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LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND
n-RANDOMNESS

RODNEY DOWNEY"“¥, LU LIU“, KENG MENG NG, AND DANIEL TURETSKY

Abstract. Let K denote prefix-free Kolmogorov complexity, and let K denote it relative to an oracle A4.
We show that for any n, K ot is definable purely in terms of the unrelativized notion K. It was already
known that 2-randomness is definable in terms of K (and plain complexity C) as those reals which infinitely
often have maximal complexity. We can use our characterization to show that n-randomness is definable
purely in terms of K. To do this we extend a certain “limsup” formula from the literature, and apply
Symmetry of Information. This extension entails a novel use of semilow sets, and a more precise analysis
of the complexity of Ag sets of minimal descriptions.

§1. Introduction. A cornerstone of algorithmic randomness is Schnorr’s Theo-
rem' that X is Martin-Lof (ML) random iff K(X[#n) >T n for all n (Chaitin [3]).
Thus X being ML-random is equivalent to having all initial segments weakly
K-random. Now this result relativizes and hence X is A-random iff K4(X [n) >* n,
so that, for example, X is 2-random, meaning X is ML-random relative to ¢, iff
KY(Xn) >* n. for all n.

It is slightly surprising that 2-randomness can also be characterized using K
(and C) without relativization.

THEOREM 1.1.

o (Miller [10], Nies, Stephan, and Terwijn [14]) X is 2-random iff C(X|n) >T n
for infinitely many n.

o (Miller [11]) X is 2-random iff K (X [n) > n + K (n) for infinitely many n.

Theorem 1.1 suggests the following motivating question:

QUESTION 1.2. Is it possible to define (k + 1)-randomness using unrelativized initial
segment complexity K. not the relativized notion K% =4¢ K 009 Indeed, is it possible
to define K% using K?

On the face of it, why should there be a characterization of X being 0
random, have a definition purely involving the behaviour K(X|n) for n € w?

900) _

Received April 3, 2023.

2020 Mathematics Subject Classification. Primary 03D32, 68Q30.

Key words and phrases. Kolmogorov complexity, limit complexity, minimal description.

IWe assume that the reader is familiar with the rudiments of algorithmic randomness and Kolmogorov
complexity, such as initial segments of [5] or [13]. We will use C to denote plain complexity and K for
prefix-free complexity.
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1262 RODNEY DOWNEY ET AL.

Indeed Solovay [18] (see [3, Section 10.2.3]) showed that K " and K have apparently
complex relationships such as K% (n) < K (n) — a(n) + O(loga(n)), where a(n) =
min{K (m) | m > n}, a fact we use in Section 6.

Nevertheless, we’ll show that Question 1.2 has a positive answer. To prove this,
we will give a new analysis of the behaviour of sets of minimal descriptions, where
7 is a minimal description of ¢ if U(r) = ¢ and |t| = K(g). Such 7’s must be
incompressible, let there be a shorter description of ¢. For example, we will show
that although every Ag set of minimal descriptions computes (), there are, for our
purposes, sufficiently tame sets of minimal descriptions called “semilow” sets, a
notion which grew from Soare’s automorphism machinery [16].

1.1. k > 2. To prove that we can define (k + 1)-randomness using only K, our
starting point is the following attractive result.

THEOREM 1.3. (Bienvenu, Muchnik, Shen, and Vereshchagin [2])
K" (¢) =" lim supK (o | n).
n

The same result holds for C in place of K.

Here K (g | n) is the conditional complexity of o given n. The reader might think
that Theorem 1.3 does the job: We could relativize the result to get K (o) =
limsup, K” (¢ | n) and then replace K% (¢ | n) by a lim sup,, K((o | n) | m).

The problem is that K (o | n) is not really an unrelativized notion, even though
no oracles appear in a standard definition such as that in Li—Vitanyi [9]

K(o | n) =min{|y|: U{(y.n)) =}

However, since 7 is fixed, this definition hard-codes n as an oracle. More precisely,
the definition in [9] is easily seen to be equivalent to the definition of conditional
complexity used in [5]
K(o|n)=K"(o).
where 7, a self-delimited version of n, is provided as an oracle.
Perhaps we might be able to get rid of the finite oracles. You might imagine that
finite oracles have little effect, but this is not true in general. Indeed, in Section 6, we

will see that finite strings can have very strong compression power. There we prove
the following:

THEOREM 1.4. For all e there is a string p such that for almost all 7, K(t|p) <
K(t) —e. That is. for ¢ =p. K<(1) < K(1) —e.

So we need a new plan.

1.2. The plan. Our plan is to leverage K (o |n), and we will do this using
Symmetry of Information (Levin and Gécs [8], Chaitin [3]) which says that

K(o,n) =" K(n) + K(c | n*).

Here the reader should recall that K (v, p) is the complexity of the pair (v, p). and
that for any string 7, t* is the first minimal description to occur of length K (7) with
U(z*) = 7. (In the case of C we will write t}..)
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While t* is a particular minimal code for 7 (the first to appear in a fixed effective
search), it may not be the only code for 7 of length K (). We will also be interested
in all minimal codes, and so we adopt the following notation.

NOTATION 1.5, For a universal machine U (prefix-free or otherwise), let Ny = {n* :
n € w}, where n* is defined based on U. Let My = {p : U(p)| A|p| = K(U(p))}.
When U is clear from context, we will omit the subscript.

Thus Ny contains only the first minimal description for any given string, while
M contains every minimal description. Observe that Ny C My .

REMARK 1.6. Note that t* is interchangeable with (z, K(z)). in that there are
computable functions to uniformly pass from one to the other: in one direction,
™+ (U(z*),|t*]); in the other direction, given (7, K(z)), we search for the first
string p of length K (t) with U(p) = z. We will use t*, but the reader who prefers
may substitute (z, K (r)) anywhere this occurs in the paper.

Similarly, any minimal code from My may be replaced with the corresponding
(r. K(7)). Again, given p € My, it maps to (U(p). |p|). In the other direction the
map is not uniform, but there is a constant bound on the number of minimal codes a
string may have. Thus if p is a minimal code for 7, p can be obtained from (z, K (1))
with only a constant amount of extra information: we begin enumerating all strings
of length K () which code 7, and we must know 7’s position in this enumeration.

In Section 5 we will prove the following.

THEOREM 1.7. For any universal prefix-free machine U,

limsupK (o | n*) =" limsupK (o | 7) =" K ().
n TeEMy

Notice that by rearranging Symmetry of Information, we obtain K (¢ | n*) ="
K(a.,n) — K(n). Hence K (¢) =* lim sup,[K (o.n) — K (n)]. giving a definition of
K" purely in terms of K without relativization.

By relativizing Theorem 1.3, we obtain

K (6) =" limsup K4(c | n).
n

for all A.> By appropriately iterating and relativizing Theorem 1.7, we obtain a
definition of K®“' for all k € . eg.

K (¢) =t lim sup[KW(a, n)— KW(n)]

n

=" lim sup (lim sup[K (o, n,m) — K(m)] - limsup[K (n, m) — K(m)]) )

n m m

From this follows a definition of k-randomness purely in terms of unrelativized K.

1.3. The complexity of the sets M and Ny;. The question arises how should we
prove the lim sup, K (o | n*) theorem? The answer really comes from understanding

’Indeed =" limsup, K (o | A[n).
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the behaviour of the set of minimal descriptions. One hint came from the unpublished
work of Hirschfeldt.

TreoreM 1.8 (Hirschfeldt, unpublished). C? (¢) =* lim sup, C(o | nf.).

We will prove this result in Section 2. The method is to construct an infinite low
subset of Ny, for V' the machine generating C, and use some relativization tricks.

We had hoped to use this method for K, but unfortunately we were able to prove
a result saying that this is impossible.

THEOREM 1.9. Let U be a universal prefix-free machine, and let S be an infinite A
subset of My. Then (' <r S.

Note that My and Ny are of degree 0 (e.g., [5]). For example, Ny >, Q by the
Coding Theorem (see [5, Section 3.9]), and Q is wtt-complete. In view of Theorem
1.9, it would seem reasonable to suggest that they are introreducible, which in this
context would mean that every infinite subset computes (. However, Joseph Miller
proved that this is not the case. We include this also in Section 3.

We remark that the proof can also be adapted to show that an infinite Ag hitting
set for a Solovay function® must also be Turing complete. We prove these results,
which are of independent interest, in Section 3.

In the end we found a way around these problems using an idea from studies in
the automorphism group of the lattice of computably enumerable sets (Soare [16])
A set S is called semi-low iff

{e|SNW,#0} <0,

i.e., a pointwise version of being low. This notion was introduced as a method
towards characterizing when the lattice of supersets of a c.e. set was isomorphic to
the lattice of all c.e. sets. In Section 5, we will show that, although there cannot be
an infinite low subset of M or Ny, there can be a semi-low one (which we believe
to be of independent interest, especially contrasted with the previous theorem). In
Section 4 we will prove that this is enough for our main result. There have been
other uses of semi-lowness outside of the lattice of c.e. sets, such as Downey and
Melnikov [7] in the study of abelian groups, but these seem sporadic at best.

1.4. The machine existence theorem. As we will be using it several times, we state
the machine existence theorem and fix our notation surrounding it.

DEFINITION 1.10. Foraset 4 € 2<¢ x @, wt(4) = 3, 427"

THEOREM 1.11 (KC Theorem, Coding Theorem, or Machine Existence Theorem:
see Downey and Hirschfeldt [5, Section 3.6]). If A C2<° x w is c.e. and has
wt(A) < 1, then there is a prefix-free machine V such that for every (o, s) € A, there
is a p with |p| = s and V (p) = o. Further, an index for V can be effectively obtained
from a c.e. index for A.

COROLLARY 1.12. If A C 2<° x w is c.e. with wt(A) < oo, then for all (o, s) € A.
K(o) <T 5.

3That is. a computable F such that F(¢) >* K (o) foralle.and F(¢) = K (o) for infinitely many o.

https://doi.org/10.1017/js1.2024.41 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.41

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 1265

Sets A4 of this form are sometimes called request sets.
The following is more of a proof technique, but we will state it as a corollary.

COROLLARY 1.13. As part of a uniform construction, we may effectively obtain an
e > 0 such that if we enumerate A C 2<? x w with wt(A4) < e, then K(c) < s for
every (a,s) € A (observe the lack of additive constant).

Proor. Fix U the universal prefix-free machine used to define K. We will generate
an auxiliary c.e. set B with wt(B) < 1. By the Recursion Theorem, we know a c.e.
index for the set B we will enumerate. By the Machine Existence Theorem, this
effectively gives us an index for a prefix-free machine V. From this we effectively
obtain a string p with U(pt) = V(z) for all 7, and so K(o) <+ |p| for all
(0.1) € B.

Set ¢ =271, and define B by enumerating (a.s — |p|) whenever 4 enumerates
(0. 5). provided this enumeration does not put wt(B) over 1. Ifwt(A) < ¢, then (o, 5 —
|p|) is enumerated into B for every pair (0. s) € 4.andso K(a) < (s — |p|) + |p| = s.
as desired. -

§2. Hirschfeldt’s Theorem. We prove Theorem 1.8. We will prove that
(o) = limsup C(o | n%).

Consider the ITY class of sequences
P = {(mg.my....) | Vn[2" <m < 2" A C(m,) > nl}.

A simple counting argument shows that there is an appropriate m, for every n,
and so P is nonempty. Since there are only 2" options for m,, P C 2 under an
appropriate effective identification. So there is a low infinite path L = (mg, my. ...)
by the Low Basis Theorem.

Recall that for 2" <m <2"*!, C(m) <™ n, so fix the least d such that
3%°n C(m,) = n +d. and fix an N such that C(m,) > n +d for alln > N. Then

X={m)g:n>NANC(m,)=n+d}

is L-c.e. and an infinite subset of Ny, where V is the universal machine defining C.
Fix (p;)ice an L-computable enumeration of X.
Then by relativizing Theorem 1.3, we have

(o) =* CL'(5) =" limsup CL(c | i).
i
Note that we can L-effectively pass between i and p;, so CE(a | i) =" CL(a | pi).
giving

C”(¢) =" limsup CL(a | p).
pEX

We also have

limsup C (o | p) < limsup C(a | p).
pEX peEX
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since oracles can only help;

limsup C(o | p) <limsup C(o | ng) <limsup C(a | p) < limsup C(a | p).
peEX nz pPEMy pE2<®

since X € Ny € My C 2<%, and limit supremums over larger sets are larger; and
finally

limsupC(a | p) =" (o),
p62<m
by the unrelativized version of Theorem 1.3, after an effective identification of 2<%
with w. Picking out the relevant bits, we see that

c¥ () =* limsup C(o | n&) =" limsup C(a | p).
n pPEMy

§3. Nolow hitting sets. We prove Theorem 1.9. Fix a universal prefix-free machine
U. and suppose that X = lim, X; is an infinite A9 subset of M. Fix ¢ as in Corollary
1.13; we will enumerate an appropriate set A C 2<% x w.

We describe how we code whether n € (). Fix k € o with

% < 2—(11+2)8.

To do this coding, we will define a k-colouring y on dom(U). This colouring will
be unique to n; the colourings for other values of n will have no interaction.
We declare that colour i is small if

Z 2-lal <

x(o)=i

=

This has natural approximations: at a stage s, based on the finitely many strings we
have so far coloured, a colour may still be small or may have already proven itself to
be large. Note that since colours are disjoint, and we have k colours, there is always
at least one small colour.

Suppose that ¢ enters dom(U) at stage s. Let

ri=min{|z| | x(z) =i A7t € X,}.

We regard this as infinite if there is no such 7. We fix a j maximizing r; and colour
x(a)=j.

Suppose that n enters (/' at some stage s + 1. Fix a single colour j which was small
at stage s; we invalidate all the strings which had colour j at stage s. That is, for
every g € dom(U)[s] with y(¢) = j, we enumerate (U(c). |o| - 1) into 4. Provided
wt(A4) < e, this will ensure that ¢ ¢ My for each such .

As j was small at stage s, the weight of these pairs is at most % < 27(tDg Thus,

summing over the strategies for every n, wt(4) <>, 2-(tl)g — ¢, as required.

Cram 3.1. X has members of every colour.

ProorF. Fix A4 the set of colours which occur in X, and suppose this is not all the
colours.
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Fix a length n such that every colour in 4 occurs on a string t € X with |7| < n,
and fix ¢ sufficiently large such that X has converged on strings of length at most n
by stage 7. i.e., if [t| < n, then for all s > ¢, X,(r) = X (7).

Since X is infinite, it contains some 7 which enters dom(U) at some stage s > .
At stage s. r; < n for every i € A, whereas r; > n for every colour i € A. So y(z)
will be a colour not in 4, contrary to choice of 4. -

We can now state our procedure for computing (' (n) from X: in the colouring for
n, search for a stage ¢ such that for every colour 7, some element of X has been given
colour i by stage ; then output (,(n).

As just argued, there is eventually some stage at which X intersects every colour,
so this algorithm is total. Suppose first that n ¢ ('. Then certainly §/(n) = 0, as
desired.

Suppose instead that n € (', and fix the stage s + 1 at which it enters. Fix the
chosen colour j. Then no ¢ which received colour j at or before stage s belongs to
My, and so cannot belong to X. Thus colour j witnesses ¢ £ s, giving 0 (n) = 1, as
desired.

This concludes the proof of Theorem 1.9.

The same method can be used to prove the following:

COROLLARY 3.2. Suppose that X is an infinite Ag set of hitting points for a Solovay
function F. That is, a set S of points n where F(n) =7 K(n). Then )/ <7 S.

We remark that Corollary 3.2 improves a result of Bienvenu, Downey, Merkle,
and Nies [1] who showed that the collection of a// hitting points is Turing complete.

The reader should note that if ¢ = m™*, then ¢ must be weakly K-random in that
K (o) >" |o|. The reason is that if K () << || then using the KC Theorem, we can
use ¢* to describe m, in a machine M we build. This would show that K (m) <<
|a| = |m*|, a contradiction. This brings in to focus the question of precisely which
weakly K-random strings are minimal descriptions. By the Low Basis Theorem,
there are infinite low collections of weakly K-random strings. At most finitely many
can be minimal descriptions. Another consequence of Theorem 1.9 is the following®.

COROLLARY 3.3. If X is a AY collection of weakly K-random strings (that is,
K(o) > |o]), and |X N Ny| = oo, then X computes ().

Proor. Fix d such that for every ¢ € X, K(o) > || — d. For every n, let n} be
the natural stage s approximation to »*. This may be undefined for small s, but it will
eventually converge to the true n*. Further, if ny| and n}, | # ny, then [n], | < |n]]|.

Again fix ¢ as in Corollary 1.13. Fix k with 2% < ¢. For every n and s with
|n¥| > |n*| + k +d (a ce. event), we enumerate (n. |n}| —d) into A. Since for a
fixed n there is at most one n} of any given length, the weight of our requests is

bounded by
Yoo 2k <ok,

noi>|n*|+k+d

Thus wt(A4) < ¢, and so K (n}) < |n}| — d for every such n}.

4More or less the same proof will also give this for intersections ong sets of hitting points for Solovay
functions, and A(Z’ subsets of M *. this last one by the Coding Theorem. there are at most O(1) many
elements of M * of length n* for a fixed n.
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It follows that if n} € X, then since K (n}) > |n}| —d by assumption, |n}| <
|n*| +k +d, or |n*| > |n¥| — k —d. As in the proof of Theorem 1.8, this allows X
to enumerate an infinite sequence from Ny. Since every infinite c.e. set contains
an infinite computable set, and this relativizes, we get that X computes an infinite
Y C Ny.As X isAY, Yisaswell. so Y >7 (V. and thus X >7 (. -

As we mentioned in the Introduction, Theorem 1.9 cannot be improved to show
that all infinite subsets of Ny compute )'.

THEOREM 3.4 (Joseph Miller, unpublished). There is an infinite X C Ny which
does not compute V.

PrROOF. Let P be a bounded I1Y class of K-compression functions’. Since we
have an a priori upper bound of K(n) <* 2log(n), we may take P C 2°. Let F
be a “weakly-low for K” path. That is, there are infinitely many n with F(n) =*
K (n). This can be shown to exist using the “low for Q”-Basis Theorem® (Downey,
Hirschfeldt, Miller, and Nies [6]. Reimann and Slaman [15]) and the fact that low
for Q is equivalent to “weakly low for K (see Downey and Hirschfeldt [5]).

Now fix the least ¢ with K (n) = F(n) + ¢ for infinitely many », and fix an m with
K(n) > F(n) + cforalln > m. F can enumerate an infinite subset of Ny: {n} : n >
m A |n}| = F(n) + c¢}. Thus F computes an infinite X C Ny (again relativizing the
fact that every infinite c.e. set has an infinite computable subset), Since F does not
compute @ (since it is weakly low for K), X also does not compute (' =

§4. Conditional complexity along semi-low sets. Semi-lowness has previously been
studied for co-c.e. sets. We are interested in it for A9 sets, in which case it is not entirely
clear that the following is the correct definition’, but it is the definition relevant to
our current interest.

DrerFINITION 4.1, Let (W, ).c., be a standard listing of c.e. sets. A set X is semi-low
if the set {e : X N W, # 0} is A) (i.e. <7 0).

Recall Theorem 1.3:
K" (5) =* limsup K (¢ | n).

new

As we have seen. it can be helpful to consider limsup,,c y K (o | n) for X infinite.

It is immediate that this is <* K? (¢), as we are taking a limit supremum over a
smaller set. It turns out that for semi-low sets, we have equality.

PROPOSITION 4.2. If X is semi-low and infinite, then K (¢) =* lim sup,cy K(o |
n).

SA K-compression function is an injective function G : w — w such that for all n, G(n) < K(n).
These were introduced by Nies, Stephan, and Terwijn [14] in their proof that 2-randomness is the same
as infinitely often C-random.

SEvery l'I(l) class on 2 contains a (-left c.e. real A relative to which Q4 = Q.

7An alternative definition would additionally require that {e : W, C X} is Ag; note that when X is
co-c.e., this set is H(l).

https://doi.org/10.1017/js1.2024.41 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.41

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 1269
PrOOF. As one direction is immediate, it remains to show that

K" () <" limsup K (o | n).
neX
We will work with request sets.

For each n € w, define 4, = {(a.5) : s > K (o | n)}. We may think of 4,, as the
request set generating K (-|n). Observe that wt(A4,) < 2 for all n.

Note that for any finite set D C 2<® x w and any m € w, theset {n > m : wt(D U
A,) > 2} is c.e. (it is even primitive recursive with appropriate assumptions on
K (-|n). but this is not necessary). Indeed this is uniform, so we may fix a total
computable function e such that W, ) = {n > m : wt(D U 4,)) > 2}, where D is
given by a canonical index.

We will build a (/'-enumerable request set B with wt(B) < 2 and such that for all
o.if s =limsup,.y K (o | n). then (o.s5) € B. By Corollary 1.12 relativized to ¢,
this will suffice to prove the result.

Fix an effective listing (0., Sy )mew Of 2<¢ X @ such that every pair is repeated
infinitely many times on the list. We define B as follows:

e By = 0.
e Given By,. fix D = By U {(gm.sm)}. If X N W,(p,,) = 0. we let B,y = D:
otherwise, we let By, 1| = By,.

As X is semi-low, (' can run this construction, and so B is (-enumerable.
Cram 4.3. Foralln > mwithn € X, wt(B,, U A,) < 2, and thus wt(B) < 2.

PrOOF. Suppose not. Then as this clearly holds for By, we may fix m + 1 the
least value where the claim is violated. So there is some n > m + 1 with n € X,
wt(B,, UA,) <2 and wt(B,,41UA,) >2. As B, # B,. we must be in the
case X N We(D«m) = (), with By =B, U {(am,sm)} =D.Butne Xn We(DA,m)~
a contradiction.

That wt(B) < 2 then follows from X being infinite. -

CLam 4.4. Foranyo. if s =limsup,.y K(o | n). then (0.5s) € B.

ProOOFE. Fix an ny such that for all n > ny withn € X, K(o | n) < 5. Then for all
n>nowithn € X, (0.s) € A,. Fixan m > ng such that (¢, 5) = (o, 5,,). Let D =
B, U{g,.5,}. Then for all n > m withn € X, DU A, = B,, U 4,, and wt(B,, U
Ay) <2.80 X N Wy(p,m = 0.and (6.5) € By by construction. =

This completes the proof. -
§5. Conditional complexity along minimal codes. Fix a universal prefix-free

machine U. We are interested in limsup, ¢, K (o | 7) and lim.cy,, K (o | 7). First
we verify that these values are machine independent.

LemMA 5.1. If U and V are universal prefix-free machines, and K (-|-) is defined
from a third (unnamed) universal prefix-free machine, then

limsupK (o | 7) =" limsupK (o | 7) =" limsup K (o | 7).
TeEMy TeEMy TENY
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Proor. By symmetry, and the fact that Ny C My, it suffices to show

limsupK (o | 7) <* limsup K (o | 7).
TEMy TENyY
By standard arguments, there is a constant ¢ such that if t € My, p € My, and
U(z) = V(p). then [|z| - [p]| < c.
For each 7 € 2<? and i € Z with |i| < ¢, let p(z,i) be the first p located with
lp| = |z| +iand U(z)l= V(p)l. if such p exists. We define

B. ={(o.s) : Jip(r.i)l As > K(o | p(z.i))}.

Then wt(B;) < Z|i|<c >, 2 2K(@lp(d) < (2¢ +1)-2, and thus these are uni-
formly given request sets.

It follows that K (o | 7) <* K(o | p(z.i)) for all i with p(z,i)}. Note that if €
My, then there is an i with p(t. i)} € Ny. The claim follows. 4

PROPOSITION 5.2. There is a universal prefix-free machine U and an infinite, semi-
low set X C Ny.

ProoF. Fix some universal prefix-free machine V. We define U(0°"1) = V(1)
for all 7, which makes U universal while giving us the freedom to do as we like on
other neighborhoods.

Let (Ny)seco be the natural approximation to Ny. We will have semi-lowness
requirements R, and infiniteness requirements P,. The strategy for each requirement
will claim various strings in Ny, and each strategy will have a directive at every stage:
meet or avoid. A string may only be claimed by a single strategy at a time, and a
strategy will retain its claim on a string until either the string leaves N, or a higher
priority strategy claims the string. In either case, the strategy will immediately
relinquish its claim.

We will build a c.e. set 4 C 2<“ x w. As we will argue. the sum 271! over all
strings ¢ which are ever claimed in the construction will be bounded by 1/2. The first
time a string ¢ is claimed by a strategy (i.e., it was unclaimed at all previous stages),
we will immediately enumerate (k, a| - 1) into A4, where k is larger than any value
yet seen in the construction. As the previous sum is bounded by 1/2, wt(4) < 1. By
the Machine Existence Theorem, we uniformly obtain the index of a corresponding
prefix-free machine Q such that for every such pair (k, |g| — 1) € 4, there is a T with
|1| = |o| - 1 and Q(7) = k.

We define U(177) = Q(z) for all . Suppose ¢ is first claimed at stage s, and
so we enumerate (k.|| - 1) into A for some large k. Then for the appropriate 7,
|[177| = |o| and U(17t) = k. By the largeness of k, N, contains no codes for &,
so 7 will belong to Ny unless V' enumerates a sufficiently shorter code at some
subsequent stage. The idea is that whenever a potential element of Ny is claimed,
we ensure it is replaced with a new element of the same length or shorter.

This completes the description of U, apart from describing how strategies claim
strings. We order our requirements Ry, Py, Ry, Py, .... At stage s, we consider the
first s requirements in order, implementing the following strategies.

Strategy forP,,:
P, will always have the meet directive, and will claim at most one string at a time.
At stage s, if it retains a claimed string from the previous stage (i.e., s > 0, P, had

https://doi.org/10.1017/js1.2024.41 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.41

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 1271

a claimed string at stage s — 1, that string remains in Ny, and that string has not
been claimed by a higher priority strategy earlier in stage s), then we take no further
action. Otherwise, if there is a string in N; of length at least 2n + 4 and unclaimed
by any higher priority strategy. P, claims the least one (in some effective ordering).
If P, did not retain a claimed string, and there is no appropriate string to claim, we
simply do nothing.

Strategy forR.: The behaviour of R, is a yo—yo: it continues to claim strings until
the weight of the claimed strings surpasses 2-2¢*4) at which point it stops and lets
those strings bleed away. Once it has lost all of its claims, the strategy begins claiming
new strings again. The details follow.

At stage s, let C be the set of strings which R, retains the claim on from the
previous stage: those strings which it claimed at stage s — 1, which remain in Ny,
and which were not claimed by a higher priority strategy earlier in stage s. If R, was
not considered at stage s — 1 (possibly because s = 0), then C = ().

Letw = Y . 271, Our directive for R, at stage s will depend on w and on R.’s
directive at stage s — 1:

o Ifw =0 (i.e., C = (). then R, has the directive avoid at stage s.

o If0 < w < 27(2¢+4) then R, retains the same directive as it had at the previous
stage (w > 0 entails that R, was considered at the previous stage).

o If w > 2-(2¢+4) then R, has the directive meer at stage s.

If our directive for R, at stage s is meet, we take no further action at this stage.

If our directive for R, at stage s is avoid, and there is a string in Ny, N W, of
length at least 2¢ + 4 and unclaimed by any higher priority strategy, then R, claims
the least such string (in some effective ordering). Our action for R, at this stage is
then complete. Note that we claim no more than one string for R, at each stage.

This completes the construction.

Definition of X:

Let X, be the set of strings o claimed by a strategy with the meet directive at
stage s.

Observe that if ¢ € Ny is claimed by a strategy, then there are only two
possibilities: that strategy may retain its claim on ¢ forever, or the claim on ¢
may pass to a higher priority strategy. As we will argue, each R, strategy changes
its directive only finitely many times. It follows that X = lim; X is defined.

Verification:
First we must keep our promises.

CLAIM 5.3. At any stage s. for the strategy R., the value w = w(e, s) is at most
2—(2e+3).

PrOOF. At each stage, R, claims at most one string, and that string will always
have length at least 2¢ +4. So w(e.s + 1) — w(e,s) < 224 Further, R, only
claims a string if w(e, s) < 2724 so w(e, s + 1) is at most 2-(2¢+4) 4 2-(2e+4) —
2—(26+3)' -

Cram 5.4. The sum Y 271! over all strings o which are ever claimed in the course
of the construction is at most 1/2.
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Proor. If a string ¢ is claimed during the construction, there are three possible
fates for ¢: 1) there is some #n such that P, claims ¢ at almost every stage: 2) there
is some e such that R, claims ¢ at almost every stage: 3) o leaves Ny. We consider
each case in turn.

Fix n. By construction, there is at most one string which is ultimately claimed by
P,. and such a string has length at least 2z + 4. So the sum 3" 271! over all strings
o ultimately claimed by P, is bounded by 2-2+4),

Fixe. Let C betheset of strings o such that R, claims ¢ at almost every stage. Then
each o € C contributes to almost every w(e.s). so Y _» 2717 <sup,w(e.s) <
2—(29+3).

Finally, consider strings which leave Ny. We will split this case into two subcases,
based on whether the given string extends 000, and so was introduced by our copying
of V, oritextends 1, and so was introduced by our other actions. Since the extensions
of 000 in the domain of U form an antichain, the sum }" 277! over all strings in the
first subcase is bounded by 1/8.

Consider now the second subcase. Note that strings never leave Ny because of our
action; instead, if ¢ leaves Ny, then there must be some © € Ny with V (z) = U(o)
and |7] < |o| - 3. As we always choose our values large. if o and o, are distinct
strings from this subcase, U(og) # U(ay). so the corresponding ts are distinct. So
summing over the ¢ of this subcase. we have Y2717/ < % Dceny 271 < % Putting
these all together, our desired sum is bounded by

6 Z 2—(2n+4) + Zz—(2€+3) =+ 1 +

new eecw

<

s

ool
QO —
ST

as desired. o
CrLAamM 5.5. Each R, changes its directive only finitely many times.

PrROOE. Suppose not. Then there is a sequence of stages so < s; < ... such that
R, has directive avoid at stage s;, and has directive meet at stage s; + 1, for every i.
In order to switch from meet at stage s; + 1 back to avoid at stage s;;, every string
claimed by R, at stage s; + 1 must either be stolen by a higher priority strategy
or leave Ny, both of which are irreversible. Thus the strings which contribute to
w(e, s; + 1) must be entirely different from those which contribute to w(e,s; + 1)
for j #i. Butw(e, s; + 1) > 22+ for every i, and the strings which contribute to
w(e. s; + 1) all belong to dom(U), a contradiction. 4

Thus we may speak of an R; strategy’s ultimate directive.
Our promises being met, the construction of X is as described. Now we verify
that X has the desired properties.

CLam 5.6. For each n, the strategy P, ultimately claims a string which it never
renounces its claim upon, and thus X is infinite.

Proor. Fix n. It suffices to argue that there is some string in Ny of length at least
2n + 4 which is never claimed by any strategy.

Fix s such that Ny, has converged on all strings of length less than 2n + 4. We
build a sequence g, g1, ... € Ny:
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e Fix some gp € Ny \ dom(Uy,). Such a oy must exist, as U is universal (and in
particular, surjective).

e If g; is eventually claimed by some strategy, then the construction responds
by enumerating a 7 into dom(U) with |t| = |o;| and U(z) not any previously
seen value. It may be that 7 is not a minimal code, but there is some g; | € Ny
with U(g;41) = U(z), and ;.1 enters dom(U) after the stage at which o; is
claimed (by the largeness of U(7)).

Inductively, we see that U(a;) # U(o;) for any j < i. and so the sequence 0. o7. ...
is injective. Further. |oj1| < |oj|. As 3 oy, 27171 < 1 this sequence must be finite.
so there is some ¢; which is never claimed by any strategy. Since ¢; enters dom(U)

after stage so, |0;| > 2n + 4 by choice of 5. B

CLAaM 5.7. X is semi-low.

PrROOF. We give an algorithm for determining whether X N W, = (), using oracle
(/. First, (/ can determine a stage sy such that every R; strategy with j < e has
settled on its ultimate directive, and such that each P, strategy with n < e has made
its ultimate claim.

We may ignore those R; with j < e which have avoid as their ultimate directive.
For the remaining, they have claimed some finitely many strings by stage s, and
none will ever claim another string. With oracle (', we can examine the entire finite
collection to determine if there is a string ¢ among them which remains claimed by
its current strategy forever, and with g € W,.

We claim that there is such a ¢ if and only if X N W, # (. In the one direction, if
there is such a ¢, then ¢ € X by construction, so g € X N W,.

In the other direction, if there is no such . note that this implies that R,’s ultimate
directive is avoid—if it were meet, then R,’s strings are amongst those examined,
so it must eventually renounce its claim to all of them, resulting in R, changing
directive to avoid, contrary to choice of so. Now for any © € W, N Ny, we consider
two cases: |7] < 2¢ +4 and |t| > 2¢ + 4.

If |7] < 2e + 4, then 7 is too short to be claimed by any strategy of lower priority
than R,, and by assumption 7 cannot be ultimately claimed by any strategy of higher
priority with ultimate directive meet. Sot ¢ X .

If |7] > 2e + 4, then 7 will eventually be claimed by R,, by construction, and so
t¢ X. -

This completes the proof. -

COROLLARY 5.8. For some, and hence any, universal prefix-free machine U,

limsup K (o | 7) = limsupK (¢ | 7) = K (o).
€Ny TEMy

PrOOF. As this is independent of choice of machine, let U and X be as in
Proposition 5.2. Then

’ i
K9 () =T limsupK (o | 7) < limsup K (o | 7) < limsup K (o | 7) < limsupK (o | 7) =" k? (o).
t€X TENY teEMy Te2<w

where the first equality is by Proposition 4.2, the last is by Theorem 1.3, and the
inequalities are by subset. o
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§6. Where the limsup’s live, and finite strings as oracles. Here we collect some
miscellaneous results about finite strings as oracles. The first is motivated by our
(numerous!) failed attempts to prove Theorem 1.7 before we finally discovered the
method of Sections 4 and 5.

One avenue we pursued was attempting to determine for which m does K (g | m)
achieve limsup, K (o | n). A natural candidate is the nondeficiency stages: fix a
computable enumeration (a,, )mee of . and define

E={m:(n>m)lan < a,]}.

This is the basis for the method of frue stages (see Montalban [12] for a modern
interpretation for higher level priority arguments, but the idea going back to Dekker
[4]. as per Soare [17, Chapter V 2.5]), where the elements of E are employed because
they make correct guesses about () (as we shall see in a moment).

However, this turns out to be approaching from the wrong direction. Since
K" (o) =limsup, K (¢ | n), to find places where the limit supremum is achieved. we
are not concerned with doing as well as (' —we are concerned with doing no better
than ('. Thus we are looking not for n which are powerful, but for those which are
weak.

The following result says that for m € E, K(o | m) does much better than
limsup, K (| n).

PROPOSITION 6.1.

limsup K (o | m) =" K (o).
mekE

Proor. For any m, define 7,, € 2<“ to be the string of length a,, such that
n(x) =1 iff x = a, for some n < m. Note that m — 1, is effective, so K(o |
m) <t K(o | t). Also, g,y < 0'iff m € E, so

limsup K (¢ | m) <* limsup K (¢ | 0'[ a,,)
mekE mekE
<limsupK (o | 0'I n)
n

=" limsup K (& | n).
n

Conversely, ()’ can compute the increasing enumeration of E, E = {by < by < ... },
s0o K (| n) <* K(o | b,), giving

limsup K (o | m) =" limsup K (o | n).
mekE n

By Theorem 1.3 relativized to (', this is (up to an additive constant) K 0% (). H

The reader might note the following somewhat paradoxical situation. The natural
proof to show that K? (¢) <* lim sup, K (o | n) is to fully approximate K (¢)[n]
at each stage n, where both the computations and oracles are approximated for n
stages. We would do this as part of the computation of K"(¢) for some machine
M7"(g) via the Machine Existence Theorem as mentioned above. Therefore, for all
stages 7 > n it can only be that K (¢ | n)[t] <* K (o | n)[n] <* K (¢)[n]. The true
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value of K% (¢) must have been achieved at a true stage, but we see above, it does
not happen at almost all true stages. Thus it must be achieved at infinitely many
non-true stages s, but where K W[s] =t K W(a). We don’t really understand the
characteristics of such “almost true” stages s. We also point out that the limsups
appear to be achieved for different s’s for different ¢’s.

Theorem 1.3 says that for almost any string ¢, almost any finite oracle can aid
in the compression of o. A priori, however, there is no reason to expect there
to be a single finite oracle which aids in the compression of almost every string.
Nevertheless, this is the case.

THEOREM 6.2. For all e there is a string p such that for almost all T, K(z | p) <
K(t) —e. That is for ¢ = p. K<(1) < K(1) —e.

Our proof'is based on the conditional complexity variant of the Machine Existence
Theorem, which we first state.

PROPOSITION 6.3. Suppose A C 2<° x w x 2<% is a c.e. set such that for every
T €2, Y snea 2’ < 1. Thenforall (o.5.7) € A. K(o | 7) <* 5.

Proor oF THEOREM 6.2. We will enumerate a c.e. set A. Fix an effective bijection
7 = (D, k) between 7 € 2<? and pairs (D, k) with D C 2<¢ finite and k € w. For
v =(D.k), for every ¢ € 2<? \ D, we enumerate (o, — k, 7) into A for every ¢ >
K (). provided doing so does not cause 3_, . 42 to exceed 1.

Fix the constant ¢ such that K(o |7) <s+c¢ for every (o.5.7) € 4. As
3,27 <1, there is some finite D such that ), 2750 < 27+t Fix

t=(D.e+c). Then }° .\, > ~x(, 27(m¢0) < 1,50 (0.1 — e — ¢, 7) is successfully
enumerated into A forallsucho and ¢. Thus K (g | 1) < K(g) ~e — ¢+ ¢ = K(o) -
eforalle ¢ D. !

Define p to be e-compressing if for almost all 7, K (7 | p) < K (1) —e.
QUESTION 6.4. What can be said about the set C, = {p | p is e-compressing}?

QUESTION 6.5. Is there a definition of k-randomness purely involving C?
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