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ABSTRACT. Ice shelves regulate ice sheet dynamics, with their stability in-

fluenced by horizontal flow and vertical flexure. MacAyeal and others (2021)

developed the theoretical foundation for a coupled flow-flexure model (the

“M21 model”), combining the Shallow Shelf Approximation with thin-beam

flexure, providing a computationally efficient tool for studying phenomena like

ice shelf rumpling and lake drainage. However, the M21 model relies on pro-

prietary software, is unstable under compressive flow conditions, and does not

incorporate fracture processes critical for capturing ice-shelf damage evolution.

We present an open-source version of the M21 model addressing these limi-

tations. Using the free Python libraries Firedrake and icepack, we introduce

a plastic failure mechanism, effectively limiting bending stresses and thereby

stabilizing the model. This enhancement expands the viscous M21 model into

a viscoplastic flow-flexure-fracture (3F) framework. We validate the 3F model

through test cases replicating key ice shelf phenomena, including marginal

rumpling and periodic surface meltwater drainage. By offering this tool as

open-source software, we aim to enable broader adoption, with the ultimate

aim of representing surface meltwater induced flow-flexure-fracture processes

in large-scale ice sheet models.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted re- use, distribution and reproduction, provided the

original article is properly cited.
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1 INTRODUCTION

Ice shelves play a central role in the dynamics of marine ice sheets, serving as buffers that regulate the

discharge of grounded ice into the ocean. Following the pioneering work of MacAyeal (1989), ice shelves

are most commonly modeled as thin membranes of ice that spread horizontally in response to gravitational

driving stress. This so-called Shallow Shelf Approximation (SSA), has been widely used to model the

flow of ice shelves at scales of tens to hundreds of kilometers, with most modern continent-scale models

employing this approximation over ice shelf regions (Seroussi and others, 2020). SSA does not, however,

capture all observed types of ice shelf deformation. Although it has been appreciated for decades that

flexural motion occurs at ice fronts (Reeh, 1968), this topic has taken on new importance as recent work

has related flexure to catastrophic ice shelf collapse through hydrofracture (Banwell and others, 2024).

Ice shelf flexure has profound implications for ice shelf stability (Coffey and others, 2022; Robel and

Banwell, 2019), as evidenced by the catastrophic breakup of the Larsen B Ice Shelf in 2002 (Scambos and

others, 2004). During this event, the rapid drainage of surface meltwater lakes induced flexural stresses,

propagating fractures and triggering a chain reaction of lake drainage (Banwell and others, 2013; Robel

and Banwell, 2019). These processes not only culminated in the disintegration of the shelf within weeks

(Scambos and others, 2003), but also caused a measurable acceleration in ice flow, amplifying the impact

on upstream ice dynamics (Scambos and others, 2004; Rignot and others, 2004). Similar mechanisms are

believed to threaten the structural integrity of the Larsen C Ice Shelf (Buzzard and others, 2018), where

surface melt and ponding has been observed (Bevan and others, 2020; Banwell and others, 2023; Hubbard

and others, 2016). Ice shelf flexure also plays a role in rumple formation where ice flow is stabilized

against pinning points (LaBarbera and MacAyeal, 2011; Still and others, 2019), surface adjustments to

basal melting (Adusumilli and others, 2020) or basal channel formation (Chartrand and others, 2024), and

ice-shelf motion caused by long-period ocean swell (Lipovsky, 2018; Massom and others, 2018).

MacAyeal and others (2021) developed the theoretical groundwork for a coupled flow-flexure model by

combining the SSA with the Kirchoff-Love approximation for thin-plate flexure (Braess, 2007). Henceforth

referred to as the “M21 model,” this framework offers a computationally efficient approach to exploring

flow-flexure interactions with reasonable accuracy, albeit under simplifying assumptions. The M21 model

is an example of a viscoelastic beam-column model in that it accounts for both in-plane stresses and out-

of-plane flexure (Biot, 1961). MacAyeal and others (2021) demonstrate that their model is able to capture
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a range of the flexural behaviours discussed above.

The M21 model has several limitations. MacAyeal and others (2021) rely on the proprietary software

COMSOL, which restricts reproducibility and accessibility due to cost and licensing constraints. This

reliance limits broader adoption within the glaciology community and presents challenges for integrating

the model into open-source, large-scale ice sheet modeling frameworks. Additionally, the M21 model does

not incorporate fracture mechanisms, which are critical for capturing the evolution of ice shelves under

cascading lake-drainage scenarios like that which caused the collapse of the Larsen B. Finally, beam-column

models like M21 are well known to exhibit a buckling instability whereby in-plane compression results in

unstable out-of-plane motion (Budiansky, 1974). While M21’s capacity to produce buckling is a desirable

feature — allowing the representation of ice shelf rumples as compressional structures near pinning points —

the associated instability, in practice, prevents these setups from running over the decades-long timescales

relevant to much of glaciological research (as discussed by MacAyeal and others, 2021, in their Appendix

A).

To address these limitations, we present a modified version of the M21 model that leverages freely

available Python libraries, including Firedrake (Rathgeber and others, 2016) and icepack (Shapero and

others, 2021). Our key modification is the inclusion of a fracture mechanism, improving on the M21 model

by expanding it into a coupled flow-flexure-fracture framework, hereafter referred to as the “3F model.” Ice

shelf fracture has been described in many different ways, including using linear elastic fracture mechanics

(Lai and others, 2020; Lipovsky, 2020; Zarrinderakht and others, 2024), continuum damage (Borstad and

others, 2013; Sun and others, 2017; Huth and others, 2023), and geometric approaches (Levermann and

others, 2012). We choose to model distributed fracture by incorporating plasticity into the constitutive

relation of ice. This approach assumes that stresses are bounded by a finite yield envelope (Figure 1). A

plastic response of ice is well documented in laboratory studies (Schulson and Duval, 2010, Ch. 12). Bassis

and Walker (2012) considered a specific type of plasticity, Coulomb plasticity, to describe near-terminus

fracture that gives rise to fundamental limits on the thickness of marine ice cliffs. We modify this treatment

to allow plastic deformation elsewhere on the ice shelf, not just at the front.

Our choice of describing fracture via plasticity is largely motivated by the ability of this mechanism to

simultaneously address the numerical instability of the M21 model in rumpling regimes, while also providing

a representation of hyrofracture — the process which motivated the development of ice shelf flow-flexure

models in the first place. Where MacAyeal and others (2021) introduced heuristic approaches to circumvent
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the buckling instability (for example, by cutting off inflow to prevent rumples from exponentially increasing

in amplitude), plasticity provides a natural means of limiting the flexural stresses which would otherwise

permit uncontrolled rumple growth. Meanwhile, modeling distributed fractures with plasticity establishes

a physically motivated link between material failure and lake drainage, as plastic deformation enhances

permeability through shear dilatancy, allowing enhanced drainage (Segall and Rice, 1995).

We begin by describing the governing equations of the original M21 model and the extension to the 3F

model through the introduction of plasticity. We then evaluate the model’s performance through idealized

test cases that represent key ice shelf behaviours, providing insight into the dynamics of flow, flexure, and

fracture without oversimplifying critical processes. Finally, we discuss the broader implications of these

findings for ice shelf modeling and identify directions for future research.

2 M21 VISCOUS FLOW THEORY

The theory for the coupled dynamics of viscoelastic flow and flexure in ice shelves was presented by

MacAyeal and others (2021). Here, we specialize the viscoelastic M21 model to the purely viscous case by

neglecting elastic effects, thereby focusing on longer timescales. In this section, we highlight key aspects

of the M21 model, with modifications tailored to incorporate plasticity. We closely follow the original

derivations, employing vector-tensor notation and introducing slight redefinitions where beneficial. A

glossary of all symbols used can be found in Appendix A.

We denote the horizontal coordinates as x and y; for convenience, we use two vertical coordinates: ζ,

whose zero value lies at the vertical midpoint of the shelf, and z, whose zero value lies at sea level. The

shelf has thickness Hpx, y, tq, so the position of the ice shelf surface and base correspond to ζ “ H
2 and

ζ “ ´H
2 , or z “ s and z “ b. We denote the horizontal velocity vector ~u “ ruxpx, y, tq, uypx, y, tqs and note

that horizontal velocities are depth-invariant under the SSA. We denote the vertical deflection ηpx, y, tq

and the corresponding deflection rate 9ηpx, y, tq “ Bη
Bt , and we note that deflections are depth-invariant in

the thin-beam approximation used in M21.

The effective dynamic viscosity, ν, is taken to be identical in the constitutive relations for both flow

and flexure, and its value is a nonlinear function of the flow stress (as described by Glen’s Flow Law with

n “ 3). For simplicity, we assume isothermal ice (i.e., ν “ ν, where the overline denotes depth-averaged

quantities). While this assumption is not essential, and more general relationships can be derived by

following the procedures detailed in M21, our simplification aligns with the numerical implementations
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therein.

2.1 Constitutive relation

We consider a nonlinear viscous constitutive relation that relates the deviatoric stress to the strain rates

from both in-plane flow and vertical flexure (Equation 14 from M21)

τ “ 2ν 9ε´ 2νζ 9κ. (1)

In this expression, τ denotes the 2D deviatoric stress tensor, and 9ε “ 1
2∇~u` 1

2∇T~u denotes the strain rate

tensor from the in-plane flow field. In a purely viscous material, 9κ is the Hessian of the vertical deflection

rate, with 9κ “ ∇∇ 9η. The diagonal entries of 9κ correspond to pure bending along the axes, while the

off-diagonal terms correspond to torsion. The first term on the right represents the deviatoric stress from

in-plane flow, while the second term on the right corresponds to the deviatoric stress induced by vertical

deflections from bending.

Since we are considering the case where an ice shelf has vertically homogeneous viscosity, we assume

an isothermal structure without any variability in crystal fabric or other complicating factors. In this case,

the only term in Equation 1 that varies vertically is the vertical coordinate ζ itself. This allows for a

simplified expression for the depth-averaged deviatoric stress, which will later be used in deriving the SSA.

By symmetry of vertical integration from the basal elevation ζ “ ´H
2 to the surface elevation ζ “ H

2 , all

terms linear in ζ vanish upon depth-averaging, resulting in

τ “ 2ν 9ε. (2)

Thus, the flexural contribution to the deviatoric stress does not matter in a depth-averaged sense.

2.2 Pressure

We assume that the vertical force balance follows the hydrostatic approximation (Greve and Blatter, 2009).

That is, neglecting the bridging terms B
Bxτxz and

B
By τyz, we depth-integrate the vertical momentum balance

from arbitrary ζ to the surface ζ “ H
2 , obtaining pressure as

p “ ρig

ˆ

H

2 ´ ζ
˙

` szz, (3)
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where szz “ σzz`p is the vertical normal deviatoric stress. This term can be recovered from the horizontal

deviatoric stress tensor via szz “ ´ trpτ q. Taking the trace of Equation 1, it follows that

p “ ρig

ˆ

H

2 ´ ζ
˙

´ 2ν trp 9εq ` 2νζ trp 9κq. (4)

This expression will later be used in evaluating the bending moment. Toward constructing the SSA under

a flow-flexure regime, we also record the depth-averaged pressure, p, below. As previously noted, all terms

linear in ζ vanish upon depth-averaging, giving

p “ ρig
H

2 ´ 2ν trp 9εq. (5)

2.3 Horizontal momentum balance: Shallow Shelf Approximation (SSA)

The horizontal momentum balance can be expressed in terms of stresses as (M21, Equation 42)

∇ ¨Hpτ ´ pIq “ ´ρswgb∇b, (6)

where I is the two-by-two identity, ρsw is the density of seawater, and b is the basal elevation. Under

the typical assumption of isostatic equilibrium, b would be expressed in terms of either the thickness H

or the surface elevation s. However, to accommodate small vertical deflections, we eschew this common

simplification, leaving the right-hand side in terms of the basal elevation.

Using the expressions for τ and p derived earlier (Equations 2 and 5), the SSA can be expressed directly

in terms of the velocity field (noting that all flexural terms have vanished):

$

’

’

&

’

’

%

∇ ¨ 2νH r 9ε` trp 9εqIs “ ρigH∇H ´ ρswgb∇b

9ε “ 1
2
`

∇`∇T
˘

~u

(7)

The occurrence of flexural terms means that the surface and basal elevations cannot be inferred directly

from thickness alone. Instead, the surface and basal boundaries evolve separately, with dynamic thickening

and thinning described in two parts,

9s “ ´∇ ¨ p~usq (8)
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and

9b “ ´∇ ¨ p~ubq. (9)

This treatment interprets s and b as conserved quantities, which is a fair approximation for shallow

ice shelves, in which mass does not move vertically through the horizontal plane at sea level. While we

must include small vertical deflections, these are added as incremental adjustments to surface and basal

evolution as described at the end of Appendix section B.1.4, in a process akin to adding a mass balance

term to a conserved quantity.

2.4 Bending moment

The rank-2 bending moment tensor M is evaluated as (Equation 18 from M21)

M “

H
2
ż

´H
2

pτ ´ pIqζdζ. (10)

We make substitutions for τ and p with reference to Equations 1 and 4, again noting that all terms in 9ε

will vanish since they are linear in ζ. We further omit the overburden part of Equation 4 in our calculation,

reasoning, as in M21, that this term contributes to bending only where an ice shelf has substantial surface

curvature or depth-dependent ice density (see their Equations 33 and 57f). These steps give the simplified

integral expression

M “ ´2ν

H
2
ż

´H
2

ζ2 r 9κ` trp 9κqIs dζ. (11)

We then evaluate this integral and express the result in the simplified form

M “ ´Dp 9κq, (12)

where we have defined the operator D via

Dp 9κq “ 2νH
3

12 r
9κ` trp 9κqIs . (13)
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2.5 Conservation of angular momentum

The balance of forces in a bending, viscously-flowing ice shelf is expressed in M21 as (their Equations 46

and 57, with M expressed as in Equation 12):

$

’

’

&

’

’

%

´∇ ¨∇ ¨Dp 9κq ´ ρswghab `∇∇η : Hσ “ 0

9κ “ ∇∇ 9η

(14)

where hab is the height above buoyancy at each point of the shelf (which may be nonzero where there

is vertical flexure), σ “ τ ´ pI is the depth-averaged net (Cauchy) stress tensor, and the accumulated

deflection η is calculated as detailed in Equation B3 in Appendix B. The colon operator (:) is the tensor

double-dot product, also called the inner product, in which the product of two tensors is a scalar value.

In summary, our implementation of M21 model is given by the horizontal momentum balance of the

SSA (Equation 7), the evolution equations for the top and bottom ice shelf surfaces (Equations 8 and 9),

and the conservation of angular momentum (Equation 14).

3 3F VISCOPLASTIC FLOW THEORY

3.1 Background on plasticity theory

In continuum mechanics, plasticity describes a material’s ability to undergo permanent, irreversible de-

formation when stresses exceed its yield strength (Hill, 1998). Unlike viscous deformation, where even

infinitesimal stress induces continuous deformation (as in Glen’s Flow Law for glacier ice), plastic defor-

mation occurs only once a yield criterion is surpassed, marking a threshold beyond which the material

undergoes plastic failure. Another key distinction is directional behavior: while the direction of viscous

deformation is determined by the deviatoric stress field, the direction of plastic strains is determined by the

yield surface (see Figure 1). For glacier ice, a viscous constitutive relation captures long-term creep under

low-stress conditions, but plasticity models become essential for describing abrupt material failure, such

as ice cliff collapse or glacier calving (Bassis and Walker, 2012). Our objective is to develop a glaciologi-

cally relevant framework that integrates nonlinear viscous and plastic elements to capture the multi-scale

behaviors of ice, particularly in dynamic regions where yield-limited flow or brittle failure dominates.

Classic yield criteria define plastic strain rate evolution once the yield strength is exceeded. In our

approach, we introduce a plastic curvature rate, which is useful because flexural stress is proportional
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to curvature in the assumed Kirchoff-Love plate model. This formulation explicitly accounts for plastic

deformation driven by bending stresses, making it particularly relevant for the processes discussed in

the Introduction, such as flexure-induced lake drainage. Moreover, the buckling instability in M21 arises

from unbounded bending stresses and deflection rates; by constraining the curvature rate through a yield

criterion, we provide a physically motivated resolution to this issue. We also provide the theory for

incorporating plasticity into the flow stress in Appendix C.

3.2 Plasticity in an ice shelf flow-flexure model

We modify the constitutive relation of Equation 1 by imposing an upper bound on the effective curvature

rate, limiting 9κ so that

9κ “ ∇∇ 9η ´ fp 9κq. (15)

Here, fp 9κq represents a correction to the curvature rate due to plastic yielding, with f denoting the yield

function, the properties of which we discuss below. This formulation accounts for how plastic yielding

depends on the rate of curvature change, which helps ensure realistic material behavior over time (preserving

causality) and improves numerical stability in simulations (Rudnicki and Rice, 1975; Dunham and others,

2011).

Because plastic behaviour involves limiting stresses (in this case, via the curvature rate) to some thresh-

old value, fp 9κq must reduce 9κ above the chosen threshold rate, and vanish below that threshold. Since

the threshold for plasticity should be independent of the reference frame chosen, we describe the yield

function in terms of the second tensor invariant, JII . Thus, we define the depth-invariant scalar αpx, y, tq

conceptually as

α “

$

’

’

&

’

’

%

1 JIIp 9κq ď 9κc

9κc
JIIp 9κq JIIp 9κq ą 9κc,

(16)

with 9κc the critical value for initiating plasticity. In practice, a slightly modified form is used for computa-

tional stability (see Appendix section B.3 for details) but this expression captures the essential mechanics.

We propose the following definition for the yield function:
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Fig. 1. Conceptual schematic of the plasticity treatment. The second tensor invariant, JII , corresponds to the
radial distance from the origin (with 9κxy omitted for 2D representation). The green region, bounded by the yield
curve r “ 9κc, corresponds to the viscous flexure regime of M21. When 9κ falls outside this boundary, plastic failure
is enforced by scaling 9κ by α such that JIIpα 9κq “ 9κc. The red arrow’s magnitude represents the plastic correction,
quantified as pα´ 1qJIIp 9κq.

fp 9κq “ pα´ 1q 9κ (17)

With this definition in place, we rearrange Equation 15 to find that

α 9κ “ ∇∇ 9η. (18)

That is, whenever JIIp 9κq ď 9κc, we recover the original viscous relationship 9κ “ ∇∇ 9η. On the other hand,

if JIIp 9κq ą 9κc, we find that JIIp∇∇ 9ηq “ JIIpα 9κq “ αJIIp 9κq “ 9κc. Thus, plasticity is activated only when

the effective rate of curvature exceeds the critical value 9κc, in which case the tensor is scaled based on the

degree of exceedance (see Figure 1).

An advantage of this simple formulation is that the resulting flow-flexure system retains the structure

described in the previous section. Equation 1 is implicitly modified, requiring only that the conservation

of angular momentum (Equation 14) be amended to
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$

’

’

&

’

’

%

´∇ ¨∇ ¨Dp 9κq ´ ρswghab `∇∇η : Hσ “ 0

α 9κ “ ∇∇ 9η.

(19)

3.3 A scalar measure of plastic deformation

The plastic reduction to the curvature field (or stress field) discussed above is driven by distributed fracture

within the ice. Consequently, any scalar measure of material failure should correspond to the accumulated

plastic curvature reduction, κp, which, in a Lagrangian framework, is expressed at time t as

κp “

t
ż

t1

fp 9κqdt, (20)

where t1 marks the start of the simulation. We propose using the second tensor invariant of κp to describe

a scalar measure of plastic deformation as

κp “ JIIpκpq. (21)

The quantity κp may either increase or decrease through time and only evolves when the yield criterion

is met. We note that this measure of plastic deformation is distinct from a damage parameter because it

does not reduce the effective viscosity (e.g., Albrecht and Levermann, 2012).

4 DISCUSSION: SIMULATING ICE SHELF DYNAMICS USING THE 3F

FRAMEWORK

In this section, we present three illustrative examples showcasing the capabilities of the 3F model to

simulate key ice shelf phenomena. The first example focuses on differential surface ablation, demonstrating

the development of characteristic surface features such as pedestals and flexural rims under localized

melt forcings. The second example examines marginal rumpling in compressive ice shelf flow regimes,

where plastic stress reduction resolves the instability associated with excessive deformation under the M21

model. The final example explores the interplay between surface hydrology and ice shelf flexure resulting

from meltwater loading, highlighting the cyclic nature of lake filling, fracturing, and drainage. Together,

these examples emphasize the versatility of the 3F framework in capturing key ice shelf dynamics and
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provide insights into the underlying physical mechanisms. All simulations can be reproduced using the

accompanying Jupyter notebooks (see the Data Availability section).

4.1 Differential ablation

To validate the 3F model, we replicate the qualitative behaviour described by MacAyeal and others (2021),

which explored flow-flexure interactions under differential ablation. In their simulation, differential ablation

was forced by spatial differences in surface albedo, with a supposed patch of debris-covered ice subject

to a prescribed ablation rate, while the rest of the domain, composed of clean ice, remained melt-free.

Their study demonstrated that localized variations in surface ablation produce characteristic moat-rampart

patterns, where a raised pedestal forms due to isostatic adjustment, and flexural stresses generate an

elevated rim and surrounding depression. This phenomenon has been observed on the McMurdo Ice Shelf

by Banwell and others (2019) and Macdonald and others (2019), for example.

We adopt a setup directly analogous to MacAyeal and others (2021), with the key distinctions being

that our model is formulated in 2D and incorporates material failure due to plastic deformation. Our

domain consists of an 8 km by 6 km ice shelf section, in biaxial extension, with an initial thickness of 200

m and a uniform temperature of ´5˝ C. We impose an inflow velocity of 20 m a´1 in the longitudinal

direction and prescribe a lateral velocity boundary condition consistent with the analytic solution for an

unconfined ice shelf (Weertman, 1957). Before introducing differential ablation, we first spin-up the model

to steady state, allowing the velocity and thickness fields to equilibrate (Figure 2).

After spin-up, we apply an ablation rate of 1 m a´1 everywhere outside a circular region of radius 1,500

m (delineated in Figure 2, and to be interpreted as a high-albedo zone of clean ice). In response, the ice

within this circular, low-ablation region remains thicker, and the free-floating system adjusts isostatically,

forming a raised pedestal. At the same time, flexural stresses resist the pedestal’s formation, producing a

moat-rampart pattern at the transition between the different ablation regimes (Figure 3). These results

can be directly compared with MacAyeal and others (2021) by examining their Figure 2, which shows

the development of a similar structure. Additionally, our inclusion of plastic deformation results in two

concentric rings of localized weakening, which align with the moat and rampart features. These damaged

zones indicate areas of elevated stress that emerge naturally within the simulation. For this simulation, we

set the plasticity threshold to 9κc “ 10´5 m´1a´1, which we find sufficient to produce a moderate amount

of plastic deformation in the highest-stress regions. We may also interpret this curvature rate threshold
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Fig. 2. Steady-state flow model obtained before introducing differential ablation. (A) Steady state flow speed,
calculated as |~u| “

b

u2
x ` u

2
y. (B) Steady state thickness field. The dashed circle represents the high-albedo zone

upon which the pedestal will grow.

in terms of bending stress. Roughly, if effective viscosity is on the order of 108 Pa a and thickness is on

the order of 100 m, Equation 1 indicates that our failure threshold corresponds to near-surface bending

stresses on the order of 100 kPa.

By reproducing the expected surface deformation patterns and capturing the associated stress con-

centrations, this experiment demonstrates the model’s ability to represent flow-flexure interactions under

differential ablation conditions. Having established this baseline comparison, we next examine ice shelf

rumpling.

4.2 Marginal rumples

Ice rumples—localized zones of elevated surface roughness resulting from compressive stresses—are a promi-

nent feature in ice shelves subject to flow-opposing stresses (Coffey and others, 2022; LaBarbera and

MacAyeal, 2011). Marginal rumples are particularly common in regions where ice shelves interact with

grounded ice or are confined by lateral boundaries, resulting in zones of compressional flow. Such regions

are also characterized by rift-like patterns and detachment zones, as described by Miele and others (2023).

One of the central issues with the original M21 formulation was its tendency to produce unphysical

behavior in compressive regimes. As highlighted by MacAyeal and others (2021), their M21 model failed

to stabilize rumples, often leading to their uncontrolled growth unless artificial constraints, such as halting

inflow ice velocities, were imposed. This limitation stemmed from the purely viscous nature of the M21

model, which lacked a mechanism to dissipate the stresses responsible for such instabilities. The result was
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Fig. 3. Differential ablation and the formation of moat-rampart structures after ten years of simulated time. (A)
Vertical deflection η. Outside the pedestal, net upward deflection offsets surface ablation, elevating the ice shelf. (B)
Surface elevation change along the centerline. A circular depression (moat) extends 2.5 m below the pre-ablation
state, while a raised rim (rampart) forms along the pedestal edge. (C) Plastic deformation. Two concentric rings
emerge, one at the pedestal boundary and another within the moat. (D) Plastic deformation depicted along the
centerline.

an unrealistic escalation of deformation, rendering the model unreliable in compressive conditions. Here,

we explore marginal rumples within a detachment zone framework, using this setting to test whether the

inclusion of plasticity can help stabilize the buckling instability described by MacAyeal and others (2021).

To investigate the formation of marginal rumples, we apply our viscoplastic flow-flexure model to a

transitional region where ice flows into and then beyond a short zone of increased resistance, replicating

detachment zone conditions observed in ice shelves (Thomas, 1973; Matsuoka and others, 2015; De Rydt

and others, 2019). Our simulation domain consists of a 6 km by 6 km section of ice shelf, with an initial

thickness of 300 m and a uniform temperature of 0˝ C. The ice is subject to an inflow velocity of 50 m

a´1 in the longitudinal direction (left-to-right). Lateral (top and bottom) boundaries impose a coefficient

of sidewall friction that smoothly ramps from 0 to 0.05 before returning to 0 over the final 2 km of the

domain, following the approach of Miele and others (2023). The downstream (right) boundary is governed

by the stress condition consistent with a floating cliff. We first spin the model up to steady state before

introducing flexural forcing. The resulting steady-state velocity and thickness profiles can be seen in the

accompanying Jupyter notebook, and similar steady states are documented in Miele and others (2023).

Following spin-up, we initiate flexure by imposing a ´1 m a´1 deflection rate at the terminus midpoint,
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Fig. 4. Temporal and spatial evolution of net deflection and plastic deformation over a 100-year simulation. (A)
Net deflection along the dashed line indicated in (C) as a function of time. (B) Plastic deformation along the
dashed line shown in (D) as a function of time. (C) Spatial distribution of near-terminus net deflection at the end
of the 100-year simulation. (D) Spatial distribution of near-terminus plastic deformation at the end of the 100-year
simulation.

mimicking the downward bending that naturally occurs at the downstream ends of floating shelves (Reeh,

1968). This prescribed deflection rate smoothly decreases to 0 at either sidewall, so that the sides are

no-vertical-slip boundaries.

Figure 4 illustrates the spatial and temporal evolution of ice rumples in our 100-year simulation. With

plasticity included ( 9κc “ 10´6 m´1a´1), the simulation approaches steady state after about 50 years.

However, this steady state remains dynamic, with rumples exhibiting periodic evolution rather than static

equilibrium (see Figure 4A and B, or the accompanying supplemental movie). Specifically, the model pro-

duces periodic, near-margin deformation bands that recur approximately every twelve years. In nature,

the timescale of marginal rifting varies widely, but a twelve-year cycle falls well within the observed range.

Notably, while previous studies have documented marginal rifting as a natural feature of ice shelf detach-

ment zones (Lipovsky, 2020; Miele and others, 2023), the mechanisms governing its periodicity remain

uncertain. Our results suggest that the interaction between horizontal flow and vertical bending stresses

can give rise to emergent periodicity in such zones, offering a new perspective on the process. However, a

complete explanation likely requires more fully incorporating these interactions alongside the detachment
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zone framework described by Miele and others (2023), who attributed rift formation in these regions pri-

marily to flow stresses, as opposed to flexural effects. While our results suggest that flexural stresses may

play a complementary role, a more detailed exploration of their interaction is beyond the scope of this

study.

A critical test of model stability arises when we examine this simulation in the absence of plastic

deformation. If we increase the plasticity threshold to a sufficiently high value such as 9κc “ 1 m´1a´1

— effectively removing plastic deformation from the simulation — the model becomes unstable and fails

before reaching steady state. This confirms that our plasticity treatment plays a stabilizing role.

4.3 Surface meltwater induced ice-shelf flexure and fracture

Our final demonstration explores the interaction between surface hydrology and ice-shelf mechanics, fo-

cusing on the periodic filling and draining of a supraglacial lake. Such lakes, common on ice shelves and

glaciers, can act as hydraulic valves, with their behaviour governed by the interplay between ice flexure,

fracture mechanics, and hydrological processes. This concept aligns with the valve-like mechanism de-

scribed by Sibson (1981), where filling continues until mechanical thresholds trigger drainage, after which

filling resumes once the system re-stabilizes. Observations of supraglacial lake dynamics suggest that

these processes are strongly coupled, with hydrological and mechanical feedbacks driving cyclic behaviour

(LaBarbera and MacAyeal, 2011; Banwell and MacAyeal, 2015).

We model a freshwater melt pond of depth dpx, y, tq and with freshwater density ρfw. We add a

corresponding hydrostatic loading term to the angular momentum balance of Equation 19, which then

becomes

$

’

’

&

’

’

%

´∇ ¨∇ ¨Dp 9κq ´ ρswghab ´ ρfwgd`∇∇η : Hσ “ 0

α 9κ “ ∇∇ 9η.

(22)

We model the interaction between plastic yielding and lake drainage by assuming that accumulated

plastic deformation increases permeability, similar to the dilatant response of rock during faulting (Segall

and Rice, 1995). We adopt a simplified approach in which drainage begins once plastic deformation reaches

a critical threshold, κd. We introduce the normalized plastic deformation parameter

γ “
κp
κd

(23)
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as the ratio of plastic deformation to the drainage threshold. Whenever γ ě 1, drainage occurs at 100

times the prescribed filling rate. Rapid unloading of the shelf then naturally inverts the flexural stress,

which, produces the opposite change in the accumulated plastic deformation κp. Once γ ă 1, drainage

stops and filling resumes, producing a repeating cycle as an emergent property of the system.

As in previous cases, we first ramp up the system to steady state before introducing flexural stresses.

This is done using an ice temperature of 0˝ C, an initial thickness of 100 m, and an 8 km by 8 km domain.

The shelf is prescribed a longitudinal velocity of 1000 m a´1 under uniaxial extension. The steady-state

velocity and thickness fields can be viewed in the accompanying Jupyter notebook. After steady state is

attained, we impose a curved surface depression, 0.5 m deep at the centre, to allow meltwater to accumulate.

To maintain buoyant equilibrium, we include a corresponding basal depression of the necessary size. We

then introduce flexural effects by progressively adding meltwater to the surface depression at a rate of 10

cm per day. We set the plasticity threshold to 9κc “ 10´5m´1a´1, and the critical plastic deformation

threshold for drainage to κd “ 10´6 m´1. These choices are somewhat arbitrary and would benefit from

more detailed conduit modeling (Flekkøy and others, 2002; Lipovsky and Dunham, 2015), but nevertheless

illustrates the basic behavior that we intend to capture in our model.

Results show a fill-drain cycle of approximately ten days (Figure 5) as the normalized plastic deformation

γ periodically reaches the drainage threshold (panel A). Each drainage event generates concentric ring

fractures (panels C and E), which expand outward over time. The expansion of these ring fractures

coincides with the drainage-induced reversal of the flexural field, which produces brief upward deflections

(shown in red in panels B and F). Notably, these ring fractures extend beyond the water-filled region

(panel D), suggesting a possible mechanism for cascading drainage events. This aligns with the hypothesis

of Banwell and others (2013), who proposed that the ring fractures surrounding one draining lake could

weaken adjacent ice, pushing a neighbouring lake past its failure threshold and initiating a chain reaction

of drainage events. This hypothesis is strengthened by the observation of ring fractures on George VI Ice

Shelf (Banwell and others, 2024).

5 CONCLUSIONS

We introduce the 3F model, a viscoplastic extension of the M21 ice shelf model, which integrates flow,

flexure, and fracture processes to enhance our ability to simulate ice-shelf dynamics. By addressing several

limitations of the M21 model –including its reliance on a non-open-source solver, instability in compressive
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Fig. 5. Time evolution and spatial patterns of the modeled supraglacial lake. (A) Plastic deformation (bold, black)
and water level (thin, blue) where they attain their maxima across the domain Ω, which occurs at the deepest point
of the lake. The drainage threshold (γ = 1) is shown by the dotted line. (B–D) Evolution along the centerline (y =
4 km, shown as dashed lines in E and F). (B) Net vertical deflection, showing upward flexure of lake margins after
drainage, also visible as a raised ring in (F). (C) Plastic deformation, highlighting post-drainage concentric rings,
shown in 2D in (E). (D) Water depth. (E) Plastic deformation at the end, showing concentric rings. (F) Ice flexure
at the end of the simulation, showing a raised rim.
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regimes, and the absence of fracture mechanics– the 3F framework offers an accessible alternative. The

model is implemented using two open-source Python libraries, Firedrake (Rathgeber and others, 2016)

and icepack (Shapero and others, 2021), to ensure reproducibility and accessibility within the research

community.

To our knowledge, the 3F model is the first numerical ice shelf flow model that has attempted to

incorporate distributed plasticity into the rheology of ice. Bassis and Walker (2012) incorporated plasticity

into their description of ice rheology, but only accounted for the effect at the ice front. From our results,

we conclude that the incorporation of plastic deformations results in a numerically stable and well-posed

description of ice shelf flow in the presence of coupled flexural motions.

The 3F model is effective in capturing diverse ice-shelf behaviors, including differential ablation patterns

(MacAyeal and others, 2021; Macdonald and others, 2019), periodic marginal rumples (Miele and others,

2023), and supraglacial lake-driven flexure and fracture (Banwell and MacAyeal, 2015). For example,

simulations of marginal rumples illustrate how the viscoplastic framework aligns with observed ice-shelf

deformation dynamics (Matsuoka and others, 2015; De Rydt and others, 2019). Similarly, lake-filling and

drainage scenarios highlight the role of dynamic feedbacks between surface hydrology and ice mechanics,

emphasizing the importance of incorporating meltwater interactions (Banwell and others, 2024; Banwell

and MacAyeal, 2015; Kingslake and others, 2017).

Future development of the model could incorporate additional hydrological complexity, such as rep-

resenting multiple meltwater lakes to simulate cascading drainage events. This would allow the model

to better capture chain-reaction processes that have been linked to widespread ice-shelf destabilization

(Banwell and others, 2013; Robel and Banwell, 2019). Another important step will be to couple the 3F

framework with established surface hydrology models, such as MONARCHS (Buzzard and others, 2024), to

further explore interactions between evolving meltwater drainage systems, surface topography, and flexural

and structural ice-shelf responses. Incorporating elastic stresses, as the original M21 model did, would

allow the investigation of shorter timescale processes (Lipovsky, 2018; Olinger and others, 2022, 2024).

The upscaling of the 3F model into global frameworks, such as the Ice Sheet System Model (ISSM)

(Larour and others, 2012), represents a logical next step. This coupling would facilitate simulations of

real-world ice shelves, allowing for more detailed representations of complex geometries, boundary condi-

tions, and comparisons with observational data. Such advancements would enable more comprehensive

assessments of ice-shelf stability and their contributions to sea-level rise under different climate scenarios.

https://doi.org/10.1017/jog.2025.10089 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10089


Bézu and others: A coupled flow-flexure-fracture SSA model 20

In summary, the 3F model addresses critical limitations of previous frameworks and provides a founda-

tion for future exploration of meltwater-driven instabilities and large-scale ice-sheet interactions. Incorpo-

rating multiple meltwater lakes, hydrological feedbacks, and coupling with large-scale models will further

enhance its capabilities to simulate complex processes influencing ice-shelf stability.

DATA AVAILABILITY

The Jupyter notebooks used to run all simulations and create figures are available at https://github.

com/chrismiele/weird_flex/tree/main/manuscript_notebooks.

SUPPLEMENTARY MATERIAL

Animated versions of Figures 3, 4, and 5 can be found at https://github.com/chrismiele/weird_flex/

tree/main/manuscript_notebooks.
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Appendix A GLOSSARY OF SYMBOLS

Table 1. Glossary of symbols used in this paper, grouped by category, with definitions, units, and references to
the equation or in-text location where they first appear.

Symbol Meaning Units Equation

Coordinates

x, y in-plane coordinates m intro Sec. 2

z vertical coordinate (waterline at z “ 0) m intro Sec. 2

ζ vertical coordinate (midpoint at ζ “ 0) m intro Sec. 2

t time a intro Sec. 2

Scalars

H thickness m intro Sec. 2

s surface elevation in z m intro Sec. 2

b basal elevation in z m intro Sec. 2

η vertical deflection m intro Sec. 2

9η vertical deflection rate m a´1 intro Sec. 2

szz vertical normal deviatoric stress Pa Eqn. 3

ν effective ice viscosity Pa a intro Sec. 2

p pressure Pa Eqn. 3

ρi ice density kg m´3 Eqn. 3

ρsw saltwater density kg m´3 Eqn. 6

ρfw freshwater density kg m´3 Eqn. 22
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Symbol Meaning Units Appearance

g gravitational constant N kg´1 Eqn. 3

hab height above buoyancy m Eqn. 14

d meltwater pond depth m Eqn. 22

κp measure of plastic deformation m´1 Eqn. 21

9κc threshold for plastic failure m´1 a´1 Eqn. 16

κd plastic threshold for lake drainage m´1 Eqn. 23

γ plastic deformation ratio, κp

κd
1 Eqn. 23

α scaling factor on 9κ 1 Eqn. 16

Vectors

~u in-plane flow velocity m a´1 intro Sec. 2

Tensors

I two-by-two identity 1 Eqn. 6

σ in-plane net stress Pa Eqn. 14

τ in-plane deviatoric stress Pa Eqn. 1

9ε in-plane strain rate a´1 Eqn. 1

9κ curvature rate m´1 a´1 Eqn. 1

M bending moment N Eqn. 10

κp accumulated plastic curvature m´1 Eqn. 20

Dp 9κq bending stiffness N Eqn. 12

fp 9κq plastic adjustment to 9κ m´1 a´1 Eqn. 15

Operators

a, ~a, A depth-average of scalar, vector, or tensor arg intro Sec. 2

trpAq trace of tensor arg Eqn. 4

∇ ¨ ~a, ∇ ¨A divergence of vector or tensor arg ¨ m´1 Eqn. 6

∇a, ∇~a gradient of scalar or vector arg ¨ m´1 intro Sec. 2

A : B inner (double-dot) product of two tensors arg 1 ¨ arg 2 Eqn. 14

AT transpose of tensor arg Eqn. 7

9a, 9~a, 9A B
Bt of scalar, vector, or tensor arg ¨ a´1 intro Sec. 2
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Symbol Meaning Units Appearance

JIIpAq second invariant of tensor arg Eqn. 16

Appendix B COMPUTATIONAL FORMULATION AND NUMERICAL

IMPLEMENTATION

In this appendix, we outline the computational framework used to implement the governing equations.

First, we present the numerical solution strategy as a structured four-step progression. Next, we derive

the variational form of the fundamental equations governing viscoplastic deformation, which is the form

solved by Firedrake. Finally, we refine the definition of the yield function introduced in the main text,

incorporating modifications necessary for computational stability.

B.1 Iterative solution procedure

The time integration of the 3F model is implemented using operator splitting, where updates to velocity,

surface and basal elevations, flexure, and material transport are performed sequentially. The simulation

framework leverages two key computational tools: the Firedrake finite element library and the icepack

package. Firedrake provides the numerical framework for solving the flow-flexure equations from their

variational formulations, while icepack is used for solving flow equations and for advecting material prop-

erties such as plastic deformation, curvature, and flexural displacement. Below, we describe the numerical

methodology in four steps.

The superscript rts denotes the current timestep in the simulation, while rt ´ 1s represents the values

from the previous timestep. The full variational forms of the flow-flexure problem are provided in the next

subsection of this appendix.

B.1.1 Step 1: Solve the SSA

The SSA is solved using Newton’s method. Icepack formulates the SSA problem as a variational principle,

minimizing an action functional that incorporates gravitational driving forces, membrane stresses, and

boundary conditions at the ice shelf’s terminus. By default, icepack’s action functionals for the ice shelf

problem assume buoyant equilibrium, in which b “ ´ ρi
ρw
H and s “

´

1´ ρi
ρw
H
¯

, reducing Equation 7 to

https://doi.org/10.1017/jog.2025.10089 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10089


Bézu and others: A coupled flow-flexure-fracture SSA model 28

$

’

’

&

’

’

%

∇ ¨ 2νH r 9ε` trp 9εqIs “ ρigH∇s

9ε “ 1
2
`

∇`∇T
˘

~u.

(B1)

In order to solve the more general form of Equation 7, we modify icepack’s gravity and terminus

modules so that the driving stress and terminus boundary condition are consistent with Equations 44 and 45

from MacAyeal and others (2021). The specifics of these modifications are presented in the accompanying

Jupyter notebooks.

With these modifications, the velocity field, ~urts, is computed by solving the diagnostic SSA equation:

$

’

’

&

’

’

%

∇ ¨ 2νH rt´1s
”

9εrts ` tr
´

9εrts
¯

I
ı

“ ρigH
rt´1s∇H rt´1s ´ ρswgb

rt´1s∇brt´1s

9εrts “ 1
2
`

∇`∇T
˘

~urts,

(B2)

and the evolution of the upper and lower surfaces, srts and brts, is computed by separately solving Equations

8 and 9. This step uses icepack’s diagnostic-prognostic coupling, where each prognostic surface evolution

is computed using implicit time-stepping schemes to maintain numerical stability.

B.1.2 Step 2: Update flow-related variables

With the updated velocity and surface and basal elevation fields, both strain rate 9εrts and thickness H rts are

calculable directly (with any surface mass balance also included in this step, if applicable). This permits

the calculation of both the depth-averaged deviatoric stress τ rts (Equation 2) and pressure prts (Equation

5), which together give the depth-aveged net stress tensor, σrts. This stress field bridges the flow and

flexure components of the 3F model by serving as input for computing the flexural response computation

in the next step.

B.1.3 Step 3: Solve the flexure problem

Before solving the viscoplastic flexure problem of Equation 19, we first introduce some further approxima-

tions to reduce the number of unknowns. For example, the present accumulated deflection, ηrts, represents

an unknown in addition to 9ηrts. However, we must have that ηrts is approximately

ηrts “ ηrt´1s ` 9ηrts∆t. (B3)
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Likewise, the present height above buoyancy must be approximately

h
rts
ab “ h

rt´1s
ab ` 9ηrts∆t. (B4)

By inserting these approximations directly into the coupled system of Equation 19, we end up with a

system in only two unknowns, solving

$

’

’

&

’

’

%

´∇ ¨∇ ¨D
´

9κrts
¯

´ ρswg
´

h
rt´1s
ab ` 9ηrts∆t

¯

`
`

∇∇ηrt´1s `∇∇ 9ηrts∆t
˘

: H rtsσrts “ 0

α 9κrts “ ∇∇ 9ηrts
(B5)

for 9ηrts and 9κrts. This system is solved using the Firedrake library. The equations are implemented in the

weak form presented in the next subsection. The upper and lower surface elevations are now updated once

more, with each being offset equally by a distance of 9ηrts∆t (leaving the thickness, H rts, unchanged).

B.1.4 Step 4: Update and advect flexure-related variables

Material properties such as plastic deformation, curvature, and net deflection are transported with the flow

field. Scalar values, such as net deflection η, are first updated in place via Equation B3, and then advected

by solving

B

Bt
ηrts ` ~urts ¨∇ηrts “ 0. (B6)

Icepack solves equations of this form by applying an implicit Lax-Wendroff scheme, balancing computa-

tional efficiency with the need to resolve gradients in the advected fields, minimizing numerical diffusion.

Tensor quantities, such as the accumulated plastic curvature, κp, are advected componentwise using the

same technique.

After completing the advection of all relevant fields, the updated values serve as input for the subsequent

iteration, beginning with Step 1 for the next timestep.

B.2 Variational form of Equation B5

Let 9n “ 9npx, yq and 9k “ 9kpx, yq be arbitrary scalar and tensor test functions defined on the domain Ω.

Excluding boundary terms for simplicity, the variational form of the system is given by
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’

’
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’

%

ş

Ω
∇ ¨D

´

9κrts
¯

¨∇ 9n´
ş

Ω
9nρswg 9ηrts∆t´

ş

Ω
∇ 9ηrts∆t ¨

`

∇ ¨ 9nH rtsσrts
˘

“

“
ş

Ω
9nρswgh

rt´1s
ab `

ş

Ω
∇ηrt´1s ¨

`

∇ ¨ 9nH rtsσrts
˘

ş

Ω
α 9κrts : 9k`

ş

Ω
∇ 9ηrts ¨∇ ¨ 9k “ 0,

(B7)

where all terms in unknown quantities ( 9κrts and 9ηrts) are grouped on the left, with known terms on the

right. Each quantity is interpolated to continuous Galerkin spaces of degree 1, since our treatment of the

flow-flexure problem requires, at most, second-order spatial derivatives of all variables.

B.3 Refining the yield function

Because Firedrake sometimes struggles with solution convergence in the presence of sharp discontinuities,

the piecewise definition of α in Equation 16 can introduce numerical difficulties. To mitigate this, we

introduce a smoothing parameter, β, where 0 ď β ď 1, which effectively “softens” the transition between

the two regimes of the yield function. Rather than enforcing an exact threshold at JIIp 9κq, we modify the

definition of α to

α “

$

’

’

&

’

’

%

1 JIIp 9κq ď 9κc

9κc`βrJIIp 9κq´ 9κcs

JIIp 9κq JIIp 9κq ą 9κc.

(B8)

This formulation permits a more gradual transition from the viscous to plastic regime, with the param-

eter β controlling the sharpness of the transition. When β “ 0, we recover the original piecewise definition

of Equation 16, where plasticity is strictly enforced beyond 9κc. In contrast, setting β “ 1 removes plastic-

ity entirely, keeping the system fully viscous. Intermediate values produce a smooth transition, mitigating

solver instabilities associated with abrupt changes in α. A moderate choice, such as β “ 0.5, provides a

balance between numerical stability and adherence to idealized plasticity constraint.

Appendix C INCORPORATING PLASTICITY INTO THE FLOW STRESS

Analogously to our inclusion of plasticity in the flexural term, we additionally limit the strain rate from

flow so that
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9ε “
1
2
`

∇`∇T
˘

~u´ gp 9εq, (C1)

with g the plastic yield function. As with f in Equation 15, we define g in terms of the second invariant of

the relevant tensor. With 9εc the critical strain rate for initiating plasticity, let α1 denote the depth-invariant

scalar

α1 “

$

’

’

&

’

’

%

1 JIIp 9εq ď 9εc

9εc
JIIp 9εq JIIp 9εq ą 9εc,

(C2)

and define the yield function g such that

gp 9εq “ pα1 ´ 1q 9ε. (C3)

Then

α1 9ε “
1
2
`

∇`∇T
˘

~u, (C4)

and the horizontal momentum balance can now be expressed via the system

$

’

’

&

’

’

%

∇ ¨ 2νH r 9ε` trp 9εqIs “ ρigH∇H ´ ρswgb∇b

α1 9ε “ 1
2
`

∇`∇T
˘

~u.

(C5)
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