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Abstract
We introduce adaptive particle refinement for compressible smoothed particle hydrodynamics (SPH). SPH calculations have the natural
advantage that resolution follows mass, but this is not always optimal. Our implementation allows the user to specify local regions of the
simulation that can be more highly resolved. We test our implementation on practical applications including a circumbinary disc, a planet
embedded in a disc, and a flyby. By comparing with equivalent globally high-resolution calculations, we show that our method is accurate
and fast, with errors in the mass accreted onto sinks of less than 9% and speed ups of 1.07–6.62× for the examples shown. Our method is
adaptable and easily extendable, for example, with multiple refinement regions or derefinement.
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1. Introduction

This paper considers the best way to locally adapt resolution in the
simulation method known as smoothed particle hydrodynamics
(SPH, Lucy 1977; Gingold &Monaghan 1977). Because resolution
follows mass in SPH, the best resolved region often corresponds to
the region of interest. However, this may be inefficient, as high
densities correlate with short timesteps which are expensive. A
potential solution is adaptive particle refinement (APR): splitting
and merging of particles. This method allows multiple resolu-
tions to co-exist in the same simulation (Monaghan & Varnas
1988; Meglicki, Wickramasinghe, & Bicknell 1993; Kitsionas &
Whitworth 2002, 2007; Vacondio et al. 2013; López, Roose, &
Recarey Morfa 2013; Barcarolo et al. 2014; Chiron et al. 2018; Gao,
Qiu, & Fu 2022). APR is conceptually similar to Adaptive Mesh
Refinement (AMR, Berger & Colella 1989; Truelove et al. 1997)
commonly used in simulations employing Eulerian meshes.

Although less widely exploited than mesh refinement, the
fundamentals of particle refinement and its applications are
well developed. Monaghan & Varnas (1988) and Meglicki,
Wickramasinghe, & Bicknell (1993) first applied particle splitting
in SPH. They merged particles in their simulations to create fewer,
moremassive particles when the density in a cell exceeded a critical
density threshold. Meglicki, Wickramasinghe, & Bicknell (1993)
additionally included particle splitting in low-density regions to
increase the local resolution. In the context of cosmological sim-
ulations, based on the method outlined in Porter (1985), Katz &
White (1993) (and later Navarro &White 1994) scaled the mass of
the particles in spherical, nested layers throughout the computa-
tional domain such that the innermost layer had the smallest mass
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and thus highest resolution. Thacker & Couchman (2000) found
that there was a small amount of noise generated at the boundary
between the mass layers but that it did not affect the structures
identified in their simulations. Bertschinger (2001) produced a
method to accurately initialise simulations with multiple masses
for a Gaussian random field. Klypin et al. (2001) demonstrated
numerical convergence with this simulation style. This ‘multiple
mass’ or ‘zoom’ method, the approach of nested regions is a core
feature of cosmological simulations (e.g. Springel 2005).

Børve, Omang, & Trulsen (2001) implemented an alternative
multi-resolution scheme they called Regularised-SPH (RSPH). In
this method, the smoothing length h was set to a piece-wise
constant in steps of 2 with the contribution from neighbouring
particles interpolated using a grid. In its most modern invoca-
tion (Børve, Omang, & Trulsen 2005), this method used auxiliary
particles that exist at the boundary between different h regions
and which are passively evolved. Børve, Omang, & Trulsen (2006)
tested RSPH on a multidimensional MHD shock, showing excel-
lent shock capturing properties. Børve, Speith, & Trulsen (2009)
also successfully applied RSPH to planet-disc interactions in two
dimensions.

Kitsionas & Whitworth (2002) considered the collapse of
clumps in self gravitating filaments. They increased the resolu-
tion in high density regions to ensure that the Jean’s criteria
was met, finding their method was robust and comparable to
results from AMR calculations. Importantly they used 13 chil-
dren for each parent (nchild = 13 where we refer to more massive
and less massive particles as ‘parents’ and ‘children’, respec-
tively) to ensure spherical symmetry in 3D when splitting par-
ticles and established an empirical test to determine the radius
of the sphere that the children are located on (rsep). Kitsionas &
Whitworth (2007) showed that using amass weighted kernel (with
50 times the mass of the largest particle) was preferable to volume
weighted.
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Feldman & Bonet (2007) introduced a general splitting proce-
dure, placing child particles symmetrically in hexagons or triangles
around their parent to conserve angular momentum. Importantly,
they quantified the error that is generated when a parent parti-
cle is split into children; when the children have equal mass this
error is due to the new particle arrangement and is a function
of the distance between the children and their parent. Lastiwka,
Quinlan, & Basa (2005) showed that this error could be reduced
by slightly shifting the children. López, Roose, & Recarey Morfa
(2013) extended this idea by measuring the error between the par-
ent and child distributions as a function of the separation between
the children when they are newly placed, rsep. Solutions to this
error include shuffling the particles until the error is minimised
(Vacondio et al. 2013), blending the region between the parent
and children zones (Barcarolo et al. 2014), particle disordering
(Chiron et al. 2018) and particle regularisation (Gao, Qiu, & Fu
2022). Vacondio et al. (2013) first introduced particle merging in
incompressible applications but found it too expensive for practi-
cal use. Chiaki & Yoshida (2015) showed that the noise introduced
by a split could be reduced by placing the children particles on the
vertices of a Voronoi mesh.

Most recently, Franchini, Lupi, & Sesana (2022) used particle
splitting in a meshless-finite-volume method (Hopkins 2014) to
better resolve circumstellar discs within the inner cavity of a cir-
cumbinary disc. Adopting the method from Anglés-Alcázar et al.
(2021) they used nchild = 2 and rsep =min(0.25× hparent, 0.35×
dneighbour) (where dneighbour is the distance to the nearest neighbour)
to ensure that split particles were not inadvertently placed too
close to existing particles (i.e. that the fluid elements did not over-
lap). The robustness of their method was demonstrated in Duffell
et al. (2024) where their splitting method found agreement with
comparable codes including PHANTOM (Price et al. 2018b).

While the above implementations are promising, practical lim-
itations remain. First, while most authors state that merging is
possible, in practice it is not used – and never in simulations of
compressible flow. On the rare occasion that merging is included
it is found to be computationally prohibitive (Vacondio et al. 2013)
which restricts what problems APR can be practically applied to.
Second, typical implementations require hard-wiring of param-
eters like rsep in order to reduce noise when particles are split,
but these values are derived from simple tests (e.g. Kitsionas &
Whitworth 2002). Third, some of the above applications in astro-
physics allow particles of different refinement levels to mix which
may result in numerical instabilities (e.g. Chiron et al. 2018).

In this paper, we introduce an APR implementation into the
SPH code PHANTOM that includes both splitting and merging,
separation of refinement levels and which is accurate and fast. In
Section 2, we outline the method. Section 3 applies our method
to examples and practical calculations compared to equivalent
global high-resolution simulations. We measure speed, accuracy,
and disc storage. In Sections 4 and 5, we discuss and draw con-
clusions. Basic tests for the interested reader are summarised in
Appendix 1.

2. Method

Here we describe the core of our implementation including split-
ting, merging, relaxing, and the order in which these are com-
pleted. The splitting and merging processes are summarised in
Fig. 1.

2.1 Overall procedure

We assume spherical refinement and de-refinement zones. Their
size and location may be either fixed or dynamic and co-moving
with another particle. In some of our later applications the refine-
ment zone is centred on a moving point mass particle but it may
also be set by a particle property like density. Here we show exam-
ples with spherical zones but other volumes are possible. Themain
points of our implementation can be captured with five ‘rules’:

1. We assign all particles a refinement level, �, determined
exclusively from the spatial position of the particle. The
refinement level represents the number of refinements
above the base resolution.

2. When a particle enters a new refinement zone with a given
refinement level

• it is split if the particle’s current refinement level is less
than that of the zone.

• it is merged if the particle’s current refinement level is
greater than that of the zone.

3. In simulations where the goal is to locally increase the
resolution the default refinement level is set to � = 0.
In simulations where we want to locally decrease the
resolution the default refinement level is instead set to
� = �max.

4. We restrict the difference in mass between adjacent refine-
ment levels to be strictly a factor of two.

5. As PHANTOM stores the mass by particle type, the refine-
ment level is also used to relate the refined mass mp(�)
from the largest particle mass mp(0) with the following
relation:

mp(�)= mp(0)
2�

, (1)

where � >= 1. When we compare particles with different refine-
ment levels we refer to the more highly resolved particles as
‘children’ and the lower resolution particles as ‘parents’. In our
scheme then, two childrenmerge to form one parent and on a split
one parent produces two children.

2.2 Splitting

A parent particle with refinement level � is split into two children
when it crosses the boundary into a refinement zone with a higher
refinement level. Once a particle is confirmed to be split;

1. A new child particle is made with identical properties to
the parent.

2. The parent itself is reassigned to be a second child particle.
3. Both children have their refinement level increased and

their smoothing lengths rescaled (assuming constant
density)

h�+1 =
(
1
2

)1/3

h�. (2)

4. Children are placed on opposite sides of the parent at a
distance rsep = 0.2h�.

5. Children are additionally placed tangential to the bound-
ary of the refinement region (as in Fig. 1).
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Figure 1. Schematic showing our refining and derefining process. The flow of the fluid is left to right and parent particles are larger and blue, children particles smaller and pink
and the particle size is proportional to its mass. Particles that are split or merged in the time step shown are indicated with outlines and � shows the refinement level. Left: As a
parent particle crosses the boundary it is split into two children particles, their common centre of mass is at the parent’s location and they are split tangentially to the boundary.
Right: Children particles are paired according to our modified k-d tree grouping (indicated with the grey boxes). When the centre of mass of a cell crosses the boundary the
particles are merged, with the parent adopting the average velocity and position of the children. Further details are in Section 2.

The scaling value in rsep has been determined empirically
to reduce noise following the test from Kitsionas & Whitworth
(2002), however our inclusion of relaxing (see Section 2.4) means
that our implementation is not particularly sensitive to this choice
(as demonstrated in Appendix 1.3). Additionally, as PHANTOM
calculates the density and smoothing lengths iteratively (2.1.4,
Price et al. 2018b), the smoothing lengths of surrounding particles
are accurately adjusted to accommodate the new particles straight
after the split (and later, merge) has occurred.

To ensure particles are split tangentially to the boundary in
3D we identify the vector �v between the original particle and the
centre of the refinement zone. A vector �w represents the perpen-
dicular bisector of �v and is always tangential to the boundary of the
refinement zone. We rotate �w around �v through a random angle
and place the children on opposite sides of the parent along ±�w.
As in Franchini, Lupi, & Sesana (2022), if the distance shifted is
more than 0.35× the distance to the closest neighbour we adopt
this value instead, however we have found that this only affects a
handful of particles even in very well resolved simulations.

2.3 Merging

We make use of a modified k-d tree in PHANTOM to make rapid
on-the-fly merging possible. We have altered the existing k-d tree
so that it always returns leaf nodes with exactly two particles (this
modification is only used in the call from the APR routine and
is not used elsewhere in the calculations). Every time the domain
is split through the centre of mass we enforce an even number
of particles on either side of the new ‘subdomains’. When a split
occurs that results in an odd number of particles in each new sub-
domain, we move the location of the split across one particle in the
direction that makes the most balanced split by number of parti-
cles. The tree continues until finally all leaves have precisely two
particles.

At each time-step where merging occurs;

1. All particles at the same refinement level � are isolated and
then paired using our modified k-d tree.

2. For each leaf in this tree, we calculate what refinement level
the leaf has based on its centre of mass and compare it to
the refinement level of the children particles, �.

3. The particles are merged when the refinement level based
on the position of the leaf is less than the refinement level
of the children particles in the leaf.

4. One of these children particles is then removed from the
simulation and the remaining child particle is reassigned
as a parent.

5. The parent is given the position and velocity of the centre
of mass of the leaf (i.e. the two children), the refinement
level is decreased and the smoothing length is scaled by

h�−1 = 21/3h�. (3)

6. If an odd number of particles are considered for merging,
we discard the last particle that is listed at that timestep. In
the next timestep when particles are again considered for
merging this particle is then included.

The right panel of Figure 1 schematically shows the merging
process. With our implementation it is important to note that
although the boundary for where merging occurs is well defined,
because we are merging based on the children particle distribution
the practical boundary is fuzzy and a transition region typically
about 10% of the larger smoothing length naturally forms. In well
resolved simulations (e.g. Section 3) this region is negligible in
width. A major benefit of our approach is we have at most a maxi-
mum of one spare particle per refinement level per timestep. As we
do not consider � = 0 particles for merging, the maximum error
e in the total mass of these spare particles for �max refinement
levels is

e=mp(0)
�max∑
�=1

1
2�
, (4)

which is conveniently always less than mp(0), the largest particle
mass.
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Figure 2. Flowchart summarising the APR routine implemented in PHANTOM.

2.4 Relaxing

When splitting or merging a significant number of particles – for
example the first time the splitting/merging routine is called –
there is a discrepancy between the original and refined density dis-
tribution. This effect was identified by Feldman & Bonet (2007)
and is due to how well the new particle arrangement can represent
the original density distribution.

To combat this we have implemented a relaxing procedure
which shuffles the introduced particles until they more accurately
represent the original distribution. When splitting or merging an
original set of particles into a new set, our algorithm

1. Calculates the accelerations of the new set of particles at
their current locations, anew.

2. Calculates the accelerations at the locations of the new
set of particles, interpolated from the original reference
particles, aref.

3. Shifts each particle by �x calculated from

�x= 0.5�t2(anew − aref), (5)

where �t is calculated from the sound speed and smooth-
ing length by �t = 0.3h/cs on the new particle.

For any given particle the magnitude of the shuffle is also
capped to be less than the particles smoothing length. At each
shuffle step, we estimate a ‘kinetic energy’ defined as the mag-
nitude of the shift divided by the particle’s timestep squared and

summed across all the shuffled particles. For multiple shuffles we
find that the kinetic energy decreases in an exponential fashion
with each subsequent shuffle smaller than the previous. Our shuf-
fling process is repeated until either the total kinetic energy for
a shuffle has decreased to 0.5% of its original value or 50 shuf-
fles have been completed. These limits are set to strike a balance
between accuracy and computational expense, as we have found
that more shuffles does not continue to dramatically improve
the particle distribution. How quickly the kinetic energy limit is
reached does depend on the resolution, with higher resolution
simulations achieving it in fewer shuffles.

2.5 With individual timesteps

A key part of our implementation is compatibility with individual
particle timesteps as these are used widely in PHANTOM applica-
tions (see Price et al. 2018b). Each particle is assigned to a timestep
bin; these are arranged such that the zeroth bin has �t = �tmax
(which is limited to be the time between outputs) and particles
are arranged in bins according to their local timestep constraint,
where �t decreases by factor of two in each bin. Each bin is then
evolved separately, synchronising with the bin above when the
appropriate timesteps are synchronised. Particles are then defined
as ‘active’ (as in, they will be moved by the stepping routine) when
their bin is being evolved.

When implemented in conjunction with APR we restrict the
splitting and merging procedure to occur over active particles
only. This does mean that a merging particle’s closest neighbour
could be on a different time-step, forcing the particle to merge
with an active particle further away. In practice this is rare because
the particles have been paired using our modified k-d tree. This
pairing takes advantage of the fact that spatially associated parti-
cles tend to have the same acceleration and so are naturally on the
same timestep bin such that the closest neighbour is also on the
same timestep. Additionally, when a particle is either split, merged
or a new particle introduced through either of those procedures it
is conservatively assigned the shortest timestep (corresponding to
the maximum timestep bin).

2.6 Every timestep

Fig. 2 summarises the process undertaken at each timestep on
active particles. First the location, size, and number of refine-
ment regions are updated. If relaxing is required at this step the
properties of all particles are also saved as a reference.

We then consider whether any particles should be split. Using
the particles current position we calculate what refinement level
it should have and compare this to its current refinement level.
When the particle has a refinement level less than what it should
have we split it according to Section 2.2. We repeat this process
across for all active particles and for each refinement level, starting
from the lowest refinement level.

After all the particles have been split we then consider whether
any should be merged. We isolate all particles that are at a particu-
lar refinement level and put these particles into our modified tree
routine, merging as per Section 2.3. Mirroring the splitting proce-
dure, this process is repeated from the highest to lowest refinement
level. This order means that particles are only ever changed one
refinement level each split/merge which we have found leads to
a smoother distribution (e.g. Appendix 1.4). Only once all the
particles have been split and merged do we consider the relax-
ing process, using the original particle distribution as the reference

https://doi.org/10.1017/pasa.2024.88 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.88


Publications of the Astronomical Society of Australia 5

Table 1. Summary of the APR simulations shown in Section 3. Columns state the Name of the simulation, the
radius of the central refinement region r�, the steps into each refinement zone dr� and the average number
of particles used N. The error, speed up and storage are all compared to the high-resolution reference cases.
The method to measure the error is described in the text for each simulation and is measured according to
Equation (6). The storage is calculated as a fraction compared to the high-resolution reference calculation. All
simulations have 3 levels of increased refinement except F6 which has � = 6. Here ‘B’ refers to binary, ‘P’ to
planet-disc and ‘F’ to flyby simulations.

Name r� (au) dr� (au) N (×106) Error (%) Speed up (×) Storage

B1 15.00 20.0, 25.0 1.19 9.0× 10−3 2.32 0.15

B2 20.0 30.0, 40.0 1.14 3.8× 10−3 1.96 0.14

B3 40.0 50.0, 60.0 1.44 3.6× 10−3 1.80 0.18

B4 80.0 90.0, 100.0 1.75 1.3× 10−3 1.07 0.22

P1 0.50 0.75, 1.00 2.16 1.4 1.81 0.23

P2 0.50 1.00, 1.50 2.09 4.5 1.76 0.23

P3 1.00 1.50, 2.00 2.09 6.1 1.90 0.23

P4 1.00 2.00, 3.00 2.20 7.8 1.53 0.25

P5 2.00 2.50, 3.00 2.11 9.1 1.74 0.24

P6 2.00 3.00, 4.00 2.32 8.6 1.38 0.27

F1 40.0 45.0, 50.0 0.61 1.3× 10−4 6.62 0.15

F2 40.0 50.0, 60.0 0.62 2.0× 10−4 6.14 0.15

F3 60.0 70.0, 80.0 0.63 1.5× 10−4 5.47 0.16

F4 80.0 90.0, 100.0 0.64 1.5× 10−4 5.28 0.16

F5 60.0 70.0, 80.0 5.7 – – –

F6 60.0 50.0, 60.0, 70.0, 80.0 3.0 – – –

set. With the particles refinement levels updated the program then
returns to the normal time stepping routine and continues.

3. Example applications

We demonstrate the accuracy, speed up, and typical use cases of
our APR implementation with three example applications: a cir-
cumbinary disc, planet-disc interactions, and a stellar flyby. In
each case we include a low and high-resolution comparison sim-
ulation, where the high-resolution simulation has the same global
resolution as the highest APR zone. Our examples also demon-
strate the adaptability of the implementation and provide typical
values for the size of the refinement region and the step width. Our
examples include gravity from sink particles (stars and planets)
as well as accretion onto those sinks. We also assume a verti-
cally isothermal temperature profile for these applications, but we
refer to Appendix 1 for tests with an adiabatic equation of state.
Radiative cooling or source terms that are sensitive to tempera-
ture are left to future work. Our results are summarised in Table 1.
In all cases we find that our implementation is accurate, fast and
requires less storage space when compared to the high-resolution
reference cases.

In the examples shown here we choose to use nchild = 2 and
nested refinement levels and with ‘relaxing’ only implemented in
the first step (see Appendix 1). We additionally ensure that the
velocity of the fluid across the boundary is small (see Appendix
1.5) by choosing the location of our refinement regions care-
fully. These examples are presented with a Wendland C2 kernel
with a kernel radius of 2h and hfact = 1.3 (Wendland 1995; Price
et al. 2018b). As we are considering particles of different masses
co-existing in the same simulation it is prudent to consider ker-
nels other than the typical M4 cubic spline (e.g. Dehnen & Aly

2012). Our comparison of M4, Wendland C2, Wendland C4 and
Wendland C6 is shown in Appendix 1. Here we find that the
M4 cubic spline is robust to pairing in these tests but that the
higher order splines offer a slightly smoother transition between
the refinement zones. We thus chose the Wendland C2 as a bal-
ance between computational cost and accuracy but note that the
cubic spline is likely sufficient for most purposes.

3.1 Circumbinary disc

We repeat the concluding simulation from Price et al. (2018a) of a
circumbinary disc nominally representing the protoplanetary disc
HD 142527 (but see Nowak et al. 2024). The star and disc param-
eters are the same as used in these works and our low resolution
reference simulation has N = 1× 106 particles, as in their work.
Our high-resolution reference simulation is the same as the low
except it has double the spatial resolution with N = 8× 106 par-
ticles. In our APR versions (simulations B1–B4) the refinement
region has three nested levels of refinement (� = 3) and is centred
on the centre of mass of the two stars so that the accretion streams
and circumstellar discs are more highly resolved. As the gas has a
negative radial velocity, we find that this application mostly rep-
resents a test of splitting – little if any merging occurs in these
simulations. This is similar to the published applications of APR
in GIZMO (Franchini, Lupi, & Sesana 2022; Duffell et al. 2024).

Fig. 3 shows a representative APR simulation of HD 142527
book-ended by reference calculations. At t = 1 137 yr in the low
resolution reference calculation we find a poorly resolved circum-
primary disc consistent with Price et al. (2018a), but this disc is
recovered in the high-resolution case on the far right. Our APR
simulation shows the same disc structure around the primary star
as in the high-resolution case. The spiral arms at the inner edge
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Figure 3. Column density of the HD142527 simulations from Price et al. (2018a) at t= 1 137 yr. The left and right panels have no APR and are separated by a factor of two in spatial
resolution. The middle panel shows simulation B4 with three levels of refinement, locally matching the evolution of the high-resolution reference case. The refinement zone is
shown with the light green circles where the highest resolution region is indicated with a solid line and the nested regions with dotted lines. The similarities in the streamers and
circumprimary disc confirm our APR implementation is capable of accurately locally increasing the resolution of a simulation. A movie of these simulations is available online.

Figure 4. Mass of each sink in the HD142527 simulations with different combina-
tions of refinement region sizes. The mass accretion rate reflects the properties of the
disc surrounding the sink, confirming the structure of circumprimary disc in the APR
simulations is the same as the high-resolution reference calculation (as seen in Fig. 3).

of the disc are well recovered when they are within the highest
refinement region (e.g. simulations B3 and B4). The consistency
between the APR and high-resolution case is maintained through
the end of the simulation at t = 3 283 yr.

Fig. 4 shows how the mass of the two sink particles changes
throughout the reference simulations and simulations B1–B4. The

evolution of the mass for the APR simulations closely follows
the high-resolution reference cases where the refinement region
covers the cavity, indicating that the disc structure and thus the
accretion rate is the same across these simulations. The low res-
olution simulation with the poorly resolved circumprimary disc
accretes faster, resulting in a larger final mass. Simulations B1 and
B2 show distinct behaviour after t ∼ 1 000 yr with up to ∼3 times
more mass accreted onto both sinks due to their small refinement
regions; the spiral arms and even the secondary sink are not con-
sistently resolved inside the highest refinement region. For both
B1 and B2, the lower resolution of the inner edge of the cavity then
leads to about 30% more mass falling onto the sinks and thus the
higher accretion rate for both.

We calculate the error, E , using the largest percentage dif-
ference in mass between the APR versions and high-resolution
reference case on each sink as

E =max
[
mAPR(t)−mref(t)

mref(t)
× 100

]
. (6)

We repeat this calculation across both sinks and take the largest
of these as the error in our simulation when compared to the
high-resolution reference case, summarised in Table 1. We find
the largest error of 9.0× 10−3% lies with the secondary sink of the
B1 simulation, possibly because it ventures closer to the edge of
the refinement region each orbit. In contrast to our other example
applications, our APR simulations here show a speed-up com-
pared to the globally high-resolution case of ∼1.1–2.3× faster
(Table 1). The speed up is inversely proportional to the size of the
refinement zone because it is centred on the binary; the tightest
and most computationally expensive orbits are located here and
our APR simulations add more particles to this region.

3.2 Planet–disc interaction

We simulate the interaction of a planet embedded in a disc where
the region around the planet is refined using APR. The disc
extends from Rin = 1 au to Rout = 10 au with a total disc mass
of 0.05M�. We adopt typical protoplanetary disc values with a
surface density profile � ∝ (1− √

Rin/R)R−p with p= 1, a sound
speed cs ∝ R−q with q= 0.25, a disc aspect ratio of H/R= 0.05 at
the inner edge R= Rin where H ≡ cs(R)/�(R) is the scale-height,
�(R)= √

GM∗/R3 is the Keplerian angular velocity,M∗ = 1M� is
the central mass and R is the cylindrical radius. We also assume a
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Figure 5. Column density of the region surrounding a planet embedded in a disc shown in the corotating frame. The left and right panels have no APR and are separated by
a factor of two in spatial resolution. The middle panel shows simulation P6 with three levels of refinement, matching the circumprimary disc structure and spiral arms in the
high-resolution reference simulation. The refinement zone is shown as in Fig. 3. This test demonstrates that structures like spiral arms are faithfully reproduced even when they
cross the refinement boundaries. A movie of these simulations is available online.

Shakura & Sunyaev (1973) viscosity of α = 0.005, modelled with
the method outlined in Lodato & Price (2010). Into this disc we
add a planet with 0.1 MJ initially located at Rp = 5 au, which is
large enough to generate spirals in the disc but not so massive
that the wakes of the spirals interact strongly with the planet. We
set the accretion radius of the sink to be 0.25RH = 0.04 au where
RH is the Hill radius (Nealon et al. 2018). Our low and high ref-
erence simulations use N = 1× 106 and N = 8× 106 respectively.
We conduct six APR simulations (P1–P6, see Table 1) varying the
size of the refinement region and the size of the step around it, all
with a maximum refinement level of � = 3 (corresponding to the
high-resolution reference).

Our simulations with a planet show the formation of spiral
arms, indications of a circumplanetary disc and a shallow gap
being carved. Fig. 5 compares the column density of our low and
high-resolution reference case to the representative example P6.
For all of these simulations we find that the spiral arms generated
by the planet are recovered faithfully even as they cross multiple
refinement levels. The column density contrast of the circumplan-
etary disc and the spiral arms are visually almost identical between
our APR simulations and the high-resolution reference case.

Fig. 6 shows the mass of the planet and radius measured from
the central star. As with the HD 142527 simulations, the high-
resolution reference and the APR versions are qualitatively distinct
from the low resolution case. Using Equation (6) we calculate the
error from the mass but also equivalently from the radius, taking
the largest percentage difference as the error reported in Table 1.
We find the largest difference of 9.1% in the mass and 3.06% in the
radius, both for simulation P5. While this error is the largest we
recover with our APR implementation in the examples shown here
it is still about 1/3 of the largest difference between the low and
high-resolution reference cases. Additionally, Nealon et al. (2018)
showed that the choice of accretion radius has a stronger impact
on the planet location and mass (their Figure A1) than the differ-
ence we have found here. In general we find that the error increases
with both the size of and the width of the refinement region.

3.3 Flyby encounter

Smallwood et al. (2024) showed that there is a direct and robust
relationship between the orientation of the disc formed from cap-
tured material in a flyby encounter and the original disc. With a
broad suite of simulations, their results showed that the disc that

Figure 6. Mass and radius of the planet in the planet-disc simulation with different
combinations of refinement region sizes. The APR simulations and high-resolution
simulations are again distinct from the low resolution reference simulation.

formed around the perturber was always tilted twice as much as
the original inclination between the perturber and the disc around
the primary star. However the perturber disc in their simulations
was generally underesolved (see their Fig. A2). Smallwood et al.
(2024) conducted a resolution study with 5× 105 and 4× 106 par-
ticles and determined that in order to well resolve the disc around
the perturber they would need to model the original disc with
∼144× 106 particles.

We repeat the calculation from Smallwood et al. (2024) at
5× 105 particles for our low resolution reference and 4× 106 as
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Figure 7. Comparison of discs formed from capturedmaterial around the perturber in the flyby simulation (see Smallwood et al. 2024). The ‘Low resolution’ and ‘High-resolution’
panels do not have APR and are separated by a factor of two in resolution. Simulations F1 and F4 initially have N= 5× 105 particles with 3 levels of APR, F5 has N= 4× 106

particles with 3 levels of refinement and F6 hasN= 5× 105 particles with 6 levels of refinement. The refinement zone is shown as in Fig. 3. The disc structure is similar irrespective
of the base resolution of the simulation but the tidal stream onto the disc depends on the size of the refinement region and the number of levels. A movie of these simulations is
available online.

our high-resolution reference. We then conduct four APR varia-
tions (F1–F4) with the refinement region centred on the perturber
star. The upper panel of Fig. 7 shows the column density of the
two reference cases and simulations F1 with a refinement region
radius of 20 au and F4 with 40 au, about 300 yr after pericentre
passage (as in Smallwood et al. 2024). The two APR cases and the
high-resolution share the same disc structure but the tidal stream
is different. In F1 with the smallest refinement region the tidal
streammore closely resembles that of the low resolution reference
simulation, in line with our expectations.

As before, Fig. 8 shows the mass of the perturber sink through-
out the simulations. We find that the high-resolution reference
case and APR versions describe the same mass accretion pathway
and that it is distinct from the low resolution reference case. The
error measured from the mass of the perturber sink is�10−3% for
all combinations of APR used here and with speed ups of between
5.28–6.62× faster than the high-resolution reference case.

As in Smallwood et al. (2024) we also measure the resolution
of the perturber disc for the different simulations. Fig. 9 shows
the 〈h〉/H resolution at t = 2 500 yr after the pericentre encounter
where 〈h〉/H is the shell averaged smoothing length. We find that
the high-resolution reference case and APR versions produce the
same profile, confirming that they are the same local resolution.
In particular, the profiles for F1 and F2 deviate around R= 25 au
and 30 au respectively, near to the edge of the refinement region
for these simulations. The factor of 1/2 in 〈h〉/H between the
APR simulations and the low resolution case demonstrates that the
resolution has doubled (as expected from three refinement levels).

These example applications so far have demonstrated the accu-
racy and speed of the APR implementation by comparing to a

Figure 8. Mass of the perturber star in the flyby simulation for different combinations
of refinement regions and maximum refinement levels. As before, increasing the reso-
lution using APR leads to a lower mass accretion rate and the similarities between the
APR and high-resolution reference evidence the similarity in the disc structure around
the perturber star.

globally high-resolution reference case, but this is not the most
powerful or intended use of APR. Here we perform an addi-
tional two simulations using APR on the flyby problem: simulation
F5 which initially has N = 4× 106 particles and uses three lev-
els of refinement (� = 3) and simulation F6 which initially has
N = 5× 105 particles and uses six levels of refinement (� = 6).
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Figure 9. Quantifying the resolution of the perturber disc in the flyby calculations
using 〈h〉/H as a function of R. Three levels of refinement corresponds to a factor of
two in linear resolution and this is recovered here by the 〈h〉/H decreasing by about
half for three refinement levels. Colour scheme is the same as in Fig. 8.

Around the perturber these simulations achieve the same local
resolution in terms of local particle number.

The lower row of Fig. 7 shows the discs formed around the
perturber star for F5 and F6, finding the same disc structure as
in the previous cases. These two simulations are also included in
Figs. 8 and 9. The mass accreted onto the sink in simulations F5
and F6 is 9.2× 10−4% lower than the high-resolution reference
case. This difference is about half that between the low and high-
resolution reference cases (1.89× 10−3%) and consistent with our
previous observation that increasing the resolution decreases the
mass accretion rate. Fig. 9 demonstrates that the linear resolution
of these two simulations is double the previous F1–F4 simula-
tions. We have thus shown that with just 5.7× 106 (F5) and
3.0× 106 particles we can achieve an equivalent resolution around
the perturber of simulation that uses 32× 106 particles globally.

4. Discussion

Our results demonstrate that our method is accurate and fast (see
Table 1) with the most rapid speed up seen in the flyby simula-
tions and the slowest in the circumbinary disc simulations. In the
flyby case the majority of the splitting/merging occurred during
the actual flyby encounter and the time-step constraining orbits
were around the primary star which we did not change in our
APR simulations. Together, these led to a significant speed up in
the simulation. By contrast, in the circumbinary disc we increased
the resolution in the region of the simulation where particles had
the largest acceleration and thus the shortest time-steps. We still
found a speed up in that case because of our use of individual time-
steps (Price et al. 2018b). In the planet-disc interaction simulations
we found constant splitting and merging occurred as the varia-
tion in the orbital speed meant particles were continually entering
and exiting the refinement region. For those simulations the size of
the refinement region generally dictated the speed up, with smaller
regions corresponding to faster speed ups.

The circumbinary disc and flyby tests demonstrated the impor-
tance of where to set the refinement region. In the former,
the largest error was measured when the inner edge of the

circumbinary disc was not adequately resolved (simulations B1
and B2) such that material was entering the cavity with the same
rate as the low resolution reference case and occasionally, the
secondary star popped out of the refinement region. But when
the inner edge of the circumbinary disc and the complete orbit
of the secondary was captured in the refinement region (B3 and
B4) the error decreased significantly as compared to the high-
resolution reference case. This effect was also noted by Franchini,
Lupi, & Sesana (2022), who recommend setting the inner edge of
the refinement region to 4× the semi-major axis.

Our implementation is also designed to be as adaptable as pos-
sible. Our use of the k-d tree in PHANTOM for merging means
that our APR method can naturally be used for de-refinement,
where the APR zone has a lower resolution than the global simula-
tion. This is particularly useful when increases in density result in
very small time-steps that effectively kill a simulation – commonly
experienced in simulations including self-gravity (e.g. Longarini
et al. 2023; Lau et al. 2022; Hall, Forgan, & Rice 2017). Our
method is also easily extendable to multiple refinement regions
(e.g. refining separately around two planets in a disc).

An important and desirable property of SPH is its conserva-
tion properties. Conservation of kinetic energy and both linear
and angular momentum are respected with APR when the chil-
dren particles inherit the velocity of the parent (Feldman & Bonet
2007; López, Roose, & Recarey Morfa 2013). While our inclu-
sion of relaxing means that children may not necessarily be placed
symmetrically around the parent particle this only affects the con-
servation of angular momentum. Our method perfectly conserves
mass and in simulations with accretion (where we may get an
odd number of particles to be merged) our implementation caps
the number of unmerged particles to be �max − 1 (Equation 4).
In addition to this, APR in PHANTOM is subjected to the regular
conservation checks (see Section 2.2, Price et al. 2018b).

The current limitation of our method is a ∼5% blip in den-
sity that occurs every time particles are either split or merged. In
our 3D simulations this ‘blip’ in density is cosmetic (it can just be
seen in the middle panel of Fig. 5) but is more obvious in our tests
on small amplitude linear sound waves outlined in Appendix 1
(although it does not seem to affect the propagation of the wave
itself). We tested different methods to mitigate this feature and
found that reducing nchild was ultimately the most effective mea-
sure, setting our limitation of nchild = 2 and thus having nested
refinement regions. Importantly, the ‘blip’ feature is also visibly
present in the GIZMO implementation of APR (see density ren-
derings in Duffell et al. 2024) which demonstrates that it is not a
function of our method, but is inherent to the process of changing
the particle mass.

Themost promising method to remove this blip is the blending
method outlined by Barcarolo et al. (2014) which allows parti-
cles to be introduced in a way that removes the noise before
they contribute to the density summation. Although successful
for incompressible flows, blending is practically very difficult to
implement with compressible flows due to mass conservation in
the blending zone. For example, we could successfully incorpo-
rate blending as Barcarolo et al. (2014) in our initial conditions,
but once particles started moving through the blending region
we found that the solution deteriorated rapidly. We additionally
implemented other forms of relaxing (e.g. Lind et al. 2012; Diehl
et al. 2015; Sun et al. 2017) and other forms of blending (Chiron
et al. 2018; Gao, Qiu, & Fu 2022) but did not find a satisfactory
improvement on the blip found in the simulations.
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5. Conclusion

We introduce a live APR implementation into the SPH code
PHANTOM. We have considered example applications of a cir-
cumbinary disc, planet-disc interaction and a flyby to demonstrate
our method. With these examples we have shown that our imple-
mentation is

1. Accurate: We measure the mass accreted onto sink par-
ticles as a proxy of the disc structure in our simulations.
For the circumbinary and flyby examples, we find that the
APR calculations are accurate to <0.1%. For the planet-
disc interaction example we measure both the mass and
the radial location of the planet and find that it is accurate
to at least 9% (but is generally more accurate than this).

2. Fast: Every APR simulation showed a speed up, offering
between 1.07− 6.62× than when compared to a simula-
tion with the same resolution but globally. The speed up
is application-dependent, with the flyby example being the
most rapid and the circumbinary disc the least amenable
to speedup in this manner.

3. Uses less storage: Because our APR simulations use fewer
particles in total, they require between 15–27% of the
storage of an equivalent globally resolved calculation.

Our example applications suggested optimal sizes of the refine-
ment region as a guide for future calculations. We found accuracy
of the implementation depends sensitively on whether or not key
features were uniformly resolved. We also demonstrated that the
location of the refinement region can be dynamic and note that
derefinement is possible. Finally we showed that APR can increase
the resolution of simulations at low cost; for the flyby example we
achieved a local resolution of 32 million particles with totals of
either 3.0 or 5.7 million particles.

We showed examples limited to hydrodynamical simulations,
but PHANTOM also includes dust (Laibe & Price 2012, 2014), mag-
netohydrodynamics (Tricco & Price 2012), self-gravity, general
relativity (Liptai & Price 2019) and can be coupled with MCFOST
(Pinte et al. 2006, 2009; Nealon, Price, & Pinte 2020). For brevity
we leave dedicated testing of our APR implementation with these
features to future works.
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Appendix 1. Simple tests

To demonstrate some of the key choices of our implementation we
use the straightforward example of a sound wave in a periodic box
simulated with PHANTOM. The density is set by

ρ(x)= ρ0 +A sin
(
2πx
L

)
, (7)

where A= 0.02 is the amplitude of the perturbation and ρ0 = 1.
The thermal energy is perturbed in the same manner with the
same amplitude A but scaled by P0/ρ0, the unperturbed pressure
and density. The fluid has an unperturbed sound speed of cs,0 = 1.0
and we adopt an adiabatic equation of state. Unless otherwise
stated the velocity is set to vx = 0.001, vy = vz = 0. The particles are
initially set on a close-packed lattice with the above density distri-
bution. We add noise to the lattice by randomly adjusting the x
and y positions of the particles by 0.0001× the length of the box.
We use 64 particles across the box of width dx= 1.0 and dy= 1.0,
corresponding to a total of N = 56 832 particles initially.

The refinement region is a circle centred at x= 0.5, y= 0.5
with a radius of r = 0.10. In contrast to our example applications,
these simulations only make use of one refinement level (� = 1)
which corresponds to a doubling of the particle number inside this
region. The first split occurs at t = 0.5 to allow the particles to set-
tle a bit first and the simulation is then performed until t = 2.0,
corresponding to five wave-crossings in total. After the split the
simulation has around N = 63 500 particles.

Our results in this section are all shown with the cross section
of the density, ρ(x), across the box divided by the initial average
density, ρIC, to avoid small variations in the background density
caused by kernel bias. For clarity we also restrict the visualisation
to only include particles between 0.4< y< 0.6, essentially making
it a cross section centred on y= 0.5. On each plot we also dis-
play the average density as a function of position across the box
for both the APR simulation and a reference simulation without
any refinement. This allows us to easily compare how much noise
is introduced as a result of the splitting/merging and how accu-
rate these simulations are compared to the simulations that do not
include APR. Movies of some of the simulations in this section are
available online.

Appendix 1.1. Density discontinuity – the ‘blip’

A common feature in all of our simulations is a density discon-
tinuity at the refinement boundary (i.e. the ‘blip’ between the
different resolution regions). It appears as a slight increase in the
density just outside the refinement region and a slight decrease
immediately inside. This discontinuity does not introduce spu-
rious waves, has a constant amplitude and does not appear to
affect the density profile inside the refinement region. Its appar-
ent prominence is because of our use of a comparatively small
amplitude sound wave as our test case – we chose it specifically so
that any spurious features would be easily identifiable. This feature
maintains a constant amplitude (here, of <5% of the original den-
sity) and in our examples in Section 3 is barely visible in renderings
(e.g. Fig. 5), similar to the density profiles seen in examples with
GIZMO (Anglés-Alcázar et al. 2021; Franchini, Lupi, & Sesana
2022; Duffell et al. 2024). Importantly, the blip does not seem to
affect the propagation of the wave itself.

This density blip is a manifestation of a known issue in APR,
where the splitting andmerging procedure introduces small errors
into the density distribution. Feldman & Bonet (2007) formally
established that an error in the density distribution is introduced
each time a parent particle is replaced by children particles when
the children all have the same mass. When a split occurs and
the children particles are introduced, they should be placed sym-
metrically around the parent to ensure conservation of angular
momentum (e.g. López, Roose, & Recarey Morfa 2013). However,
the introduction of these new particles also introduces this error,
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Table A1. Summary of the hfact employed and the average number of neighbours
Nneigh for the kernels tested in Fig. A1 (e.g. Price et al. 2018b).

Kernel Nneigh hfact

M4 Cubic 57.9 1.2

Wendland C2 92 1.3

Wendland C4 137 1.5

Wendland C6 356 1.6

the magnitude of which is a function of the distance the children
are placed at rsep. In turn, this means the error can be minimised
by adjusting the locations of the children.

López, Roose, & Recarey Morfa (2013) extended this idea to
consider the error introduced in the derivative of the density,
suggesting that this was the more relevant error to minimise for
subsequent calculations. Further works looked at how best to min-
imise this error that is introduced every time particles are split
or merged with various rsep (e.g. López, Roose, & Recarey Morfa
2013), particle shuffling/relaxing (e.g. Lind et al. 2012; Diehl et al.
2015; Sun et al. 2017), the use of ghost particles and blending tech-
niques (e.g. Barcarolo et al. 2014; Chiron et al. 2018; Gao, Qiu, &
Fu 2022) to mitigate this at the boundaries of refinement regions.
Barcarolo et al. (2014) eliminated this density blip by employing a
blending zone between each refinement level, where both children
and parents co-exist but their contribution to the density summa-
tion is graduated by their distance across the blending zone. This
approach was also adopted by Gao, Qiu, & Fu (2022) but only
as new particles moved into the higher refinement level, allowing
them to regularise first. While promising, blending is difficult to
implement in compressible flows due to mass conservation in the
blending zone.

The alternative is particle relaxation (shuffling): to minimise
the error introduced when particles were split, Diehl et al. (2015)
used aWVT shuffling method to rearrange the particles to a lower
error state compared to the original parent distribution. Yang &
Kong (2019) employed multiple, stepped refinement regions to
control the ratio of the smoothing lengths across the boundaries
and mitigate instabilities (similar to Børve, Omang, & Trulsen
2001). In our implementation we employ relaxation, but find that
it is only important when a large number of particles are split or
merged at once.

Appendix 1.2. Kernel choice

Fig. A1 shows the final snapshot of our test simulation com-
paring the use of the Cubic spline (Monaghan & Lattanzio
1985), Wendland C2, Wendland C4 and Wendland C6 kernels
(Wendland 1995), summarised in Table A1. The density profile
in the refinement region (blue line) is in excellent agreement with
the expected profile (red line) for all kernel choices. As might be
expected, the kernels with more neighbours have less noise inside
the refinement region and at the boundary. In particular, the cubic
has the largest noise at the refinement region boundary, the largest
spread in density inside the refinement region and has the least
accurate density profile (although the difference here is marginal).

Fig. A2 shows our planet disc interaction test at t = 10 orbits
but with different combinations of rsep and either a Cubic,
Wendland C2 or Wendland C4 kernel. Here we have zoomed
in to see the boundaries of the refinement zone to examine the
effect of these choices. Moving between kernels, the WC4 in the

Figure A1. Wave in a box test showing the effect of different kernels with APR. The blue
points show the particles within the y= 0.5 cross-section across the x dimension of the
box at t= 2.0. The dark blue line shows their average density, while the red line shows
the average density of the same simulation without APR. The density discontinuity at
the refinement boundarymaintains a constant amplitude across all of the simulations.

lowest row is smoothest while the cubic has the largest noise at the
boundaries. For any of the kernels, increasing rsep beyond 0.2 also
corresponds to an increase in the noise at the boundary (seenmost
clearly in the WC4 case). Both of these tests confirm that a higher
order kernel is more effective at mitigating the density ‘blip’ but
that the difference is marginal. For our example applications we
adopt the Wendland C2 kernel as a balance between accuracy and
computational expense.

Appendix 1.3. Adjusting the split

Fig. A3 demonstrates the effectiveness of both particle relaxing
(as per Section 2.4) and directional splitting, where particles are
split tangentially to the refinement boundary. Importantly, once
the particles have settled after their initial split (Fig. A3, top panel)
there is no significant difference between the methods in the den-
sity profiles. However, their time to compute is quite different
with the simulations that include relaxing taking much longer.
In practice, we thus adopt directional splitting as it is fast, gives
an improved initial density estimate and prevents particles from
being immediately placed across the boundary into a low resolu-
tion region when they are split. To improve computational time
by default we only employ the relaxing routine when refinement
regions are activated and there is a large number of particles that
are split or merged at once.

Appendix 1.4. Number of children

In our tests so far we have used nchild = 2, splitting parents into two
children and merging two children to become a parent. In Fig. A4
we show the impact of this choice by considering nchild = 4 and
nchild = 8. We compare this to simulations with nchild = 2 and � =
2, 3 respectively which have equivalent local resolutions.
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Figure A2. Planet disc interaction test showing the effect of different kernel choices and rsep on the noise introduced at the refinement boundary in a full simulation. Refinement
boundaries are indicated in the same way as Fig. 3. The boundary is smoothest for the Wendland C4 kernel when rsep = 0.2 but we note the difference is marginal.

To split one parent into four children we follow the method
outlined in Section 2.2 and treat those two children as the diagonal
corners of a square. We then add an additional two particles on
the opposing diagonal which ensures that the face of the square of
four children particles is parallel to the refinement boundary. For
eight children we create two squares that are offset by 0.1× the
smoothing length of the original parent, with the centre of mass of
the resultant cube centred on the original parent. For our merging
routines we simply edit our modified k-d tree to return cells with
nchild = 4 and nchild = 8.

Fig. A4 shows the planet disc interaction test at t = 4 orbits for
these choices, where the centrally refined zone has the same width
(r� = 0.35 au and the steps into the refinement zone at increments
of 0.10 au). The noise introduced by the nested zones is visibly
lower in both cases; in the nchild = 8 case the noise is the largest
and is also prominent across the whole refined region, even after
it has had the opportunity to settle after the first split. We note
that while this test may be improved by relaxing at each step, in
practice this becomes computationally extremely expensive. This

implies that using a smaller number of children – even if it means
having nested refinement regions – is the preferred approach. In
other words, even four children is too many.

Appendix 1.5. Size of the APR zone

We test the effect of the size of the refinement region using the jet
test presented in Price et al. (2024), Appendix E, Fig. 14. In this
test a jet of gas shoots in one direction from a fixed location in an
empty domain, the gas flares out as it expands slightly. Based on
the results of Price et al. (2024) we set the Mach number of the gas
to 10 to ensure a fairly narrow jet. The particles are injected as a
cylinder with radius R= 1 with 16 particles in each layer. The rest
of the parameters in this simulation are scale free.

We apply four different APR zones to this jet test with � = 1
for all but r� = 3, 5, 10 and 15. The refinement boundary of each
different zone has the same position of y= 5 so that particles are
always split at the same location but they are merged at differ-
ent distances from the launching point of the jet. Fig. A5 shows
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Figure A3. Wave in a box test showing the effect of different particle placement
optionswhen a split ormerge occurs shownat the initial split (upper, t= 0.5) and at the
end of the simulation (lower, t= 2.0). The colours are the same as in Fig. A1. Relaxing is
most successful when the split first occurs but makes negligible difference during the
course of the simulation. Directional splitting also makes little difference in the long
term but does prevent particles from splitting across the boundary.

this with the refinement zone indicated with a green dashed cir-
cle. We chose an injection velocity of vy = 37.5 and calculate how
many sound crossing times the particles will experience between
refinement and derefinement to be < 1, 1.3, 2.7 and 4.0.

Fig. A5 shows the column density of the jets at t = 50 with
the refinement zones superimposed. For the tests where particles
have fewer sound crossing times we find that there is a slight nar-
rowing of the jet within the refinement zone but for the final test

Figure A4. The planet disc interaction test, examining the effect of having different
nchild. The left column has nchild = 2 with nested refinement levels, the upper right has
nchild = 4 and one level of refinement, the lower right nchild = 8 and one level. The refine-
ment zones are shown as in Fig. 3. Rows have the same local resolution around the
planet. While the nested refinement zones do add noise at the boundaries, this is
demonstrably less than bigger numbers of children.

Figure A5. Testing the size of the refinement zone, where the four simulations are
characterised by the number of sound crossings that can occur between the refine-
ment and derefinement boundaries. The refinement region is indicated with a green
circle in the figure.

where particles have several sound crossing times this narrowing is
not apparent. This test demonstrates that particles require several
sound crossing times between the refinement boundaries to allow
them to relax before they are derefined.
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