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Abstract

The propagation of elastic-flexural-gravity waves through an ice shelf is modeled using full three-
dimensional elastic models that are coupled with a treatment of under-shelf sea-water flux: (i)
finite-difference model (Model 1), (ii) finite-volume model (Model 2) and (iii) depth-integrated
finite-difference model (Model 3). The sea-water flow under the ice shelf is described by a wave
equation involving the pressure (the sea-water flow is treated as a “potential flow”). Numerical
experiments were undertaken for an ice shelf with ‘rolling’ surface morphology, which implies a
periodic structure of the ice shelf. The propagation of ocean waves through an ice shelf with rolling
surface morphology is accompanied by Bragg scattering (also called Floquet band insulation). The
numerical experiments reveal that band gaps resulting from this scattering occur in the dispersion
spectra in frequency bands that are consistent with the Bragg’s law. Band gaps render the medium
opaque to wave, that is, essentially, the abatement of the incident ocean wave by ice shelf with
rolling surface morphology is observed in the models. This abatement explains the ability of pre-
serving of ice shelves like the Ward Hunt Ice Shelf, Ellesmere Island, Canadian Arctic, from the
possible resonant-like destroying impact of ocean swell.

1. Introduction

The Ward Hunt (west) Ice Shelf located near Ward Hunt Island, 83°6’0”/ N; 74°10°0”” W on the
north coast of Ellesmere Island, Nunavut, Canada, constitutes a ~50 m thick rim of landfast
multi-year marine ice. The Ward Hunt Ice Shelf is not strictly an ice shelf in the sense com-
monly used in reference to Antarctic ice shelves, because it originates as multi-year landfast sea
ice that has become immobile to the point of no longer drifting with wind and ocean current
(Dowdeswell and Jeffries, 2017). Owing to this immobility, the Ward Hunt Ice Shelf represents
a secure floating platform that allows observation of sea swell and other types of surface-gravity
waves (e.g. impulsive waves generated from ridging, thermal fracturing, ‘micro tsunamis’ gen-
erated by ice-cliff calving, etc.) using broadband seismometers (Cathles and others, 2009). The
concept of using ice-shelf platforms as observatories for sea swell in sea-ice covered waters is
well supported in various Antarctic examples (e.g. Cathles and others, 2009; Bromirski and oth-
ers, 2015; Cannata and others, 2019); however, the concept has never been tried before on ice
shelves that fringe the Canadian Archipelago and Greenland. Seismometers have been deployed
on embayed sea ice, for example in Svalbard; however, these deployments are at risk due to
sea-ice breakup and drift (e.g. Serripierri and others, 2022).

Broadband seismographs deployed on floating ice shelves have the ability to observe a vari-
ety of oceanic and sea-ice phenomena, including sea swell (both locally generated and trans
oceanic (Cathles and others, 2009; Tsai and McNamara, 2011), hydro acoustic signals (tremor)
generated by colliding icebergs and sea ice floes (MacAyeal and others, 2008), impulsive waves
generated by iceberg calving and sea-ice ridging (MacAyeal and others, 2009), ice quakes asso-
ciated with sea-ice deformation and thermal fracturing of sea ice (Lewis and others, 1994) and
superimposed ice layers (MacAyeal and others, 2019). In recent years, these observations have
been used to demonstrate how seismological observation can define conventional properties
such as sea-ice concentration and thickness (Cannata and others, 2019), as well as to infer
difficult-to-observe properties such as the depth of snow superimposed on sea ice (e.g. Chaput
and others, 2018; Schlindwein and others, 2020; Serripierri and others, 2022; Guillemot and oth-
ers, 2021). An example of ice-shelf-deployed seismic data can be found in Cathles and others
(2009).

The surface elevation of the now-diminished Ellesmere Ice Shelf and the Ward
Hunt Ice Shelf consists of periodic waves, called ‘rolls’ by the European explorers who
first described them (Hattersley-Smith and others, 1955; Hattersley-Smith, 1957). These
rolls have an amplitude of meters and a wavelength of hundreds of meters. Rolls are
rarely found on the ice shelves of the Antarctic, and only in limited areas, not the
pervasive full coverage seen on the Ward Hunt Ice Shelf. Their origin is unknown,
and many hypotheses have been offered to explain them (Jeffries, 2017; Coffey and
others, 2022). Whatever their origin, the fact that they dominate an ice shelf that
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grew from multi-year sea ice in the Last Ice Area, a region in the

high latitudes of the Canadian Arctic and Greenland (e.g. Newton
and others, 2021), demands attention. A hypothesis that we put for-
ward is that the rolling surface morphology, created by whatever
mechanism, offers an advantage to the survival of the multi-year
sea ice which has this morphology. Specifically, the periodic vari-
ation of ice thickness creates ‘band gaps, or frequency bands that
prohibit the propagation of air- and water-coupled flexural-gravity
waves (Freed-Brown and others, 2012; Nekrasov and MacAyeal,
2023). If the right frequencies of waves are prohibited from propa-
gating through the ice shelf (they will be reflected at the ice front),
it is possible that the band gap will protect the ice shelf from
wave-flexure-induced damage and fracture.

The propagation of elastic-flexural waves through an ice shelf
can be modeled by elastic models (e.g. Holdsworth and Glynn,
1978, among many others), based on elastic thin plate/elastic
beam approximations. Some of these models consider coupled ice-
shelf/sub-ice-shelf cavity systems (Holdsworth and Glynn, 1978;
Sergienko, 2013, 2017; Papathanasiou and others, 2015, 2019;
Meylan and others, 2017; Ilyas and others, 2018; Kalyanaraman
and others, 2019, 2020; McNeil and Meylan, 2023; Bennetts and
others, 2024) and permit estimation of possible effects of tides
and ocean swell actions on the calving process. In particular, these
models consider the eigenvalue problem for the ice-shelf/sub-ice
sea-water systems (Holdsworth and Glynn, 1978; Papathanasiou
and others, 2019), which is of interest in terms of possible reso-
nances in the system. Further advancement of elastic-beam models
occurred in the direction of viscoelastic rheological model devel-
opment. In particular, tidal flexure of an ice shelf was obtained
using the linear viscoelastic Burgers model (Reeh and others,
2003; Walker and others, 2013), nonlinear thin-plate viscoelas-
tic model (MacAyeal and others, 2015) and the nonlinear 3-D
viscoelastic full-Stokes model (Rosier and others, 2014). In par-
ticular, viscoelastic modeling provides a way (i) to explain the
observed tidal flexure data and (ii) to explain the ice-shelf response
to sudden changes in surface loads and applied bending moments
(e.g. draining supraglacial lakes, iceberg calving, surface and basal
crevassing).

Investigation of the modeled dispersion spectra reveals that
the spectra obtained for an ice shelf with crevasses can be qual-
itatively different from the spectra in the case of no crevasses
(Freed-Brown and others, 2012). Crevasses are widely distributed
features in all ice shelves, and their appearance, growth and pene-
tration are the subjects of many studies (e.g. van der Veen, 1998;
van der Veen, 2002; Scambos and others, 2000). Essentially, the
dispersion spectra obtained for a crevasse-ridden ice shelf reveal
‘band gaps’ that are absent from the spectra obtained for an ice
shelf without crevasses. These band gaps are the frequency ranges
over which no eigenmodes exist (Freed-Brown and others, 2012)
and are a phenomenon that emerges when a wave is propagated
through a periodic structure (Sheng, 2006). Band gaps arise in
many different systems, including crystallography, photonic crys-
tals, electron transport in metals and semiconductors (Ashcroft
and Mermin, 1976), the formation of nearshore underwater sand-
bars (Mei, 1985), and gravity wave propagation through periodic
structures of floating ice (Chou, 1998; Bennets and Squire, 2009,
Bennets and others, 2009; Bennets and Williams, 2010; Bennetts
and Squire, 2012).

In this study, the propagation of elastic-flexural waves through
an ice shelf with rolling surface morphology (Ward Hunt Ice Shelf
morphology) was modeled using full three-dimensional (3-D)
finite-difference elastic models that are coupled with a treatment of
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under-shelf sea-water motion. These models differ in their approx-
imation of the momentum equations: (i) Model 1 is based on
the known differential form of the momentum equations and on
the finite-difference approximation of the momentum equations
(Konovalov, 2020, 2021b); (ii) Model 2 is based on the integral form
of the momentum equations and the approximation of this form by
the finite-volume method (Konovalov, 2023b, 2023c¢); (iii) Model 3
(Konovalov, 2021¢) is based on the integrodifferential form of the
momentum equations and on a finite-difference approximation of
this form (in this model, the depth integration does not imply a
thin plate approximation). In all three of these models, sea water
under the ice shelf is treated as a homogeneously dense fluid, and
the flow of water under the ice shelf is treated as a ‘potential flow’
The sea-water motion in all developed models is described by a
wave equation involving the pressure, and it couples to the elastic
motions of the ice through the pressure at the ice/water interface
(Holdsworth and Glynn, 1978).

Numerical experiments show that ‘rolling’ surface morphology
of the ice shelf, a distinctive feature of Arctic ice shelves along
Ellesmere Island, can have a profound effect on how elastic-flexural
waves propagate through the system. The experiments demonstrate
that rolling surface morphology produces Bragg scattering (also
called Floquet band insulation) that is potentially effective in pre-
venting an incident wave from entering the ice shelf and causing
subsequent fracture damage. The numerical results show frequency
band gaps (band insulation) that are consistent with the Bragg’s law.
The numerical results further indicate that these band gaps ren-
der the ice shelf/ocean system opaque to wave propagation with
frequencies that fall within the range of the band gaps. By abating
incident ocean wave activity, the rolling surface morphology inad-
vertently provides a fitness advantage to the ice shelf that protects
it from damage.

2. Field equations

The 3-D elastic model is based on the well-known momen-

tum equations (e.g. Landau and Lifshitz, 1986; Lurie,
2005):
%+8ny+80'xz B az_U
Ox dy oz o
0oy N % N doy, PV
ox oy oz P (1)
c')azx + aazy aO'ZZ o 82 + .
ox oy oz o TPE
0 <x <Ly (x) <y <yx);hy(x,y) <z < hy(x,y),

where (XYZ) is a rectangular coordinate system with x-axis
along the central line (in the direction of wave propagation),
and z-axis is pointing vertically upward; U, V and W are two
horizontal and one vertical ice displacements, respectively; o
is the stress tensor; and p is ice density. The ice shelf is of
length L along the central line. The geometry of the ice shelf
is assumed to be given by lateral boundary functions y, , (x)
at sides labeled 1 and 2 and functions for the surface and
base elevation, kg, (x,y), denoted by subscripts s and b, respec-
tively. Thus, the domain on which Eqns (1) are solved is 2 =
{0<x <Ly (%) <y<y(x), hy(x,y) <z < hg(x,9)}.
Equation (1) can be rewritten in integrodifferential form. This
integrodifferential form results from the vertical integration of the
momentum Eqn (1) from the current vertical coordinate to the
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ice surface. In particular, considering the first equation from Eqn

(1) and integrating over z’ from the current z-coordinate to h, we
obtain the following equation:

dz’ (2

/ iz @

Next, using the Leibniz integral rule, we replace the first and
second terms in Eqn (2) with the following, respectively.

h,

hy
aaxx ’ aax/" ’
/Wdz + /8_de + Oxzlomn, — O

z

hy A
50xx , 0 , Oh
d 8x /Jxxdz - X'X)Z:hs 6)6 3 (31)
60 ) Oh,
= b/a dz’ — WL:%E;' (3.2)

z

Thus, instead of Eqn (2), we obtain the following equation:

o f oh,
6_ /Uxx dz’ + a /0' dz’ — )Z:hsa
Ohy
- ( xy)z h ay + ( ) =p a 12 dZ )
Taking in  to  account that the  expression
— (On)y g 22 (), B0,

z=hs 8y

is the x-component of the force
ang\2 [ ohg

()4 (5)

acting on a unit square of the ice surface (e.g. Landau and Lifshitz,

1986) and it is equal to zero accordingly the boundary conditions

(ice surface is stress free), we finally obtain the following equation:

kg
9 8U |,
/axx dz’ + 8 /U dz’ — oD dz. (5)

z

By performing similar manipulations with the second and third
equations from Eqn (1), we obtain the following equations:

A
8/0 dz/ + — /adz —p/wdz (6)

and

o [ .
a—/axxdz + & /aydz — o, = pg (hy—2)

82W

e o2

z

dz’. (7)

Thus, by combining Eqns (5)-(7), we obtain the depth-
integrated momentum equations, which are expressed as follows:
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3
hg hy hy 92
0 / Owdz + i/ Oydz' — oy, = p/ a—Udz’;
doy J, do, J, , Ot
a (Mt ., 9 M PV
ao J, 0,dz" + a—ay/z o,,dz — o, fp/z sz,
b /hs o /hs
gzxdzl + 5 O, dz Oz = pg(hs - Z)
do, |, goy, J, 7
hywdh
0 <x <L yi(x) <y <px);hy(x,y) <z <hyx,y).
(8)

Similar manipulations, for example, yield equations describing
ice flow in a two-dimensional ice-flow model (Pattyn, 2000, 2002).
Sub-ice water flow is described by the the following wave equa-
tion (Holdsworth and Glynn, 1978):
oP
h-).

2w, 1 0 (d3P'>+Li(
©ox) " p, 9y \"" 9y

o2 p, Ox

where p,, is the sea-water density; d; (x, y) is the depth of the sub-
ice water layer; W, (x, y, t) is the vertical deflection of the ice-shelf
base, and Wy, (x,y,t) = W (x, 5, hy (x,y) ,t);and P’ (x, ,t) is the
deviation of the sub-ice water pressure from the hydrostatic value.

The boundary conditions for the ice shelf are (i) a stress-free ice
surface; (ii) the normal stress exerted by sea water at the ice-shelf
free edges and at the ice-shelf base; and (iii) rigidly fixed edges at
the grounding line of the ice-shelf. Moreover, the linear combina-
tion of the boundary conditions (Konovalov, 2019) was also applied
in the models considered in this study. This linear combination is
expressed as

FZ(U7V7W)+ a2¢i(U7VaW):07 i= 172737

(10)

where

(i) F;(U,V,W) = 0 is the typical form of the boundary condi-
tions, that is oy 1, = f;, where f; is the given forcing on the
boundary and 7 is the unit vector normal to the surface;

(i) ®,(U,V,W) = 0 is the approximation based on integra-
tion of the typical form of the boundary conditions to the
momentum equations (Eq (1) or Eq (8));

(iii) the coeflicients a; and «, satisfy the condition a; + a, = 1.

The boundary conditions for the sea-water layer correspond to
the frontal incident wave. They are

ﬁ)mxzagiz&
o'
(if) aty =y, y = yy: — =0;
(iii) atx = L: P’ = Aop wg et
incident wave.

, where A is the amplitude of the

The full description of Model 1, based on Eqn (1), is presented
in Konovalov (2019, 2020, 2021a, 2021b). Model 2 is based on the
finite volume method of approximation of momentum equations
(1) and is presented in Konovalov (2023b, 2023c¢). The full descrip-
tion of Model 3, based on Eqn (8), is presented in Konovalov
(2021¢, 2023a).
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H(x) = Hy + Ay, (p,,/ p) cos(2rx/ Al)

2
-120 3
Figure 1. The ice-shelf and the cavity profiles considered in the 1 1 1 l i
numerical experiments. 1—ice-shelf surface; 2—ice-shelf base; -160 A L L A
3—sea bottom. The amplitude of ice-thickness oscillations Ay = 0 40{? 800 :I2OQ 1600 2000
18 m. Spatial periodicity (Al,) of the ‘rolls’ is equal to 0.5 km. Distance from the grounding line, X (m)
™n
3. Model setup k}g"> = A0 "=12 (13)
T

The numerical experiments with forced vibrations were under-
taken for a physically idealized ice shelf with the geometry shown
in Figure 1. In the undeformed ice shelf, the four edges had coor-
dinatesx = 0, x = L, y; = 0, y, = B, where L is the plate
length along the x-axis and B is the plate width along the y-axis
(B =y, — y,see Eqn (1)).

The ice plate had only one fixed edge (at x = 0), while the other
edges (at x = L, y; = 0, y, = B) were free. This is the special
case of an ice shelf, which is also known as an ‘ice tongue’ (e.g.
Holdsworth and Glynn, 1978). The intact ice tongue was 2 km in
longitudinal extent, 0.1-0.2 km width.

The ‘rolling’ surface morphology (Coffey and others, 2022) was
modeled by sinusoidally varying ice thickness:

H(x) = H0+AH%’ cos (27rx>’ (11)

Al,
where Ay is the amplitude of ice-thickness oscillations, which was
considered as a parameter of the models; Al is the spatial peri-
odicity of the ‘rolls’ (Al in the models was equal to 0.5 km); H,
in the models was equal to 25 m. Essentially, this ice tongue was
considered as a part of the Ward Hunt Ice Shelf.

Taking into account the hydrostatic balance, the elevation of the
ice surface hg (x, y) and the elevation of the ice base hy, (x, y) are
determined by the following equations, respectively:

hg (x,y) :H<1—pﬁ>, (12.1)
hy (x,y) = —HL, (12.2)

w

where H is the ice thickness (Eqn (11)).

That is, on the Ward Hunt Ice Shelf, both the ice surface and the
ice base exhibited sinusoidal changes along the centerline (Fig. 1).

The water-layer depth in the case of the intact ice tongue also
had sinusoidal variation (Fig. 1).

The periodic structure of the ice tongue is expected to provide
Bragg scattering if the double spatial periodicity of the rolls 2 Al is
a multiple of the wavelength . Respectively, the Bragg wavenum-

bers kg,") , at which we expect to observe band gaps in the modeled
dispersion spectra, are expressed as
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In all performed experiments, the physical properties of ice
were defined by the following values: Young’s modulus, E = 9 GPa,
and Poisson’s ratio = 0.33 (Schulson, 1999).

4. Numerical experiments

Numerical experiments were carried out using three models with
different combinations of parameters «; and «, in Eqn (10). The
results presented below were obtained using Model 1 for (i) a; =
I; o, = 0and (ii) o = 0.2; a, = 0.8; using Model 2 for (i)
oy = 1; o, = 0and (ii) &; = 0; a, = 1; and using Model 3 for
a;=1; o, =0.

The supplemental file contains the results obtained from the
experiments performed using Models 1 and 3. Here are the results
obtained using Model 2.

Figure 2 shows vertical deflections of the ice shelf. In general,
using the second type of boundary conditions (®; (U, V, W) in
Eqn (10)), the modeling reveal that the deflections are a super-
position of a pure bending mode (Lamb-type mode) and a pure
torsion mode (Fig. 2b). By determining the distances between the
maxima/minima along the centerline deflection profile and then

determining the average value, we obtain the wavelength and,
2w

accordingly, the wavenumber for a given periodicity T (T = —,

where w is the frequency of the forcing). Thus, we successively
obtain a dispersion curve—the dependence of the wavenumber on
the periodicity (or frequency) of the forcing (Fig 3).

In Figure 3, dispersion curve 1 was obtained for the ice shelf
with constant ice thickness (the case of Ay = 0). In this case,
the dispersion curve consists of sections of monotonic decrease,
which are separated by intermode spaces (Figure 3) accompany-
ing the transitions from the n + 1 to the n bending Lamb-type
mode. In the case of the rolling periodic geometry of the ice shelf
(Fig 1), the models yield the dispersion curves that have sections,
where the typical relationship with monotonic decrease and inter-
mode spaces is disturbed, as in dispersion curve 2 in Figure 3. In
Figure 3, this section of curve 2 is the band gap, which occurs due to
Bragg scattering and corresponds to the second Bragg wavenum-

ber k,()z) ~ 12.57 km™!. Essentially, these sections with disturbed
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Figure 2. The vertical deflections of the ice shelf resulting from the impact of the frontal incident wave were obtained using Model 2 with the period of forcing T = 4s
(T = 2—", w is the frequency of the forcing) in the case of (a) &; =1, a; =0and (b) a; =0, a, = 1.

Figure 3. Dispersion spectra obtained using Model 2 with a; =1, o, =
0 for ice shelf geometries differing in the amplitude of ice-thickness oscil-
lations Ay (Figure 1): 1—Ay = 0 m; 2—Ay = 10 m. The arrowheads on
the solid color line (curve 2) indicate the approximate positions of the
left and right limits, which approximately define the left and right bound-
aries of the band gap. The dashed-colored line (in curve 2) indicates the
perturbed wavenumber in the band gap. Similar arrowheads were also
used in Figure 4 and other figures showing dispersion spectra to indicate
of the boundaries of the band gaps.
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Figure 4. Dispersion spectra obtained using Model 2 with or; = 1, «, = 0 for ice-shelf geometries differing in the amplitude of ice-thickness oscillations Ay (Figure 1):
1—Ay = 5m; 2—Ay = 10 m; 3—Ay = 12 m; 4—Ay = 14 m; 5—Ay = 18 m; (a) area of the expected first band gap; (b) area of the expected second band gap; (c) area
of expected third and fourth band gaps. The arrowheads on the solid color lines indicate the approximate positions of the left and right boundaries of the band gap. The

dashed-colored lines indicate the perturbed wavenumber in the band gap.
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Figure 5. Amplitude spectra obtained using Model 2 with «; =
1, a, = 0 for ice-shelf geometries differing in the amplitude of
ice-thickness oscillations Ay (Figure 1): 1—Ay = 5 m; 2—Ay =
10 m; 3—Ay = 12 m; 4—Ay = 14 m; 5—Ay = 18 m; (a) area of
the expected first band gap (Figure 2a); (b) area of the expected
second band gap (Figure 2b).

wavenumber values are defined by comparison with the typical
relationship (curve 1 in Fig. 3).

Experiments with ice shelves that have ‘rolling’ surface mor-
phology revealed that there is the threshold value of the ampli-
tude of ice-thickness oscillations (A in Eqn (11)), at which the
band gaps appear in the dispersion spectra (Fig. 4a) (Konovalov,
2023a). Essentially, the amplitude of ice-thickness oscillations (A )
determines the depth of cavities at the base of the ice shelf that
result from the ‘rolling’ morphology. These cavities are analo-
gous to crevasses at the ice shelf base (Freed-Brown and others,
2012).

In Model 2, as in Model 1, the threshold value also depends

on the Bragg wavenumber. The first band gap (kél) ~ 6.28 km™!),
appears in the spectrum at Ay /gt14 m (Fig. 4a), that is, the first

threshold value (AH)E}? ~ 14 m. The second band gap (kéz) ~
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12.57 km™1), the third band gap (k. ~ 19.04km™!) and the

fourth band gap (kff) ~ 25.13km™!) appear in the spectrum
at Ay /gt1 m (Fig 4b and c), that is, the corresponding threshold

values (AH)EL) <1m;i=2,3,4.

As in Model 1, the degradation of the amplitude spectrum (in
terms of resonances abatement) is also observed at high Ay values,
exceeding the threshold values (Ag),, (Fig. 5). In particular, in the
amplitude spectrum obtained at the value Ay; = 18 m, which cor-
responds to the observed fluctuations in ice thickness on the Ward
Hunt Ice Shelf, starting from the impact periodicity T ~ 2.5,
there are no resonance peaks in the spectrum (Figure 5).

Figure 6 shows the alignment of the zone of the expected
appearance of the first band gap (kf)l) ~ 6.28 km™!) with the

resonant peak in the corresponding range of periodicities of the
forcing.
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Figure 6. Dispersion spectrum and amplitude spectrum, including the area of
the expected first band gap, obtained using Model 2 with «; = 1, o, = 0 for
ice shelf geometries differing in the amplitude of ice-thickness fluctuations Ay (C)
(Figure 1): (a) Ay =5m; (b) Ay =10 m; (c) Ay =12 m.
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Figure 7. (a) Vertical displacement of ice W along the centerline due to the impact of the frontal incident wave. (b) Distribution of longitudinal stress (o) in a vertical
cross-section of the ice shelf along the centerline. (c) Distribution of shear stress (o,,) in a vertical cross-section of the ice shelf along the centerline. The amplitude of
ice-thickness oscillations Ay; = 10 m, the periodicity of forcing T = 5 s. These distributions were obtained using Model 1 with o; =1, «, = 0.

In particular, (a) with the amplitude of ice-thickness fluc-
tuations Ay equal to 5m (Fig. 6a), the resonance peak is
observed at the periodicity T, ~ 32.54s (ie. T, ~ 32.54s
is one of the eigenvalues), at which the wavenumber in the
dispersion spectrum is about 5.84 km™! (i.e. k, ~ 5.84km™!);
(b) with the amplitude of ice-thickness fluctuations Ay equal
to 10m (Fig. 6b), the resonance peak is observed at the
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periodicity T, =~ 44.04s, at which the wavenumber in the
dispersion spectrum is about 6.16 km™! (i.e. k, ~ 6.16km™!);
and (c) with the amplitude of ice-thickness fluctuations Ay
equal to 12 m (Fig. 6¢), the resonance peak is observed at the
periodicity T, ~ 55.92s, at which the wavenumber in the dis-
persion spectrum is about 6.39 km™! (ie. k, ~ 6.39km™!).
Respectively, the relative deviation of the corresponding
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Figure 8. (a) Vertical displacement of ice W along the centerline due to the impact of the frontal incident wave. (b) Distribution of longitudinal stress (o,,) in a vertical
cross-section of the ice shelf along the centerline. (c) Distribution of shear stress (o,,) in a vertical cross-section of the ice shelf along the centerline. The amplitude of
ice-thickness oscillations Ay; = 18 m, the periodicity of forcing T = 5 s. These distributions were obtained using Model 1 with a;; =1, «, = 0.

wavenumber k,, from the first Bragg wavenumber kél) does not
exceed 7%.

The distributions of longitudinal stresses (o,,) (Figs 7b and 8b)
reflect the distributions of vertical deformations along the central
line of the ice shelf (Figs 7a and 8a). That is, the maxima\min-
ima of longitudinal stresses coincide with maxima\minima of
vertical deformations in the deformation profile (Figs 7a, b
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and 8a, b). In particular, for a given eigenmode the distribu-
tion of longitudinal stresses has a specific periodic structure,
in which the maxima\minima are aligned with the antinodes
in the mode. Therefore, beyond the band gaps, the longitudi-
nal stress distribution with a specific periodical structure (as
in Fig. 7b) is the expected stress distribution in the ice shelf.
Vice versa, inside the band gaps the distribution of longitudinal
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stresses has a quasiperiodic or non-periodic structure (as in
Fig. 8b).

The shear stress (o,,) is an order of magnitude less than
the longitudinal stress (Figs 7c and 8c). Beyond the band gaps,
the maximum\minimum shear stress is usually observed at the
grounding line, where in the models the ice shelf was considered
rigidly fixed (Fig. 7c). Within the band gaps, the maximum\ mini-
mum shear stress is in most cases achieved in a vicinity of ice-shelf
terminus, since the incident wave does not penetrate deeply into
the ice shelf (Fig. 8c).

5. Discussion and conclusions

(1) All suggested models reveal Bragg scattering for an ice shelf
with a rolling surface morphology. The modeled Bragg scat-
tering is expressed in the appearance of the anticipated band
gaps in the dispersion spectra.

In Konovalov (2023a), it was established that there is a threshold
value of crevasses depth, at which the first band gap (correspond-
ing to the first Bragg wavenumber) appears in the spectra. For ice
shelf with rolling surface morphology, the double amplitude of ice-
thickness oscillations Ay is a parameter similar to the crevasse
depth in a crevasse-ridden ice shelf (Freed-Brown and others,

2012). Accordingly, the threshold value of the amplitude (AH)E?,
at which the expected first band gap appears in the spectrum, also
exists for the ice shelf with rolling surface morphology.

Analysis of the superposition of the dispersion spectrum and
the amplitude spectrum allowed us to establish the following.

The amplitude spectra contain resonance peaks corresponding

to wavenumbers that are close to the first Bragg value kl(:) ~
6.28 km™!. The appearance of Bragg scattering in a periodic struc-
ture, which also moves periodically with the same frequency,

implies that the Bragg wavelength ()\{,i)) and the amplitude of
oscillations of the periodic structure (a) satisfy the following
condition:

a< A (14)

In other words, Eqn (14) is the condition for the occurrence of
the expected Bragg scattering in a periodically moving structure.
Evidently, at resonance, condition (14) is not satisfied. In fact, con-
dition (14) coincides with the condition for applying wave equation
(Eqn9).

Failure to satisfy condition (14) occurs not only when T = T,
that is, when the periodicity of the incident wave coincides with the
eigenvalue (when a o 00), but also when the periodicity of the

forcing falls within the pﬂeriodicity range containing T, and which
is defined by the width of the resonance peak. Therefore, the prob-
ability of the alignment of the expected band gap region with the
periodicity range, in which the condition (14) is not satisfied, will
be higher for a resonant peak with a larger width. The width of the
resonance peaks in the amplitude spectra (A vs T) increases with
increasing periodicity of the forcing (Konovalov, 2019). Thus, the

probability of the alignment is higher for the first Bragg value kéw
than for the remaining kg), i=2,3..
These conclusions are confirmed by the results obtained in the

present study. That is, the threshold value (A H)E]i) for the appear-
ance of the first band gap is higher than other threshold values

(AH)EI? , i =2,3... In particular, in Model 1 (witha; =1, o, =

0) (Ay)\t) ~ 15 m, but (4y) < 1, i = 2,3, 4; in Model 2 (with
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ap =1, a, =0) (AH)E;> ~ 14 m and (AH)@ < 1,i=234

th
in Model 2 (with a; = 0, @, = 1) (AH)E}? ~ 15 m and
(An)y ~2,i=2,3,4.

Agl increase in the amplitude of ice-thickness oscillations Ay
(as an analogue of half the depth of ice crevasses in a crevasse-
ridden ice shelf) yields shift in the resonance peaks (Konovalov,
2021a). Thus, a band gap appears in the dispersion spectrum, if the
amplitude of ice-thickness oscillations A becomes higher than the
threshold value (Ay ), .

(2) The torsional deformation component in the modes creates
additional difficulties in treatment of the dispersion spectra,
especially in Model 3, in which this component is observed in
any case of the ratio «; /v, (see supplemental file). Essentially,
the torsional deformation component yields additional inter-
mode spaces (Konovalov, 2021a) in the dispersion spectra.
These additional intermode spaces respectively provide tran-
sitions between torsional strain components in the modes and
appear as discontinuities in the dispersion curves. Moreover,
these discontinuities differ from the discontinuities accompa-
nying the transitions between the components of the Lamb-
type bending deformation in the modes, and can be con-
sidered, in particular, as a result of Bragg scattering if these
discontinuities are located near the Bragg value. Thus, com-
plementary investigation is required to correctly interpret the
discontinuity in the dispersion curve. The investigation is
based on the combination of dispersion and amplitude spec-
tra (as shown in Fig. 6). Specifically, the discontinuities in
the dispersion spectra corresponding to transitions between
the torsional strain components in the modes and looking
like band gaps, but not corresponding to Bragg scattering of
the incident wave, coincide with the resonance peaks in the
amplitude spectra (see section 4 in the supplemental file). In
other words, these discontinuities, corresponding to transi-
tions between the torsional strain components in the modes,
are accompanied by a transition through resonances, while the
band gaps corresponding to Bragg scattering are not accompa-
nied by the same transition (see section (1) of this discussion).
Thus, this spectral difference allows us to establish the type of
discontinuity in the dispersion spectra.

(3) In the models considered in this study, the band gap becomes
the dominant effect and abates the resonances in the amplitude
spectra if the amplitude of ice-thickness oscillations Ay
exceeds the threshold value (Ap), . Thus, it can be said that
the abatement of the incident wave by ice shelf with rolling
surface/base morphology protects the ice shelf from danger-
ous resonant impact. For example, the range of periodicities,
where the first band gap is observed (Fig. 4a), intersects with
the range, where infragravity waves were observed: the range
of periodicities is 50.250 s (Bromirski and others, 2010). That
is, the first band gap, in particular, can protect the ice shelf from
the impact of infragravity waves. This abatement may explain
how multiyear sea ice in the Arctic Ocean along the coast of
Ellesmere Island can be sufficiently stable and long-lived to
evolve into the ice-shelf, once contiguous along the Ellesmere
Island coast, reported by European and American explorers in
the late 19th and early 20th centuries.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/a0g.2024.47.
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