Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

www.cambridge.org/aie

Research Article

Cite this article: Shiksha, Anand S, Shekhawat
K and Agrawal K (2025). Automated generation
of circulations within a floorplan. Artificial
Intelligence for Engineering Design, Analysis
and Manufacturing, 39, 9, 1-25
https://doi.org/10.1017/S0890060425000022

Received: 05 June 2024
Revised: 15 December 2024
Accepted: 24 January 2025

Keywords:
floorplan; adjacency; circulation; algorithm;
graph theory

Corresponding author:

Krishnendra Shekhawat;

Email: krishnendra.shekhawat@pilani.bits-
pilani.ac.in

© The Author(s), 2025. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

CAMBRIDGE

UNIVERSITY PRESS

Automated generation of circulations within a
floorplan

Shiksha, Sudarshan Anand, Krishnendra Shekhawat 2 and Karan Agrawal

Department of Mathematics, BITS Pilani, Pilani Campus, Pilani, India

Abstract

Various factors are considered when designing a floorplan layout, including the plan’s outer
boundary, room shape and size, adjacency, privacy, and circulation space, among others. While
graph-theoretic approaches have proven effective for floorplan generation, existing algorithms
generally focus on defining the boundary of the plan or different room shapes, lacking the
investigation of designing circulation space within a floorplan. However, the circulation design
in architectural planning is a crucial factor that affects the functionality and efficiency of areas
within a building. This paper presents a graph-theoretic approach for integrating circulation
within a floorplan. In this study, we use plane graphs to represent floorplans and develop graph
algorithms to incorporate various types of circulation within a floorplan as follows:

i. The first phase generates a spanning circulation, that is, a corridor leading to each room
using a circulation graph.

ii. Subsequently, using an approximation algorithm, the circulation space is minimized, that
is, generation of minimum circulation space covering all the rooms, thereby enhancing
space utilization in the floorplan.

iii. Furthermore, customized circulations are generated to cater to user preferences, distin-
guishing between public and private spaces within the floorplan.

In addition to the theoretical framework, we have implemented our algorithms in Python and
developed a user-friendly graphical interface (GUI), enabling seamless integration of our
algorithms into architectural design processes.

Introduction

The increasing demand for residential and commercial buildings has amplified the need for
technological solutions that can streamline design and planning processes. Among these
advancements, graph-theoretic techniques (Wang et al., 2018; Upasani et al., 2020; Shekhawat
etal, 2021a; Bisht et al., 2022) for the automated generation of floorplans have gained significant
attention in architectural design and space planning. This paper focuses on one critical aspect of
floorplans: circulation spaces, or corridors, which are essential for ensuring efficient access to
various parts of a building while maintaining privacy.

To address this need, we present an application designed to assist architects and designers by
automating the construction of circulation spaces within floorplans. While it does not analyze
circulation patterns, the application efficiently constructs them wherever required, significantly
reducing time and eliminating the need for complex manual calculations. As a complementary
tool, it aims to enhance workflows by providing fast and customizable solutions.

The application offers two primary modes for circulation construction:

1. Spanning Circulation: This algorithm creates a comprehensive corridor system, ensuring
direct access to every room in the floorplan. Ideal for hospitals, offices, and hotels, it prioritizes
simplicity, efficiency, and safety by enabling smooth movement and providing clear evacu-
ation routes. However, it requires more floor area, potentially increasing construction and
maintenance costs.

2. Minimal Circulation: To optimize space and reduce costs, the application also provides a
minimal circulation design. This approach avoids redundancy, creating only the essential
corridors required to connect every room. Some rooms may serve two functions, acting as
functional spaces and pathways for circulation. For instance, common areas such as living
rooms, waiting areas etc. can be designated for movement, maximizing space efficiency
without compromising usability.

Additionally, for floorplans requiring a circulation layout that is more extensive than the minimal
design but less comprehensive than the spanning circulation, the application includes a “Remove
Corridor” feature. This allows users to selectively remove unnecessary corridors while retaining
the essential ones, providing a flexible approach to meet specific design requirement.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

Check for
updates

https://orcid.org/0000-0002-3408-7912
https://doi.org/10.1017/S0890060425000022
mailto:krishnendra.shekhawat@pilani.bits-pilani.ac.in
mailto:krishnendra.shekhawat@pilani.bits-pilani.ac.in
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0890060425000022&domain=pdf
https://doi.org/10.1017/S0890060425000022

The application also incorporates user-defined preferences to
customize circulation designs, offering the flexibility to define
public and private rooms. A private room is accessible only via a
public space or a corridor, ensuring it cannot be crossed to access
other areas of the floorplan. In contrast, public rooms facilitate
circulation and can act as transitional spaces within the design. This
capability allows tailored designs that balance functionality, priv-
acy, and spatial optimization.

By automating the construction of circulation spaces, the appli-
cation enables architects and designers to quickly generate various
types of circulation patterns, eliminating manual calculations and
providing visual outputs in a fraction of the time.

The structure of the paper is as follows: Preliminaries intro-
duces the terminology and notation used throughout. Literature
review reviews previous work on the automated generation of
floorplans and circulation spaces, highlighting gaps in the existing
literature. Methodology presents Algorithms 1-6 for incorporat-
ing various types of circulation into a floorplan F based on a given
plane graph G. In Generating a floorplan and circulation graph for
the given PTPG, we describe an algorithm that generates a circu-
lation graph for the given PTPG by adding extra nodes to capture
potential movement paths within the layout, serving as the foun-
dation for various circulation spaces. From circulation graph to
floorplan with required circulation space integrates spanning cir-
culation into the floorplan, while Generating minimal circulation
space introduces an approximation algorithm for generating min-
imal circulation. Customization of the circulation space according
to user-specified privacy constraints details an algorithm that
customizes circulation space according to user preferences, and
Algorithm validation and complexity discusses the mathematical
validation and complexity of the algorithms. Finally, Results and
discussion discusses the results, including a comprehensive walk
through of the application’s features, illustrated with screenshots
and examples from the graphical user interface (GUI). A func-
tional demonstration of the GUI is accessible online and the
implementation is available on GitHub via the links provided in
Appendix A.

Preliminaries

This section defines the basic terminology and introduces the
notations that will be used consistently throughout the paper.

1. Floorplan (Shekhawat, 2018): A floorplan (FP) can be defined
as a division of a polygonal boundary into rooms using straight
lines. The straight lines defining the boundary of each room are
called walls. Two rooms are said to be adjacent if they share a
common wall or a sub-wall.

Shiksha et al.

If all the rooms and the plan boundary are rectangles, it is
referred to as a rectangular floorplan (RFP) (see Figure 1(a)).
Additionally, if the outer boundary remains rectilinear while
maintaining rectangular modules, the resulting floorplan is
termed a non-rectangular floorplan (NRFP).

. Circulation (Naderpour et al., 2019): In a floorplan, circulation

refers to the pathway/corridor connecting various rooms of the
floorplan. It facilitates movement and interaction within a
building. A spanning circulation space represents a single
interior courtyard adjacent to each room of a floorplan (see
Figure 1(b)).

. Graph (Bondy and Murty, 1976): A graph is a mathematical

structure, G = (V, E), consisting of a non-empty set of vertices
(nodes) Vand a set of edges E, which may be empty. An element
(v, w) of E represents an edge joining the vertices v and w. The
degree of a vertex v is the number of neighbors of v in G, denoted

by deg(v).

Every floorplan can be envisioned as a graph, with vertices
representing the rooms in the floorplan, and edges indicating
the adjacency between rooms (see Figure 1(c)).

. Properly triangulated plane graph (PTPG) (Bhasker and

Sahni, 1986): A PTPG has the following properties (refer to

Figure 1(c)):

i. In a floorplan, the walls cannot overlap or cross; conse-
quently, the corresponding PTPG has no edge crossings; it is
a plane graph. A plane graph divides the plane into distinct
regions known as faces.

ii. Since there are no empty spaces in a floorplan (RFP or
NRFP) and all rooms are rectangles, every face of the
corresponding PTPG except the exterior is a triangle.

iii. Since all the rooms in a floorplan (RFP or NRFP) are
rectangles, every interior vertex v in the corresponding
PTPG has at least four neighbors, i.e., deg(v) = 4.

. Exterior edges: An edge e € E(G) is an exterior edge of a plane

graph G if both the endpoints of e are exterior vertices. For
example, in the graph shown in Figure 1(c), the edge (4, 5) is an
exterior edge.

. Subdivision (Bondy and Murty, 1976): An edge e:= (1, v) € E

(G) is said to be subdivided, if we add a new vertex w, remove the
edge e and add edges (4, w) and (v, w) (see Figure 2(a)).

. Circulation graph: Given a PTPG G, a modified PTPG is

obtained by subdividing the necessary edges of G to integrate
spanning circulation into the floorplan of G with one entry point
(refer to Section title “Generating a floorplan and circulation
graph for the given PTPG”). For example, Figure 2(b) shows a
circulation graph of the PTPG G shown in Figure 1(c),

1 2 8
1 . 1 8
2 2
3 7
3 7 3 7
4 2 6 4 5 6
4 5 6

(a)

(b) (c)

Figure 1. (a) A rectangular floorplan, (b) A rectangular floorplan featuring spanning circulation, and (c) Graph associated with the RFP shown in (a).

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

Figure 2. (a) Subdivision of edge (u,v), (b) A circulation graph of the PTPG shown in
Figure 1(c) (black vertices correspond to the corridor spaces).

corresponding to which an RFP of G is obtained with circulation
as shown in Figure 1(b).

8. Minimal Circulation: Minimal circulation space refers to the
smallest set of essential corridors required to facilitate move-
ment within a floorplan. It is achieved by adding the fewest
possible corridor vertices when generating the circulation graph
which covers all the vertices of the PTPG, ensuring that all rooms
in the floorplan are accessible while minimizing redundant
corridors (refer to Section title “Generating minimal circulation
space”).

9. Dimensionless and Dimensioned Floorplans (Shekhawat
et al., 2021b): Dimensionless floorplans are generated based
solely on the given adjacencies, without considering room
dimensions as input constraints. In contrast, Dimensioned
Floorplans incorporate both room dimensions and adjacencies
as part of the input constraints.

Important Notations:

G: A given PTPG (user input)

n: Number of vertices in graph G (order of G)

m: Number of edges in graph G (size of G)

Gc: A circulation graph obtained from the given PTPG G

F: A floorplan corresponding to the given PTPG G

F¢: The floorplan featuring spanning circulation corresponding
to the given PTPG G

Literature review

Graph-theoretic techniques have been integral to architecture
and urban planning since the 1960s (Levin, 1964), evolving
alongside computational tools in architecture. Theodora Var-
douli’s thesis (Vardouli, 2017) highlights how architects turned
to structural abstraction to purify Modern architecture, with
graphs serving as a bridge between visual depiction and math-
ematical analysis. Levin’s pioneering work (Levin, 1964) initiated
research on floorplan generation using graph theory, focusing on
optimal layouts. March and Steadman’s “The Geometry of
Environment” (March and Steadman, 1971) in 1971 introduced
a significant application of graph theory in architectural design,
conceptualizing building plans as graphs with rooms as nodes
and connections as edges.

The field progressed rapidly through the 1970s and 1980s.
Mitchell et al. (1976) proposed a method in 1976 to produce
topologically distinct floorplans from input graphs, while Bloch
and Krishnamurti developed algorithms to count and classify
rectangular dissections. Steadman (Steadman, 1983) introduced
the concept of “morphology” in 1983, using graph theory to

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

model architectural plans with emphasis on buildings’ morpho-
logical properties. In 1984, Hillier and Hanson (1984) introduced
Space Syntax, a methodology using graph theory to analyze
spatial configurations and their influence on social behavior. By
the 1990s, researchers were proposing methods to verify the
existence of rectangular floorplans for given graphs with specific
adjacencies and dimensions (Bhasker and Sahni, 1986; Koz-
minski and Kinnen, 1985; Bhasker and Sahni, 1988; Kozminski
and Kinnen, 1988; He, 1993; Kant and He, 1997; He, 1999;
Eppstein et al., 2009).

Advancements in design and technology have expanded floor-
plan generation beyond conventional rectangular floor- plans
(RFPs) to include floorplans with rectilinear boundaries or rooms.
These newer approaches enable architects to create flexible, cus-
tomized layouts that optimize space and address diverse design
challenges. Various methods — hierarchical, heuristic, algorithmic,
and computational — have broadened the scope of floorplan design
(Jawaherul et al., 2013; Wu et al., 2018; Wu et al.,, 2019; Hu et al,,
2020; Rahbar et al, 2021; Wang and Zhang, 2020; Raveena and
Shekhawat, 2023; Raveena et al., 2024).

Recent years have seen the rise of computer-aided approaches to
floorplan generation, as summarized in Table 1. These approaches
include the use of machine learning, graph theory, and generative
adversarial networks (GANs), which have significantly enhanced
automation in design generation. Methods such as those by Wu
etal. (2018,2019), Nauata et al. (2020;2021), Bisht et al. (2022), and
others demonstrate a strong trend towards graph-theoretic and
data-driven techniques for creating highly customized, optimized
floorplans based on user constraints.

While the above-discussed studies focused on room size, rela-
tions, and boundaries, they often overlooked the significance of
circulation, particularly corridors. In 1997, Evans (1997) explored
how corridors, doors, and spatial arrangements influence social
hierarchies and interactions, tracing these shifts from the 16th
century onwards. Similarly, in 2010, Jarzombek (2010) examined
the social and psychological importance of corridors, highlighting
their symbolic and functional evolution in shaping human experi-
ences within architectural spaces. Together, these works emphasize
the role of corridors in both mediating movement and reflecting
broader societal changes.

Given the significance of circulation in floorplan designing,
various approaches have emerged over the years for the analysis
and representation of circulation to enhance the architectural
design. As shown in Table 2, these include advanced computa-
tional methods, such as the Universal Circulation Network
(UCN) and pathfinding algorithms, to optimize circulation
paths within building layouts (Naderpour et al., 2019; Lee
et al,, 2010; K et al., 2014). Techniques like Space Syntax theory
(Mustafa and Azeez, 2022; Sabir and Mustafa, 2023) have further
advanced our understanding of how spatial configurations influ-
ence user behavior and movement within various building typ-
ologies.

These studies demonstrate the evolution of circulation analysis
in architecture, from graph-theoretic to advanced computational
methods. They show a trend towards efficient, automated processes
for analyzing and optimizing building layouts, focusing on improv-
ing navigation, safety, and addressing public health concerns.

Gaps in the existing literature and our work

Despite significant advancements in floorplan generation, there is
a notable lack of studies specifically addressing the automated

https://doi.org/10.1017/S0890060425000022

Shiksha et al.

Table 1. Literature survey related to the automated generation of floor plans

Reference

Approach

Summary

(Wu et al., 2018)

Hierarchical Approach and Mixed Integer
Quadratic Programming (MIQP)

Used a hierarchical approach to generate building floor plans with predefined constraints,
treating the outer boundary as a polygon, subdividing it, and solving with MIQP. Displayed 3D
models for visualization.

(Wang et al.,
2018)

Graph-theoretic approach

Presented a graphical approach to design generation (GADG) to customize existing legacy
floorplans by adding or removing a room using transformation rules.

(Wu et al., 2019)

Data-Driven Technique and Encoder-
Decoder Network

Developed a technique for generating residential floor plans by determining room locations
first, followed by wall placements using an encoder-decoder network while maintaining the
user-specified outer boundary.

(Nauata et al.,
2020)

Machine Learning and generative
adversarial network (GAN)

Introduced House-GAN software, a generative adversarial network that generates housing
layouts using a relational architecture to store constraints within a graph structure.

(Upasani et al.,
2020)

Graph-theoretic approach

Used graph algorithms and linear optimization techniques to generate dimensioned
rectangular floorplans.

(Hu et al., 2020)

Machine Learning and Deep Neural
Network

Presented Graph2Plan, a method for learning floor plan generation from lay-out graphs,
generating floor plans based on provided structural information.

(Wang and
Zhang, 2020)

Graph-Based Approach

Demonstrated a generic approach for automated generation of floor plans with non-
rectangular boundaries, using user specifications and algorithms for room placement.

(Shekhawat
etal.,, 2021b)

Graph-theoretic approach

Introduced GPLAN, a software tool designed to create dimensioned floor plans based on user-
provided adjacency graphs and dimensional constraints.

(Rahbar et al.,
2021)

Hybrid Technique, Agent-Based Modeling

Demonstrated a novel hybrid technique for generating automated 2D architectural layouts
using agent-based modeling and deep learning, converting bubble diagrams to heat maps
for layout generation.

(Nauata et al.,

Machine learning and generative

Discussed automated generation of building layouts using a complex generative adversarial

2021) adversarial network (GAN) layout refinement network and a graph-constrained relational GAN for improved floor plans.
(Wang et al., Deep learning and generative adversarial ~ Used a generative adversarial network to automate residential floor planning, refining floor
2021) network (GAN) plans iteratively with a graph constrained relational GAN.
(Para et al., Graph Theory and Deep learning Proposed a layout generation model using graph nodes for elements and constraints as edges,
2021) techniques solving layouts through

constrained optimization, enhancing lay-out generation methods.

(Sun et al., 2022)

Deep learning and Graph generation
network (GraphNet)

Presented an innovative approach to floor plan creation using wall graphs and room labels,
generating high-quality floor plans without the need for post-processing.

(Bisht et al., Graph theory and Mathematical Introduced G2PLAN, a software tool that automates dimensioned floor plan creation, using

2022) optimization adjacency graphs and dimension constraints to generate floor plans with enhanced
customization.

(Xie and Ding, Graph-theoretic approach and Deep Introduced methods using graph theory optimization for creating three-dimensional
2023) learning techniques architectural layouts based on user input for node placements and limitations.

(Aalaei et al., Machine Learning and generative Introduced a graph-constrained conditional GAN model that iteratively creates architectural
2023) adversarial network (GAN) layouts by incorporating spatial relationships and limitations into the generating process.

(Wang et al., Deep learning and graph-theoretic Introduced a deep learning and graph algorithm framework for automated building layout
2023) techniques generation, optimizing layout selection using various metrics.

(Han et al., 2024)

Graph theoretic approach and Deep
learning techniques

Presented GRAPH2PIX (G2P), a deep-learning model generating floor plans based on user
constraints, ensuring architectural feasibility through a three-sub-model architecture.

generation of circulation designs within pre-defined floorplans.
Much of existing research centers on plan outer boundary, opti-
mizing room size, placement and adjacencies, with limited atten-
tion given to circulation paths (Wang et al., 2018; Shekhawat et al.,
2021a; Bisht et al., 2022; Wu et al,, 2018; Wang and Zhang, 2020).
The previous work related to circulation mainly focused on ana-
lysis of existing circulation patterns, rather than creating new
designs. Works (Naderpour et al., 2019), (Lee et al., 2010) and
(Tsiamitros et al., 2023) scrutinize the movement of people within
a building and identify congestion areas in the building, suggest-
ing alterations to existing designs or proposing new ones. How-
ever, they do not provide a method for generating circulations
within a floorplan. On the other hand, the method discussed in

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

(Li et al., 2018) directly proposes circulation designs for a given
floorplan. However, it is confined to commercial spaces like
exhibition halls, museums, etc. While techniques like Space Syn-
tax (Hillier and Hanson, 1984; Mustafa and Azeez, 2022; Sabir and
Mustafa, 2023) analyze spatial configurations, they do not offer
flexible tools for designing circulations with specific constraints
(e.g., entry points, corridor width, or privacy). Limited research
exists on seamlessly integrating user-defined constraints, such as
entry points and corridor thickness, into circulation design. Many
studies target specific building types, necessitating more versatile
approaches applicable to residential, educational, healthcare, and
public facilities (Mustafa and Azeez, 2022; Mustafa and Rafeeq,
2019; Rafeeq and Mustafa, 2021).

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

Table 2. Overview of approaches used for circulation analysis and floor plan optimization

Reference

Approach

Summary

(Lee et al., 2010)

Universal Circulation Network (UCN), Building
Information Modeling (BIM), Industry Foundation
Classes (IFC)

Developed a computational method for measuring walking distances within
buildings using a length-weighted graph structure. The UCN provides a new
explicitly defined method for representing circulation paths on top of building
models, supporting further circulation-related analysis as a network
application.

(Eastman, 2009)

Building Information Modeling (BIM), Industry
Foundation Classes (IFC), Rule-based systems

Surveyed rule checking systems for assessing building designs. Examined five
major industrial efforts relying on IFC building models as input. Organized the
functional capabilities of rule checking systems into four stages: rule
interpretation, building model preparation, rule execution, and rule check
reporting.

(Taneja et al., Industry Foundation Classes (IFC), Geometric Developed a method for transforming IFC-based building layout information into a
2011) Topology Network geometric topology network for in-door navigation assistance.
(K et al., 2014) Graph-based representation, Universal Circulation Extended the UCN graph structure to include the most-remote point and virtual
Network (UCN), Building Information Modeling space objects. This allowed for more accurate measurement of fire egress
(BIM) distances and handling of virtually subdivided spaces in open plan designs.

(Li et al., 2018) Shape grammars, Cellular Automata (CA) Demonstrated that shape grammars, combined with cellular automata, can be
used to generate a variety of circulation designs. The system automatically
generated four basic types of complex circulations for commercial spaces.

(Naderpour CAD/BIM data conversion, Theta* pathfinding Developed A2B toolkit for analyzing circulation in buildings. Created a semi-

etal., 2019) algorithm, Grasshopper automated workflow to convert CAD/BIM floor plans into a navigation model.

Used modified Theta* algorithm for efficient and realistic pathfinding.
Demonstrated applications for congestion prediction and emergency egress
analysis.

(Mustafa and
Rafeeq, 2019)

Space Syntax Theory

Identified circulation patterns and effects of spatial configuration on user mobility
in elementary schools with different floor plan typologies (L, U, O).

(Rafeeq and
Mustafa,
2021)

Space Syntax Theory

Concluded that U-shaped hospitals pro-vide better accessibility for inpatient
wards compared to L-shaped ones, raising further research questions on
wayfinding and architectural function.

(Gonzalez and
Gongal, 2021)

Graph theory, Cluster Lane Method

Proposed a flexible mathematical method to turn any planar circulation network
into a network of unidirectional lanes, limiting face-to-face interactions between
pedestrians. Applied to informal settlements to address COVID-19 transmission
in narrow public circulation spaces.

(Mustafa and Space Syntax Theory Analyzed how different office layout typologies (cellular, group office, open-plan)

Azeez, 2022) influence user behavior and established a relationship between spatial lay-out
and time spent moving within the building.

(Mustafa and Space Syntax Theory Examined the spatial configurations of outpatient clinics, measuring wayfinding,

Ahmed, 2023)

accessibility, and density; identified key factors affecting user mobility in various
layout typologies.

(Tsiamitros Wi-Fi probe requests, Prophet model, ARMA model Used Al for indoor localization, analyzing WiFi data to understand movement
et al., 2023) patterns within buildings. Compared the performance of the Prophet model and
ARMA model in analyzing pedestrian movement. Performed pedestrian flow
analysis to identify the most common paths in a place of interest.
(Sabir and Space Syntax Theory, Axial Maps, Graph-based Evaluated the impact of emergency department layouts on corridor circulation,
Mustafa, Techniques utilizing axial maps to optimize spatial layouts for improved functional
2023) performance.

This paper presents an approach that employs graph algo-
rithms to generate circulation designs for a floorplan repre-
sented by a plane graph. This approach allows users to
include constraints such as entry points, corridor thickness,
and privacy constraints as necessary. Our approach can be used
to generate circulations in various building types, such as resi-
dential buildings, educational infrastructure, commercial spaces,
and public facilities like hospitals, hotels, etc. Section title
“Results and discussion” discusses several applications of our
work. Furthermore, our algorithms are implemented in Python,
and a user-friendly interface (GUI) is developed. This allows
users to employ our technique directly and observe the results in

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

a fraction of the time. Our previous work introduced dimen-
sioning in rectangular arrangements (Upasani et al., 2020),
developed algorithms for generating dimensioned rectangular
floorplans based on adjacency graphs and user- defined con-
straints (Shekhawat et al., 2021b), and extended this to produce
both rectangular and non-rectangular dimensioned floorplans
for any given plane graph (Bisht et al., 2022). Building on these
foundations, this study focuses on integrating circulation spaces
into the floorplans of a given plane graph. It advances the
contributions of our earlier publications by adding a new con-
cept of circulation in the automated floorplan generation
process.

https://doi.org/10.1017/S0890060425000022

Methodology

This section presents the detailed approach for integrating different
circulation types into a floorplan, including spanning circulation,
minimal circulation, and customized circulation to meet user pref-
erences. The user input is taken as a PTPG, with vertices represent-
ing rooms within the floorplan and its edges indicating the
connections between them. Alternatively, a floorplan can also be
used as input, and the circulation spaces can be integrated into the
floorplan using the algorithms outlined in this section.

For this given PTPG, we create a spanning circulation that
provides space for movement around each room. If necessary, we
minimize the circulation area to increase the room sizes by elim-
inating redundant corridors and utilizing some rooms in the floor-
plan for movement. Additionally, users can specify a list of public
and private rooms if they require privacy constraints, such as no
direct access to some specific rooms. We will generate a floorplan
with circulation that includes corridors around private rooms while
using public rooms for circulation.

An overview of our approach:

To illustrate the working of our algorithms, we utilize a rectangular
floorplan for a given PTPG and integrate diverse circulation spaces
within it. In Section title “Results and discussion,” we illustrate an
example where circulation spaces are integrated into a floorplan
featuring non-rectangular boundary as well.

Given a PTPG G, we introduce Algorithms 1-6 to generate
floorplans for G featuring spanning circulation, minimal circu-
lation or circulation tailored to user-specific privacy constraints.
Initially, we generate a floorplan corresponding to the given
PTPG. Subsequently, we integrate the required circulation space
into the obtained floorplan. Alternatively, a floorplan can also be
taken as an input to which we add the necessary circulation
space. Here, it is assumed that the floorplans have only one
entrance. The procedure is divided into four steps (refer to
Figure 3):

Shiksha et al.

i. Inthe first step, a floorplan IFis obtained for the given PTPG G
using the method outlined in (Bisht et al.,, 2022). Simultan-
eously, a new graph G, referred to as the circulation graph, is
generated from the graph G using Algorithm 1 (refer to
Section title “Generating a floorplan and circulation graph for
the given PTPG”).

ii. In the next step, Algorithm 2 (which employs Algorithm 3 as a
sub-routine) generates a floorplan F¢ of G with spanning
circulation space C using the circulation graph G¢ and the
floorplan I as inputs (refer to Section title “From circulation
graph to floorplan with required circulation space”).

iii. Following that, using the well-known Minimum set-cover prob-
lem, Algorithm 5 (which employs Algorithm 4 as a sub-routine)
reduces the circulation space C into a minimal circulation space
C' (refer to Section title “Generating minimal circulation space”).

iv. Furthermore, with the implementation of Algorithm 6, we
incorporate customization into the floorplan F¢, allowing the
transformation of spanning circulation into the required circu-
lation based on user-specified privacy constraints (refer to
Section title “Customization of the circulation space according
to user-specified privacy constraints”). For instance, if any spe-
cific rooms are restricted from general access, users can designate
them as private, while others are identified as public. Using the
user-provided list, F¢ is transformed into a floorplan with
corridors around the private rooms, and public rooms are gen-
erally used for movement in the floorplan.

Generating a floorplan and circulation graph for the given PTPG

First, we obtain a floorplan for the given PTPG G using the
method described in (Bisht et al., 2022). To introduce spanning
circulation into the obtained floorplan, we use Algorithm 1 to
generate a circulation graph for G. Let E ={ej, €5, ..., e,,} and V =
{v1, v2, ... ,v,} be the edge set and vertex set in G, respectively.

Obtain spanning

Obtain floorplan
for the graph [4]

Y

Y

Rectangular floorplan

User input

cir

(Algorithm 2)

Floorplan with spanning
circulation

Obtain circulation
7| graph (Algorithm 1)

Circulation graph

Obtain minimal

Y

cir

(Algorithm 4)

Floorplan with minimal

circulation

Figure 3. The relations between user input and results of application of various algorithms described in this paper.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

Assume f to be the number of interior faces in the PTPG G,
denoted as F = {Fy, F,, ..., F4. By applying Algorithm 1, we obtain
the circulation graph G¢ of G. The graph shown in Figure 3 and its
corresponding floorplan will be used as an illustrative example
throughout the paper.

Illustration of Algorithm 1:

Algorithm 1 produces a circulation graph G, for the given PTPG
G by introducing new vertices in G that correspond to
the corridors required within the floorplan for circulation.
It also returns a list of triplets (z, x, y) from G, where z is a
corridor vertex connecting the rooms x and y. The working of
Algorithm 1 is explained in the following steps with an illustra-
tive example:

i. First, an exterior edge, say e, is chosen arbitrarily in G. The face
in G to which the edge e belongs is labeled as F;. Then, the edge e
is subdivided by adding a new vertex (introducing the first
corridor vertex). For the PTPG taken in Figure 4(a) the exterior
edge (0, 4) is selected and subdivided by introducing the first
corridor vertex labeled as 8 (see Figure 4(b)). To ensure that the
graph remains a PTPG, the newly added vertex is made adjacent
to the vertex of the face F; that is not an endpoint of the edge e
prior to the subdivision (see Figure 4(b)). This first corridor
vertex on the exterior edge later translates to the entrance of
the final floorplan.

ii. In the next step, a face in G adjacent to F, is selected arbitrarily
and labeled as F,. The shared edge of F; and F, is subdivided by
adding the new corridor vertex (see Figure 5(a)). Further, the
graph is triangulated by adding an edge between the newly
added corridor vertex and the vertex of F, that is not an end-
point of the shared edge of F; and F, prior to the subdivision.
Also, an edge is added between the newly added corridor vertex
and the previously added corridor vertex in F to ensure that the
graph remains a PTPG (see Figure 5(b)).

iii. In order to generate the complete circulation graph, the process
is continued by selecting a face adjacent to one of the previously
subdivided faces (a face in which atleast one edge is subdivided)
and subdividing the corresponding shared edge until all the
faces of the input graph are subdivided. Further, the graph is
triangulated by adding the new necessary edges while ensuring
that the resultant circulation graph is a PTPG. Figure 6 shows
the complete construction of a possible circulation graph for
the PTPG given in Figure 4(a). The algorithm also returns
A ={@®, 0 4), (9 0, 1), (10, 1, 3), (11, 1, 4), (12, 1, 5),

(@)

Figure 4. (a) A PTPG G, (b) Adding the first corridor vertex numbered 8 by subdividing the exterior edge (0, 4) of the face (0 —1 —4) in G.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

(13,5,2), (14, 4, 5)}, the list containing the triplets (z, x, y) such
that z is a corridor vertex connecting the rooms x and y in the
circulation graph.

Now that we have grasped the algorithm’s concept, let us look at
an explicit definition of the algorithm.

From circulation graph to floorplan with required circulation
space

To obtain the floorplan featuring spanning circulation, corridors
are incorporated into the floorplan F with the help of the circula-
tion graph G, which was derived in the previous step. Let V' =
{c15 ¢a5 ..., ¢} be the set of corridor vertices introduced in G to form
Gc. Considering each corridor vertex in G¢ one at a time, Algorithm
2 generates a corridor space in Fbetween the rooms associated with
the corridor vertex. The working of Algorithm 2 will be explained
using the example illustrated in Figure 7.

Ilustration of Algorithm 2:

In the process of corridor generation within the given floorplan T,
the following sequential steps are undertaken to ensure the system-
atic generation of corridors:

1. Wall Shifting:
In the first iteration, we start with the first triplet (8, 0, 4) extracted
from the list A (a list of triplets (z, x, y) returned by Algorithm
1, where z is a corridor vertex in G¢ connecting rooms x (Room 1)
and y (Room 2)). Initially, the common wall w shared by rooms
0 and 4 is identified within FF. The coordinates of w, its orientation
(horizontal in this case), and the arrangement of rooms 0 and 4 with
respect to it are recorded from IF. Following this, we refer to Table 3
to determine the walls of rooms 0 and 4 that need to be shifted to
create a corridor between these rooms, along with the direction of
their shifts. In this case, room 0 is positioned to the south of w, and
room 4 is positioned to the north of w in F. Therefore, Table 3
prescribes shifting the top wall (T) of room 0 to the negative y
direction (south) and bottom wall (B) of room 4 to the positive y
direction (north) to create a corridor between rooms 0 and 4 in F.

[NOTE: To create a corridor of thickness t between a pair of
rooms (a, b), the coincident walls of both the rooms are shifted
by #/2 in opposite directions. In this case, the value of each shift
is considered as 0.1 throughout the example, aiming to gener-
ate a circulation space of thickness 0.2 in TF.]

(b)

https://doi.org/10.1017/S0890060425000022

8 Shiksha et al.

Algorithm 1: SPANCIRC(G, e)

Input: G(V, E): A properly triangulated plane graph(PTPG)
e: Exterior edge to start the algorithm
Output: G¢(Ve, E¢):A PT PG with the spanning circulation space added
A: List of triples (z,,y) such that corridor vertex z connects rooms x and y
1 Step 1 Choose a face F, of G having exterior edge e
2 Step 2 Inserting the first corridor vertex
// m: Number of vertices in the graph G (rooms in the floorplan)
// m: Number of edges in the graph (G (adjacency between rooms in the floorplan)

3 Insert a new vertex, say Vi1, on the exterior edge e (Refer Figure 4). Add new edge F,,;1 that makes V,, 1
adjacent to the vertex of Fj that is not an endpoint of e. Initialize set A with the triple (V,,41,u,v) where u
and v are the end vertices of e.

4 Step 3 Growing the circulation

// f: Number of interior faces of G

5 for i < 2 to f do

// Face is subdivided if at least one of its edges is subdivided

6 Choose a face F’ that is not yet subdivided but is adjacent to a face F” that is subdivided (break ties
arbitrarily)

// e is the common edge between the faces F’ and F”

7 Let e := E(F') N E(F"). Subdivide e by inserting a new vertex, say Vi, k > n + 2 and make V}, adjacent
to a vertex of F’ that is not an end-point of e. Add the triple (Vi,u/,v’) to A where v’ and v’ are the
end vertices of e

// Triangulation to maintain the graph as PTPG

8 Let V(F') = {z,y,z} and V(F") = {z,y,w} (zy is the common edge that is subdivided). Let a and b be

the corridor vertices added to the faces F’ and F” respectively. In order to triangulate the 4-cycle

x —a—1y—b, we add the edge ab.

9 Define graph G (Ve, Ec) with Vo =V U{V,41, Vigo, ... Vays} and Ec = EU{E 41, Emy2, ... Emy s}

10 return G¢o, A

(a) ()

Figure 5. (a) Adding the next corridor vertex numbered 9 by selecting the face (0 — 1 — 3) as F, and subdividing the edge (0,1), (b) Triangulating the graph shown in (a) by adding new
edges (9, 3) and (9, 8) such that the resultant graph is a PTPG.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

® (© (@

Figure 6. Choosing a neighboring face to a subdivided face at each step from (a) to (d) and introducing a new corridor vertex, ensuring that all faces in the graph undergo
subdivision.

(a) (b) ()

Figure 7. (a) A PTPG G, (b) an RFP F associated with the PTPG G, and (c) a circulation graph G. of PTPG G.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

10

Table 3. In this table, T=Top wall, B=Bottom wall, L=Left wall, R=Right wall,
N=North, S=South, E=East, W=West. This table illustrates the orientation of the
common wall w between two rooms and indicates the walls in both rooms that
require shifting based on their arrangement around the common wall w.

Position of rooms with Modification (wall,
respect to w direction)

Orientation of w =~ Room 1 (x) Room 2 (y) Room 1 (x) Room 2 (y)

Horizontal North South (B,N) (T,S)
South North (T,9) (B,N)

Vertical West East (R,W) (L,E)
East West (L,E) (RW)

2. Preventing unnecessary gaps due to wall shifting

It can be observed if rooms 0 and 4 have other neighbors such
that their common walls with rooms 0 or 4 have the same
orientation as w (wall shared by rooms 0 and 4 in F) then the
shifts made to the walls of rooms 0 and 4 can cause an unneces-
sary gap in the floorplan. To prevent this gap, we find the
neighbors of rooms 0 and 4 in F and determine which of their
walls need to be shifted.

Shiksha et al.

o There are no more common neighbors that are not
visited. (C2)

Upon identification of neighboring rooms, Table 4 is utilized
to determine the walls necessitating adjustments and the
results are recorded as pairs (r, w). In this instance, three
such pairs were identified: (1, T), (5, T), (6, B). This indi-
cates that, to avoid the gap resulting from shifting the
bottom wall of room 4 northward, the top walls of rooms
1 and 5 must be shifted northward. Shifting the top wall of
room 5 northward would lead to an overlap between rooms
5 and 6, which is prevented by shifting the bottom wall of
room 6 northward.

Nevertheless, employing the iterative method to identify
neighbors for any room pairs (a, b) yields all pairs (r, w) that
prevent the gap caused by the creation of a corridor between a
and b and also addresses any potential overlap resulting from
avoiding unnecessary gaps. Moreover, when rooms a and b
have two common neighbors, we initiate the process by select-
ing any one of the common neighbors first. After identifying all
neighbors on one side until one of the two conditions, C; or C,
is met, we proceed to the other common neighbor on the
opposite side.

i. Iterative neighbor identification
To identify the neighbors of rooms 0 and 4, the following
approach is used: Initially, the common neighbor of vertices
0 and 4 in the original graph G is identified. Vertex 1 is found
as a common neighbor. Subsequently, the walls shared by room
1 with rooms 0 and 4 in Fare located, say, w; and w;, respectively.
A pairwise comparison of the orientations of walls w, wy, and w; is
conducted, and the wall that aligns with the orientation of w is
identified (in this case, w,). As w, is the wall shared by room 1 and
room 4; this implies that the gap is a result of shifting the bottom
wall of room 4 to the north. All necessary shifts to eliminate this
gap are then supposed to be in the north direction. To identify
which wall of room 1 needs to be shifted we use Table 4 (in this
case, 1 is the neighboring room referred to in Table 4).
Following this, the wall w, of room 1 is relabeled as w, and
the common neighbor of vertices 1 and 4 is identified in
graph G (vertices 1 and 0 are not considered here, since the
gap in F is caused by shifting the bottom wall of 4 to the
north). Here, although 0 is a common neighbor, it is disre-
garded as it has already been visited once. Now, the common
walls w; and w, of the common neighbor of 1 and 4 are
located, and their orientations are compared with that of w, as
similar to the previous step. This process is repeated until one
of the two conditions, C; or C,, is met:
o The orientation of common wall w does not match with
those of walls w; and w,. (CI)

Table 4. This table outlines the necessary wall shift in the neighboring room
when the orientation of either wall w; or w, aligns with the orientation of w.

Orientation Orientation of wy/w, =w Position of ~ Modification of wall

of w neighboring room w.r.t. to wy/w, of neighboring room
Horizontal North Bottom (B)

South Top (T)
Vertical West Right (R)

East Left (L)

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

To track the shifts, two tables, Shift Table 1 and Shift
Table 2, are maintained (see Figure 8). Both of these tables are
updated at the end of every iteration. Shift Table 1 records the
shift values of walls, while Shift Table 2 stores triplets in the
form of (r, w, ¢), indicating that the wall w of room r has been
shifted during the generation of the corridor corresponding
to a corridor vertex c.

Initially, the shift value for every wall is set to 0 in Shift
Table 1. As corridors are generated based on triplets (z, x, y)
from the list A, the updates to the shift values of (r, w), for
the wall w of any room r, requiring adjustments is deter-
mined as max{current, 0.1} or min{current, —0.1}
(depending on the direction of shift) at the conclusion of
each iteration. Following the final iteration, Shift Table 1 is
utilized to shift the walls and generate a spanning circula-
tion within the floorplan.

ii. Preventing redundant shifts:

After identifying the pairs (r, w) to address potential gaps or
overlaps, the shift value for wall w from this pair will be
updated in Shift Table 1, but only if Shift Table 2 does not
already include the triplet (r, w, ¢). In other words, the
revision occurs if the wall w of room r has not been previously
shifted during the creation of a corridor associated with a
corridor vertex c.

This 2-step process is followed in each iteration while creating a
corridor corresponding to the triplet (z, x, y) from the list A. The
following Figures 9, 10, and 11 illustrates several successive
iterations. Figure 12 shows the results of final iteration for the
input given in Figure 7 and a spanning circulation in the given
floorplan F.

Now, that we have gained an intuitive idea of the algorithm, let
us look at it in a formal manner with all the required details.

The above Algorithm 3 is used as a sub-routine in Algorithm 2 in
Line 12 to check, which other rooms’ walls have to be shifted to
accommodate for the creation of corridor space between rooms x
and y.

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

AT B | L R (0, T, 8)
0]-01] o 0 0 4,B,8)
1 o1 o 0 0
210 0 0 0
310 0 0 0
410 01| o 0
5101f 0 0 0
6 |0 [o01] 0 0
710 0 0 0
(a) (b) (©)

Figure 8. Iteration 1: (a) Considering the first triplet (8, 0, 4) with corridor vertex 8 from G, (b) Shift Table 1 at the end of iteration 1, and (c) Shift Table 2 at the end of iteration 1.

AT B L R (0, T, 8)
00T 0 [0 |-01 @B
1ol | 0 oI oLy
210 Lo Lo o oRrRy
310 0 0 | 01 —_—
410 01| o 0
s|o1f 0 0 0
6| 0 01| 0 0
710 0 0 0

@) ®) ©

Figure 9. Iteration 2: (a) Considering the triplet (9, 0, 1) with corridor vertex 9 from G, (b) Shift Table 1 at the end of iteration 2, and (c) Shift Table 2 at the end of iteration 2.

(0, T, 8)

~r | B L | R
0 -01] o 0 [-01 (4, B, 8)
1 {o1r] o o1 | o a.L.9
3 O B N | @RD
= 3R, 10
4]l o o1l ol o (¢)
slotl ol oo [GLL1O
6o loil o] o
710 o o 0
(a) (b) (c)

Figure 10. Iteration 3: (a) Considering the triplet (10, 3, 1) with corridor vertex 8 from G, (b) Shift Table 1 at the end of iteration 3, and (c) Shift Table 2 at the end of iteration 3.

it e L] R (0,T.8)

0 |-0.1 0 0 | -01 (4,B,8)

L1011 0 10110 (1,1,9)

N I I N O.%,9

— 3,R, 10

5101 o 0 0 (1,L, 10)

5] 0]o1] ol o @,B, 1)

710 0] 0 0 (1,T, 11)

(2) (b) (c)

Figure 11. Iteration 4: (a) Considering the triplet (11, 1, 4) with corridor vertex 11 from G, (b) Shift Table 1 at the end of iteration 4, and (c) Shift Table 2 at the end of iteration 4.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

12

Shiksha et al.

Shift Table 1 4 6
N7 B L R
of-01] o 0 |-0.1
1]-01] o |01 [-01
21 o 0 0 |-0.1
31 0 0 0 |-0.1
4
5

0 0.1 0 0
-0.1 0 0.1 0
0
0

6 0 |-0.1 0
7 0 0

Figure 12. Final Iteration: (a) Considering the triplet (14, 4, 5) with the last corridor vertex 14, (b) Shift Table 1 at the final iteration, and (c) An RFP of G featuring spanning circulation
obtained by using the Shift Table 1 shown in (b).

Algorithm 2: FPCIRC(G,, F, A, (p, q),)

W N

© 0 N O

10

11

12

13
14

15
16

Input: G¢: The circulation graph corresponding to G

F': The FP corresponding to the graph G (to be modified)

A: Dictionary with elements of the form (v, (z,y)) where corridor v connects rooms z and y
(p, q): Exterior edge of G chosen by Algorithm 1 to have the first corridor

t: Corridor thickness

Output: Fo: The floorplan with the required spanning circulation added

Step 1 Preprocessing to get corridor vertices:

// V: Vertex set of graph (G ; Vc: Vertex set of circulation graph Gc¢

Define V' :=Vg -V // V' is the set of corridor vertices

Sort V' in ascending order of their subscripts.

Step 2(a) Get the first uncovered corridor vertex in V' N A.keys, and find rooms connecting this vertex

v + pop(V' N A.keys)

(z,y) + Pair of rooms that is connected by corridor v /! (v, (z,y)) € A

Step 2(b) Find the shift values for corresponding and related rooms

w < CommonWall(z,y) // CommonWall(a,b) finds shared wall between a and b

Based on position and orientation of w with respect to z and y, the shift values and directions of walls of
rooms x and y are assigned based on Tables 5 and 6

Corridor Loop(z,y) // Calculates shift values for other related rooms that are affected

Step 3 Control step

// 1f all corridors have been covered
if V' = ¢ then

L (Goto Step 2(a))

Step 4 Adjust coordinates
Fo +— F // Take a copy of floorplan F

17 For each room in F¢, update the room coordinates based on the wall to be shifted and the shift values to
create the corridor spaces
18 return F¢
Generating minimal circulation space Notably, the display of the initial corridor, recognized as the

In this stage, we produce minimal circulation within the floorplan,
precisely the most essential corridors needed to access all areas. This
optimization is crucial for addressing corridor redundancy, prevent-
ing certain rooms from needlessly losing space and shrinking in size,
especially after multiple coordinate shifts outlined in Algorithm 2.

door, can be excluded since it is already known and thus can be
ignored in the representation.

We generate minimal circulation with the help of the
well-known problem of the Minimum set-cover (Cormen et al.,
2001).

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

Algorithm 3: CorRRIDORLOOP(a, b)

Input: a,b: Rooms’ whose common neighbors have to be tested if their wall shifts have to be calculated
1 w < CommonWall(a,b)
2 N «— CommonNeighbors(a,b)
3 if |[N| > 0 then

// Common wall between rooms a and b
// Common neighbors of vertices a and b in G

4 | fori«1to|N|do
5 if N[i] was not the last visited then
6 ¢ +— NIJi
7 wy — CommonWall(c, a) // Common wall between ¢ and a
8 wy +— CommonWall(c,b) // Common wall between c¢ and b
9 Calculate shift values of respective walls of © and w based on Tables 5 and 6
// Ort(w) gives the orientation of edge w (horizontal or vertical)
10 if Ort(w,) == Ort(w) then
11 | CORRIDORLOOP(a, ¢)
12 else if Ort(wy) == Ort(w) then
13 | CORRIDORLOOP(c, b)
14 else
15 L return // Control goes back to Algorithm 2
16 else
17 L continue
18 return // Control goes back to Algorithm 2

Figure 13. An instance of minimum set cover to illustrate Algorithm 4.

Problem statement Givenaset X ={e;,e,, ... e,} andasetS={S;,
S5 .. S}, whereeach S, CX Vke {1,2,...,m}and Vie {1,2, ...,
n} 3j€ {1,2, ..., m} such that e; €S;. The objective of this problem
is to find a set Y C S such that
U A=X (1)
AeY
The set-covering problem is classified as NP-hard, indicating
that only sub-optimal solutions can be obtained using approxima-
tion algorithms. The following algorithm is one of several greedy
approximation algorithms proposed to address this problem.

Working of Algorithm 4:

First, let us intuitively understand the algorithm before delving into
its details. Initially, the set Y = ¢, and at each step of the algorithm,
we add asubset S; (i € {1, 2, ..., m}) to Y, covering the maximum
number of uncovered elements in X, with ties being broken by

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

- ™1 X

o 0 0 O

H 1

I i Iteration 1 | Iteration 2 [Iterarion3
o o __,_} .jl_l d(1) 4 2
) d(2) 7
CICHORCH) s _

] d(4) 4 2 0

® o6 o
S2 S3

taking the lower i. Let us look at an example to understand this
algorithm further.

The sets X and S = {S;, S,, S5, S4} are defined as shown in
Figure 13 (each element of X is represented by a red dot, and the
boundaries of the sets S; are marked by dotted-lines). Let U be the
set of uncovered elements in X and d; = |S; N U| for every S; € S.In
the first iteration of the algorithm, we observe that U = X and the
value of d(j) is the maximum for j = 3, with a value of 8; hence, we
include S; into the set cover Y. In the next step, we update set U and
the values of d(). In the second iteration, d(}) is the maximum for j
= 2, with a value of 6; hence, we include S, into Y. Next, we update
set U and include S; based on the updated d(j) values. When we
recompute U, we note that it is empty (meaning all elements of set X
are covered), so we stop the algorithm. Hence, the required Min-
imum set-cover for this problem instance is Y = {S;, S,, S5} (marked
by blue dotted-lines). Note that in this case, the algorithm coinci-
dentally gives an optimal set cover.

https://doi.org/10.1017/S0890060425000022

14

Shiksha et al.

Algorithm 4: GREEDY-SET-COVER(X, S) (Cormen et al., 2001)

Input: X : The set of elements {e1,ea,...,e,} that are to be covered

S : The set {S,5s,...

, Sm } of subsets of X from which we get the minimum cover X

Output: Y : The smallest set containing elements from the set .S, whose union will cover X

=

Y < ¢// The set that accumulates the cover
U < X // The set of vertices yet to be covered

()

// Greedy choice: Pick the set having maximum overlap with the set U

[

while U # ¢ do

4 Letdj:|SjﬁU|VSj€S

5 Let ig = argmax d(j) // Break ties by taking lower j
je{1,2,....,m}

6 Y < Y U {io} // Include S;, into the set cover

7 U<+ U\S,, // Remove S;, from set X

8 return Y

Figure 14. The circulation graph G¢ (from Algorithm 1) and the RFP T (from (Shekhawat, 2018)).

By virtue of being a Greedy Algorithm, we must prove that the
Algorithm 4 indeed returns a set-cover that is not significantly
larger than the optimal set cover. A comprehensive proof of this
algorithm can be found in Appendix title “Greedy set cover”.

Conversion to minimum set-cover problem:

In this step, we transform our minimization problem into an
instance of the Minimum set-cover problem. Given G¢ as the
circulation graph and V¢ as the set of corridor vertices, V
represents the set of rooms in F. As earlier mentioned in this
section, we can omit the first corridor vertex as it is identified as a
door. Consequently, the updated set of corridor vertices is
defined as:

Ve=Vesmin{jljeVc} (2)
For every corridor vertex j in Vi, and room v in V, we define:

P; = {v & V|vbelongs to same faceasjinG¢}

andQ, ={j € V¢|(j,v) € E(Gc)} R

P={PljieV }andQ={Q,lve V} (4)

By considering the set of rooms V as the set X and the set P as the set
S, we do some pre-processing and then use Algorithm 4 as a sub-
routine in the following algorithm.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

Working of Algorithm 5:

With the aid of an example, we will explore the process of trans-
forming our problem instance into a minimum set-cover problem
and utilizing Algorithm 4 as a sub-routine to achieve our objective
(refer to Figure 14).

Our objective is to connect (cover) all rooms using corridors, the
set of rooms V can be seen as the set X of the Minimum Set-Cover
problem. To determine the coverage of each corridor (set of rooms
it connects in Fc), we defined the set P; for each corridor vertex j
(refer to Equation 3). Since P; C V' Vj € V¢ (refer to Equation 2), we
can deduce that these P;’s serve as the subsets S; in the Minimum
Set-Cover problem. Additionally, to ensure no room is left
uncovered, we introduced an auxiliary set Q, for every room vertex
v € V, which contains the corridor vertices it is adjacent to in G¢
(refer to Equation 3).

In our example, we have the following sets:

X=V={0,1,2,3,4,5,6,7})
Vi.={9,10,11,12,13,14} (6)
Py=1{0,1,3,4},P1o={0,1,3,2},P;; = {0,1,4,5}, (7)

PIZ = {1)2)4)5})P13 = {1)2)5)7}>P14 = {1)4)5)6} (8)

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

Figure 15. The circulation graph G, (from Algorithm 1) with the set of non-redundant corridors marked in red and the floorplan F (from (Shekhawat, 2018)) featuring minimal

circulation.

Algorithm 5: MINCIRC(P, Q, V)

Input: P :={P;| j € V,} (where P; = {v e V| (j,v) € E(G¢)}, V- is defined in equation 2)
Q :={Qu| v € V} (where Q, = {j € V/| (j,v) € E(G¢)}, V. is defined in equation 2)

V' : The set of room vertices

Output: C’ : The minimized set of corridor vertices
C' + ¢ // Initialize C’ to be empty

M < ¢ // Initialize minimum set cover as empty

U+V
for i < 1 to |U| do

w N =

'S

// 1f there is only one corridor connecting the room i then add it to C’

5 if |Q;| == 1 then

6 ¢’ C'U{i}

7 U+ U\ {i} // We remove this since this room is already covered

8 if U # ¢ then

9 L M < GREEDY-SET-COVER(U, P) // Calling the minimum set cover subroutine

10 C' + C'"UM // Final minimized list of corridors is obtained

11 return C’

Qo=1{9},Q; ={9,10,11,12},Q, ={10,12,13},Q; = {9,10} (9)

Qi={11,14},Qs = {11,12,13,14},Q¢ = {14},Q, = {13} (10)

P={Py,P19,P11,P12,P13, P14}, Q= {Q0,Q1,Q2,Q3,Q4,Qs5,Qs, Q- }
(11)

From the sets defined in the equations 5 to 11, it can be observed
that the rooms 0, 6 and 7 are made accessible by only one corridor
each as |Qy| =|Qs| = |Q;| = 1. Therefore, the corresponding corridor
vertices 9, 14 and 13 will definitely be there in the minimum set of
non-redundant corridors. We observe that Py UP;3 UP;,=V =X,
i.e.,, the corridor vertices 9, 13, and 14 covers the whole set X, and
thus directly gives us the minimum set of non-redundant corridors
tobe C' =1{9, 13, 14}. In the event that some rooms in X were left
uncovered, {9, 13, 14} would not be the minimum set of non-
redundant corridors. To find the minimum set of non-redundant
corridors, we would have run the subroutine 4 on the remaining
uncovered rooms and P.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

Once the set C' of non-redundant corridors is obtained, Algo-
rithm 2 is used to calculate shift values for the rooms only to insert
the corridors corresponding to the corridor vertices in set C'. This
process results in a floorplan with the minimal set of corridors,
ensuring accessibility to all rooms (refer to Figure 15).

In Figure 15, we can observe that there are only 3 corridor
spaces. To ensure accessibility throughout the floorplan, certain
rooms must be designated as public. This is achieved by designing
rooms with entrances on walls facing a corridor, thereby enabling
seamless navigation. Rooms with walls facing multiple corridors
include more than one door, serving as transition points to main-
tain connectivity across the floorplan. For instance, in the corridor
surrounded by rooms 0, 1, 3, and 4, all four rooms feature a door on
the wall facing this corridor. To facilitate movement within this
floorplan, room 5 will have two doors: one on the top wall (facing
the corridor surrounded by 1, 4, 6, and 5) and another on the left
wall (facing the corridor surrounded by 1, 2, 5, and 7). Similarly,
room 4 will have two entrances on the bottom wall, with one
opening in the corridor surrounded by the rooms 0, 1, 3, and
4, and the other in the corridor surrounded by the rooms 1, 4,
6, and 5. Alternatively, for seamless movement throughout this

https://doi.org/10.1017/S0890060425000022

16

Shiksha et al.

(b)

28

Figure 16. (a) The input to the GUI for which we want the minimal set of corridors with entry between rooms 2 & 9 (b) The expected minimal corridor space (c) The sub-optimal
minimized set of corridors given by Algorithm 4 (redundant corridor between rooms 2 & 7).

|

(a)

(b)

Figure 17. (a) If Room C is public, we can move from A to B through C without a corridor (b) If Room C is private, we have to create a corridor similar to the one marked by the grey

stripes and use it or other adjacent public rooms to move between A and B.

floorplan, room 1 can have three doors, one on each wall facing a
corridor, while other rooms have exactly one door opening into any
one of the connected corridors.

Note: The minimal circulation space is generated independently
of room designation. Once the circulation layout is established,
some rooms are made ‘public’ to ensure accessibility for all other
rooms. This is achieved by designing entrances on every wall that
faces a corridor.

Limitations of the approximation algorithm

As previously explained, the minimization of the corridor spaceis a
problem equivalent to the Minimum set-cover problem. Based on
the understanding of complexity classes, we know that this problem
belongs to the NP-hard class of problems, implying that no poly-
nomial time algorithm exists to solve this problem. Due to the
inherent complexity of NP-hard problems, we could only approxi-
mate the solution using approximation algorithms such as

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

Algorithm 4. As a result, there may be instances where the algo-
rithm returns a sub-optimal solution to the optimization problem.

As shown in Figure 16, there could be cases where the obtained
corridor space might not be the optimal minimized corridor space
but a sub-optimal one. This limitation is an intrinsic characteristic
of the minimization problem. Nevertheless, we are actively explor-
ing various alternatives to reduce such sub-optimal cases. One such
alternative is the application of the above-mentioned greedy algo-
rithm (Algorithm 4) consecutively, aiming to further eliminate
redundant corridors.

Customization of the circulation space according to user-
specified privacy constraints

In any building, it is common for the users to designate certain
rooms as private, accessible only to a specific group of individuals,
while the others are considered as public. Typically, in residences,
bedrooms, storage rooms, and occasionally kitchens are kept

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17

4 6
1 l|
5
(public)
2
7
(b) (c)

Figure 18. (a) The input graph. (b) The spanning circulation (like mentioned in previous algorithm the entry corridor, here 0 — 1, is not explicitly shown since it is known to be a door).

(c) The corridor placement if the room 5 alone is made public.

private, whereas other rooms made open for public access. In the
case of office buildings or factories, areas like server rooms, storage
spaces, and specific security zones are restricted to authorized
personnel. Consequently, these restrictions influence the layout of
corridors within such buildings.

Consider the following scenario (see Figure 17): Rooms A and B
each share a wall with Room C. If Room C is designated as public
space, one can move from A to B (or vice versa) through Room C.
Conversely, if Room C is private, the only route to move between A
and B would be through a corridor around Room C.

Building on this fundamental idea, next, we recall the definition
of private and public rooms. Following this, we describe the algo-
rithm designed to handle these constraints while generating the
floorplans with the required circulation space. In addition to other
inputs, the user also provides a list of private and public rooms.

Private Room: A private room is the one that is only accessible via
a public space or a corridor; it cannot be crossed to get access to
other areas of the floorplan.

In other words, when going from Room A to B, one will not visit
any private rooms unless Room A or B is private. There will always
exist a path from Room A to Room B via corridors and other public
rooms. There is no restriction on the number of entry doors to any
arbitrary room, but it can be assumed that a public room can have
more than one door.

Ilustration of Algorithm 6:
To understand the working of Algorithm 6, we will look at the
approach used to address privacy constraints with the help of an
example (refer to Figure 18).

Our central idea is to position corridors only around private
rooms, ensuring that movement from one room to another does not
necessitate passing through a private room, as defined. Addition-
ally, given that free-movement is permitted in public rooms, there is
no need for a corridor around them. In fact, a public room can be
regarded as a corridor in itself. This approach helps prevent a
reduction in room area, as constructing corridors would otherwise
result in a smaller room area for a given plot size.

To obtain the required circulation space, first, we obtain the
spanning circulation for the given floorplan using Algorithm
2. Next, we get the list of public and private rooms from the
user. By analyzing the circulation graph of the spanning circu-
lation, we obtain the set C’ of corridors that do not surround
any public rooms. Subsequently, we use Algorithm 2 to calculate
shift values for the rooms to insert the corridors corresponding
to the corridor vertices in set C’. The resulting floorplan satisfies
the privacy constraints defined by the user (refer to Figure 19).

To demonstrate the use of public rooms, here are a few paths
facilitating movement between different rooms in the floorplan
shown in Figure 19:

2—5—-4

7 — 5 via corridor
E—

3

5—6

5

It can be observed that in all of the paths, the private rooms serve as
either the source or destination but never as an intermediate room.
Now that we have a general understanding of Algorithm 6, let us
formally define the Algorithm.

3 via corridor
S

(via corridor
———

4 6
1 ‘
of
(public)
-
7
(b)

Figure 19. (a) The circulation graph corresponding to the spanning circulation. The corridor vertices excluding the encircled ones are the ones that will be considered for the final
floorplan. (b) The final floorplan with the corridor placement according to the constraint that only room 5 is public and the rest are private.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

18

Shiksha et al.

Algorithm 6: PUBLICPRIVATE(G, (p, q))

N =

© 0 N O oA W

10

Input: G: The input graph by user

(p, q): Exterior eedge corresponding the entry door

Output: F! : The floorplan with corridors satifying privacy constraints

Step 1 Get the spanning circulation corresponding to G and (p, q)

G., A +— SpaNCIRC(G, (p,q)) // Spanning circulation using Algorithm 1

// F: floorplan corresponding to (G, t: corridor thickness given by user

F.+— FrCIRC(G,, F, A, (p,q),t) // Modified floorplan with corridors using Algorithm 2
Step 2 Privacy constraints

R +— User input of public rooms

C' +— List of corridors vertices not adjacent to any of vertices in R // Obtained using G., A
A +— {(v,(z,y)) € Alv € C'} // Update the adjacencies

Step 3 Final required floorplan

F! +«— FprCirc(G., F, A’,(p,q),t) // Final floorplan with updated A’ using Algorithm 2
return F

Algorithm validation and complexity the total time for this step is proportional to the number of

Mathematical Validation: Algorithm 1:
To mathematically validate Algorithm 1, we confirm it preserves
the properties of a PTPG while generating a circulation graph.

i

ii.

1il.

faces: Time Complexity: O(f) = O(n).
iv. Triangulation (Maintaining PTPG): The graph remains a
triangulated PTPG throughout the algorithm by adding edges
to maintain triangular faces. Each edge might be subdivided

Input Validity: The input graph G(V, E) is a valid PTPG with n once, but since subdivision is constant-time per face, the overall
vertices, m edges, and ffaces satisfying Euler’s formulan — m + triangulation step takes linear time in the number of edges.
f=2. Time Complexity: O(m).

Planarity and Triangulation: The algorithm maintains planar- ~ v. Adjacency Matrix Calculation: Building the adjacency matrix
ity by adding vertices through edge subdivision and forming to represent the modified graph structure takes O(12°) time in the
new triangular faces. Each new vertex is connected to adjacent worst case, as each vertex may be adjacent to any other vertex.
vertices, ensuring the resulting graph Gc remains planar and

. e N _ . _
fully triangulated, Overall Time Complexity: O(n°) (since m = O(n)) + O(n) (since f=

2 2
Connectivity and Spanning: Every new corridor vertex con- Om) + O(n7) = O()).
nects to at least two existing vertices, forming a connected = Mathematical Validation: Algorithms 2 and 3
subgraph. The algorithm ensures that every room in the original
graph is adjacent to at least one corridor vertex, providing a
complete spanning circulation.

1. Correctness:
i. Algorithm 2 iterates through all corridor vertices, ensuring
that each corridor is processed.

iv. Termination: The algorithm processes each face once, and i Aleorithm 3 el 1 ichb
since the number of faces fis finite, it always terminates. f Algontim o TECUrSIvely explores - common neghbors,
ensuring all affected rooms are considered.
Time Complexity Analysis: Algorithm 1: iii. The use of Shift Tables ensures that wall shifts are correctly

i

ii.

iii.

tracked and applied.
2. Termination:
i. Algorithm 2 terminates when all corridor vertices in V’ are
processed.
ii. Algorithm 3 recursively explores common neighbors,
ensuring all affected rooms are considered.
iii. The use of Shift Tables ensures that wall shifts are correctly
tracked and applied.
3. Invariants:
i. The planarity of the floorplan is maintained throughout the

Input Initialization: The input graph G(V, E) contains n
vertices and m edges. Initializing the graph takes linear time
in terms of the vertices and edges. Time Complexity: O(n + m).
Processing the First Corridor (Step 2): In this step, one vertex
is added by subdividing an edge, and the adjacency between this
new corridor vertex and the surrounding vertices is updated.
Since this involves a constant number of operations: Time
Complexity: O(1).

Main Loop: Growing the Circulation (Step 3): The algorithm
processes each face adjacent to previously subdivided faces. For

each face, a new vertex is inserted, and edges are added to ., process. . . .)
maintain adjacency and triangulation ii. The connectivity of rooms is preserved while adding cor-
) ridors.

1. Subdividing a face (inserting a vertex and adding edges) takes
constant time, O(1). Complexity Analysis: Algorithms 2 and 3
2. This loop runs once for each face; hence the total time Algorithm 2:
depends on the number of faces, f. Since a PTPG graph has

a linear relationship between its faces and vertices (f= O(n)), i. Let n be the number of rooms and m be the number of corridors.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19

ii. Sorting V' takes O(mlogm) time.

iii. The main loop iterates m times, once for each corridor.

iv. For each iteration: Finding common walls and shift values: O(1)
v. Updating room coordinates: O(n)

Overall time complexity: O(mlogm + m * T(Algorithm3) + n),
where T(Algorithm3) is the time complexity of Algorithm 3.

Algorithm 3:

i. Let d be the maximum degree of a vertex in the graph.
ii. Finding common neighbors: O(d)
iii. The loop iterates at most d times. For each iteration: Finding
common walls: O(1).
iv. The recurrence relation: T(d) = d * (O(1) + T(d — 1)).
Solving this, we get: T(d) = O(d!).

However, in practice, the depth of recursion is limited by the
planarity of the graph and the orientation condition, so the actual
runtime is likely to be closer to O(d?) or O(d).

The mathematical proof for Algorithm 4, along with the time
complexity analysis for both Algorithms 4 and 5, is provided in
Appendix title “Greedy set cover”.

The validation and complexity analysis for Algorithm 6 follow a
similar approach to Algorithm 1, as the circulation graph is con-
structed in the same manner, with the exception that corridor
vertices corresponding to public rooms are removed.

Results and discussion

In this study, we have developed an innovative approach to auto-
mate the generation of circulation designs within floorplans. Our
method successfully integrates circulation spaces within the floor-
plans derived from a given PTPG. The process is divided into four
key steps, as detailed in Section titles “Generating a floorplan and
circulation graph for the given PTPG” to “Customization of the
circulation space according to user-specified privacy constraints”.
These sections demonstrate the working of our algorithms by
incorporating various circulation types in a rectangular floorplan
corresponding to any given PTPG. However, it’s important to note
that our algorithm is not limited to rectangular shapes. It can be
easily adapted to floorplans with non-rectangular outer boundaries
as well (see Figures 27 and 28).

The initial stage involves generating a floorplan from the PTPG
and creating a circulation graph using Algorithm 1. This circulation
graph effectively captures potential movement paths within the
layout, serving as the foundation for adding various circulation
spaces. Subsequently, Algorithm 2 is employed to integrate
spanning circulation, ensuring all rooms are connected for full
accessibility.

Recognizing that spanning circulation can create redundant
corridors leading to inefficient space use, we developed Algorithm
5 to optimize the design. This algorithm transforms the spanning
circulation into a minimal circulation, significantly reducing
redundant corridors while maintaining connectivity. This opti-
mization is particularly crucial in designs where space-saving is a
priority. To enhance the flexibility and applicability of our
approach, we introduced Algorithm 6, which allows for custom-
ization based on privacy constraints. Users can designate certain
rooms as private and others as public, enabling the creation of
tailored designs that balance accessibility with privacy. This feature
makes our approach adaptable to various architectural needs, such
as office or residential layouts.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

Note: Minimal circulation and public-private circulation
approaches offer distinct benefits in floorplan design. Minimal
circulation optimizes space efficiency by reducing redundant cor-
ridors, potentially lowering costs while ensuring connectivity. It
simplifies navigation and maximizes area for primary functions.
Public-private circulation provides greater control over privacy and
security, offering flexibility in creating distinct functional zones and
enabling public rooms to serve dual purposes. The choice between
these approaches depends on specific building requirements. Min-
imal circulation is ideal for scenarios without strict privacy restric-
tions, suitable for open-plan offices or public buildings where
flexibility is desired. Public-private circulation is more appropriate
when greater control over space designation is required, well-suited
for buildings with distinct privacy needs such as healthcare facilities
or mixed-use complexes. This approach balances accessibility and
privacy, crucial in designs where controlling access to certain areas
is important.

We have implemented all our algorithms in Python with a user-
friendly graphical interface (GUI), which improves the accessibility
of our tool. This interface allows architects and designers to easily
input constraints, visualize results, and iterate designs rapidly. The
ability to observe results “in a fraction of the time” compared to
traditional methods represents a significant improvement in the
efficiency of design workflow.

Limitations

While our approach addresses many challenges in automated
circulation design, there are areas for future development.

i. Incorporating more complex constraints, such as building
codes and accessibility requirements, could further improve
the real-world applicability of the generated designs.

ii. The approach currently focuses on 2D floorplans and does not
automatically generate 3D representations or multi-story cir-
culation, which could be studied further.

ili. One limitation of the Minimal Circulation methodology is that
the designation of public rooms to ensure accessibility is per-
formed after the circulation space is generated. Designating
rooms as ‘public’ with multiple doors can affect privacy in
environments where it is important, often requiring additional
adjustments or re-designations to address this issue effectively.
This approach requires users to manually make adjustments to
refine the circulation design and ensure that it meets specific
accessibility and functional requirements. However, this limi-
tation can be partially addressed using the public-private cir-
culation customization algorithm.

Walkthrough: using our approach for automated circulation
design

Here we provide a step-by-step guide on how to use our approach
for generating floorplans with optimized circulation. The steps are
demonstrated in the examples shown in Figures 20-26 to illustrate
the process. Additionally, a working demonstration of the graphic
user interface (GUI) is available online on the link provided in
Appendix A:

1. Initial input
The user begins by preparing a PTPG representing the desired
room adjacencies. This graph serves as the foundation for the
floorplan generation.

https://doi.org/10.1017/S0890060425000022

20

Output

Tab1
- # Input Graph

Choose the circulation choice:

|
Submit

Shiksha et al.

Draw & test graph here

¢ Remove comidors

Clear Selection

Figure 20. User draw a PTPG as input graph and chooses the option of circulation and then “normal” when the pop-up appears.

o

Output

Tob 1 ¢ Circulation Entry Changer

Enter the two rooms adjacent to the new entry door

]

I @ Get minimal circulation I

Draw a tast graph here

Clear Selection

Submit ‘

Figure 21. For the input graph in Figure 20, the user selects the Circulation option, specifies the entry door, sets the corridor thickness, and chooses either ‘Get minimal circulation’

for optimized space or ‘Submit’ for spanning circulation.

2. Generating spanning Circulation: (refer to Figures 20, 21, and
25)
i. Click on the ‘Circulation’ button in the user interface.
ii. Choose ‘Normal’ as the circulation option.
iii. Input the entry door location and desired corridor thickness.
iv. Click ‘Submit’ to generate the floorplan with spanning
circulation (see Figure 25 for spanning circulation).
3. Optimizing Circulation Space: To minimize circulation space
and optimize room sizes (refer Figures 21 and 22).
i. Choose ‘Get Minimal Circulation’ from the options.
ii. Input the entry door location and corridor thickness.
ili. Submit to generate a floorplan with minimized circulation
space.
4. Customizing Circulation (Optional): If the user wishes to
eliminate specific corridors (refer Figures 23-26).

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

i. Click the ‘Circulation’ button again.
ii. Select the ‘Remove Corridor’ option.
iii. For each pair of rooms, input ‘0’ to remove the corridor or ‘1’
to keep it.
iv. Submit to update the circulation design.

Note: This option may suggest using certain rooms for transit as well as
their primary purpose.

5. Implementing Privacy Constraints: For more control over
public and private spaces.
i. Provide a list specifying which rooms should be private or
public.
ii. Submit to generate a circulation design that includes cor-
ridors around private rooms while allowing public rooms to
serve dual purposes (transit and primary use).

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 21

wput Grapn

ot
Tema takan: 291 SSTTISBEN16E m

Figure 22. The GUI displays the floorplan with minimal circulation. Note that every room has at least one of its walls facing a shared corridor. The rooms which share a wall instead of
a corridor can have an internal connection or no connection as per user preferences.

File Edit Help

] 3

Draw a test graph here

EXIT

Qutput

L # Input Graph - o X

Choose the circulation choice:

om0 [Tm]
Submit Clear Selection

Figure 23. For the same input graph. user checks “Remove circulation” and chooses the option of circulation.

vt -
R , vre e grapn re § Remove corridor = o X
A [
1 Enter 1 if you want to remove corridor
4 s
s
0 2]
t o
Tims taken .\zgmmmnw m ! 1 2 0
’ H 1 " 2 15 0
15 2 4 0
1 1 4 1 I
u - "]
Remove corridor = o X
— 14 5 0
Enter 14 you went to remave comdar 2 5 0
Tab 1
o 2 o 3 4 0
12 o
. % b SIS |
2 4 o 3 4 U
s 1
2 ® o - s 0
« 3] 6 7 0
2 3 3
3 4] 5 I 0
s 6
s n : 6 9 Submit Remaove all
36 3 T 8
& 7 o r
s 7 o
6 8
2 ot Bemve ol

Figure 24. The GUI shows a possible spanning circulation and displays a window where user can remove any set of corridors at once. The pair of numbers displayed to the left of a
text box denotes the pair of rooms on either side of that corridor. For example, as per image on right, if user wants to remove corridor between rooms 1 and 4, then the user enters
“1” in the text box beside the pair “1 4”. There is also a button which allows user to remove all corridors and give back the corresponding floorplan.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

22

Figure 25. The initial spanning circulation.

Figure 26. The Spanning circulation has been updated, removing corridors between
room pairs (1,4) and (5,6).

Suppose there’s a need for additional corridors beyond the
minimal circulation but lesser than the spanning circulation. In
that case, users can remove specific corridors after generating the
spanning circulation, if necessary. Figures 23-26 illustrate this
option for removing corridors.

Shiksha et al.

Area of Each Room
Rec: W:7.5 H:4.0
OF 1: W:8.5 H:16.0
OF 2: W:8.5 H:11.0
MR: W:11.5 H:13.0
OF 3: W:8.0 H:9.5
SR: W:6.5 H:5.0
WC 2: W:4.5 H:5.5
BR: W:12.5 H:12.0
ST: W:5.0 H:7.0
WR: W:9.0 H:8.5
WC 1: W:8.5 H:5.0

Figure 28. A floorplan for the given input graph featuring spanning circulation.

Circulation designs for a small office layout

To explore the practical applicability of our software, we evaluate
its functionality in generating circulation designs for a small
office layout. Figures 27 and 28 illustrate a floorplan of the office,
demonstrating how the approach addresses non-rectangular
boundaries and generates a spanning circulation layout. This
layout is further refined using minimal circulation while desig-
nating certain rooms as public (see Figure 29). The configuration
of the office layout is represented using the following permuta-
tion: [‘Reception (Rec)’, ‘Officel (OF1)’, ‘Office2 (OF2)’, ‘Meet-
ing Room (MR)’, ‘Office3 (OF3)’, ‘Server Room (SR)’, “‘WC2’,
‘Break Room (BR)’, ‘Store (ST)’, “‘Waiting Room (WR)’, ‘WCT’].

The floorplan shown in Figure 28 includes a spanning circu-
lation that can be optimized using the minimal circulation
feature. Corridors 1, 2, and 3, as depicted in Figure 29(a), are
redundant and can be eliminated by designating the Break Room

b | Imin_t Graph
File Edit Help
Draw a test graph here
Rec oF 1 DE2
+ Min Dim
OF 3
Output wC1
W 2
ST BR wc2
e -l Circulation Entry Changer o]
Enter the two rooms adjacent to the new entry door
Rec WR
Tab 1
Get minimal irculation Clear Selectic
submit
] Corridor thickness [(0] %
Enter the cormidor thickness. 1
Submit

Figure 27. An input graph corresponding to the room list for a small office, selecting entrance of the layout and thickness of the required corridor.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 23

(a)

SR
OF 3 MR
WC 2
BR CI OF 2
ST WC 1
OF 1
WR
REC
Entrance
(b)

Figure 29. Optimizing the circulation space: (a) Initial floorplan with redundant corridors (1, 2, and 3), (b) Optimized floorplan after designating the Break Room (BR) and Waiting

Room (WR) as public rooms.

(BR) and Waiting Room (WR) as public rooms. The resulting
optimized floorplan is presented in Figure 29(b).

Conclusion and future enhancements

In this paper, we addressed the challenge of integrating
corridors into a floorplan using a graph-theoretic technique. We
presented a series of algorithms designed to systematically insert
corridors, starting with the modification of the input graph to
translating the changes in the floorplan by modifying the room
coordinates. Additionally, we delved into the optimization aspect,
aiming to enhance cost-efficiency in construction by removing
redundant corridors. To achieve this optimization, we utilized the
renowned Minimum set-cover problem. Based on our findings, we
developed a Python-based application to automate circulation
within a floorplan and presented example from the GUI.

Building upon this foundation, our future work aims to enhance
the system’s flexibility, usability, and functionality, as outlined
below:

i. Enhanced Input Methods: At present, our algorithm accepts
input in the form of a PTPG, necessitating users to be familiar
with its associated terms. In our future development, our goal is
to allow users to input data using various parameters, such as
the number of rooms, desired relations (both adjacency and
non-adjacency) between rooms, and dimensional constraints.
Users will be able to provide this input through a connectivity
graph, specifying room adjacency in terms of wall and door
connections. With this information, we will construct the
necessary graph and generate a corresponding floorplan, offer-
ing a more flexible and user-friendly input method.

ii. Integration with existing designs: To support remodeling and
existing floorplans, the system will be enhanced to analyze

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

architectural elements such as rooms, doors, and openings from
pre-existing designs. From this analysis, an adjacency graph will
be automatically generated, representing rooms as nodes and
connections between them (via doors or openings) as edges,
with additional attributes such as room types and dimensions
encoded.

iii. Refined spatial relationships: Future models will include
multiple connectivity types, such as door and wall connectiv-
ity, represented by distinct edge sets to better capture spatial
relationships. In addition to the adjacency graph, a door
connectivity graph will be created to capture how rooms are
linked through doors and openings. These graphs will be
analyzed to extract the layout’s topological structure and
spatial relationships. Building on the extracted data, our sys-
tem will apply the algorithms detailed in this paper to integrate
various circulation types within the existing floorplans, ensur-
ing the generated designs maintain core functional and spatial
relationships.

iv. Directional and functional constraints: Cardinal direction
constraints will be introduced to position rooms based on
requirements like daylight access or ventilation. For instance,
rooms needing northern exposure will be placed along the
northern boundary.

v. Plot boundaries: An algorithm to accommodate non-
rectangular plot boundaries as an input constraint is currently
under development. This functionality will also be extended to
support non-rectangular room shapes, improving the system’s

adaptability.

Competing interest. The authors declare that they have no known competing
financial interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

https://doi.org/10.1017/S0890060425000022

24

References

Aalaei M, Saadi M, Rahbar M and Ekhlassi A (2023) Architectural layout
generation using a graph-constrained conditional generative adversarial
network (GAN). Automation in Construction 155, 1-17.

Bhasker J and Sahni S (1986) A linear algorithm to find a rectangular dual of a
planar triangulated graph. In Proceedings of the 23rd ACM/IEEE Design
Automation Conference, DAC "86. IEEE Press, pp. 108-114.

Bhasker J and Sahni S (1988) A linear algorithm to find a rectangular dual of a
planar triangulated graph. Algorithmica 3(1), 247-278

Bisht S, Shekhawat K, Upasani N, Jain RN, Tiwaskar RJ and Hebbar C (2022)
Transforming an adjacency graph into dimensioned floorplan layouts. Com-
puter Graphics Forum 41(6), 5-22.

Bondy JA and Murty USR (1976) Graph Theory with Applications. Elsevier,
Vanderbilt Avenue, New York, N.Y.

Cormen TH, Leiserson CE, Rivest RL and Stein C (2001) Introduction to
Algorithms, 2 Edn. The MIT Press.

Eastman C (2009) Automated assessment of early concept designs. Architec-
tural Design 79(2), 52-57.

Eppstein D, Mumford E, Speckmann B and Verbeek K (2009) Area-universal
rectangular layouts. Proceedings of the Twenty-fifth Annual Symposium on
Computational Geometry 41(3), 267-276.

Evans R (1997) Figures, doors and passages. In Translations from Drawing to
Building and Other Essays. Architectural Association, pp. 55-91.

Gonzalez JF and Gongal A (2021) Unidirectional pedestrian circulation: phys-
ical distancing in informal settlements. Buildings and Cities. 2 (1), 655-665

Han Z, Xiaoqian L, Yuan Y and Stouffs R (2024) Graph2pix: A generative model
for converting room adjacency relationships into layout IM-ages. In Proceed-
ings of the 29th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA) 2024, pp. 139-148.

He X (1993) On finding the rectangular duals of planar triangular graphs. SIAM
Journal on Computing 22(6), 1218-1226.

He X (1999) On floor-plan of plane graphs. SIAM Journal on Computing 28(6),
2150-2167.

Hillier B. and Hanson J. (1984) The Social Logic of Space. Cambridge, Cambridge
University Press.

Hu R, Huang Z, Tang Y, Van Kaick O, Zhang H and Huang H (2020)
Graph2plan: learning floorplan generation from layout graphs. ACM Trans-
actions on Graphics (TOG) 39(4), 1-118.

Jarzombek M (2010) Corridor spaces. Critical Inquiry 36(4), 724-744.

Jawaherul AM, Therese B, Stefan F, Michael K, Kobourov SG and Torsten U
(2013) Computing cartograms with optimal complexity. Discrete Computa-
tional Geometry 50, 784-810.

Jisoo K, Hyunsoo L, Minkyu S, Choib JW and Lee J-K (2014) Graph-based
representation of building circulation with the most-remote points and virtual
space objects. In Proceedings of the 31st International Symposium on Automation
and Robotics in Construction and Mining (ISARC). International Association for
Automation and Robotics in Construction (IAARC), pp. 210-216.

Kant G and He X (1997) Regular edge labeling of 4-connected plane graphs and
its applications in graph drawing problems. Theoretical Computer Science
172(1), 175-193.

Kozminski K and Kinnen E (1985) Rectangular duals of planar graphs.
Networks 15(2), 145-157.

Kozminski K and Kinnen E (1988) Rectangular dualization and rectangular
dissections. IEEE Transactions on Circuits and Systems 35(11),
1401-1416.

Lee J-K, Eastman CM, Lee J, Kannala M and Jeong Y-S (2010) Computing
walking distances within buildings using the universal circulation network.
Environment and Planning B: Planning and Design 37(4), 628—645.

Levin PH (1964) Use of graphs to decide the optimum layout of buildings. The
Architects’ Journal 7, 809-815.

Li C, Jiang L, Sun F and Zhang K (2018) Generating circulation designs using
shape grammars. Tsinghua Science and Technology 23(6), 680—689.

March L and Steadman P (1971) Geometry of the Environment. London: RIBA
Publications.

Mitchell WJ, Steadman JP and Liggett RS (1976) Synthesis and optimization of
small rectangular floor plans. Environment and Planning B 3(1), 37-70.

Mustafa FA and Ahmed SS (2023) The role of waiting area typology in limiting
the spread of covid-19: Outpatient clinics of erbil hospitals as a case study.
Indoor and Built Environment 32, 1914-1928.

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

Shiksha et al.

Mustafa FA and Azeez SA (2022) Role of office layout typology in saving time
and distance spent by users: case of office buildings in erbil city. Ain Shams
Engineering Journal 13, 1-14.

Mustafa FA and Rafeeq DA (2019) Assessment of elementary school buildings
in Erbil city using space syntax analysis and school teachers feedback.
Alexandria Engineering Journal 58, 1039—1052.

Naderpour A, Johnson B and Anderson A (2019) A2b: A toolkit for computing
circulation metrics in buildings. Proceedings of the 16th IBPSA Conference 16,
2576-2583.

Nauata N, Chang K-H, Cheng C-Y, Mori G and Furukawa Y (2020) House-
GAN: Relational Generative Adversarial Networks for Graph-Constrained
House Layout Generation. In Computer Vision—ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I. Springer-
Verlag, Berlin, Heidelberg, 162-177. https://doi.org/10.1007/978-3-030-
58452-8_10

Nauata N, Hosseini S, Chang K-H, Chu H, Cheng C-Y and Furukawa Y (2021)
Housegan++: Generative adversarial layout refinement network towards
intelligent computational agent for professional architects. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13632-13641.

Para W, Guerrero P, Kelly T, Guibas L] and Wonka P (2021) Generative layout
modeling using constraint graphs. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 6690-6700.

Rafeeq DA and Mustafa FA (2021) Evidence-based design: The role of
inpatient typology in creating healing environment, hospitals in Erbil city
as a case study. Ain Shams Engineering Journal 12, 1073—-1087.

Rahbar M, Mahdavinejad M, Markazi AD and Bemanian M (2021) Archi-
tectural layout design through deep learning and agent-based modeling: A
hybrid approach. Journal of Building Engineering 47, 103-122.

Raveena and Shekhawat K (2023) A theory of 1-shaped floor-plans. Theoretical
Computer Science 942, 57-92.

Raveena, Shekhawat K and Shekhawat R (2024) A graph theoretic approach
for generating t-shaped floor plans. Theoretical Computer Science 1011,
1-29.

Sabir BM and Mustafa FA (2023) Performance-based building design: impact
of emergency department layout on its functional performance efficiency -
the case of erbil hospitals. Open House International 48, 840—862.

Shekhawat K (2018) Enumerating generic rectangular floor plans. Automation
in Construction 92, 151-165.

Shekhawat K, Jain RN, Bisht S, Kondaveeti A and Goswami D () Graph-based
approach for enumerating floorplans based on users specifications. A EDAM
35(4), 438-459.

Shekhawat K, Upasani N, Bisht S and Jain RN () A tool for computer-
generated dimensioned floorplans based on given adjacencies. Automation
in Construction 127, 1-21.

Steadman P (1983) Architectural Morphology: An Introduction to the Geometry
of Building Plans. London: Pion.

Sun J, Wu W, Liu L, Min We, Zhang G and Zheng L (2022) Wallplan:
synthesizing floorplans by learning to generate wall graphs. ACM Transac-
tions on Graphics (TOG) 41(4), 1-14.

Taneja S, Akinci B, Garrett JH, Soibelman L and East B (2011) Transforming
IFC-based building layout information into a geometric topology network for
indoor navigation assistance. Computing in Civil Engineering, 2011 315-322.

Tsiamitros N, Mahapatra T, Passalidis I, Kailashnath K and Pipelidis G
(2023) Pedestrian flow identification and occupancy prediction for indoor
areas. Sensors 23(9), 1-26.

Upasani N, Shekhawat K and Sachdeva G (2020) Automated generation of
dimensioned rectangular floorplans. Automation in Construction 113, 103—149.

Vardouli T (2017) Thesis: Ph.D. in Architecture: Design and Computation,
Massachusetts Institute of Technology, Department of Architecture, http://
hdl.handle.net/1721.1/113917, Massachusetts Institute of Technology.

WangL, Liu J, Zeng Y, Cheng G, Hu H, Hu] and Huang X (2023) Automated
building layout generation using deep learning and graph algorithms. Auto-
mation in Construction 154, 1-21.

Wang S, Zeng W, Chen X, Ye Y, Qiao Y and Fu C-W (2021) Actfloor-gan: activity-
guided adversarial networks for human-centric floorplan design. IEEE Transac-
tions on Visualization and Computer Graphics 29(3), 1610-1624.

Wang X-Y, Yang Y and Zhang K (2018) Customization and generation of floor
plans based on graph transformations. Automation in Construction 94,405-416.

https://doi.org/10.1007/978-3-030-58452-8_10
https://doi.org/10.1007/978-3-030-58452-8_10
http://hdl.handle.net/1721.1/113917
http://hdl.handle.net/1721.1/113917
https://doi.org/10.1017/S0890060425000022

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 25

Wang X-Y and Zhang K (2020) Generating layout designs from high-level
specifications. Automation in Construction 119, 1-16.

Wu W, Fan L, Liu L and Wonka P (2018) Miqp-based layout design for
building interiors. Computer Graphics Forum 37(2), 511-521.

Wu W, Fu X-M, Tang R, Wang Y, Qi Y-H and Liu L (2019) Data-driven
interior plan generation for residential buildings. ACM Transactions on
Graphics (TOG) 38(6), 1-12.

Xie X and Ding W (2023) An interactive approach for generating spatial
architecture layout based on graph theory. Frontiers of Architectural Research
12(4), 630-650.

Appendix A. Supplementary Material

An online demonstration of the Graphic User Interface, showcasing various
types of circulation in floorplans is accessible at: Demonstration video (https://
www.dropbox.com/scl/fi/ucwyluc7cz9iahm6gsmf0/Circulation.mp4?rlkey=
fg6ws4qkeyolmkz4qek6o2cno&dl=0).

The implementation is available on GitHub at the following link: GitHub link
(https://github.com/GPLAN-team/Circulation_Paper).

Appendix B. Analysis of algorithms

Greedy set cover

In this proof, we denote the k" Harmonic number: Hy = ZJk: 11/j, as H(k), with
the boundary condition H(0) = 0.

Theorem 1. (Cormen et al., 2001) GREEDY-SET-COVER is a O(log,m)—approxi-
mation algorithm, where

m= max{|S;|: S; €S})

(i.e., If OPT is the optimal set-cover for the given problem instance (X, S)
and G is the set-cover by GREEDY-SET-COVER, then |G| < O(log,m)|OPT| where |
X|=n)

Proof. (NOTE: Here, we prove this by utilizing the k¥ Harmonic number:
Hy= E]k: 11/, as H(k), with the boundary condition H(0) = 0. So, we first prove
that |G| < H(m)|OPT]|, and utilize the fact that Hj = Z;f:ll/jz log k)

Our idea is to first assign each subset S; € S selected by the greedy algorithm
a cost of 1 and distribute it across the elements x € X covered for the first time
by S;. Accumulating these costs will get us the required relationship between the
greedy solution G and the optimal solution OPT. Let S; be the subset added at the
j'hiteration of the algorithm. Let c, be the cost allocated to element x € X, which
is added only when x is covered by one of the subsets for the first time. If S; covers
element x for the first time:

1
B |Sj — (SIUSZU“‘Uijl)l

Cx

Note that each step of the algorithm assigns a cost of 1 and hence:

1Gl=> e (12)

x€X

Since each element x € X is at least in one of the subsets in OPT, we have

Z ZCxZZCx (13)

BeOPTxeB xeX

Now, combining equation 12 and inequality 13, we get

IG1< > Y e (14)

BeOPTx€B

https://doi.org/10.1017/50890060425000022 Published online by Cambridge University Press

Next, we focus on proving > pce <H(|B|) so that from inequality
14, we get

IGl< > H(B))
BeoOPT
= |G| <|OPT|.H(max{|S;|: S; € S}) = |OPT|.H(m)

Consider an arbitrary subset S;€Sand foralli=1,2, ..., |G| let
u;= |S] — (81U52U‘“Usi)|

be the number of elements of S; that remain uncovered after the algorithm has
chosen the subsets Sj, S,, ... S;. Since initially none of the elements are covered,
we can fix uy = |S)|. Let r be the least index such that all elements of S; are covered
by one of Si, Sy, ... S, and at least one element of §; is uncovered by
S$1USU---US,—;. Consequently, u;_; >u; and u;_; —u; elements are covered
for the first time by S; fori = 1, 2, ..., r. So, we have

. 1
ZC’C = Z(u,‘,1 —u)- [S; — (S1USU-+-US;_1)|

xeX i=1

Since S; is a greedy choice, it covers more new elements than ; (else algorithm
will choose S; over Si). Consequently,

Si — (S1USU-++US;_1)| 2 |Sj — (S1USU-+-US;_1)
= |S, - (81U82U"'USZ;1)| > Ui—1

r
= ZCX < Z(M,‘,I *u,)%
i

XES; i=1
r Ui-1 1
éZcxsz —
x€s; =1 pum+1Hi-1
r Ui
= ZC" < Z — (since p<ui_y)
XES; i=lp=u+1

r Ui—1 1 Uj 1

=D &<y ZI‘,—Z;

x€S; iz1 \p=1FP =1
=3 <3 (Hlu) — Hiw)
X€S; i=1
= ZC" <(H(uo) —H(u,)) (since the sumtelescopes)
XES;
= > < (H(uo) — H(0))
X€E€S;
= Zcx <H(up) (since H(0)=0)
x€E€S;

=Y e <H(|S) (15)

XES;

So, applying inequality 15 in the inequality 14, we get the result that

IGl< > H(B)
BE€OPT
= |G| <|OPT|.H(max{|S:|: S; € S})
= |G| <|OPT|.H(m) (Since m= max{|S;|:S; € S})
= |G| < (log,m).|OPT| (Since H(m)~ log,m)
Therefore, we have shown that the size of the greedy set cover is at most log,m

times the optimal set cover (where m is the size of the largest chosen subset in the
greedy algorithm). Thus, the algorithm is a O(log,m)-approximation algorithm.

https://www.dropbox.com/scl/fi/ucwy1uc7cz9iahm6gsmf0/Circulation.mp4?rlkey=fg6ws4qkcyo1mkz4qek6o2cno&dl=0
https://www.dropbox.com/scl/fi/ucwy1uc7cz9iahm6gsmf0/Circulation.mp4?rlkey=fg6ws4qkcyo1mkz4qek6o2cno&dl=0
https://www.dropbox.com/scl/fi/ucwy1uc7cz9iahm6gsmf0/Circulation.mp4?rlkey=fg6ws4qkcyo1mkz4qek6o2cno&dl=0
https://github.com/GPLAN-team/Circulation_Paper
https://doi.org/10.1017/S0890060425000022

	Automated generation of circulations within a floorplan
	Introduction
	Preliminaries
	Literature review
	Gaps in the existing literature and our work

	Methodology
	Generating a floorplan and circulation graph for the given PTPG
	From circulation graph to floorplan with required circulation space
	Generating minimal circulation space
	Limitations of the approximation algorithm
	Customization of the circulation space according to user-specified privacy constraints
	Algorithm validation and complexity

	Results and discussion
	Limitations
	Walkthrough: using our approach for automated circulation design
	Circulation designs for a small office layout

	Conclusion and future enhancements
	Competing interest
	References
	Appendix A. Supplementary Material
	Appendix B. Analysis of algorithms
	Greedy set cover

