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We investigate the dynamics of a pair of rigid rotating helices in a viscous fluid, as a
model for bacterial flagellar bundle and a prototype of microfluidic pumps. Combining
experiments with hydrodynamic modelling, we examine how spacing and phase difference
between the two helices affect their torque, flow field and fluid transport capacity at low
Reynolds numbers. Hydrodynamic coupling reduces the torque when the helices rotate in
phase at constant angular speed, but increases the torque when they rotate out of phase. We
identify a critical phase difference, at which the hydrodynamic coupling vanishes despite
the close spacing between the helices. A simple model, based on the flow characteristics
and positioning of a single helix, is constructed, which quantitatively predicts the torque
of the helical pair in both unbounded and confined systems. Finally, we show the influence
of spacing and phase difference on the axial flux and the pump efficiency of the helices.
Our findings shed light on the function of bacterial flagella and provide design principles
for efficient low-Reynolds-number pumps.
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1. Introduction
Peritrichous bacteria, such as Escherichia coli (E. coli), swim by combining multiple
independently driven flagella into a single rotating helical bundle, which generates
hydrodynamic thrust and propels the cells forward (Berg 2004). While the propulsion
mechanism enabled by a single helical bundle is well studied (Lauga 2020), fluid-mediated
interactions among multiple flagella within the bundle are still far from fully understood
(Bianchi et al. 2023). Although theoretical and numerical modelling have been empolyed
to elucidate the collective dynamics of multiple flagella during bundle formation and
© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
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within a functional bundle (Kim & Powers 2004; Flores et al. 2005; Reichert & Stark 2005;
Janssen & Graham 2011; Reigh, Winkler & Gompper 2012; Kanehl & Ishikawa 2014; Man
et al. 2017; Chamolly & Lauga 2020; Tătulea-Codrean & Lauga 2021, 2022; Park et al.
2024), direct experimental validation of predicted flagellar dynamics remains difficult due
to the small spatial scale (∼ 20 nm) and rapid time scale (<10 ms) associated with the
flagellar process (Turner, Ryu & Berg 2000). To tackle this challenge, scaled experimental
models have been developed to mimic flagellar dynamics at macroscopic scales (Macnab
1977; Kim et al. 2003, 2004; Danis et al. 2019; Lim, Yadunandan & Khalid Jawed
2023). Most of these works, however, focused on the formation of the flagellar bundle.
Few experiments have been conducted exploring the hydrodynamic interactions between
multiple flagella and examining their effects on the dynamics of flagella in a stable bundle.

Beyond their function in bacterial motility, rotating helices can be harnessed as pumps
and mixers in microfluidics. Immobilised bacteria in bacterial carpets generate strong
near-surface flows, enabling fluid transport and mixing (Darnton et al. 2004; Kim &
Breuer 2008), and guiding particle motion along designed trajectories (Gao et al. 2015).
The possibility of using rotating helices as microfluidic pumps has also been explored in
simulations (Martindale & Fu 2017; Buchmann et al. 2018; Dauparas, Das & Lauga 2018;
Rostami et al. 2022). Artificial helical microrobots actuated by external fields have also
been exploited for fluid pumping and mixing (Zhang, Peyer & Nelson 2010; Tottori et al.
2012). These studies demonstrate the great potential of using collectively rotating helices
for precise control of low-Reynolds-number flow in microfluidics. A deeper understanding
of the hydrodynamic interactions between rotating helices and a detailed mapping of the
surrounding flow characteristics become essential to fully realising this potential.

Our work, integrating experiments and hydrodynamic modelling, addresses this critical
knowledge gap and technical challenge, and provides an in-depth study of the dynamics of
a pair of rigid rotating helices in low-Reynolds-number flows.

2. Methods

2.1. Experimental set-up
We construct a macroscopic model of bacterial flagella. The scaled helical flagella are
left-handed and fabricated by wrapping stainless steel wires (radius a = 1 mm) around a
cylindrical rod with radius R = 1 cm at pitch length λ= 12 cm (figure 1a). The helical
axial length submerged in fluid is fixed at L = 32 cm. The ratios R/L = 0.026 and
λ/L = 0.32 closely match those of E. coli flagella at R/L = 0.028 and λ/L = 0.35
(Turner et al. 2000).

The schematic of our experimental set-up is shown in figure 1(b–d). The helices
are inserted vertically into silicone oil (Clearco, density ρ = 0.970 g cm−3, viscosity
η = 105 Pa s) contained in a plastic cubic tank of side length 50R. To impose a cylindrical
boundary, we submerge a thin PET tube of radius R0 = 25R with a refractive index close
to that of silicone oil in the tank. The axes of the two helices define an axial plane (the x–z
plane). The origin ‘O’ of the orthogonal x–y plane is set at the middle point connecting
the axes of the two helices (figure 1c). The axis of the tube is carefully aligned within the
axial plane through the origin. Two separate stepper motors (NEMA 8) drive the rotation
of the helices at constant angular speed ω = 0.5 rad s−1 in the clockwise direction when
looking from above, which sets a velocity scale ωR = 0.5 cm s−1 with Reynolds number
Re = ρωR2/η ≈ 4 × 10−4. The distance d between the axes of the two helices, and
their phase difference �φ, are varied in our experiments. Two reaction torque sensors
(TFF 400, FUTEK), one for each helix, are mounted on a supporting rail and connected
to the stepper motors, which measure the torque applied by the motors to the helices.
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Figure 1. Experimental set-up. (a) Image of the two helices in silicone oil seeded with PIV tracers. The helical
radius R, axial length L , pitch length λ, filament radius a, and inter-flagellar spacing d are marked. (b,c) Side
and top views of the experimental apparatus. Stepper motors are mounted on a supporting rail attached to two
sliding carts, which can rotate along a circular track by an angle θ . (d) Schematic showing a plane, normal to
the axes of two helices, with the phase difference �φ. Dashed circles indicate the trajectories of the helices in
the plane.

The supporting rail can rotate on a circular track concentric with the tube axis, enabling
us to adjust the orientation of the axial plane θ .

2.2. Particle image velocimetry analysis and slender-body theory model
We use particle image velocimetry (PIV) to measure the three-dimensional (3-D) flow
field of the rotating helices (PIVLab, Matlab). Silicone oil is seeded with polyamide
microparticles (LaVision, ρ = 1.03 g cm−3, diameter 60 μm) at concentration 0.01 %
(v/v). Two 50 mW, 532 nm continuous line lasers (CivilLaser), positioned on opposite
sides of the tank, generate an aligned laser sheet approximately 1 mm thick in the
measurement window through the tube axis. By varying the orientation of the axial plane
with respect to the laser sheet, we image the axial flow at different polar angles θ (see
figure 1(c) and supplementary movie 1). The flow in the x–y plane is captured from
the bottom of the tank using a horizontal laser sheet and a 45-degree inclined mirror
(supplementary movie 2). Videos are recorded at 5 fps using a CMOS camera (Basler
acA2040-90um). The spatial resolution of PIV is 1.3 mm in the x–y plane, and 4.4 mm
in the x–z plane. The root mean square velocity error is 0.03ωR. We also simulate the
flow field of two rotating helices using slender-body theory (SBT). The SBT formulas
from Rodenborn et al. (2013) for a single helix are extended for two rotating helices with
different d and �φ (see Appendix A).

3. Results

3.1. Torque
We first measure the time-averaged torque required to rotate a single helix in a helical pair,
where two helices, separated by distance d, rotate at the same speed with a phase difference
�φ (see figure 2). The torque is normalised by Ts , the torque required to rotate a single
helix at the centre of the tube at the same speed. At large separations, T/Ts → 1, indicating
negligible hydrodynamic interactions between distant helices. As the helices move closer,
T displays stronger deviation from Ts : T < Ts for �φ < π/2, whereas T > Ts for �φ >

π/2. Interestingly, the hydrodynamic coupling between the helices vanishes at a critical
phase difference �φ = �φc ≈ π/2, leaving T = Ts regardless of their spacing. The SBT
calculation in an unbounded fluid quantitatively matches our experiments (figure 2), except
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Figure 2. The torque required to rotate one helix in a helical pair, T , as a function of the spacing between the
helices, d, at different phase differences �φ. Here, T is normalised by the torque required to rotate a single
helix positioned at the centre of the system, Ts , and d is normalised by the helical radius R. Symbols are
experimental data, while the lines show the corresponding SBT calculations.

at small d, where higher-order near-field interactions ignored in SBT become important
due to the close proximity of the helices. The overall agreement suggests that the system
boundary at R0 = 25R has a minimal effect.

While the impact of hydrodynamic interactions on the torque of a flagellar bundle
has been explored in simulations (Kim & Powers 2004; Buchmann et al. 2018; Tătulea-
Codrean & Lauga 2021), we provide direct experimental evidence of this non-trivial
effect, which has significant implications for the dynamics of bacterial flagellar bundles.
In particular, during bundle formation, flagella must synchronise their rotation (�φ → 0)
while reducing their separation (d → 0). As the torque and the rotation speed of a helix
are linearly correlated in Stokes flow via a drag coefficient ξ , i.e. T = ξω, our results show
that ξ of a rotating helix in a helical pair decreases with decreasing d and �φ, leading
to the observed decrease in torque when the helices rotate at a constant speed (figure 2).
For bacterial flagella that operate under constant torque (Berg 2004), this decrease in drag
coefficient results in an increase in flagellar rotation speed ω = T/ξ as d → 0 and �φ → 0
during bundle formation. Notably, ξ depends only on the geometry of the system and the
fluid viscosity, regardless of whether the helices rotate at a constant speed or constant
torque. Hence while the power required to rotate a helix, T ω = ξω2, decreases with ξ

as d and �φ reduce in our case with constant ω, T ω = T 2/ξ increases with decreasing
ξ for bacteria during bundle formation under constant T . Thus unlike in-phase beating
of two undulating sheets, which minimises energy dissipation (Taylor 1951), flagellar
synchronisation is not a power-saving mechanism for bacteria (Reichert & Stark 2005;
Kanehl & Ishikawa 2014). Our results also indicate that increasing the number of flagella
in a bundle reduces the drag coefficient of each flagellum in the bundle, allowing flagella
to rotate at higher speeds under constant torque (Kamdar et al. 2023).

3.2. Hydrodynamic interaction
To illustrate the effect of hydrodynamic interactions between two rotating helices on
the torque, we first show the PIV flow field of a single rotating helix in the x–y plane
(figure 3a). Next, we introduce an imaginary helix, placed at distance d = 3R to the left
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Figure 3. Hydrodynamic interactions between rotating helices. (a–d) The x–y flow field of a single rotating
helix with its axis positioned at (R, 0) over one rotation cycle obtained from PIV. White lines indicate
streamlines, while the colour represents the magnitude of the in-plane velocity vx−y , normalised by the rotation
speed ωR (see colour bar below (e)). The solid black line represents the circular trajectory of the real helix,
with its cross-section in the plane marked by a black dot. When an imaginary helix is placed at (−2R, 0), it
also traces a circular path, shown as the dashed circle. The empty symbols mark the position of the imaginary
helix when the phase difference between the real and imaginary helices is �φ = 0 (diamond, left), �φ = π/2
(triangle, bottom), and �φ = π (square, right), respectively. Red arrows indicate the rotation velocity of the
real and imaginary helices. (e) The torque on an imaginary helix in the flow field of a real helix, 〈vr

θ 〉/ωR,
approximates the torque on one helix in the helical pair, T/Ts . Symbols are experimental measurements of
T/Ts , the same as those in figure 2. Lines represent 〈vr

θ 〉/ωR.

of the real helix, that experiences but does not disturb the flow of the real helix. This
imaginary helix enables a ‘one-way’ hydrodynamic coupling, where the imaginary helix
experiences the flow and the resulting hydrodynamic force from the real helix, but does not
influence the real helix. Consider three phase differences, �φ = 0, π/2 and π, represented
by the three positions of the imaginary helix (three empty symbols along the dashed circle
in figure 3a). At �φ = 0 (empty diamond on the left), the flow of the real helix aligns with
the rotation direction of the imaginary helix. As a result, the imaginary helix rotates at a
lower speed relative to the local flow, experiencing reduced fluid drag and consequently
smaller torque. In contrast, at �φ = π (empty square on the right), the local flow opposes
the rotation direction of the imaginary helix. The imaginary helix rotates at a higher
speed relative to the local flow, resulting in increased drag and larger torque. Finally,
at �φ = π/2 near �φc (empty triangle at the bottom), the flow is nearly perpendicular
to the rotation direction of the imaginary helix, causing minimal modification to the
torque experienced by the imaginary helix. As the helices rotate, their relative positions
evolve over time (figures 3a–d). Nevertheless, throughout the rotation cycle, the relative
orientation between the rotation of the imaginary helix and the local flow remains
qualitatively similar, except when a flow vortex passes near the imaginary helix (figure 3c).
During this phase, however, the magnitude of the local flow drops significantly due to the
presence of the vortex, minimising the hydrodynamic interaction between the helices.

Quantitatively, we calculate the velocity of the imaginary helix in the reference frame
of the local flow of the single real helix at time t , vr

θ (t) = ωR − vl(t), where ωR is the
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Figure 4. Hydrodynamic interactions between rotating helices under confinement (a–c) R0 = 7R and (d–f )
R0 = 3.5R. (a,d) Torque on one helix in the helical pair as a function of phase difference �φ at different
spacings d. Symbols denote experimental data, while dotted lines represent model predictions (3.2). The green
dashed line in (d) is the model prediction using experimentally obtained Te/Tc, instead of (3.1). (b,e) Flow field
in the x–y plane of a rotating helix positioned at (R, 0). The circle on the right indicates the helix’s trajectory,
while the dashed circle on the left represents the trajectory of an imaginary helix. Three phase differences
between the real helix and the imaginary helix are shown, consistent with those in figure 3(a). (c,f ) Velocity of
the imaginary helix in the reference frame of local flow, 〈vr

θ 〉, normalised by the helix’s rotation speed in the
lab frame, ωR, as a function of �φ at different d.

rotation velocity of the imaginary helix in the lab frame, and vl(t) is the local flow velocity
of the real helix projected onto the rotation direction of the imaginary helix. We then
take a time average over one rotation period: 〈vr

θ 〉 = (ω/2π)
∫ 2π/ω

0 vr
θ (t) dt . Due to the

periodicity of the helices, this cycle average at a fixed height z is equivalent to a spatial
average over a pitch at a fixed time t , apart from minor end effects. As the torque on a helix
is proportional to its rotation speed, the torque on the imaginary helix in the reference
frame of the local flow of the real helix, relative to the torque of the real helix in the lab
frame, is 〈vr

θ 〉/ωR, which serves as a good estimate of the normalised torque on a helix in
the helical pair, T/Ts (figure 3e).

3.3. Confinement
Bacteria often inhabit confined or structured environments, such as soil pores, intestines
and biofilms, where their motility is significantly altered (Vizsnyiczai et al. 2020). To
understand the pumping and mixing of rotating helices in narrow microfluidic channels,
it is also important to resolve the dynamics of rotating helices under confinement.
However, a SBT formulation for rotating helices in cylindrically confined geometries
remains unavailable. Instead, we experimentally investigate a pair of rotating helices
under confinement using tubes of varying radii R0, and extend our simple model of
hydrodynamic interactions to predict the torque on confined helices.

Figures 4(a) and 4(d) show the torque on one helix in the helical pair as a function of
phase difference at varying spacings under two different confinement conditions. Similar
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to the weakly confined system, the torque increases with �φ, and this increasing trend
weakens at large spacings. However, under confinement, the mean torque shifts to higher
values as d increases. Consequently, the critical phase difference �φc, at which the
hydrodynamic interactions disappear, decreases with increasing d, and eventually vanishes
at large d.

Following the method in § 3.2, we estimate the torque on the helices from the flow field
of a single helix located near the centre of the confining tube (figure 4b,e). The cycle-
averaged relative velocity of a rotating imaginary helix in the flow field of the single helix
〈vr

θ 〉 is computed at different �φ and d (figure 4c,f ). While 〈vr
θ 〉/ωR captures the trend of

T/Ts , it fails to predict the upward shift in the mean torque with increasing d. As a result,
the predicted �φc remains close to π/2 regardless of confinement.

The offset of the measured mean torque arises because of the eccentric positioning of
the helices and their proximity to the system boundary at large d in confined systems.
As the effect of the shape of an object on fluid drag is significantly subdued in Stokes
flow, we hypothesise that the cycle-averaged torque on a rotating helix within a tube can
be approximated by the torque on a rotating cylinder in the tube, where the radius of the
cylinder is equal to the helical radius of the helix R. The ratio between the torque on
an eccentric cylinder Te and that on a concentric cylinder Tc is given as (Jeffery 1922;
Yamagata 1970)

Te

Tc
= 1

G

P

Q

1
1 + (e/δ)2/2

,

with P = 1 + 2(e/δ)2 1 + (δ/2R) − (δ/2R)2

(1 + δ/R)2 − 1
2

(e/δ)4(δ/R)2

(1 + δ/R)2 ,

Q =
⎡
⎢⎣1 − (e/δ)2[

1 + 1
2 (δ/R)(1 − e/δ)2

]2

⎤
⎥⎦

1/2

and G = 1 − 1
2
(e/δ)2 δ/R

1 + (δ/2R)
. (3.1)

Here, δ = R0 − R is the difference between the radius of the cylinder and that of the tube,
and e/δ = d/(2δ) is the eccentricity (figure 5 inset). To verify our hypothesis, we first
identify the critical phase difference �φc at each d and R0 from our calculation of 〈vr

θ 〉
(figure 4c,f ), where the hydrodynamic interactions between the two helices are nullified.
We then obtain T/Ts at �φc from experiments via interpolation (figure 4a,d), and compare
the results with the prediction of (3.1) (figure 5). Experiments and the model exhibit good
quantitative agreement in the weakly and moderately confined geometries, supporting our
hypothesis. Not surprisingly, (3.1) overestimates the torque by ∼ 20% for the most confined
geometry when the helix is too close to the wall at large d, where a rotating helix can no
longer be approximated accurately by a rotating cylinder.

The quantitative agreement shown in figure 5 suggests that we can decompose the
effect of the confining boundary on the torque of rotating helices into two parts. (i) The
boundary modifies the flow field of the helices, altering their mutual hydrodynamic
interactions, as reflected in the trend of 〈vr

θ 〉/ωR. (ii) The helices experience additional
drag, (Te − Tc)/Tc, from the hydrodynamic interactions with the boundary due to their
eccentric positions within the confining tube. This decomposition of the confinement-
induced hydrodynamic interactions into pair-induced and self-induced contributions is
similar to the approach adopted in a recent study on hydrodynamic bound states of rotating
cylinders under confinement (Guo, Man & Zhu 2024). By summing the two contributions,
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1.0

1.1

0.9
0 0.5

R0/R = 25
R0/R = 7
R0/R = 3.5

δ = R0 – R

R0

O R
e

1.0

T e
/
T c

e/δ

Figure 5. Torque on a cylinder or helix Te in tubes of radius R0 as a function of the eccentricity e/δ. Here,
Te is normalised by the torque of a helix rotating concentrically in the tubes, Tc. Symbols are from experiments,
and lines are from (3.1). Inset: schematic illustrating the position of the cylinder/helix within a tube.

T

Ts
= 〈vr

θ 〉
ωR

+ Te − Tc

Tc
, (3.2)

we quantitatively predict the torque on a pair of rotating helices across different spacings,
phase differences and confinement levels (figures 3(e), 4(a) and 4(d)).

What are the implications of our findings on bacteria swimming under confinement?
First, experiments on E. coli show that bacteria tend to swim near solid boundaries in
channels of large radii, but shift to swimming along the central axis of more confined
channels when the confining radius R0 is less than ∼ 7R (Vizsnyiczai et al. 2020). Our
results suggest that this axial swimming behaviour, characterised by low eccentricity,
reduces the drag coefficient of the flagellar bundle ξ in the torque–speed relation T = ξω

(figure 4a,d). Thus in confined environments, a bacterium is situated at a location where
its flagella rotate most rapidly under constant motor torque. Second, our findings reveal
that the change of ξ(d) at �φ = 0 becomes more pronounced in confined systems. This
implies that the speed-up of flagellar rotation during bundle formation discussed above
should be more evident under confinement – an intriguing prediction that is worth testing
experimentally. Finally, although our results support prior predictions that ξ increases
with the degree of confinement (Vizsnyiczai et al. 2020), our data do not clarify whether
confinement enhances or reduces the thrust force of a flagellar bundle (Liu, Breuer &
Powers 2014). For a translationally fixed rotating helix subjected to a constant torque, the
resulting thrust force is F = cT/ξ , where c is the off-diagonal term in the drag coefficient
matrix that couples the thrust and rotation of the helix, F = cω (Kamdar et al. 2022, 2023).
While our study shows that ξ increases with confinement, c also increases concurrently
(Vizsnyiczai et al. 2020). Future work should aim to directly measure the thrust force of a
helical pair under confinement, enabling an estimate of c(R0).

3.4. Axial flux and pump efficiency
Finally, we investigate the fluid transport capacity of two rotating helices in the weakly
confined system (R0 = 25R) by imaging the 3-D axial flow. While the radial flow vr in
the axial plane quantitatively agrees with our SBT calculation and previous numerical

1013 R1-8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
16

.7
3.

21
6.

53
, o

n 
04

 N
ov

 2
02

5 
at

 0
6:

30
:5

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
24

0

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10240


Journal of Fluid Mechanics

20

10

0 10 20

20

10

0

10 20

40

20

20

−20 −20
0

20

−20
0

20

−20
0

200

20

−20
0

20

−20
0

0

40

20

20

−20 −20
0

200

0

40

20

0

−20
0

20
20

−20
0

40

20

0

20

10

0

r/R y/R

y/Ry/R

y/R

y/R

x/R

x/R

x/R

x/Rx/R

z/R

z/Rz/Rz/R

r/R

z/R

(a)

(c)

(b) (e)(d )

( f ) (g)

z/R 〈v z
〉/ω

R

0

−0.1

−0.2

Figure 6. The 3-D axial flow field from experiments. (a) Instantaneous vz(r, z) when the cross-sections of the
helices at the z = 0 plane are oriented at φ1 = φ2 = 1.28π. (b) Time-averaged axial flow field 〈vz(r, z)〉 over
multiple rotation cycles for �φ = 0 and d/R = 6 in the axial plane (θ = 0). (c) Stack of seven time-averaged
axial flow fields at different θ . The 3-D axial flow field with (d) d/R = 2 and �φ = 0, (e) d/R = 2 and �φ =
3π/4, (f ) d/R = 10 and �φ = 0, and(g) d/R = 10 and �φ = π. Dashed circles indicate rc(θ) where 〈vz〉 = 0.

predictions (Kim & Powers 2004; Buchmann et al. 2018) (see supplementary movie
2), the axial flow vz exhibits qualitatively different behaviour (supplementary movie 1).
Figures 6(a) and 6(b) show instantaneous and time-averaged flow fields of the axial flow
through the axes of the helices, which reveal a downward flow (−z) near the helices, and
an upward flow (+z) near the boundary. Unlike in an unbounded fluid, where vz decays to
zero as r → ∞, vz reaches zero at a finite radius rc, and becomes positive near the wall.
The confinement inherent in any experimental system ensures that the net flux across any
cross-section of the system normal to the axes of the helices is zero. Due to the lack of
axisymmetry in the flow field, the locus rc(θ) is non-circular and varies with the azimuthal
angle θ . We determine rc(θ) for each experiment by interpolating the time-averaged flow
field to identify the contour where 〈vz〉 = 0.

To image the 3-D flow field, we rotate the supporting rail and change the polar angle
θ ∈ [0, π/2] (figures 1(c) and 6(c)), leveraging the bilateral symmetry of the system.
Representative time-averaged 3-D axial flow fields 〈vz(r, θ)〉 for helices of two phase
differences and spacings are shown in figures 6(d)–6(g). We compute the axial flux
Q = ∫ 2π

0

∫ rc(θ)

0 〈vz(r, θ)〉r dr dθ from these flow fields (figure 7a). Compared with the flux
of two independently rotating helices 2Qs , helices pump less fluid when acting in a bundle,
regardless of their phase difference �φ or spacing d. Similar to torque, Q increases �φ,
with the increasing trend diminishing at large d. For two helices at the smallest spacing
in our experiments, Q ≈ 1.2Qs when �φ = 0, indicating that the two closely spaced
helices behave similarly to a single rotating helix. In an unbounded fluid, SBT predicts
a diverging flux due to the slow decay of the axial flow following ∼ 1/r at large distances.
However, the ratio of the flux of two helices to that of a single helix remains finite, as
the pair effectively behaves like a single helix at large distances. Interestingly, despite
the qualitative difference in the flow field, Q/2Qs from SBT provides a good match to
experimental results (figure 7a).

Although helices in a bundle pump less fluid, they also require less power to rotate.
We quantify this trade-off by measuring the pump efficiency ε = [Q/(2T ω)]/[Qs/(Tsω)]
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Figure 7. Fluid transport and pump efficiency. (a) Normalised axial flux of rotating helices as a function of
phase difference �φ for various spacings d. (b) Pump efficiency ε as a function of �φ for different d. Symbols
represent experimental data, while lines correspond to SBT calculations.

(Barrett et al. 2024). Figure 7(b) shows ε for a pair of helices at different �φ and d.
At small spacings, the pair are more efficient when rotating in phase. However, their
efficiency always remains lower than that of two independently rotating helices. The SBT
calculation provides a reasonable estimate of the experimental results.

A swimmer and a pump represent dual manifestations of the same low-Re fluid
phenomenon: a tethered swimmer functions as a pump, while an unanchored pump
behaves as a swimmer (Raz & Avron 2007). Specifically, the fluid flux generated by fixed
rotating helices scales linearly with their swimming speed when untethered, while the
power required for rotation as a pump is linearly correlated with the power needed for
swimming. Thus our results suggest that a bundle of helical filaments is less efficient for
swimming than individual filaments rotating at the same speed.

4. Conclusion
By integrating experiments with hydrodynamic modelling, we present a study on the
dynamics of rotating helices in low-Reynolds-number flow – a fluid phenomenon with
fundamental implications for the function of bacterial flagellar bundles, and practical
relevance for microfluidics. In particular, we construct a scaled experimental model of
a flagellar bundle of two helices, and examine how helix spacing and phase difference
influence torque, flow fields and fluid transport. Building upon the flow characteristics of
a single helix, we develop a simple model that quantitatively predicts the torque of a pair of
rotating helices. We further extend this model to the complex yet important case of rotating
helices under confinement, enabling torque calculations that are otherwise inaccessible
through existing analytical theories. Finally, we explore the fluid transport capabilities of
rotating helices, and assess their efficiency as low-Reynolds-number fluid pumps. Our
findings provide key insights into the dynamics of bacterial flagellar bundles and offer
valuable guidelines for designing microfluidic pumps.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10240.
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Appendix A. Slender-body theory
Slender-body theory (SBT) provides a widely used mathematical framework for analysing
the dynamics of flagella and cilia in microorganism locomotion (Lauga 2020). We build
on the SBT formulation developed by Rodenborn et al. (2013), which relates the force
density along a rigid slender helix to its geometry, as well as its rotational and translational
velocities in an unbounded fluid. Here, we extend their model to include a second, rotating
helix that is parallel to the original and separated from it by distance d. The choice of
SBT is supported by the work of Martindale, Jabbarzadeh & Fu (2016), which compared
several computational methods for modelling helical filaments. The study shows that SBT
is the optimal choice, offering a balance of accuracy and computational efficiency for the
parameter regime relevant to our system, with λ/R = 12 and a/R = 0.1. Here, λ and R are
the pitch length and radius of the helix, respectively, and a is the radius of the filaments.

We discretise each helix by a set of nodal points {ϕn} along the helical angle ϕ(s) =
(2π/λ)s cos θ , where θ = atan(λ/2πR) is the pitch angle, and s is the arc length. Each
helix is approximated by N straight segments of length �s = R �ϕ csc θ , where �ϕ is the
mesh size in the helical phase. Following the parameters used by Rodenborn et al. (2013),
we set N = 54, yielding a helix of finite length L = 32R that matches the geometry of the
helices in our experiments.

The centreline of helix 1 (n = 1, . . . , N ) is

r1(ϕn) = R

(
cos ϕn − d

2R
, − sin ϕn, ϕn cot θ

)
, (A1)

whereas that of the helix 2 (n = N + 1, . . . , 2N ) is

r2(ϕn) = R

(
cos ϕn + d

2R
, − sin ϕn, ϕn cot θ

)
. (A2)

Using the formulation from (18) of Rodenborn et al. (2013), extended to include the second
helix with n = 1, . . . , 2N , the velocity at node n is

un =
[
I − t̂n t̂T

n + Kn
] · fn

4πη
+ �s

8πη

2N∑
m=1
m 	=n

(
I

|rnm | + rnmrT
nm

|rnm |3
)

· fm, (A3)

where rn = rk(n)(ϕn) is the centreline position of node n, rnm = rk(n)(ϕn) − rk(m)(ϕm)

is the relative position between two segments n and m, and k(n) = 1 or 2 indicates
whether segment n belongs to helix 1 or helix 2. The first term denotes local contribution,
where t̂n is the local tangent at node n, fn is the unknown force density, and Kn =
ln(�s/2δ′)

(
I + t̂n t̂T

n

)
arises from an asymptotic integral over a small neighbourhood

of node n between the ‘natural cut-off’ δ′ = a
√

e/2 and �s/2 (Lighthill 1976). Here,
e is Euler’s number. The second term accounts for the far-field contribution of all other
segments m 	= n, including those on the other helix. Equation (A3) can be expressed more
compactly as a linear mapping:

uT = GfT, (A4)

where u = (u1, u2, . . . , u2N ), f = (f1, f2, . . . , f2N ), and G is a 6N × 6N matrix that
captures both self and mutual hydrodynamic interactions. The diagonal terms account
for each segment’s self-interaction via the local dipole correction, while the off-diagonal
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terms represent interactions between all segment pairs (n, m), whether on the same helix
or across different helices.

For a prescribed motion – such as rigid-body rotation about a fixed axis with angular
velocity Ω , combined with a translation velocity V – the nodal velocity un is determined
by the no-slip boundary condition

un = Ω × (
rn − raxis(n)

) + V, (A5)

where raxis(n) is the centre of rotation of the helix to which segment n belongs. By
equating (A4) and (A5), we solve for the force densities {fn}n=1,...,2N . The axial force
Fz and torque T on each helix are obtained by summing over the corresponding subset of
nodes.

Finally, the flow field v(x) is evaluated from {fn} by (Kim & Powers 2004)

vi (x) =
2N∑
n=1

[
Si j (x, rn)

fn j

8πη
− Di j (x, rn)

a2 fn,⊥ j

16πη

]
�sn, (A6)

where i and j run over x , y and z. The summation runs over the arc length of both helices,
fn is the force per unit length exerted on the fluid by the nth segment, and fn⊥ is the
transverse part of fn . The Stokeslet tensor is

Si j (x, rn) = δi j

|x − rn| +
(
xi − rn,i

) (
x j − rn, j

)
|x − rn|3

, (A7)

and the doublet tensor is

Di j (x, rn) = − δi j

|x − rn|3
+ 3

(
xi − rn,i

) (
x j − rn, j

)
|x − rn|5

. (A8)
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