all between zero and one. When we look at the African-
American group only, while LATEWald is large, it fails to reject the hypothesis that
education is harmful to their earnings, while our method will reject the hypothesis
that LATE for the African-American is negative at a significance level of 0.025.
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Table 1. Estimation result under extensions Assumption 2.1

Group NS,NM,NB NS,M,NB S,NM,NB S,NM,B S,M,NB S,M,B B-Group only

Pr(Zi = 1) 0.464 0.879 0.349 0.322 0.608 0.802 0.6188

Observations 429 1191 307 314 380 246 703

LATEID
Ã

(F) 0.5599 0.1546 0.2524 0.4773 0.5276 0.4358 1.0993

CI for LATEID
Ã

(F) [0.01, 1.11] [−0.51, 0.82] [−1.22, 1.73] [−0.09,1.04] [−2.54, 3.59] [−5.15, 6.02] [0.58, 1.62]

P(Y1,1)−Q(Y1,1) 0.1120 0.1084 0.0265 0.0739 0.0164 0.0338 0.0375

Q(Y0,0)−P(Y0,0) 0.1148 0.0960 0.0684 0.1495 0.0922 0.0308 0.1583

LATEWald(F) 0.5976 0.0761 −6.4251 1.1873 −1.5412 17.9620 5.0499

CI for LATEWald(F) [−0.20 1.39] [−1.24, 1.39] [−105,92] [−0.53,2.90] [−5.09,2.01] [−1.7e4,1.7e4] [−6.16,16.26]

E[Di|Zi = 1] 0.1080 0.1084 −0.0070 0.0692 −0.0697 0.0002 0.0317

−E[Di|Zi = 0]
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3. A GENERAL THEORY

In the previous section, the construction of relaxed assumptions via minimal defiers
or minimal marginal dependence demonstrates several advantages: the relaxed
assumptions are non-refutable, and the identified LATE coincides with the Wald
ratio whenever the original IA-M assumption is not rejected. We aim to develop
a general theory for extending refutable assumptions using the insights from the
LATE application. In the discussion, we shall explore the general conditions to
ensure we have a well-behaved relaxed assumption, and we also discuss some
subtle issues when constructing a relaxed assumption.

Besides the LATE example in Section 2, we also consider an additional moment
inequality model that contributes to the illustration of the general theory.

Example 1. Suppose the econometrician has access to the outcome Yi, a binary
treatment Di, and control variables Zi as data. Each individual i also bears an
unobserved heterogeneity ηi. The outcome Yi is related to (Zi,Di,ηi) via Yi =
f ∗(Zi,Di,ηi) for some unknown function f ∗. The econometrician imposes two
assumptions that facilitate the discussion.

1. A1: The model is additively separable, Yi = f (Zi,Di;κ) + ηi for some known
integrable function f and unknown finite dimensional parameter κ .

2. A2: The unobserved heterogeneity has a negative conditional mean −∞ <

E[ηi|Di] ≤ 0.

Two moment inequalities E[Yi − f (Zi,1;κ)|Di = 1] ≤ 0 and E[Yi − f (Zi,0;κ)|Di =
1] ≤ 0 can be derived from A ≡ A1 ∩A2.

3.1. Definitions

In economic models, there are typically two types of variables: the variables that
are observed, denoted by Xi, which will be used for estimation, and the primitive
variables, denoted by εi, that are used to generate the observed variables. In the
moment inequality examples, Xi = (Yi,Di,Zi), and εi = (Di,Zi,ηi). The primitive
variables are either determined outside the model, or their determinants are not the
focus of the model.12

Before collecting data, the econometrician first has an idea about the spaces of X
and ε that she will work with, and denote the spaces as X and ϒ, respectively. We
correspondingly define the observation space and the primitive distribution space.

Definition 3.1. The data distribution space F is the collection of all possible
distributions F(X) whose support is a subset of X . The primitive distribution space
G is the collection of all possible distributions G(ε) whose support is a subset of ϒ .

12For example, in the moment inequality model, Di may be determined by Zi, but we don’t focus on the study of how
Di is related to Zi.

https://doi.org/10.1017/S0266466625100108 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100108


20 MOYU LIAO

Note that we do not specify X as the support of Xi because the econometrician
does not know F before data are collected. For example, if Yi is an employee’s
income from an unknown firm, then a reasonable space for Yi is the [0,∞), but
the collected data distribution F may be supported on some bounded interval.
However, since Di is a known binary treatment, we only need to consider its
space as {0,1}. For both the definitions of F and G, econometricians can impose
additional regularity conditions on F and G: the regularity conditions may be
relevant for the existence of moments of εi and Xi, or the existence of densities of
the distributions. In the two-moment-inequality example, we may only consider
a Gs such that EGs [|ηi||Di] < ∞. Thinking of F and G in a general way rather
than specifying ex-ante support would help the econometrician to lay out the data-
dependent construction of relaxed assumptions later.

However, the observed data distribution F is not the ultimate goal for an econo-
metric interpretation. Instead, we are interested in the features of the distribution of
the primitive variables, and/or the mechanism of how εi determines Xi. Therefore,
we follow the languages in Koopmans and Reiersol (1950) and Jovanovic (1989)
to call a pair of a distribution of primitive variables and a mechanism as an
econometric structure.

Definition 3.2. An econometric structure s = (Gs,Ms) consists of a distribu-
tion Gs of ε, and an outcome mapping Ms : G → F .

Since Ms is a function, we also slightly abuse the notation to use Ms(Gs)

to denote the singleton set {F}.13 In the LATE example, the mapping Ms is
characterized by (2.1) which is the same across all structures, and we are mainly
interested in Gs, the distribution of the potential outcomes. In contrast, the mapping
Ms in the two-moment-inequality example can be summarized by the κ parameter,
and we are more interested in κ .14 The econometrician also specifies a paradigm
for studying the model, which we call the structure universe.

Definition 3.3. A structure universe S is a collection of structures such that
∪s∈SMs(Gs) = F , and an assumption A is a subset of S .

Here, we explicitly distinguish the structure universe S and an assumption A,
though either is a collection of structures. The structure universe S is the paradigm
that can span different empirical contexts. On the other hand, an assumption A
places constraints that are suitable for a particular empirical context, or convenient
for empirical analysis. In the moment inequalities example, the structure universe
considers a general class of functions without imposing any constraints on the
functional form or the distributional relationship between Di and ηi. Then A1

imposes the functional form restriction and A2 imposes distributional restrictions.

13We use such a notation in the LATE application, equation (2.4).
14Suppose s = (Gs,κ), then Ms(Gs) = {F ∈ F

∣∣F is the push-forward measure of Gs under Yi = f (Zi,Di,ηi;κ)}.
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The condition ∪s∈SMs(Gs) =F ensures that the structure universe S is neither too
small nor too large for the analysis of possible data distributions. We conclude this
section with the definition of refutable assumptions.

Definition 3.4 (Breusch, 1986). An assumption A is called refutable if there
exists an F ∈ F such that F /∈ ∪s∈AMs(Gs).

In other words, if we can find an F that cannot be generated by any econometric
structures in A, then this F refutes A as a proper assumption. In the two-moment-
inequality example, if we cannot find an κ such that both inequalities hold
simultaneously under F, then F refutes A1 ∩A2.

3.2. The Identification Problem

In many empirical studies, we want to find the value of a parameter of interest
rather than a class of structures that are consistent with data. This parameter can
be a moment of unobserved primitive variables or a counterfactual prediction of
the structure.15 We therefore present a formal definition of the identification of the
parameter of interest.

Definition 3.5. A parameter of interest θ is a function θ : S → �, where �

is the parameter space. The identified set for θ is a correspondence �ID
A : F ⇒ �

such that

�ID
A (F) = {θ(s) : s ∈ A and F ∈ Ms(Gs)}. (3.1)

Here, we define the identified set as a correspondence of F rather than the usual
definition of a subset of the parameter space. Once we have access to the data
distribution, we can derive the usual sense of the identified set as �ID

A (F). There
are two advantages when we think of the identified set as a correspondence rather
than as a realized set.

First, we can connect the assumption refutation issue to the image of the
identified set correspondence. Whenever an assumption is refuted by an observed
data distribution F, Definition 3.5 leads to an empty set under F. The converse also
holds: in the two-moment-inequality example, if for some F we cannot find a κ that
simultaneously satisfies the two-moment inequalities, then the assumption A1 ∩A2

is refuted by F. This also warns us that the identification result under a refutable
assumption cannot be naively used. For example, the identified set for LATE should
be ∅ rather than the Wald ratio whenever F violates the testable implication. In
contrast, whenever we use a non-refutable assumption Ã, the identified set will be

15In the two-moment-inequality model, suppose κ = (κ1,...,κdκ ), we may be interested in the counterfactual mean
of Yi when κ1 is set to zero. The parameter of interest can be written as θ(s) = EGs [f (Xi,Di;κ̃)+ηi], where κ̃j = κj

for all j > 1 and κ̃1 = 0.
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non-empty for any F , because we can find an s ∈ Ã that rationalizes F, and θ(s)
will be in the identified set.

Second, viewing the identified set as a correspondence allows us to evaluate the
appropriateness of the imposed assumption A. Let us equip F and � with metrics
dF and dθ, respectively. We may question the appropriateness of an assumption A
if the identified set �ID

A (F) is not continuous. On one hand, it is hard to rationalize
why the identified set will change abruptly when we perturb the data distribution
slightly. On the other hand, because of the sampling error, estimation and inference
can incur extra complications when the true data distribution F0 is close to the
discontinuity point. For example, when the parameter is point identified, then the
discontinuity of the identified quantity and the consequential non-differentiability
implies the impossibility of finding locally asymptotic unbiased estimators or
regular estimators (Hirano and Porter, 2012).

3.3. Minimal Deviation Relaxed Assumption

While an assumption A may be refutable, we impose A in the first place because
it reflects the economic theory suitable for the empirical context. Therefore, we
would consider a departure from A as abnormal and against the economic intuition
behind A. We relax our assumption to allow for a minimal departure from the
baseline assumption A, which is called the minimal deviation method. Formally,
suppose the refutable assumption A can be written as an intersection of several
assumptions: A = ∩J

j=1Aj. This representation allows us to consider a departure
from a particular Aj.

Definition 3.6. Fix an index j ∈ {1,2,...J}. Suppose ∩l �=jAl is not refutable. A
relaxation measure of departure from Aj with respect to {Al}l �=j is a function mj :
S → R+ ∪ {+∞} such that mj(s) = 0 for all s ∈ Aj. We say mj is well-behaved if
for any F ∈ F , there exists a structure s∗ ∈ ∩l �=jAl such that

mj(s
∗) = inf{mj(s) : F ∈ Ms(Gs) and s ∈ ∩l �=jAl} ≡ mmin

j (F),

where mmin
j (F) is the minimal deviation for the observed data distribution F.

In Definition 3.6, we require ∩l �=jAl to be non-refutable so that it is possible to
construct a non-refutable relaxed assumption out of ∩l �=jAl. When the relaxation
is well-behaved, then for any F ∈ F , we should be able to find an econometric
structure s∗ with finite deviation amount such that F ∈ Ms∗(Gs∗). This is essential
for the construction of an extension using mj.16

In the two-moment-inequality example, A1 alone is not refutable because we
do not put any restriction on the error ηi. For the second assumption A2, we can

16An example of an ill-behaved relaxation measure is available upon request. Roughly speaking, it can happen when
S is an infinite dimensional space. We can find a sequence of underlying distributions Gn where each of Gn ∈ G, but
the pointwise limit of Gn is not in G.
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consider a deviation measure from the A2 condition as m2(s) = EGs [ηi|Di = 1]+ +
EGs [ηi|Di = 0]+, where x+ = max{0,x}. This deviation measure can be shown to be
well-behaved if κ lies in a compact set and f (Xi,Di;κ) is continuous and dominated
by some integrable functions.17

Now we construct the minimal deviation relaxed assumption Ã which gener-
alizes the minimal defiers and minimal marginal dependent instrument relaxed
assumptions in the LATE application.

Definition 3.7. Fix an index j ∈ {1,2,...,J} and a well-behaved relaxation

measure mj. We call Ã = ∪F∈F
{

s ∈ ∩l �=jAl : mj(s) = mmin
j (F), F ∈ Ms(Gs)

}
the

minimal deviation relaxed assumption of A under mj.

Similar to the relaxed assumptions in the LATE application, Ã is constructed
via a data-dependent method. In our parallel paper (Liao, 2024), we show that
the minimal deviation method is equivalent to a robust Bayesian method which
specifies a certain class of priors. We now link the properties of the relaxation
measure mj to the properties of the identified set �ID

Ã
under Ã.

Proposition 3.1. Suppose mj is a well-behaved relaxation measure with respect
to {Al}l �=j.

1. If mj is a sharp characterization of Aj under ∩l �=jAl, i.e.,

∩J
j=1Aj = (∩l �=jAl)∩{s : mj(s) = 0},

then for any parameter of interest, Ã preserves the identified set whenever F
does not reject A, i.e.,

�ID
Ã

(F) = �ID
A (F), if F ∈ ∪s∈AMs(Gs).

2. If mj(s) = 0 does not induce a partition on the predictions of Aj under ∩l �=jAl,
i.e.,(

∪s:s∈A Ms(Gs)
)

∩
(
∪s:s∈Ã\A,mj(s)=0Ms(Gs)

)
�= ∅,

then there exists an F and a parameter of interest θ̃ such that �̃ID
Ã

(F) �= �̃ID
A (F).

Moreover, there always exists a well-behaved mj that sharply characterizes Aj

under ∩l �=jAl.

In the LATE example, md(s) is a sharp characterization of the “No Defiers”
assumption while mMI(s) is not a sharp characterization of the independent IV

17For any θ s in the parameter space, construct Gs as the distribution of (Di,Zi,Yi − f (Zi,Di;κ)). This construction
ensures that s = (κs,Gs) generates F. Let sn be a sequence of structures such that m2(sn) → mmin

2 (F). Because κ lies
in a compact space, let k(n) be a subsequence such that κsk(n) converges to some κ̃ . Then the dominated convergence
theorem ensures the deviation measure at κ̃ is exactly mmin

2 (F).
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assumption. Non-sharp characterization often arises when we fail to consider all
features imposed by the assumption.18

The benefits of using an mj that sharply characterizes Aj are remarkable: we
get the preservation property for any parameter of interest. In different empirical
settings, researchers’ parameters of interest can differ. If an mj that sharply
characterizes Aj is found, researchers can use this mj and the corresponding
minimal deviation relaxed assumption Ã across different empirical contexts to
consider different parameters of interest. In the LATE application, it means that
the minimal defiers relaxed assumption not only preserves the identified set for
LATE but also for other parameters of interest such as ATE.

When we can find some econometric structure s′ outside A but mj(s′) = 0 and s′
can also make predictions as structures in A, then we fail to preserve the identified
set when F does not refute A. An example is the mMI in the LATE example: the
mMI(s) does not induce a partition of predictions of AIV under AND ∩AER, so we can
find non-preserved parameters of interest,19 because the mMI(s) is more narrowly
focused on the properties of the LATE quantity.

3.4. Discussions

3.4.1. Choosing Among Relaxed Assumptions. The way to construct a relaxed
assumption is not unique, and the econometrician has to decide which relaxed
assumption to accommodate the empirical contexts. In this section, we dis-
cuss several subtle issues that result in multiple relaxed assumptions. Along
the way, we also give some criteria for econometricians to choose the relaxed
assumption.

The multiplicity issue arises when the econometrician starts to think about
which of assumptions A1,...,AJ to relax. We recommend that the econometrician
considers the empirical appropriateness of each assumption and decides the choice
of j. For the LATE example, if we are confident that the instrument is randomized
and satisfies certain independence properties, we should seek to relax the “No
Defiers” assumption in the first place.

After deciding the j, the econometrician needs to choose a relaxation measure
mj. We recommend that the econometrician considers an mj that has an economic
interpretation. We can then interpret the minimal deviation relaxed assumption
as a model that has the least departure from the economic intuition behind Aj.
For the LATE example, the measure md(s) can be interpreted as the probability of

18In the moment inequalities example, m2(s) is a sharp characterization of A2. However, we can also construct a
non-sharp characterization m̃2(s) = EGs [ηi|Di = 1]+. In this case, m̃2(s) only considers relaxing the first moment
inequality.
19Consider the indirect effect of instrument on ATE: θ̃ (s) = E[Yi(1) − Yi(0)|Zi = 1] − E[Yi(1) − Yi(0)|Zi = 0].
Whenever the IA-M assumption A is not rejected by F, the identified set for θ̃ is �̃ID

A (F) = {0} because we maintain
the independent IV assumption. However, if we use the extension Ã′ in Assumption 2.2, the identified set is not a
singleton under F because mMI(s) = 0 does not imply an independent instrument.
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defiers in the structure s. After constructing Ã using mj, we also recommend that
the econometrician checks whether the identified set is continuous in the observed
data distribution F. In Appendix B, we further discuss the high-level conditions to
ensure the continuity of the identified set constructed in Definition 3.7.

The multiplicity of the relaxed assumption can also arise from the multiplicity
of the representation of the original assumption. Suppose we have two ways to
represent the original assumption: A = Aj ∩ (∩l �=jAl) = Aj ∩ (∩l �=jA′

l). Fix a j, even
if we use the same measure mj, since the minimal deviation is defined with respect
to {Al}l �=j, the relaxed assumption can differ when using a different representation.
In our LATE example, we can either use the AIV or the ATI ∩ AEM−NTAT . When
we deviate from the “No Defiers” assumption, the meaning of md(s) > 0 under
AIV ∩ AER is different from its meaning under ATI ∩ AEM−NTAT ∩ AER. In the LATE
application, we choose the alternative representation because AIV ∩ AER can be
refutable. When it is necessary to change the representation of the A assumption
as in the LATE example, we recommend that the econometrician maintains the
economic interpretation of the alternative representation.

3.4.2. Using Non-Refutable Assumptions. Popper’s falsification criterion
(Popper, 2005) requires that a scientific theory should be empirically testable and
falsifiable. The minimal deviation relaxed assumption Ã is non-refutable and one
may worry that using an Ã may fail Popper’s falsification criterion. We now clarify
the difference between using a non-refutable assumption and the requirement of
falsifiability of a scientific theory.

A non-refutable assumption Ã can be viewed as a collection of scientific
theories with different model parameters, and each economic structure in Ã is still
empirically falsifiable because each s ∈ Ã only predicts a unique data distribution.
When the econometrician obtains a data distribution F, she picks out a subset
of falsifiable economic structures that predicts F, and the rest of the economic
structures in Ã are refuted.

Moreover, non-refutable assumptions are widely imposed in econometrics to
best utilize the available data. For example, in a nonparametric regression Yi =
h(Xi)+ εi, the conditional mean zero assumption E[εi|Xi] = 0 is not refutable; In
a simple potential outcome framework (Rubin, 1974) with Yi(1),Yi(0) and Yi =
Yi(1)Di + Yi(0)(1 − Di), the independent IV assumption Di ⊥ Yi(1),Yi(0) cannot
be refuted by any data distribution, if we only observe (Yi,Di).

3.4.3. Incomplete Models. In both the LATE and the moment inequalities
model, the image of mapping Ms for any s is a singleton, and there is no
ambiguity in the predicted observed data distribution. However, many economic
models feature multiplicity and indeterminacy in the outcome variables: for a
discrete game with multiple equilibria, there is ambiguity in the choice of the
observed equilibrium (Bresnahan and Reiss, 1991; Tamer, 2003; Aradillas-Lopez
and Tamer, 2008); For a binary discrete choice model, utilities of two choices may
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have a tie. If we do not specify how such a tie can be broken, and such a tie happens
with a positive probability, the model is incomplete.20

In the incomplete model context, the mapping Ms is usually a multi-valued
correspondence. Except for the necessity of a general definition of Ms and
refutability, the analyses of the structure universe and identification problem
remain unchanged. We can still follow the minimal deviation relaxed assumption
approach to solve the refutable assumption issue.

However, one issue in incomplete models is quite different from that in complete
models: in view of Proposition 3.1, in incomplete models, there may not exist any
well-behaved mj that sharply characterize Aj. As a result, we may not be able to find
a non-refutable relaxed assumption Ã that preserves the identified set whenever A
is not refuted by F. To illustrate this issue, let us consider a binary choice model.

Example 2. There are two choices j ∈ {0,1}, and the utility of j = 0 is normalized
to zero, U0 = 0. For choice j = 1, we assume a decision maker i has a utility U1 =
1+εi, where εi is supported on {−1,0}. The econometrician has access to a sample
of individual choices Xi ∈ {0,1}. The εi is the primitive variable.

We assume that decision makers choose j = 1 if U1 > U0, choose j = 0 if U0 >

U1. We do not specify the decision makers’ behavior when there is a tie U1 = U0.
The decision makers’ behavioral assumption implies a correspondence M from the
distribution of εi to a set of distributions of Xi: for each Gs of εi, we have

M(Gs) = {F : PrF(Xi = 1) ≥ PrGs(εi = 0)}.
Similar to the LATE example, we focus on the distribution of Gs since the
mapping M is the same for all structures. Suppose the econometrician imposes
an assumption: A = {Gs : PrGs(εi = 0) ≥ 1/2}. This is an economic assumption
imposing that the shock is more likely to realize a zero value. It is easy to see that
any F such that PrF(Xi = 1) < 1/2 can refute A.

We now find a non-refutable relaxed assumption Ã. This Ã must contain the
distribution Gs̃ where PrGs̃(εi = 0) = 0. This is because, the observed data
distribution F̃ such that PrF̃(Xi = 0) = 1 can only be generated by the Gs̃.

Consider a parameter of interest θ(Gs) = PrGs(εi = 0), and consider an F such
that PrF(Xi = 1) = 2/3. This F does not refute the original assumption A, and the
identified set under the original assumption is �ID

A (F) = [1/2,2/3]. However, for
any non-refutable assumption Ã, we must have [1/2,2/3]∪{0} ⊆ �ID

Ã
(F) because

Gs̃ ∈ Ã, and Gs̃ also predicts F. We lost the preservation property of the identified
set when F does not refute A.

Example 2 shows that an incomplete model can have undesirable properties
when we try to find a non-refutable relaxed assumption. A solution to incomplete
models is to add a model completion which selects a unique outcome when there

20Specifying a tie-breaking rule, such as a random decision, is a way to complete the model.
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is ambiguous multiplicity. In the context of Example 2, we need to specify the way
to select an outcome when a tie of utilities of two choices happens.

4. CONCLUSION

This article proposes a minimal deviation relaxation method for the identification
of complete models with refutable assumptions. The relaxed assumption is con-
structed via a data-dependent method, which selects the econometric structures
that minimize the deviation from the original assumption for each possible data
distribution. We also discuss the properties of the identified set under the relaxed
assumption and the criteria for choosing among different minimal deviation
relaxed assumptions.

As a leading application of the minimal deviation relaxation method, we study
the LATE model, where the “No Defiers” assumption, independent IV assumption,
and exclusion restriction are jointly testable. We provide two minimal deviation
relaxed assumptions: one focuses on relaxing the “No Defiers” assumption, while
the other focuses on relaxing the independent IV assumption. We also emphasize
the importance of using the conditional type independence assumption in these
two relaxed assumptions.

We briefly discuss the issues that arise when extending the theory to incomplete
models. For incomplete models, multiple distributions can be predicted by one
econometric structure. Such a feature calls for more general definitions of identifi-
cation, assumption testability, and more general methods to find a relaxed assump-
tion. Constructing a relaxed assumption using the minimal deviation method is
more challenging, and the properties of such constructions are left for future
research.

APPENDICES

A. PROOFS

A.1. Proofs of Lemma 2.2

Proof. To avoid notation confusion, let A′ = AER ∩ ATI ∩ AEM−NTAT ∩ AND be the
alternative representation in Lemma 2.2, and let A = AER ∩ AIV ∩ AND be the original
representation of the IA-M assumption in (2.6).

We first note that AIV ⊆ ATI ∩AEM−NTAT . As a result, we have A ⊆ A′.
It remains to show that A′ ⊆ A. Let s ∈ A′ be any econometric structure. It suffices to show

the condition {Yi(d,z),Di(z)}d,z∈{0,1} ⊥ Zi holds for s. For any B1,B0 set, by the exclusion
restriction of s, we have Yi(d,1) = Yi(d,0), so

PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0,Di(1) = 1,Di(0) = 0|Zi = 1)

=(1) PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0|Di(1) = 1,Di(0) = 0,Zi = 1)

×PrGs(Di(1) = 1,Di(0) = 0|Zi = 1)
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=(2) PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0|Di(1) = 1,Di(0) = 0,Zi = 1)

× (1−PrGs (Di(1) = 1,Di(0) = 1|Zi = 1)−PrGs(Di(1) = 0,Di(0) = 0|Zi = 1))

=(3) PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0|Di(1) = 1,Di(0) = 0,Zi = 0)

× (1−PrGs (Di(1) = 1,Di(0) = 1|Zi = 1)−PrGs(Di(1) = 0,Di(0) = 0|Zi = 1))

=(4) PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0|Di(1) = 1,Di(0) = 0,Zi = 0)

× (1−PrGs (Di(1) = 1,Di(0) = 1|Zi = 0)−PrGs(Di(1) = 0,Di(0) = 0|Zi = 0))

=(5) PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0,Di(1) = 1,Di(0) = 0|Zi = 0),

(A.1)

where (1) and (5) follow by the formula of conditional probability, (2) follows because

Di(1) ≥ Di(0) almost surely under s ∈ A′, (3) follows due to the conditional type inde-

pendence instrument assumption, and (4) follows due to the probabilities of always-takers

and never-takers are independent of Zi, i.e., the assumption AEM−NTAT . The equality (A.1)

shows the independence condition for the compliers type, since we start with Di(1) = 1 and

Di(0) = 0. For the always-takers and never-takes, we use the same trick to show that for

d = 0,1, ATI ∩AEM−NTAT implies:

PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0,Di(1) = Di(0) = d|Zi = 1)

= PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0|Di(1) = Di(0) = d,Zi = 1)

Pr(Di(1) = Di(0) = d|Zi = 1)

= PrGs(Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ B0,Di(1) = Di(0) = d|Zi = 0).

(A.2)

We then use (A.1) and (A.2) to conclude the independent IV condition {Yi(d,z),
Di(z)}d,z∈{0,1} ⊥ Zi holds when there are no defiers. So s ∈ A holds and A′ ⊆ A. �

A.2. Proof of Proposition 2.1

To prove Proposition 2.1, we explicitly construct the econometric structures that achieve
the minimal defiers and minimal marginal dependence respectively. Lemma A.1 below
constructs the structure that achieves the minimal defiers, and Lemma A.2 below constructs
the structure that achieves the minimal marginal dependence distance.

Lemma A.1. Let F be any distribution of outcome, and let p(y,d),q(y,d) be the

Radon–Nikodym derivatives in (2.13). Consider the following Gs for all d,z ∈ {0,1}: let

PrGs(Zi = z) = PrF(Zi = z), and for all d,z ∈ {0,1}:

PrGs (Yi(d,z) ∈ Bdz,Di(1) = 1,Di(0) = 1|Zi = 1) = PrGs (Yi(d,z) ∈ Bdz,Di(1) = 1,Di(0) = 1|Zi = 0)

= Ga(Yi(0,0) ∈ B00 ∩B01)×
∫

B11∩B10

(min{p(y,1),q(y,1)})dμF(y),

(A.3)
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where Ga is any probability measure, and Yi(d,z) in (A.3) holds for all d,z ∈ {0,1}. Similarly,

let

PrGs (Yi(d,z) ∈ Bdz,Di(1) = 0,Di(0) = 0|Zi = 1) = PrGs (Yi(d,z) ∈ Bdz,Di(1) = 0,Di(0) = 0|Zi = 0)

= Gn(Yi(1,1) ∈ B11 ∩B10)×
∫

B00∩B01

(min{p(y,0),q(y,0)})dμF(y), (A.4)

where Gn is any probability measure. Let

PrGs(Di(1) = 1,Di(0) = 0|Zi = 1) = P(Y1,1)−Q(Y1,1),

PrGs(Di(1) = 1,Di(0) = 0|Zi = 0) = Q(Y0,0)−P(Y0,0),

PrGs(Di(1) = 0,Di(0) = 1|Zi = 0) = Q(Yc
1,1)−P(Yc

1,1),

PrGs(Di(1) = 0,Di(0) = 1|Zi = 1) = P(Yc
0,0)−Q(Yc

0,0),

(A.5)

be the Zi-conditional probabilities of the compliers and defiers, and construct

PrGs (Yi(d,z) ∈ Bdz|Di(1) = 1,Di(0) = 0,Zi = 1) = PrGs (Yi(d,z) ∈ Bdz|Di(1) = 1,Di(0) = 0,Zi = 0)

=
∫

B00∩B01 max{q(y,0)−p(y,0),0}dμF(y)× ∫
B11∩B10

max{p(y,1)−q(y,1),0}dμF(y)

(P(Y1,1)−Q(Y1,1))× (Q(Y0,0)−P(Y0,0))
, (A.6)

and

PrGs (Yi(d,z) ∈ Bdz|Di(1) = 0,Di(0) = 1,Zi = 1) = PrGs (Yi(d,z) ∈ Bdz|Di(1) = 0,Di(0) = 1,Zi = 0)

=
∫

B00∩B01 max{p(y,0)−q(y,0),0}dμF(y)× ∫
B11∩B10

max{q(y,1)−p(y,1),0}dμF(y)

(Q(Yc
1,1)−P(Yc

1,1))× (P(Yc
0,0)−Q(Yc

0,0))
. (A.7)

Then the constructed Gs satisfies: (1) Gs is a probability measure; (2) Gs ∈ ATI ∩ AER ∩
AEM−ATNT ; (3) F ∈ M(Gs); and (4) md(s) = mmin,d(F), with mmin,d(F) defined in
Assumption 2.1.

Proof. We first check that Gs is a probability measure. Since the marginal distribution of
Zi under Gs coincides with the distribution of outcome F, it suffices to check the measure of
Yi(d,z),Di(1),Di(0) is a probability measure conditional on Zi = 1 and Zi = 0. To do this,
we have∑

d1,d0∈{0,1}
PrGs (Ydz ∈ Y,Di(1) = d1,Di(0) = d0|Zi = 1)

=(1)

∫
Y

min{p(y,1),q(y,1)}dμF(y)+
∫
Y

min{p(y,0),q(y,0)}dμF(y)

+ (P(Y1,1)−Q(Y1,1))+ (P(Yc
0,0)−Q(Yc

0,0))

=(2) (P(Yc
1,1)+Q(Y1,1))+ (P(Y0,0)+Q(Yc

0,0))+ (P(Y1,1)−Q(Y1,1))+ (P(Yc
0,0)−Q(Yc

0,0))

= P(Y,1)+P(Y,0) = 1,

where equality (1) holds by construction of Gs, and equality (2) holds by the definition of
Y1 and Y0. Similarly, for the measure conditional on Zi = 0, we have
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∑
d1,d0∈{0,1}

PrGs(Ydz ∈ Y,Di(1) = d1,Di(0) = d0|Zi = 0)

=
∫
Y

min{p(y,1),q(y,1)}dμF(y)+
∫
Y

min{p(y,0),q(y,0)}dμF(y)

+ (Q(Y0,0)−P(Y0,0))+ (Q(Yc
1,1)−Q(Yc

1,1))

= Q(Y,0)+Q(Y,1) = 1.

This checks that Gs is a probability measure.
The conditional type independence condition s ∈ ATI follows directly by the construction

of Gs in (A.3)–(A.7). The property that the probabilities of always-takers and never-takers
are independent of Z also follows directly from the construction of Gs in (A.3) and (A.4).

To show that exclusion restriction (Yi(1,1) = Yi(0,1) and Yi(0,1) = Yi(0,0) a.s.), we
check the conditions in Lemma E.1 in the Supplementary Material. By construction,

PrGs(Yi(1,1) ∈ B11,Yi(1,0) ∈ B10|Zi = 1) = PrGs(Yi(1,1) ∈ B11,Yi(1,0) ∈ B10|Zi = 0)

=
∫

B11∩B10

(min{p(y,1),q(y,1)})dμF(y)+PrGn(Yi(1,1) ∈ B11 ∩B10)

+
∫

B11∩B10

max{p(y,1)−q(y,1),0}dμF(y)+
∫

B11∩B10

max{q(y,1)−p(y,1),0}dμF(y),

(A.8)

where the right-hand side of (A.8) depends only on the set B11 ∩B10. Therefore, by Lemma
E.1 in the Supplementary Material, Yi(1,1) = Yi(1,0) almost surely. Similarly, we can use
Lemma E.1 in the Supplementary Material to check Yi(0,1) = Yi(0,0) almost surely. As a
result, the exclusion restriction holds.

Then we check Gs can generate the data distribution F, i.e., F ∈ M(Gs). To do this, we
check that the model-predicted observable distribution coincides with the observed data
distribution.

PrM(Gs)(Yi ∈ B,Di = 1|Zi = 1)︸ ︷︷ ︸
Model Predicted Outcome Distribution

=(3)

1∑
j=0

PrGs (Yi(1,1) ∈ B,Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = j|Zi = 1)

=(4) [Q(B∩Y1,1)+P(B∩Yc
1,1)]+ [P(B∩Y1,1)−Q(B∩Y1,1)]

= P(B,1)

=(5) PrF(Yi ∈ B,Di = 1|Zi = 1)︸ ︷︷ ︸
Observed Outcome Distribution

,

(A.9)

where equality (3) holds by the potential outcome framework (2.1), (4) holds by the
construction of Gs, and (5) holds by the definition of P(B,1). Similarly,

PrM(Gs)(Yi ∈ B,Di = 0|Zi = 1)︸ ︷︷ ︸
Model Predicted Outcome Distribution

=
1∑

j=0

PrGs (Yi(0,1) ∈ B,Yi(1,1) ∈ Y,Di(1) = 0,Di(0) = j|Zi = 1)

= [P(B∩Y0,0)+Q(B∩Yc
0,0)]+ [

P(B∩Yc
0,0)−Q(B∩Yc

0,0)
]
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= P(B,0)

= PrF(Yi ∈ B,Di = 0|Zi = 1)︸ ︷︷ ︸
Observed Outcome Distribution

.

Similar relations between Gs and PrF also hold when Zi = 0. This checks F ∈ M(Gs).
In the last step, we check that Gs achieves the minimal probability of defiers. We first

find a lower bound for mmin,d(F), and show that md(s) achieves this lower bound.

Consider any s∗ ∈ AER ∩ATI ∩AEM−ATNT , and F ∈ M(Gs∗). We have

PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 1|Zi = 1)

=(6) PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y |Di(1) = 1,Di(0) = 1,Zi = 1)Pr(Di(1) = 1,Di(0) = 1|Zi = 1)

=(7) PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y |Di(1) = 1,Di(0) = 1,Zi = 0)Pr(Di(1) = 1,Di(0) = 1|Zi = 0)

= PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 1|Zi = 0), (A.10)

where equality (6) holds by Bayes’ rule, (7) holds by s∗ ∈ AER ∩ ATI ∩ AEM−ATNT . Now
we consider the following decompositions:

P(B1,1) = PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 1|Zi = 1)

+PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 0|Zi = 1),

Q(B1,1) = PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 1|Zi = 0)

+PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 0),

(A.11)

and use (A.10) to get:

P(B1,1)−Q(B1,1) = PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 0|Zi = 1)

−PrGs∗ (Yi(1,0) = Yi(1,1) ∈ B1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 0).

(A.12)

Take B1 = Yc
1, we have

Pr(Di(1) = 0,Di(0) = 1|Zi = 0)

≥ PrGs∗ (Yi(1,0) = Yi(1,1) ∈ Yc
1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 0)

= PrGs∗ (Yi(1,0) = Yi(1,1) ∈ Yc
1,Yi(0,0) = Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 0|Zi = 1)+Q(Yc

1,1)−P(Yc
1,1)

≥ Q(Yc
1,1)−P(Yc

1,1), (A.13)

and similarly, we can show Pr(Di(1) = 0,Di(0) = 1|Zi = 1) ≥ P(Yc
0,0)−Q(Yc

0,0). So the
total measure of defiers satisfies

md(s∗) ≥ [Q(Yc
1,1)−P(Yc

1,1)]Pr(Zi = 0)+ [P(Yc
0,0)−Q(Yc

0,0)]Pr(Zi = 1).

Therefore, we get a lower bound mmin,d(F) ≥ [Q(Yc
1,1) − P(Yc

1,1)]Pr(Zi = 0) +
[P(Yc

0,0)−Q(Yc
0,0)]Pr(Zi = 1).

On the other hand, by the construction of Gs, the measure of defiers under Gs is

md(s) = [Q(Yc
1,1)−P(Yc

1,1)]Pr(Zi = 0)+ [P(Yc
0,0)−Q(Yc

0,0)]Pr(Zi = 1).

So the constructed s achieves the minimal measure of defiers. �
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Lemma A.2. Let F be any distribution of outcome, and let p(y,d),q(y,d) be the Radon–
Nikodym derivatives with respect to μF. Consider the following Gs:

PrGs(Yi(d,z) ∈ Bdz ∀d,z ∈ {0,1},Di(1) = 1,Di(0) = 1|Zi = z)

=
{

Ga(Yi(0,0) ∈ B00 ∩B01)× ∫
B10∩B11

min{p(y,1),q(y,1)}dμF(y) if z = 1,

Ga(Yi(0,0) ∈ B00 ∩B01)× ∫
B10∩B11

q(y,1)dμF(y) if z = 0,

(A.14)

where Ga is any probability measure, and

PrGs(Yi(d,z) ∈ Bdz ∀d,z ∈ {0,1},Di(1) = 0,Di(0) = 0|Zi = z)

=
{

Gn(Yi(0,0) ∈ B00 ∩B01)× ∫
B10∩B11

min{p(y,0),q(y,0)}dμF(y) if z = 0,

Gn(Yi(0,0) ∈ B00 ∩B01)× ∫
B10∩B11

p(y,0)dμF(y) if z = 1,

(A.15)

where Gn is any probability measure. Let

Pr(Di(1) = 1,Di(0) = 0|Zi = 1) = P(Y1,1)−Q(Y1,1)

Pr(Di(1) = 1,Di(0) = 0|Zi = 0) = Q(Y0,0)−P(Y0,0),
(A.16)

and let:

PrGs(Yi(d,z) ∈ Bdz ∀d,z ∈ {0,1}|Di(1) = 1,Di(0) = 0,Zi = z),

=
∫

B00∩B01
min{q(y,0)−p(y,0),0}dμF(y)× ∫

B10∩B11
min{p(y,1)−q(y,1),0}dμF(y)

(P(Y1,1)−Q(Y1,1))× (Q(Y0,0)−P(Y0,0))
,

(A.17)
PrGs(Yi(d,z) ∈ Bdz ∀d,z ∈ {0,1},Di(1) = 0,Di(0) = 1|Zi = z) ≡ 0. (A.18)

Then the following results hold: (1) Gs is a probability measure; (2) Gs ∈ AER ∩ AND ∩
ATI−CP; (3) F ∈ M(Gs); and (4) mMD(s) = mmin,MI(F), where mmin,MI(F) is defined in
Assumption 2.2.

Proof. We first check that Gs is a probability measure.∑
d1,d0∈{0,1}

PrGs(Yi(d,1) ∈ Y,Di(1) = d1,Di(0) = d0|Zi = 1)

=
∫
Y

min{p(y,1),q(y,1)}dμF(y)+
∫
Y

p(y,0)dμF(y)+ (P(Y1,1)−Q(Y1,1))

= (P(Yc
1,1)+Q(Y1,1))+P(Y,0)+ (P(Y1,1)−Q(Y1,1))

= P(Y,1)+P(Y,0) = 1.

We can check that the quantities also sum up to one for Zi = 0, which checks that G is a
probability measure.

Checking F ∈ Ms(Gs) is similar to the proofs in Lemma A.1. The conditional type
independence for compliers, “No Defiers” assumptions hold for Gs by construction.
Exclusion restriction holds by Lemma E.1 in the Supplementary Material.21

21See Lemma A.1 for the procedures for proof of this statement.
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We now show a lower bound for the mmin,d(F). Let s∗ be any structure in AER ∩AND ∩
ATI−CP and F ∈ M(Gs∗). We use the following decomposition:

P(B1,1) = PrGs∗ (Yi(1,1) ∈ B1,Di(1) = 1,Di(0) = 1|Zi = 1)

+PrGs∗ (Yi(1,1) ∈ B1,Di(1) = 1,Di(0) = 0|Zi = 1),

Q(B1,1) = PrGs∗ (Yi(1,0) ∈ B1,Di(1) = 1,Di(0) = 1|Zi = 0)

+PrGs∗ (Yi(1,0) ∈ B1,Di(1) = 0,Di(0) = 1|Zi = 0)

=(1) PrGs∗ (Yi(1,0) ∈ B1,Di(1) = 1,Di(0) = 1|Zi = 0),

(A.19)

where equality (1) follows due to the “No Defiers” condition. Take the Radon–Nikodym
derivatives with respect to μF on both sides to get

p(y,1) = gs∗
y1(y,1,1|Zi = 1)+gs∗

y1(y,1,0|Zi = 1)

q(y,1) = gs∗
y0(y,1,1|Zi = 0).

Take the difference between p(y,1) and q(y,1) to get

gs∗
y1(y,1,1|Zi = 1)−gs∗

y0(y,1,1|Zi = 0) = p(y,1)−q(y,1)−gs∗
y1(y,1,0|Zi = 1). (A.20)

Since gs∗
y1(y,1,0|Zi = 1) ≥ 0, we have22

[
gs∗

y1(y,1,1|Zi = 1)−gs∗
y0(y,1,1|Zi = 0)

]2 ≥ max{−(p(y,1)−q(y,1)),0}2.

Similarly, using the decomposition of Q(B,0) and P(B,0), we have[
gs∗

y0(y,0,0|Zi = 0)−gs∗
y1(y,0,0|Zi = 1)

]2 ≥ max{−(q(y,0)−p(y,0)),0}2.

So the measure of deviation from marginal independence equals:

mMI(s∗) =
∫ [

gs∗
y1(y,1,1|Zi = 1)−gs∗

y0(y,1,1|Zi = 0)
]2

+
[
gs∗

y0(y,0,0|Zi = 0)−gs∗
y1(y,0,0|Zi = 1)

]2
dμF(y)

≥
∫

max{−(p(y,1)−q(y,1)),0}2 +max{−(q(y,0)−p(y,0)),0}2dμF(y)

= mMI(s),

where the last equality holds by the construction of Gs, which shows that s achieves
mmin,MI(F). �

A.3. Proof of Theorem 1

Proof. The expressions for the identified minimal defiers amount and the minimal
marginal dependence distance are proved in Lemmas A.1 and A.2, respectively.

Since Theorem 1 involves both the minimal defiers relaxed assumption and the minimal
marginal dependent instrument relaxed assumption, we separate the proof into two major

22Note that (x− t)2 ≥ (max{−x,0})2 when t ≥ 0 holds.
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parts. Because P(B,d) and Q(B,d) are absolutely continuous with respect to some dom-
inating measure μF , equation (2.4) implies that PrGs(Yi(d,z) ∈ B,Di(z) = d,Di(1 − z) =
d′|Zi = z) are also absolutely continuous with respect to μF for all d,z,d′ ∈ {0,1}. So we
will use the Radon–Nikodym density of Gs with respect to μF throughout this proof: we
use gs

yz(y,d,d′|Zi) to denote the density of PrGs(Yi(d,z) ∈ Bdz,Di(1) = d,Di(0) = d′|Zi).

For both Ã and Ã′, our goal is to show that the point identification of the conditional
density of Yi(1,1) given Di(1) = 1, Di(0) = 0 and Zi = 1:

gs
y1(y,1,0|Zi = 1)dμF(y)∫

Y gs
y1(y,1,0|Zi = 1)dμF(y)

,

and the identification of the conditional density of Yi(0,0) given Di(1) = 1, Di(0) = 0, and
Zi = 0:

gs
y0(y,1,0|Zi = 0)dμF(y)∫

Y gs
y0(y,1,0|Zi = 0)dμF(y)

.

Using the above expressions, for any structure s such that F ∈ M(Gs), from the definition
of LATE, we can derive:

LATE(s) =
∫
Y ygs

y1(y,1,0|Zi = 1)dμF(y)∫
Y gs

y1(y,1,0|Zi = 1)dμF(y)
−

∫
Y ygs

y0(y,1,0|Zi = 0)dμF(y)∫
Y gs

y0(y,1,0|Zi = 0)dμF(y)
, (A.21)

where the denominator
∫
Y gs

yz(y,1,0|Zi = z)dμF(y) represents the probability of compliers
conditioned on Zi = z. Therefore, the point identification of gs

y1 and gs
y0 implies the point

identification of LATE(s). Both Ã and Ã′, we will show the identification results:

gs
y1(y,1,0|Zi = 1) = max{p(y,1)−q(y,1),0},

and gs
y0(y,1,0|Zi = 0) = max{q(y,0)−p(y,0),0}. (A.22)

Plug (A.22) into (A.21) we get the expression (2.14).

For the minimal defiers relaxed assumption Ã. First, Ã satisfies Assumption 2.1, and the
construction of Gs in Lemma A.1 implies the minimal measure of defiers:

mmin,d(F) = [Q(Yc
1,1)−P(Yc

1,1)]Pr(Zi = 0)+ [P(Yc
0,0)−Q(Yc

0,0)]Pr(Zi = 1).

We now show that the quantity mmin,d(F) can only be achieved when we specify the gs
y1

and gs
y0 as in (A.22). To start, we look at the probability of defiers given Zi = 1:

Pr(Di(1) = 0,Di(0) = 1|Zi = 0)

= PrGs(Yi(1,0) ∈ Yc
1,Yi(0,0) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 0)

+PrGs (Yi(1,0) ∈ Y1,Yi(0,0) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 0)

≥(1) PrGs(Yi(1,0) ∈ Yc
1,Yi(0,0) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 0)

=(2) PrGs(Yi(1,1) ∈ Yc
1,Yi(0,1) ∈ Y,Di(1) = 1,Di(0) = 0|Zi = 1)+Q(Yc

1,1)−P(Yc
1,1)

≥(3) Q(Yc
1,1)−P(Yc

1,1),

where the first inequality (1) holds with equality if and only if gs
y0(y,0,1|Z = 0) = 0 for all

y ∈ Y1, equality (2) holds by (A.11)–(A.13) in the proof of Lemma A.1, where we use the
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ATI and AEM−NTAT . Inequality (3) holds with equality if and only if gs
y1(y,1,0|Zi = 1) = 0

for all y ∈ Yc
1.

Similarly, we can write the condition for Zi = 1:

Pr(Di(1) = 0,Di(0) = 1|Zi = 1)

= PrGs(Yi(0,1) ∈ Yc
0,Yi(1,1) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 1)

+PrGs (Yi(0,1) ∈ Y0,Yi(1,1) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 1)

≥ PrGs(Yi(0,1) ∈ Yc
0,Yi(1,1) ∈ Y,Di(1) = 0,Di(0) = 1|Zi = 1)

= PrGs(Yi(0,1) ∈ Yc
0,Yi(1,1) ∈ Y,Di(1) = 1,Di(0) = 0|Zi = 0)+P(Yc

0,0)−Q(Yc
0,0)

≥ P(Yc
0,0)−Q(Yc

0,0),

where the first inequality with equality holds if and only if gs
y1(y,0,1|Z = 1) = 0 for all

y ∈ Y0 and the last inequality holds with equality if and only if gs
y0(y,1,0|Zi = 0) = 0 for

almost all y ∈Yc
0. Therefore, md(s) = mmin,d(F) if and only if the density conditions hold:

gs
y0(y,0,1|Zi = 0) = 0 ∀y ∈ Y1, gs

y1(y,1,0|Zi = 1) = 0 ∀y ∈ Yc
1,

gs
y1(y,0,1|Zi = 1) = 0 ∀y ∈ Y0, gs

y0(y,1,0|Zi = 0) = 0 ∀y ∈ Yc
0.

(A.23)

Now, take Radon–Nikodym derivatives of (A.12) with respect to μF , we have

p(y,1)−q(y,1) = gs
y1(y,1,0|Zi = 1)−gs

y0(y,0,1|Z = 0). (A.24)

Combine the expression (A.24), the definition of Y1,Y0 and equation (A.23), we have
gs

y1(y,1,0|Z = 1) = max{p(y,1)−q(y,1),0} must hold for all s ∈ Ã. We can symmetrically

get gy0(y,0,1|Z = 0) = max{q(y,0)−p(y,0),0} must hold for all s ∈ Ã.

For the minimal defiers relaxed assumption Ã′. Suppose Ã′ satisfies Assumption 2.2. By
Lemma A.2, the mmin,MI(F) is:

mmin,MI(F) =
∫ (

max{(p(y,1)−q(y,1))2,0}+max{(q(y,0)−p(y,0))2,0}
)

dμF(y).

For any s∗ ∈ Ã′ and F ∈ Ms∗(Gs∗), by (A.20), we have

(gs∗
y1(y,1,1|Zi = 1)−gs∗

y0(y,1,1|Zi = 0))2 = [p(y,1)−q(y,1)−gs∗
y1(y,1,0|Zi = 1)]2

≥(∗) max{−p(y,1)+q(y,1),0}2,

where the inequality (∗) holds with equality if and only if

gs∗
y1(y,1,0|Zi = 1) = max{p(y,1)−q(y,1),0}.

Similarly,

(gs∗
y1(y,0,0|Zi = 1)−gs∗

y0(y,0,0|Zi = 0))2 = (q(y,0)−p(y,0)−gs∗
y0(y,1,0|Zi = 0))2

≥(∗∗) max{−q(y,0)+p(y,0),0}2,

where the inequality (∗∗) holds with equality if and only if gs∗
y0(y,1,0|Zi = 0) =

max{q(y,0) − p(y,0),0}. Since s∗ ∈ Ã′ achieves the mmin,MI(F), (∗) and (∗∗) hold with
equality, and (A.22) must hold. �
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A.4. Proof of Lemma 2.3

Proof. By the bounded density condition, the Lebesgue measure of set {y : 1(−bn ≤
f (y,d) ≤ bn)} is less than CM0bn. Therefore

∫ Mu

Ml

|f (y,d)|1(−bn ≤ f (y,d) ≤ bn)dy ≤ CM0b2
n.

So Assumption 2.9 implies Assumption 2.8. �

A.5. Proofs in Section 2.5

A.5.1. Lemmas for Theorem 2. We first define the following objects:

f l,m
n (y) ≡ 1

nhn

n∑
i=1

K

(
Yi − y

hn

)
1(Di = l,Zi = m),

f̄ l,m
n (y) ≡ 1

hn
E

[
K

(
Yi − y

hn

)
1(Di = l,Zi = m)

]
.

(A.25)

Lemma A.3. Let hn = n−γ for some γ ∈ (0,1), such that nhn| loghn| → ∞. Define an =
min

{√
nhn

logh−1
n

,h−2
n

}
. Suppose Assumptions 2.6 and 2.7 hold, then there exists a constant

C such that for all d,z ∈ {0,1}, we have

lim sup
n→∞

an sup
y

∣∣∣∣∣∣
1

nhn

n∑
i=1

K

(
Yi − y

hn

)
1(Di = d,Zi = z)−p(y,1)Pr(Zi = z)

∣∣∣∣∣∣ ≤ C a.s..

(A.26)

Lemma A.4. Let hn = n−γ for some γ ∈ (0,1), such that nhn| loghn| → ∞ and let an =
min

{√
nhn

logh−1
n

,h−2
n

}
. If there exists a constant c > 0 such that Pr(Zi = 1) ∈ [c,1− c], and

supy[max(p(y,d),q(y,d)] < ∞, then for any ε > 0 such that

n−εan sup
y

|fh(y,1)− (p(y,1)−q(y,1))| = op(1)

n−εan sup
y

|fh(y,0)− (q(y,0)−p(y,0))| = op(1).
(A.27)

Lemma A.5. (Limit Distribution of Infeasible Components) Recall f (y,1) = p(y,1) −
q(y,1) and f (y,0) = q(y,0) − p(y,0). Suppose E[||Yi||2+δ] < ∞ for some δ > 0. Define
the infeasible trimming set

Y infsb
d (bn) = {y ∈ Y : f (y,d) ≥ bn y ∈ [Ml,Mu]}∪Yut

d ∪Y lt
d .
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Let Xi(bn) and 	 be

Xi(bn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1(Zi = 0)

1(Zi = 1)

Yi1(Di = 1,Zi = 1)1(Yi ∈ Y infsb
1 (bn))

Yi1(Di = 1,Zi = 0)1(Yi ∈ Y infsb
1 (bn))

Yi1(Di = 0,Zi = 0)1(Yi ∈ Y infsb
0 (bn))

Yi1(Di = 0,Zi = 1)1(Yi ∈ Y infsb
0 (bn))

1(Di = 1,Zi = 1)1(Yi ∈ Y infsb
1 (bn))

1(Di = 1,Zi = 0)1(Yi ∈ Y infsb
1 (bn))

1(Di = 0,Zi = 0)1(Yi ∈ Y infsb
0 (bn))

1(Di = 0,Zi = 1)1(Yi ∈ Y infsb
0 (bn))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 	 = Var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1(Zi = 0)

1(Zi = 1)

Yi1(Di = 1,Zi = 1)1(Yi ∈ Y1)

Yi1(Di = 1,Zi = 0)1(Yi ∈ Y1)

Yi1(Di = 0,Zi = 0)1(Yi ∈ Y0)

Yi1(Di = 0,Zi = 1)1(Yi ∈ Y0)

1(Di = 1,Zi = 1)1(Yi ∈ Y1)

1(Di = 1,Zi = 0)1(Yi ∈ Y1)

1(Di = 0,Zi = 0)1(Yi ∈ Y0)

1(Di = 0,Zi = 1)1(Yi ∈ Y0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.28)

Then for any bn → 0, 1√
n

∑n
i=1(Xi(bn)−E[Xi(bn)]) →d N(0,	).

Lemma A.6. Let hn = n−1/5 and bn = n−1/4/ logn, and Assumptions 2.3–2.8 hold, then

for d,k ∈ {0,1}:
∣∣∣∣1

n

n∑
i=1

Yi

[
1(Di = d,Zi = d)

Pr(Zi = d)
− 1(Di = d,Zi = 1−d)

Pr(Zi = 1−d)

]
(1(Yi ∈ Ŷ1(bn))−1(Yi ∈ Y infsb

1 (bn))

∣∣∣∣
≡ Term 1 = op(1/

√
n),∣∣∣∣1

n

n∑
i=1

[
1(Di = d,Zi = d)

Pr(Zi = d)
− 1(Di = d,Zi = 1−d)

Pr(Zi = 1−d)

]
(1(Yi ∈ Ŷ1(bn))−1(Yi ∈ Y infsb

1 (bn))

∣∣∣∣
≡ Term 2 = op(1/

√
n),∣∣∣∣1

n

n∑
i=1

Yi1(Di = d,Zi = k)(1(Yi ∈ Ŷ1(bn))−1(Yi ∈ Y infsb
1 (bn))

∣∣∣∣ ≡ Term 3 = op(1),

∣∣∣∣1

n

n∑
i=1

1(Di = d,Zi = k)(1(Yi ∈ Ŷ1(bn))−1(Yi ∈ Y infsb
1 (bn))

∣∣∣∣ ≡ Term 4 = op(1).

(A.29)

Proof. We prove the case for d = k = 1, the rest holds similarly. We look at
√

n×(Term
1) first. For any ε > 0,

Pr

(∣∣∣∣
√

n

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

]

× (1(Yi ∈ Ŷ1(bn))−1(Yi ∈ Y infsb
1 (bn))

∣∣∣∣ > ε

)
≤ Pr(sup

y
|fh(y,1)− f (y,1)| ≥ cn−2/5+ε)
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+Pr

(√
n

n

n∑
i=1

∣∣∣∣Yi

[
1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

]

×1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu])

∣∣∣∣ > ε

)
, (A.30)

where the inequality holds because on the event supy |fh(y,1)− f (y,1)| < cn−2/5+ε :∣∣∣1(Yi ∈ Ŷ1(bn))−1(Yi ∈ Y infsb
1 (bn))

∣∣∣ ≤ 1
(
|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]

)
.

Note that

Var

(∣∣∣∣∣
√

n

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

]
(1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]))

∣∣∣∣∣
)

≤ E

(∣∣∣∣∣
√

n

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

]
(1(|f (Yi,1)| < bn + cn−2/5+ε,Yi ∈ [Ml,Mu]))

∣∣∣∣∣2

)

≤ E

[∣∣∣∣∣ Y2
i

[
1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

]2

(1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]))

∣∣∣∣∣
]

︸ ︷︷ ︸
Term A

+ (n−1)E

[
|Yi|

∣∣∣∣1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

∣∣∣∣1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]

]2

︸ ︷︷ ︸
Term B

.

Term A = o(1) by the dominated convergence theorem since

1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]) → 0,

and the second moment of Yi is bounded by assumption. For term B, by Assumption 2.8,

E

[
Yi

∣∣∣∣1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

∣∣∣∣1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu])

]

≤ max{|Ml|,|Mu|}E
[∣∣∣∣1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

∣∣∣∣1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu])

]

= O((bn + cn−2/5+ε )2) = O(1/(
√

n log2 n)),

therefore B = (n − 1)O( 1
n log4 n

) = o(1). Therefore, the last term in (A.30) is o(1) by

mean squared error convergence. Since Pr(supy |fh(y,1) − f (y,1)| ≥ cn−2/5+ε) → 0 by
Lemma A.4,

√
n×Term 1 is op(1). The proof of Term 2 is similar to that of Term 1.

Then we look at Term 3:

Pr

(∣∣∣∣1

n

n∑
i=1

Yi1(Di = 1,Zi = 1)(1(Yi ∈ Ŷ1(bn)))−1(Yi ∈ Y infsb
1 (bn)))

∣∣∣∣ > ε

)

≤ Pr(sup
y

|fh(y,1)− f (y,1)| ≥ cn−2/5+ε)

+Pr

(
1

n

n∑
i=1

∣∣∣∣Yi1(Di = 1,Zi = 1)1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]))

∣∣∣∣ > ε

)
.
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Note that

Var

⎛
⎝∣∣∣∣1

n

n∑
i=1

Yi1(Di = 1,Zi = 1)1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]))

∣∣∣∣
⎞
⎠

≤ E

⎛
⎝∣∣∣∣1

n

n∑
i=1

Yi1(Di = 1,Zi = 1)1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu]))

∣∣∣∣2
⎞
⎠

≤ 1

n
E

(∣∣∣∣Y2
i 1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu])

∣∣∣∣
)

︸ ︷︷ ︸
C

+ n−1

n

(
E

∣∣∣∣Yi1(Di = 1,Zi = 1)1(|f (Yi,1)| < bn + cn−2/5+ε, Yi ∈ [Ml,Mu])

∣∣∣∣
)2

︸ ︷︷ ︸
D

.

Term C → 0 and Term D → 0 by dominated convergence theorem, since
bn + cn−2/5+ε → 0. The result for Term 3 in the lemma holds by mean squared error
convergence. The result for Term 4 holds by similar argument. �

Lemma A.7. (Asymptotic Linear Expansion of Numerators and Denominators of (2.16))
Let hn � n−1/5, bn � n−1/4/ logn, cn � n−2/5+ε and 0 < ε < 2/5−1/4 as in Lemma A.6,
and Assumptions 2.3–2.8 hold, then for d,z ∈ {0,1}, and Y#

i ≡ Yi for all i, or Y#
i ≡ 1 for

all i:

∣∣∣∣
{

1

n

n∑
i=1

Y#
i

[
1(Di = d,Zi = z)
1
n
∑n

j=11(Zj = z)
− 1(Di = d,Zi = 1− z)

1
n
∑n

j=11(Zj = 1− z)

]
1(Yi ∈ Ŷd(bn))

−
∫
Yd

y(p(y,d)−q(y,d))dy

}

− E[Y#
i 1(Di = d,Zi = z)1(Yi ∈ Yd)]

Pr(Zi = 1)Pr(Zi = 0)

⎡
⎣1

n

n∑
j=1

1(Zj = 1− z)−Pr(Zj = 1− z)

⎤
⎦

+ E[Y#
i 1(Di = d,Zi = 1− z)1(Yi ∈ Yd)]

Pr(Zi = 1)Pr(Zi = 0)

⎡
⎣ 1

n

n∑
j=1

1(Zj = z)−Pr(Zj = z)

⎤
⎦

− 1

nPr(Zi = z)

n∑
i=1

(
Y#

i 1(Di = d,Zi = z)1(Yi ∈ Y infsb
d (bn))

−E[Y#
i 1(Di = d,Zi = z)1(Yi ∈ Y infsb

d (bn))]
)

+ 1

nPr(Zi = 1− z)

n∑
i=1

(
Y#

i 1(Di = d,Zi = 1− z)1(Yi ∈ Y infsb
d (bn))

−E[Y#
i 1(Di = d,Zi = 1− z)1(Yi ∈ Y infsb

d (bn))]
)∣∣∣∣

= op(1/
√

n).

(A.31)
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Remark A.1. For Y#
i ≡ Yi (resp., Y#

i ≡ 1), (A.31) is the term for the numerator (resp.,
denominator) of the estimator of (2.14).

Proof. We prove the first statement (A.31) for d = z = 1 and Y#
i ≡ Yi. The rest of the

statements hold similarly by changing the value of d, z, and Y#
i .

We look at the expansion

1

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 1)

1
n

∑n
j=1 1(Zj = 1)

− 1(Di = 1,Zi = 0)

1
n

∑n
j=1 1(Zj = 0)

]
1(Yi ∈ Ŷ1(bn))−

∫
Y1

y(p(y,1)−q(y,1))dy

= 1

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 1)

1
n

∑n
j=1 1(Zj = 1)

− 1(Di = 1,Zi = 1)

Pr(Zj = 1)

]
1(Yi ∈ Ŷ1(bn))

︸ ︷︷ ︸
A1

− 1

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 0)

1
n

∑n
j=1 1(Zj = 0)

− 1(Di = 1,Zi = 0)

Pr(Zj = 0)

]
1(Yi ∈ Ŷ1(bn))

︸ ︷︷ ︸
A2

+ 1

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

]
(1(Yi ∈ Ŷ1(bn))−1(Yi ∈ Y infsb

1 (bn + cn)))

︸ ︷︷ ︸
B

+ 1

n

n∑
i=1

Yi

[
1(Di = 1,Zi = 1)

Pr(Zi = 1)
− 1(Di = 1,Zi = 0)

Pr(Zi = 0)

]
1(Yi ∈ Y infsb

1 (bn + cn))

︸ ︷︷ ︸
C1

−
∫

y(p(y,1)−q(y,1))1(y ∈ Y infsb
1 (bn + cn))dy︸ ︷︷ ︸

C2

+
∫
Y

y(p(y,1)−q(y,1))(1(y ∈ Y infsb
1 (bn + cn))−1(y ∈ Y1))dy︸ ︷︷ ︸

D

.

(A.32)

The expansion above holds by adding and subtracting the same terms repeatedly. For term
A1, we can write it as

A1 = 1

n

n∑
i=1

Yi1(Di = 1,Zi = 1)1(Yi ∈ Ŷ1(bn))

[
1

1
n
∑n

j=11(Zj = 1)
− 1

Pr(Zj = 1)

]

=(1)

⎡
⎣1

n

n∑
i=1

Yi1(Di = 1,Zi = 1)1(Yi ∈ Y infsb
1 (bn + cn)+op(1)

⎤
⎦

×
[

1
1
n
∑n

j=11(Zj = 1)
− 1

Pr(Zj = 1)

]

=(2)

[
E[Yi1(Di = 1,Zi = 1)1(Yi ∈ Y infsb

1 (bn + cn))]+op(1)
]

×
[

1
1
n
∑n

j=11(Zj = 1)
− 1

Pr(Zj = 1)

]
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=(3)

E[Yi1(Di = 1,Zi = 1)1(Yi ∈ Y infsb
1 (bn + cn))]+op(1)

Pr(Zi = 1)Pr(Zi = 0)

×
⎡
⎣1

n

n∑
j=1

1(Zj = 0)−Pr(Zj = 0)

⎤
⎦

× Pr(Zi = 1)Pr(Zi = 0)

1
n
∑n

j=11(Zi = 1) 1
n
∑n

j=11(Zi = 0)

=(4)

E[Yi1(Di = 1,Zi = 1)1(Yi ∈ Y infsb
1 (bn + cn))]+op(1)

Pr(Zi = 1)Pr(Zi = 0)

×
⎡
⎣1

n

n∑
j=1

1(Zj = 0)−Pr(Zj = 0)

⎤
⎦× (1+op(1))

=(5)

E[Yi1(Di = 1,Zi = 1)1(Yi ∈ Y1)]+op(1)

Pr(Zi = 1)Pr(Zi = 0)

×
⎡
⎣1

n

n∑
j=1

1(Zj = 0)−Pr(Zj = 0)

⎤
⎦× (1+op(1))

=(6)
E[Yi1(Di = 1,Zi = 1)1(Yi ∈ Y1)]

Pr(Zi = 1)Pr(Zi = 0)

⎡
⎣1

n

n∑
j=1

1(Zj = 0)−Pr(Zj = 0)

⎤
⎦+op(1/

√
n)

(A.33)

where equality (1) holds by Term 1 of Lemma A.6 with d = 1 and cn = o(bn); equality
(2) holds by the Glivenko–Cantalli theorem for changing class of sets; equality (3) holds
because we multiply and divide the same term; equality (4) holds by the continuous mapping

theorem; equality (5) holds by dominated convergence theorem since 1(y ∈ Y infsb
1 (bn +

cn)) → 1(y ∈ Y1); equality (6) holds by observing that 1
n
∑n

j=11(Zj = 0)− Pr(Zj = 0) =
op(1/

√
n) and then we apply Slutsky’s theorem to get the equality.

Similarly, apply Lemma A.6 Term 3 with d = 1,k = 0, we have

A2 = E[Yi1(Di = 1,Zi = 0)1(Yi ∈ Y1)]

Pr(Zi = 1)Pr(Zi = 0)

⎡
⎣1

n

n∑
j=1

1(Zj = 1)−Pr(Zj = 1)

⎤
⎦+op(1/

√
n).

(A.34)

By Lemma A.6, B = op(1/
√

n)× Term 1. By Assumption 2.8 and the choices of bn,cn,

D ≤ max{|Mu|,|Ml|}O((bn + cn)2) = Op(n−0.5/ log2 n) = op(1/
√

n).

The result follows since A1 in (A.33), A2 in (A.34), and C1 − C2 terms correspond to the
terms in (A.31).

The rest of the equalities in Lemma A.7 hold by applying different values of d,k in
Lemma A.6. �
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A.5.2. Proof of Theorem 2.

Proof. Let Xi(bn) be the vector in Lemma A.5. Now let

π̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n
∑N

i=1 Yi

[
1(Di=1,Zi=1)
1
N

∑N
j=11(Zj=1)

− 1(Di=1,Zi=0)
1
N

∑N
j=11(Zj=0)

]
1(Yi ∈ Ŷ1(bn))

1
n
∑n

i=1 Yi

[
1(Di=0,Zi=0)
1
n

∑n
j=11(Zj=0)

− 1(Di=0,Zi=1)
1
n

∑n
j=11(Zj=1)

]
1(Yi ∈ Ŷ0(bn))

1
n
∑N

i=1

[
1(Di=1,Zi=1)
1
N

∑N
j=11(Zj=1)

− 1(Di=1,Zi=0)
1
N

∑N
j=11(Zj=0)

]
1(Yi ∈ Ŷ1(bn))

1
n
∑n

i=1

[
1(Di=0,Zi=0)
1
n

∑n
j=11(Zj=0)

− 1(Di=0,Zi=1)
1
n

∑n
j=11(Zj=1)

]
1(Yi ∈ Ŷ0(bn))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

π =

⎛
⎜⎜⎜⎝
∫
Y1

y(p(y,1)−q(y,1))dy∫
Y0

y(q(y,0)−p(y,0))dy∫
Y1

(p(y,1)−q(y,1))dy∫
Y0

(q(y,0)−p(y,0))dy

⎞
⎟⎟⎟⎠ .

By Lemma A.7,
√

n(π̂ −π) = op(1)+�
√

n(Xi(bn)−E[Xi(bn)]),

where � matrix is specified in Theorem 2. Moreover, we notice that L̂ATE = π̂1
π̂3

− π̂2
π̂4

, and

L̃ATE
ID = π1

π3
− π2

π4
, and the � in Theorem 2 is the Jacobian matrix of function f (π) =

π1
π3

− π2
π4

. The result follows due to the delta method. �

A.6. Proofs of Proposition 3.1

Proof. Let F ∈ ∪s∈AMs(Gs) hold. By definition of the identified set

�ID
Ã

(F) =
{
θ(s) : F ∈ Ms(Gs), s ∈ Ã

}
. (A.35)

Since F does not refute the original assumption A, there is an s0 ∈ A such that F ∈ Ms0(Gs0)

and mj(s0) = 0 hold by Definition 3.6. As a result, mmin
j (F) = 0 must hold. We can then

rewrite (A.35):

�ID
Ã

(F) =
{
θ(s) : F ∈ Ms(Gs), s ∈ Ã, mj(s) = 0

}
. (A.36)

Since mj is a sharp characterization of the predictions of Aj, Ã∩{s : mj(s) = 0} = A. We can
then write (A.36) as

�ID
Ã

(F) = {
θ(s) : F ∈ Ms(Gs), s ∈ A

} = �ID
A (F),

where the last equality holds by the definition of the identified set under assumption A. This
proves the first statement of the proposition.

Suppose mj does not induce a partition on the predictions of Aj under ∩l �=jAl, then by
definition, we can find an F′ such that

F′ ∈
(

∪s:s∈A Ms(Gs)
)

∩
(
∪s:s∈Ã\A,mj(s)=0Ms(Gs)

)
.

https://doi.org/10.1017/S0266466625100108 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100108


EXTENDING ECONOMIC MODELS WITH TESTABLE ASSUMPTIONS 43

Since ∩l �=jAl is non-refutable, we must have an s′ /∈ A such that F′ ∈ Ms′(Gs′). Let θ̃ be

the econometric structure itself, i.e., θ̃ (s) = s. Then we have s′ ∈ �̃ID
Ã

(F′) but s′ /∈ �̃ID
A (F′).

This proves the second statement.
It remains to show that a well-behaved sharp characterization always exists. Consider the

following set:

Hnf
S (A) =

{
s : Ms(Gs)∩

(
∪s′∈AMs′(Gs′)

)
�= ∅

}
,

so Hnf
S (A) collects all econometric structures that are observationally equivalent to some

structures in A. We consider the relaxed assumption

Ãmax ≡
(

A∪ [Hnf
S (A)]c

)
∩ (∩l �=jAl

)
.

Correspondingly, we define a relaxation measure mj such that: (1) mj(s) = 0 for all s ∈ A;

(2) mj(s) = 1 for all s ∈ Ãmax\A; and (3) mj(s) = +∞ for all s ∈ S\Ãmax. This mj sharply
characterizes Aj.

We want to show that mj is well-behaved. Consider any F: if F does not refute A, then
there is some s ∈ A such that F ∈ Ms(Gs) and mj(s) = 0 achieves the minimal deviation;

if F refutes A, then no structures in Hnf
S (A) can predict F because all structures in Hnf

S (A)

are observationally equivalent to A. To predict F, we must find s ∈ [Hnf
S (A)]c ∩(∩l �=jAl

)
.23

Such an s must have mj(s) = 1 and achieves the minimal deviation mmin
j (F) = 1. �

B. Continuity of an Identified Set

As we discussed in the main text, we recommend that the econometrician checks the
continuity of the identified set. In this section, we fix a parameter of interest θ and further
discuss some high-level conditions that ensure the continuity property of the identified set.
We endow the observed data distribution space F with a metric dF . We briefly recall the
definition of a continuous correspondence.

Property 1 (Identified Set Continuity). The identified set �ID
A (F) : F ⇒ � is called

upper hemincontinuous at a point F0 if for any open neighborhood V of �ID
A (F0), there

exists a neighborhood U of F0 such that for all F′ ∈ U, �ID
A (F′) is a subset of V. The

identified set is called lower hemicontinuous at a point F0 if for any open set V intersecting
�ID

A (F0), there exists a neighborhood U of F0 such that �ID
A (F′) intersects V for all F′ ∈ U.

A continuous identified set is both upper and lower hemicontinuous.

If the identified set is an interval, then it is continuous if and only if both the upper and
lower bounds are continuous functions of F. Without the continuity property, a consistent
estimator of the identified set may not exist, and the identified set can be spuriously
informative due to sampling error. Examples of discontinuous and continuous identified set
correspondences can be found in Proposition B.3. The following is a sufficient condition to
check Property 1 for the minimal deviation relaxed assumption in Definition 3.7.

23Finding such an s is possible, otherwise,
(∩l �=jAl

)
is refutable.
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Proposition B.1. Let (F,dF) and (�,dθ ) be metric spaces, and let S be a structure
universe. Let τF be the topology on F induced by dF. Let A = Aj ∩ (∩l �=jAl), let Aj be
the assumption that we want to relax, and let mj be the well-behaved relaxation measure
in Definition 3.7. We equip the ∩l �=jAl space with the weak topology τA−j induced by the

mapping h(s) = Ms(Gs)24:

τA−j ≡ {O ⊆ ∩l �=jAl : O = h−1(P)∩ (∩l �=jAl) for some P ∈ τF }.
Suppose: (1) θ(s) : ∩l �=jAl → � is a continuous function and (2) the function mmin

j (F) in

Definition 3.6 is continuous. If m−1
j :R⇒∩l �=jAl is an upper (resp., lower) hemicontinuous

correspondence, then �ID
Ã

(F) is an upper (resp., lower) hemicontinuous correspondence

from (F,dF) to (�,dθ ).

Here is the rationale behind Property 1: we may want a continuous relation between
the structure universe S and the observation space F . When the true structure s changes
a little, the predicted observation distribution should not change drastically. Similarly, the
parameter of interest θ should also be continuous with respect to change in the true structure.

The relation can be represented as F Ms(Gs)←−−−− S θ(s)−−−→ �. Unfortunately, there may not
exist a natural topology embedded in S. The weak topology defined in Proposition B.1 is
the smallest topology such that the mapping Ms(Gs) is continuous. The construction of
τA−j in Proposition B.1 uses the inverse of Ms(Gs) to induce a topology on the structure

universe S. With this construction, the relations become: F (Ms(Gs))−1

−−−−−−−→ S θ(s)−−−→ �. The
identified set can then be viewed as the composite mapping of (Ms(Gs))−1 and θ , defined
on the relaxed assumption Ã ⊆ S. If θ(s) is continuous, and the relaxation that we make
is continuous, i.e., m−1

j is continuous, then the composite map should also be continuous.
Therefore, Property 1 can be viewed as a consequence of the continuity of F → S, the
continuity of S → �, and a continuous relaxation of the original assumption A via mj.

An Example of a Failure of Property 1
We now consider an alternative relaxed assumption in the LATE application where the
corresponding identified set is not continuous. We focus on the case where Y is a bounded
subset of R. Let us consider the case that AER and AND hold but we relax the independent
IV assumption. Instead of using the mMI as the relaxation measure, we construct the relaxed
assumption in another way.

First, we consider the set of econometric structures whose prediction intersects with the
predictions of the IA-M assumption:

Hnf
S (A) =

{
s : Ms(Gs)∩

(
∪s′∈AMs′(Gs′)

)
�= ∅

}
.

In other words, Hnf
S (A) collects all econometric structures that are observationally equiv-

alent to some structures in the original assumption A. We consider a relaxed assumption

24This is a slight abuse of the notation since h(s) is a single-valued correspondence and its image space is 2F . We
abuse the notation and use h(s) to denote the Ms(Gs) as a function since Ms(Gs) is a singleton in the complete model
setting.
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Ãmax ≡
(

A∪ [Hnf
S (A)]c

)
∩ AER ∩ AND. This Ãmax is the construction used in the proof of

Proposition 3.1.

Proposition B.2. The closure of the identified set for LATE under Ãmax is

LATEID
Ãmax (F) =

⎧⎨
⎩

E[Yi|Zi=1]−E[Yi|Zi=0]
E[Di|Zi=1]−E[Di|Zi=0] if F does not refute A,[
YP(B,1) − ȲQ(B,0),ȲP(B,1) −YQ(B,0)

]
otherwise,

where for V ∈ {P,Q},YV(B,0) is the lower bound of the support of Yi under measure V(B,0),

and ȲV(B,1) is the upper bound of the support of Yi under measure V(B,1).

The intuition of the identified set is clear: when F does not refute A, we maintain the
original IA-M assumption, and when F refutes A, we simply give up the independent IV
assumption fully. As a result, the identified set for LATE is very unstable when F satisfies
p(y,1)−q(y,1) = 0 for some positively measured set of y. Whenever we perturb F slightly
such that p(y,1)−q(y,1) < 0 and F refutes A, the identified set for LATE explodes. Second,
the identification set LATEID

Ãmax (F) is not any better than the LATEWald
A (F) in equation (2.8).

In terms of interpretation, an uninformative identified set25 for LATE is not different from
an empty identified set.

We now compare the identified set for LATE under the maximal extension in Proposi-
tion B.2 and the identified set for LATE in Theorem 1 in terms of Property 1. We equip
F with the Sobolev norm: ||F||1,∞ ≡ maxi=0,1 ||F(i)||∞, where F(i) is the i-th Radon–
Nikodym density of F with respect to μF .

Proposition B.3. Let Ã1 be the relaxed assumption in Proposition B.2 and let
LATEID

Ã1
(F) be the corresponding identified set. Let Ã2 be the minimal defiers relaxed

assumption defined in Assumption 2.1 and LATEID
Ã2

(F) be the corresponding identified set

defined in (2.14). Suppose ∀F ∈ F , the support of Yi is bounded above by Mu
s and bounded

below by Ml
s, then LATEID

Ã1
(F) is not upper hemicontinuous with respect to the Sobolev

norm || · ||1,∞, and LATEID
Ã2

(F) is continuous with respect to || · ||1,∞.

Supplementary Material

Liao, M., (2025): Supplement to “Extending Economic Models With Testable
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