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Abstract
Sums of the ratings that judges assign to wines are a near universal method of determin-
ing the winners and losers of wine competitions. Sums are easy to calculate and easy to
communicate, but seven flaws make sums of ratings a perilous guide to relative quality
or preference. Stars & Bars combinatorics show that the same sum can be the result of
billions of compositions of ratings and that those compositions, for the same sum, can
contain dispersion that ranges from universal consensus to apparent randomness to polar
disagreement. Order preference models can address both order and dispersion, and an
example using a Plackett–Luce model yields maximum likelihood estimates of top-choice
probabilities that are a defensible guide to relative quality or preference.
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I. Introduction
International Organization of Wine and Vine (OIV) rules prescribe that the relative
merits of wines entered in a competition are determined by the sums of the ratings that
judges assign to the wines. That same procedure was employed in the 1976 Judgment
of Paris, and it continues to be employed in hundreds of wine competitions around the
world. A difficulty with sums of ratings is that a deep literature shows that wine ratings
are stochastic, sample sizes are small, the range effect biases judge influence, converting
scores to ranks ignores information, some judges are more reliable than others, judges
may not apply uniform standards, and a sum is not an aggregate utility. Those find-
ings make the sums or ratings unreliable guides to relative merit and consensus among
judges.

While wine ratings are not merely random, they are stochastic and literature con-
cerning that nature of ratings and sums of ratings is summarized in Section II.
Application of a combinatoric binomial formula known as Stars & Bars in Section III
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2 Jeff Bodington

shows that many billions of combinations of ratings have the same sum and that
uncertain ratings can have many different sums. Section IV shows that dispersion
among the ratings that compose a sum must be considered but is also difficult to
consider. That finding supports, in Section V, application of a Plackett–Luce order
preference model that considers dispersion and that yields maximum likelihood esti-
mates of top-choice probabilities that are a defensible guide to relative quality or
preference.

Ratings assigned by judges to white wines at the 1976 Judgement of Paris reported
in De Nicoló (2025, p. 23) are employed as an example. That data and MATLAB code
for the figures and tables in this article are available on request.

II. Sum conundrums
OIV (2021, p. 6) prescribes that at least five judges shall each assign a score to a
wine that is the sum of characteristic-specific sub-scores (p. 13), and the overall rat-
ing for each wine is the average of the judges’ scores (p. 14). An average is of course
merely a ratio of a sum. The overall ratings at the Judgment of Paris were sums of nine
judges’ scores, the overall ratings assigned in the California State Fair Commercial
Wine Competition (CSF) are sums of three to five judges’ scores, Kopsacheilis et al.
(Kopsacheilis et al., 2024, p. 291) reported on averages of crowd-sourced ratings, and
there are hundreds of other national, state or province, county or prefecture, and publi-
cation wine assessments that employ sums of ratings to express the absolute or relative
merits of wines.

Sums of observed ratings are easy to calculate and easy to communicate, but they
leave several issues unresolved as follows:

(1) Ratings are stochastic. Although rating assignments are not merely random, the
deep literature surveyed in J. Bodington (2022) shows that ratings are uncertain and
affected by physiochemical, sensory, and cognitive biases. A rating observed is one
draw from a latent distribution that is wine- and judge-specific. If ratings are stochastic
then sums of ratings are also stochastic.

(2) Sample sizes are small. The Paris and CSF examples above involved three to nine
judges and blind replicates within flights are extremely rare so the sample size per-
judge-per-wine is usually one. The Law of Large Numbers (LLN) states that the sample
mean of independent and identically distributed (IID) random variables tends toward
the expectation of those IID variables as the size of the sample tends toward infinity.
Judges’ ratings may be independent (I) but they are heteroscedastic and not identically
distributed (not ID). Thus, a small-sample sum of judges’ ratings may or may not be
close to the actual expectation of the sum.

(3) The range effect biases influence. Ashenfelter and Quandt (1999) and others have
pointed out that a judge who assigns scores within a broad range has more effect
on relative sums than a judge who assigns ratings within a narrow range. While
differences in range may reflect differences in the intensity of judges’ opinions that
range effect also biases the relative qualities or preferences that sums imply about
wines.
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(4) Ranks ignore differential intensity. To address the range effect in #3 above,
Ashenfelter and Quandt (1999) and others suggest, when scores are assigned, trans-
forming those scores into ranks for the purpose of calculating relative preference.
Tinsely & Weiss (1975) counsel against converting scores to ranks because only order
is preserved and information about differential intensity of preference is lost. J.C.
Bodington (2015) examined the skewness in scores assigned to wines and concluded
that differential intervals between scores do not appear to be random. Considering
that result, transforming scores to ranks does appear to ignore information about the
relative intensity of judges’ rating assignments.

(5) Some judges are more consistent than others. J. Bodington (2022), cited above,
summarized results published by those who have employed blind replicates to show
that some judges are more reliable than others. He showed that the cross-correlations
between the scores that judges assign to the same wines are on average positive but
that about 10% of judges assign scores that are indistinguishable from random assign-
ments. Kahneman et al. (Kahneman et al., 2021, p. 80–86, 215–258) describe variance
in wine ratings and other areas of human judgment including physicians’ diagnoses,
radiologists’ assessments of x-rays, forensic experts’ fingerprint identifications, and
judges’ sentencings of criminals. Those findings imply a corollary to the famous test
advanced by mathematician Alan Turing. Turing (1950) proposed that a computer can
be described as an intelligentmachine if, in a typewritten conversation, a computer can
imitate a human so well that the computer and human responses are indistinguishable.
A corollary to that test suggested here is that if the ratings a wine judge assigns are
indistinguishable from those assigned by a random number generator, then that judge
can be described as a random number generator. There is no justification for giving a
random number generator any influence on wine competition results.

A simple sumof ratings gives equal weight to every judge regardless of differences in
judges’ consistencies. Cochran (1937) showed that a simple sum of independently dis-
tributed random variables with different variances is not aminimum variance estimate
of the sum. He derived what is now known as the inverse variance rule to calculate a
mean or sum that is a minimum variance estimate. However, in spite of differences in
judges’ consistencies, judges do sometimes reach unanimous conclusions.That implies
that differences in consistency are not constant. At a hypothetical convergence, all
judges could agree that a blind taste of 100% vinegar would rate lower than all other
wines. Similarly, all judges could rate one wine in a flight highest if all the other wines
are 100% vinegar.That notion is posed here as the vinegar axiom; even low-skill judges
can identify a very flawed wine and converge in agreement with high-skill judges.

(6) The definition of and adherence to rating standards is opaque. See for example
Circle of Wine Writers (2025). In discussion among judges after a tasting, judges find
that one judge prioritized typicity, another prioritized quality, and yet another prior-
itized “I liked it.” Several judges shaped their ratings according to their assumptions
about a wine’s price point. Several judges also explained that they assign high ratings
due to the commercial value of awards and thus the long-term viability of a wine com-
petition. Some judges assign a score to one wine according to a general zone of quality
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and then score the remaining wines “around” that anchor. All of those are examples
of the cognitive biases. Judges may be expressing their findings using a common scale
as instructed, but their objectives and the bases for their findings may vary. A sum of
judges’ ratings may thus be a sum of different objectives and adherence to instructions.

(7) A sum is not an aggregate utility. Calculating sums of judges’ ratings may violate
precepts of economic utility theory. Barnett (2003) asserts that decision-making agents
make judgments about relative preferences that are unobservable priors and that rat-
ings are post hoc expressions of those preferences. He asserts that any implication of
continuity between ratings, and the relative magnitudes of ratings, is an artifact of
assumptions about a rating system rather than information about underlying utility
and preferences. For example, Barnett would assert that a wine assigned a score of
10 can’t be said to have twice the utility of a wine assigned a score of 5. He further
asserts that such ratings cannot be employed to quantify the differences between judges’
relative preferences. Marks (2019) examines wine ratings as psychophysical scaling
and draws similar conclusions about the perils of comparing one person’s ratings to
another’s. Pursuing the meaning of a sum of ratings in the context of utility theory is
beyond the scope of this article. However, that issue is addressed here by affirming that
ratings are reference numbers for ordered categories, and they are not interpreted here
as cardinal measures of utility.

Calculating the arithmetic sums of judges’ ratings on wines is common, easy to do,
and easy communicate. But it’s flawed as a method of assessing aggregate relative qual-
ity or preference. At least the seven factors discussed above create variance and cloud
the interpretation of relative sums. If sums are to be considered, then the Turing corol-
lary and the vinegar axiom imply that consensus about those sums ought to also be
considered.

III. Sum Stars & Bars
Suppose each of three judges (each judge j and J = 3) assessed each of four
wines (each wine i and W = 4) and assigned a rating of 1 through 5 (xij ∈
(xmin = 1, … , xmax = 5)) to each wine. The set of ratings that the judges assign to
a wine, for example, could be {1,1,3}. The total number of possible ordered sets is

(xmax − xmin + 1)J = (5)3 = 125. The range of possible sums of ratings (Si =
J

∑
j=1

xij)

is from the number of judges up to the number of judges times the highest possible
rating (Si ∈ {J, … , J * xmax}). The only way to obtain the lowest or highest sum is for
all judges to assign the same lowest or highest rating. But in between, the sums of vari-
ous sets of ratings can yield the same sum. Calculating the number of different sets that
yield a particular sum, and thus the distribution of potential sums, is an application of
the binomial formula known as “Stars & Bars.” See for example Earnest (2019).

Suppose we want to know how many combinations of ratings yield the sum Si = 4.
That sum can be symbolized as four stars (****). Inserting two bars among the stars
divides them into three combinations, one for each judge, that yield Si = 4 (*|*|**
and *|**|* and **|*|*). Adopting terminology from Charalambides (1982, p. 133), the
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collection of ratings represented by one instance of Stars & Bars is called a composi-
tion of Si with J parts. Those three sets of Stars & Bars show that the compositions of
Si = 4 are {1,1,2}, {1,2,1} and {2,1,1}. Stars & Bars expresses a counting problem that
can be solved using the binomial formula for “n choose k” in Equation (1). In bino-
mial coefficient notation, a step toward calculating the number of “n multi choose k”
compositions of Si with J parts (CSi

J ) appears in Equation (2).

( n
k

) = n!
k! ⋅ (n − k!) | n ≥ k (1)

CSi
J ≤ ( Si + J − 1

J − 1
) (2)

The inequality in Equation (2) indicates that some parts of some compositions
may be inadmissible. For example, one of the compositions of Si = 8 is (*|*|******).
Note that the last part of that composition contains six stars, but the maximum
possible rating (upper bound b) is 5. Applying the inclusion exclusion theorem
to exclude inadmissible parts yields the equality in Equation (3). See for example
Charalambides (1982, p. 113, 136, 143) and Algorithms for Competitive Programming
(2024). MATLAB code for Equations (2) and (3), and a check using a brute force
enumeration of all possible compositions, is available on request. The usefulness of
Equation (3) is that it provides computationally efficient solutions to large-number
problems that require unrealistic computermemory and time to solve using brute force
enumeration.

CSi|b
J =

Si
b

∑
z=0

(−1)z ( J
z

) ( Si + J − 1 − z (b)
J − 1

) (3)

Continuing the example above in which three judges assign a rating of 1 through 5
to each wine, J = 3 and b = 5. A sum of four is produced by three compositions, so if
Si = 4 then CSi|b

J = 3.
Using Equation (3), the exact distribution of the potential sums of ratings for the

white wines assessed by nine judges using a 0–20 rating scale at the 1976 Judgment of
Paris appears in Figure 1. The lowest possible sum is J (xmin) = 9 (0) = 0, the highest
possible sum is J (xmax) = 9 (20) = 180, and the total number of possible ordered sets
for each wine is (xmax − xmin + 1)J = (21)9 = 794 billion.1 The computational benefit
of Equation (3) is avoiding the need to enumerate and evaluate all 794 billion possible
compositions of ratings. The observed sums of ratings for each of the Judgment’s 10
white wines are also indicated in Figure 1. The sums for the top three wines are within
a range of 15 points, but each sum is the result of several to nearly 2 billion possible

1Half points were allowed in the Judgment of Paris. For simplicity, half points are omitted in this calcula-
tion of potential compositions. Including half-points increases the number of potential compositions from
billions to trillions.
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Figure 1. Are the Paris results a random illusion of consensus?

compositions of judges’ scores. The wines with sums below the top three, except for
lowest-sumDavid Bruce, are each the result of over 6–11 billion possible compositions.
Considering the evidence that there is uncertainty about the scores that judges assign,
Figure 1 does not inspire confidence that the observed sums indicate any more than
a random illusion of consensus about what wines are better than others. What those
observed scores and sums do indicate about consensus is addressed in the next section.

Before moving forward to address consensus, the results above concerned scores,
but some rating systems involve ranks rather than scores. The scores considered above
are ordered ratings sampled with replacement that are in theory tied to some external
standard of quality. For example, every wine in a flight could earn a Gold rating if every
wine met the Gold standard. In contrast, ranks are ordered ratings sampled without
replacement that are in theory tied only to the relative merit of wines within a set.
Ranks and points against or Borda scores can be evaluated using different parameters
in Equation (3) and the results look like those in Figure 1.

IV. Sum scatter
Equation (3) and Figure 1 show that, in some cases, a sum can be the result of over bil-
lions of compositions and those compositions express differences in consensus among
the judges. At maximum or perfect consensus, every judge assigns the same rating. For
no consensus at all, judges’ ratings are evenly distributed across the range of potential
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ratings. Both of those constellations of Stars & Bars, and many in between, can have
the same sum. A measure of consensus needs to be considered.

A. Indications of preference order
Cross-correlations and Kendall’s coefficient of concordance provide indications of the
potential for consensus about a preference order among wines in a flight. See also
correlations among judges and consumers in Kopsacheilis et al. (Kopsacheilis et al.,
2024, p. 292).

Arranging the ratings assigned by judges to the flight of white wines in the 1976
Judgment in amatrix (JxW) and then calculating the cross-correlations between judges
yields the results in Table 1. Ignoring the self-correlations of 1.00, only 4 of the correla-
tions are negative, few are near zero, and 21 of the 55 cross-correlations are greater than
0.5. Those results indicate the potential for some consensus among judges regarding a
preference order.2

In addition, the cross-correlations in Table 1 indicate what judges, if any, don’t
appear to contribute to any potential for consensus. Judges #4 and #8, for example, have
themost negative and lowest correlations.That findingmakes sense.Ms. Gallagher and
Mr. Spurier were the organizers and never planned to have their scores included with
presumably more qualified judges’ ratings in the official results. That finding is also an
example of considering the Turing corollary presented in Section II; judges whose rat-
ings are indistinguishable from random assignments, or uncorrelated with any other
judge, should not influence determination of a non-random preference order.

Kendall (1962) proposed to measure agreement among all raters on all objects in a
matrix with a single non-parametric coefficient of concordance known as Kendall’s W.
That statistic is calculated using ranked data and it has a range of [0, 1] where W = 0
means no consensus on a rank order andW = 1 means every judge assigned the same
ranks to the same wines. Quandt (2006) employed Kendall’s W to evaluate concor-
dance among participants in the Liquid Assets Wine Group at Princeton University (p.
15–16). Malkiel (2024) employed W to update results for Liquid Assets and he found
little concordance among the participants. Tinsely & Weiss (1975, p. 366) counseled
against Kendall’s W when judges assign scores rather than ranks because conversion
of scores to ranks erases information about ratings other than their serial positions.
Subject to that qualification and after converting the 1976 Judgment scores to ranks,
W = 0.43. Like the cross-correlations in Table 1, that result indicates some but not
strong consensus.

B. Dispersion in preference for a wine
While cross-correlations and Kendall’s W express the potential for a preference order,
neither expresses what that order may be. And when sums of ratings are used to
determine that order, Section III showed that dispersion must also be considered.
Equation (3) and Figure 1 showed that potentially billions of compositions, with at

2Taber (2005) reported that the judges discussed the wines while scoring. Some ratings assignments may
thus not be independent, and that discussion may contribute to the resulting positive correlations.
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Table 1. Cross-correlations for pairs of judges

Judge 1 2 3 4 5 6 7 8 9 10 11

1 P. Bréjoux 1.00

2 A. Villaine 0.22 1.00

3 M. Dovaz 0.65 −0.07 1.00

4 P. Gallagher 0.70 −0.03 0.48 1.00

5 O. Khan 0.61 0.79 0.19 0.10 1.00

6 C. Millot 0.31 0.83 0.15 0.18 0.63 1.00

7 R. Oliver 0.55 0.85 0.14 0.15 0.93 0.70 1.00

8 S. Spurier 0.54 −0.07 0.18 0.44 0.09 −0.21 0.17 1.00

9 P. Tari 0.50 0.32 0.68 0.33 0.33 0.53 0.52 0.20 1.00

10 V. Vannequé 0.81 0.45 0.28 0.62 0.67 0.46 0.62 0.51 0.26 1.00

11 J. Vernat 0.56 0.85 0.16 0.17 0.94 0.71 1.00 0.16 0.51 0.64 1.00
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leastmillions of different dispersions, can have the same sum.While proposing a utility
function of sumanddispersion,much like a utility function of investment rate of return
and risk, is beyond the scope of this article, at least dispersion ought to be considered
and measured.

Variance in the ratings that judges assign is a commonmeasure of dispersion.Draws
from a bounded set, including wine ratings, have a bounded variance. Considering
the sample variance (s2) of the small samples that are typical of wine competitions,
the maximum variance (s2max) occurs at maximum disagreement when even numbers
of judges cluster their assignments at only the lowest and highest ratings.3 Tastle and
Weirman (2007) proposed an alternative to variance and employed Shannon’s notion
of information entropy to express the entropy of dispersion among ordinal ratings
such as the Likert scale. Their measure of consensus (Cnsi) is a cross-entropy func-
tion of the probability distribution of observed ratings, the absolute deviation from the
mean of observed ratings, and the range of possible ratings.4 Elzinga et al. (Elzinga
et al., 2011, p. 2547) considered Tastle & Wierman’s Cnsi and they also proposed a
variance-based index, but they used large-sample population variance rather than sam-
ple variance. They express preference for Ci over Cnsi because it is easier to calculate
and interpret. Following Jaynes (1957), amaximum information entropymethodology
pursues the maximum entropy that is consistent with observed data and, if any, logical
axioms.On that basis, consensus in a small sample should havemore entropy than con-
sensus in a large sample. That condition argues in favor of the sample-variance-based
statistic Ci above.

Now we can answer the question posed in Figure 1: Are the Paris results a random
illusion of consensus? Results for the sums of ratings Si and corresponding indexes
of consensus Ci appear in Figure 2. s2max = 0.63 So none of the sums appear to be
nearly random. Chateau Montelena had the highest sum of ratings, but the second-
lowest consensus andMeursault Charmes had the second-highest sum and the highest
consensus.

Although considering the consensus about sums in Figure 2 does address, in part,
the seven conundrums discussed in Section II, wine competition officials must still
weigh sums of scores versus dispersion among scores to decide winners and losers, to
decide on a rank order of quality or preference.

V. Order preference model solution
Dispersion within the sets of ordered ratings that judges assign to objects can
be addressed using a probabilistic approach to estimate the most likely consen-
sus ordering. Probabilistic order preference models have been applied to taste tests
of pudding (Davidson, 1970), snap beans (Plackett, 1975), crackers (Critchlow,
1980), salad (Critchlow and Fligner, 1991), soft drinks (Bockenholt, 1992), animal
feed (Marden, 1995), cheese snacks (Vigneau et al., 1999), an unidentified food

3 s2max = n
n−1

( rmax−rmin
2

)
2

4Cnsi = 1 +
J

∑
j=1

𝜌j ⋅ log2 (1 −
∣xj−𝜇∣

rmax−rmin
)
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Figure 2. Was Chateau Montelena better than Meursault Charmes?

(Cleaver and Wedel, 2001), salad dressings (Theusen, 2007), sushi (Chen, 2014), sweet
potato varieties (Moyo et al., 2021), and recently to wine (J.C. Bodington, 2015).

Texts by Marden (1995), and Alvo & Yu (2014) review various methods of evaluat-
ing ordered data. Both texts, and many other publications, present the Plackett–Luce
model and that model was employed to evaluate the taste test results cited above by
Chen,Marden, and Bodington.The general form of Plackett–Luce appears in Equation
(6) below. In Equation (6a), the probability that a judge assigns a top-choice or most-
preferred rating to a wine (𝜐i) is employed to calculate the probability (𝜌j) of a judge’s
rating order vector (xoj ). The machinery in Equation (6b) can be visualized as calcu-
lating the probability of one branch on a probability tree. The log likelihood (ℒ) of
the observed preference orders assigned by all the judges appears in (6b). Maximizing
likelihood ℒ using the probabilities ̂𝜐i then yields the order vector probabilities 𝜌i that
indicate the most likely aggregate preference order for the wines. A likelihood ratio
statistic (LRS) can then be employed to test the null hypothesis that the probabili-
ties 𝜌i are a random result.5 MATLAB code for Equation (6), available on request, was
checked by replicating the example in Marden (1995, p. 216).

5LRS = −2 (ℒnull hypothesis - ℒsolution) has a Chi Square distribution. The degrees of freedom (df) are
the number of additional parameters in the ℒsolution model. For ℒnull hypothesis all 𝜌i = 1/W . See Marden
(1995, p. 143).
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Table 2. Preference-order results, Paris 1976 white wines

Plackett–Luce, Eq. (6)b

Wine name
Wine
#

Sums of
scoresa

Implied
rank

Standard
deviation

Top-choice
probability

Implied rank
diff from sums)

Chateau
Montelena

1 130.5 1 5 0.24 2 (↓1)

Meursault
Charmes

2 130.5c 2 1.3 0.27 1 (↑1)

Chalone
Vineyard

3 121 3 2.2 0.14 3

Spring Mountain
Vineyard

4 104 4 1.9 0.10 4

Clos des M.
Beaune

5 101 5 4.8 0.06 6 (↓1)

Freemark Abbey
Winery

6 100 6 3.2 0.07 5 (↑1)

Batard-
Montrachet

7 94 7 2.4 0.05 7

Piligny-
Montrachet

8 88 8 2.5 0.04 8

Veedercrest
Vineyards

9 88 9 3.7 0.03 9

David Bruce 10 42 10 3 0.00 10

a) Scores taken from and results match De Nicoló (2023, p. 23).
b) LRS: 70.3 with 9 df
c) This sum of scores represents the total reported in Taber (2005). The same sum has also been reported in other sources
as 126.5.

𝜌j ∣ xoj =
W

∏
k=1

( ̂𝜐i

∑W
k=i ( ̂𝜐k)

)∣ xokj (6a)

ℒ (xo) =
J

∑
j=1

log2 (𝜌j) (6b)

Results for an application of the Plackett–Luce model to the Paris 1976 white wines
appear in Table 2. The sums of scores shown in Table 2 below imply the preference
order from left to right. However, the top-choice probabilities for the Plackett–Luce
results imply a different order. Those results consider differences in dispersion that
sums ignore and they imply a switch in the orders of wines #1 and #2 and then also
in wines #5 and #6. The Plackett–Luce results also break the tie in sums for wines
#8 and #9. Plackett–Luce solves the problem that top-sum Chateau Montelena had
the highest sum of scores, but the highest dispersion and Meursault Charmes had the
second-highest sum but the lowest dispersion.

Plackett–Luce and other preference-order models are an improvement over sim-
ple sums of ratings that ignore dispersion, but they are more difficult to employ
than simple sums and they do not entirely resolve all the issues enumerated in
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Section II. Preference-order models require optimization software and potentially
complex adjustments are needed to reflect stochastic ratings, measure statistical sig-
nificance for small sample sizes, and to express that some judges are more reliable than
others.

VI. Conclusions
Sums of ratings are widely employed, easy to calculate, and easy to communicate. But
(1) ratings are stochastic, (2) sample sizes are small, (3) the range effect biases influence,
(4) ranks ignore differential intensity, (5) some judges are more consistent than others,
(6) adherence to competition guidance is not uniform, and (7) a sum is not an aggregate
utility.

Stars & Bars combinatorics shows that many billions of compositions of ratings can
have the same sumand that uncertain ratings canhavemanydifferent sums.Dispersion
among the ratings that compose a sum can range from little to none when every judge
assigns the same rating, to a uniform distribution, to extreme disagreement where
judges’ assignments cluster at the highest and lowest ratings. If sums of ratings are to
be considered, that dispersion must also be but is difficult to consider.

A Plackett–Luce preference order model avoids the difficulty of considering both
sums of scores and dispersion. That model yields a maximum likelihood estimate of
the top-choice probability for each wine, and those probabilities yield a defensible
order of quality or preference. And an application to the white wines tasted at the 1976
Judgement of Paris implies a different preference order than the order implied by sums
of ratings. For example, themaximum likelihood is that the first-place winewas French
Meursault Charmes rather than Californian Chateau Montelena.

Application of order preference models to wine competition results is nascent.
Applying the Plackett–Luce and other models to the 1976 Paris and other data could
be considered. Further research concerning methods of preserving the information in
scores, improving a top-choice probability density function, discounting the influence
of judges with low cross-correlations, refining maximum entropy considerations, and
addressing the conundrums enumerated in Section II seems worthwhile.
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