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We investigate Lighthill’s proposed turbulent mechanism for near-wall concentration of
spanwise vorticity by calculating mean flows conditioned on motion away from or toward
the wall in an (friction Reynolds number) Reτ = 1000 database of plane-parallel channel
flow. Our results corroborate Lighthill’s proposal throughout the entire logarithmic layer,
but extended by counter-flows that help explain anti-correlation of vorticity transport by
advection and by stretching/tilting. We present evidence also for Lighthill’s hypothesis
that the vorticity transport in the log layer is a ‘cascade process’ through a scale hierarchy
of eddies, with intense competition between transport outward from and inward to the
wall. Townsend’s model of attached eddies of hairpin-vortex type accounts for half of
the vorticity cascade, whereas we identify necklace type or ’shawl vortices’ that envelop
turbulent sweeps as supplying the other half.

Key words: vortex dynamics, turbulent boundary layers

1. Introduction
In a famous review of boundary layers, Lighthill (1963) suggested that turbulent flows
possess a mechanism that systematically concentrates spanwise vorticity sharply against
the wall, despite the strong ‘eddy viscosity’ effects that would be expected to diffuse
such vorticity outward. He proposed that a tight correlation should exist, on the one
hand, between motion toward the wall and vortex stretching/strengthening and, on the
other hand, between motion away from the wall and vortex compression/weakening
(see Lighthill 1963, § 3.3). Moreover, he argued that this mechanism should operate
across the entire logarithmic layer and the correlated motions should constitute a turbulent
‘cascade process’:
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‘We may think of them as constantly bringing the major part of the vorticity in the
layer close to the wall, while intensifying it by stretching and, doubtless, generating new
vorticity at the surface; meanwhile, they relax the vortex lines which they permit to wander
into the outer layer. Smaller-scale movements take over from these to bring vorticity still
closer to the wall, and so on. Thus, . . . this cascade process has the additional effect in a
turbulent boundary layer of bringing the fluctuations into closer and closer contact with
the wall, while their vortex lines are more and more stretched’. – Lighthill (1963), p.99.

These ideas seem to have much in common with the attached eddy model (AEM) of
Townsend (1976), a popular vortex-based structure model of turbulent boundary layers
which has been substantially further investigated and developed (Woodcock & Marusic
2015; Marusic & Monty 2019). In this approach, the boundary layer is modelled as a
scale-invariant hierarchy of ‘attached eddies’ often taken to be hairpin vortices similar to
the structure visualised in figure 1(a). These eddies are assumed to have dimensions which
scale with wall distance y and with a population size decreasing ∝ 1/y, consistent with
an inverse cascade in which hairpin vortices generated by a bursting process lift from the
wall, grow in size and sequentially merge together.

There have been sporadic attempts to unify Lighthill’s vorticity-based picture of
turbulent boundary layers with the bursting phenomenon and the AEM (Gad-el Hak
1990). Using the standard assumptions in the AEM that the eddy-intensity function
satisfies Ixy(y∗) ∼ −Qy∗ for y∗ � 1 and Ixy(y∗) → 0 for y∗ � 1 (Townsend 1976;
Woodcock & Marusic 2015), where Q is a numerical prefactor, Eyink (2008) showed
that the ensemble-average nonlinear vorticity flux in the AEM for turbulent channel and
pipe flow with friction velocity uτ and outer length H (with v and w representing the
wall-normal and spanwise velocities, ωy and ωz wall normal and streamwise vorticities,
respectively) is (see Eyink 2008 for details)

〈vωz − wωy〉 ∝ − Qu2
τ

H
. (1.1)

The AEM thus predicts the correct outward nonlinear flux of vorticity away from the
wall at heights y > yp, the location of peak Reynolds stress, consistent with some
contemporary claims that the AEM applies only for that range of wall distances
(Marusic & Monty 2019). The standard AEM, however, certainly does not explain the
nonlinear vorticity transport flux toward the wall in the lower part of the log layer for
y < yp (Eyink 2008, § III.B.2). The latter phenomenon was the main focus of Lighthill
(1963) and its absence in the standard AEM suggests that a complement is needed.
Recently, vorticity-based methods have provided some evidence in support of Lighthill’s
mechanism, first in a transitional boundary layer by a stochastic Lagrangian analysis
(Wang, Eyink & Zaki 2022) and next in a fully developed turbulent channel flow, both
by an Eulerian analysis of vorticity flux (Kumar, Meneveau & Eyink 2023) and also by
Lagrangian analysis (Xiang, Eyink & Zaki 2025).

Here, we make a definitive advance by calculating conditional averages (Kim &
Moin 1986; Adrian et al. 1989) of velocity fields and vorticity fluxes for positive or
negative values of wall-normal velocity throughout the entire log layer. Our results for
the conditional mean vorticity flux and the vortex lines of the conditional mean fields
presented in detail below support the view that Lighthill’s mechanism acts in the same
manner throughout that entire range, with the conditional structures merely growing in
scale with increasing distance of the conditioning point from the wall. As a preview of
these results, we show in figure 1 the mean vortex structures and vortex lines conditioned
at one height yc. Details of the numerical methods are given in § 2.2. The results shown
in figure 1(a) are conditioned on motion outward from the wall at the point y+

c = 92.8
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Figure 1. Conditional eddies visualised for λ2 = −0.9, coloured by ω+
x , along with vortex lines

initiated at y+ = 60 for (a) v(yc) > vrms (click for three-dimensional version: https://www.cambridge.org/
S002211202510654X/JFM-Notebooks/files/fig1/eddy_streamline_outflow_yplus_093.html) and at y+ = 108
for (b) v(yc) < −vrms, (click for three-dimensional version: https://www.cambridge.org/S002211202510654X/
JFM-Notebooks/files/fig1/eddy_streamline_inflow_yplus_093.html) with both conditions applied at y+

c =
92.8. A green dot marks the conditioning point.

inside the log layer. The vortex structure has the familiar form of a ‘hairpin vortex’, with
an elevated spanwise head above the conditioning point and streamwise legs near the wall.
On the other hand, the results shown in figure 1(b) for conditioning on motion inward to the
wall at the same point inside the log layer appear quite distinct. The conditional structure
appears as a broad necklace vortex, or ‘shawl vortex’, wrapped around the down-flowing
fluid mass. We remark that these are similar to a smoothed version of the vortex structures
visualised in Kumar et al. (2023) for a velocity field spectrally filtered to contribute only
up-gradient nonlinear vorticity flux. Observations qualitatively similar to these will be
presented below for conditioning points at every wall distance in the log layer. The vortex
lines for our two conditions closely resemble those for the conditions QD2 and QD4 in
the classic work of Kim & Moin (1986), except that they studied momentum transport
whereas we focus on vorticity transport. For a more quantitative discussion, therefore, we
must first recall the definition of Eulerian vorticity flux which is the basis of our work.

2. Methods of the present study

2.1. Theoretical methods
The analysis of the present work relies on the Eulerian vorticity-flux tensor originally
introduced by Huggins (1971, 1994) (see also Eyink 2008; Terrington, Hourigan &
Thompson 2021; Kumar et al. 2023; Kumar & Eyink 2024; Du & Zaki 2025) which for
incompressible Navier–Stokes with viscosity ν, is

Σij = uiωj − ujωi + ν

(
∂ωi

∂xj
− ∂ωj

∂xi

)
. (2.1)

The above tensor describes the spatial flux of the j th component of vorticity in the i th
coordinate direction, with its anti-symmetry arising from the fact that vortex lines cannot
terminate in the fluid (Terrington et al. 2021). Thus, this tensor appears as a space-transport
term in the local balance equations for the j th components of vorticity, ∂tωj + ∂iΣij = 0
for j = 1, 2, 3. The three terms in (2.1) have transparent physical meaning, with the first
representing advective transport of vorticity, the second transport by stretching and tilting
of vorticity and the third transport by viscous diffusion of vorticity.

The most important component of the vorticity flux for explanation of drag is Σyz, the
flux of spanwise z-vorticity in the wall-normal y-direction (Kumar & Eyink 2024). It has
been pointed out by many researchers (Taylor 1932; Huggins 1994; Klewicki et al. 2007;
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Figure 2. Profiles of the mean vorticity-flux contributions (a), averaged over time and wall-parallel planes,
plotted as functions of wall distance. The vertical light grey line at zero flux is added to emphasise the signs of
the various contributions. Conditional averages are plotted in (b) from points where turbulent flow is outward
(v′ > 0) and in (c) where it is inward (v′ < 0), for the total nonlinear flux and its advective and stretching/tilting
parts. The latter two are anti-correlated over the log layer, both for (b) inflow and (c) outflow.

Eyink 2008; Brown, Lee & Moser 2015; Kumar et al. 2023) that the mean value of this
flux in statistically steady-state Poiseuille flow is exactly equal to the pressure gradient in
the streamwise x-direction, and furthermore is constant in y for pipe and channel flows
because of stationarity and conservation of vorticity (uτ friction velocity, H channel half-
width)

〈Σyz〉 = 〈vωz − wωy − ν(∂yωz − ∂zωy)〉 = ∂x 〈p〉 = −u2
τ /H. (2.2)

As stressed by Huggins (1994), (2.2) is a classical equivalent of the time-average relation
of Josephson (1965) and Anderson (1966) for quantum superfluids, which relates drag to
vortex motion. Here, we always mean Σyz whenever we refer to ‘vorticity flux’.

In the prior work by Kumar et al. (2023), the constant-flux relation (2.2) was verified by
numerical simulation data, together with the observations of Klewicki et al. (2007), Eyink
(2008) and Brown et al. (2015) that 〈vωz − wωy〉 > 0 for y < yp and 〈vωz − wωy〉 < 0
for y > yp, where yp is the wall-distance location of the peak Reynolds stress; see
figure 2(a), which reproduces figure 5 in Kumar et al. (2023) for the friction Reynolds
number Reτ = 1000 channel-flow database where y+

p = 52. Since Lighthill (1963) had
argued for strong correlation with the wall-normal velocity, Kumar et al. (2023) calculated
also the average fluxes conditioned on v > 0 and v < 0. These conditional means are
presented in figure 2(b,c), reorganising the data from figure 7 in Kumar et al. (2023).
As shown, the net nonlinear vorticity flux is ‘down-gradient’ or away from the wall for
v > 0 and ‘up-gradient’ or toward the wall for v < 0. As intuitively obvious, the mean
advective flux contribution has these same signs, but intriguingly figure 2(b,c) shows that
the mean stretching/tilting contribution has the opposite sign throughout the logarithmic
layer. Kumar et al. (2023) presented a tentative explanation of this anti-correlation effect
based on an assumed geometry of vortex lines and Lighthill’s predicted flow behaviour:
spanwise converging for v > 0 and spanwise diverging for v < 0. The main goal of the
present work is to check Lighthill’s picture in detail, and also the related explanation for
anti-correlation, by calculating mean flow structures and their vortex lines conditioned on
the wall-normal velocity at various points throughout the log layer.

2.2. Numerical methods
We employ direct numerical simulation data of channel flow at Reτ = 1000 from the Johns
Hopkins Turbulence Database (see Li et al. 2008; Graham et al. 2016). We have used
1022 A30-4
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y+
c No. of v+ events No. of v− events x+

w × z+
w

39 20 593 20 366 515 × 208
52 16 954 16 775 515 × 257
93 12 143 12 033 614 × 307
197 7925 7849 712 × 405
298 4660 4720 810 × 601

Table 1. Number of outflow and inflow events sampled at various wall-normal locations along with the
streamwise (xw) and spanwise (zw) extent of the sampling window.

the database cut-out service to download time snapshots of data for the entire channel.
Gradients in the spanwise and streamwise directions are then calculated spectrally by Fast
Fourier Transform, and wall-normal gradients are calculated using seventh-order basis
splines based on the collocation points of the original simulation (Graham et al. 2016).
All statistics are thereafter calculated by averaging over wall-parallel planes in the x and
z directions of homogeneity, as well as over 10 time snapshots. Reflected results from the
top half of the channel are included to double the sample size of our averages.

Our conditional averaging was designed to select points with a local maximum of wall-
normal velocity magnitude |v(x)| exceeding some threshold αvrms. We have checked that
our results do not depend very sensitively upon the choice of α and we present results
here only for α = 1. We may argue for the reasonableness of this choice by noting that, for
both signs ± of v and independent of y, the set of points with |v| > vrms constitute 10 %
of the area of the wall-parallel plane at that y-level but contribute approximately 60 % of
the total vorticity flux for that sign of v, as plotted in figure 2(b,c); see Appendix A. To
make certain that the events in the conditional ensemble are distinct, we set streamwise
(xw) and spanwise (zw) extents of the sampling window for each event. For each sign ±
of v and each y-level, we then performed sequentially the following steps: (i) identify the
point with largest magnitude of |v| (and above the root mean square vrms) in the wall-
parallel plane, (ii) add the sample of size xw × zw centred at that point, (iii) remove from
the plane the doubled 2xw × 2zw rectangle centred at the point in order to prevent overlap,
(iv) find the next point with largest magnitude of |v| (and above vrms) in the remaining
portion of the wall-parallel plane and so forth. The size of the sampling window at each y-
level was selected by calculating approximate conditional averages with a linear estimator
(Adrian et al. 1989) and determining the smallest rectangle to contain the conditional eddy
visualised by the λ2-criterion at a low threshold.

The sizes of the sampling windows and the number of events in the conditional
ensembles for each sign ± and for five values of y = yc distributed through the log layer
are given in table 1. For decreasing yc, the sizes of the events decrease, as measured by
the areas xw × zw, while the total number of events increase. In fact, as an a posteriori
justification of our sampling procedure, we note that the percentage of the total area
occupied both by the outflow (v+) events and by the inflow (v−) events is approximately
47 % for each sign, independent of yc. This y-independence of the area fraction is expected
of the ‘representative eddies’ in the AEM, but notice that such independence holds here
for the v− events or ‘sweeps’ as well as for the v+-events or ‘ejections’. In fact, the events
in our two conditional ensembles cover together nearly the entire area of the wall-parallel
plane at each y. Note that for all y-levels except the largest there are slightly more v+ events
than v− events at the same threshold, reflecting the well-known asymmetry in strengths
of ‘ejections’ versus ‘sweeps’ (Willmarth & Lu 1972; Kim & Moin 1986; Hutchins et al.
2011; Lozano-Durán et al. 2012).
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Figure 3. Instantaneous vortex lines for (a) outflow event (b) inflow event, both in the vicinity of a local
maximum of the wall-normal velocity at y+ = 92.8. The unique vortex line passing through the conditioning
point is marked in magenta.

To provide some intuition about the events selected by our sampling procedure, we plot
in figure 3 one event in the v+ ensemble and another in the v− ensemble. To visualise these
events, we have followed Kim & Moin (1986) in drawing the unique vortex line passing
through the conditioning point and also nearby vortex lines. The resulting bundle of vortex
lines for the outflow event in figure 3(a) is easily recognisable as a ‘hairpin vortex’, while
the bundle for the inflow event in figure 3(b) is instead an ‘inverted hairpin’. These two
events are for the same wall distance y+

c = 92.8 as the mean structures plotted in figure 1,
where the means are obtained by averaging over the entire conditional ensembles, hereafter
denoted as 〈·〉+,yc and 〈·〉−,yc , respectively. (We omit yc, if it is clear in context.) For more
such events, see Appendix B. The two events plotted in figure 3 have the largest magnitudes
of |v(x)| for the given time, sign and y-level.

3. Results of conditional averaging
We present our results first for averages conditioned on outflow (§ 3.1) and then on inflow
(§ 3.2). The log layer in the Reτ = 1000 database extends over the range 30 � y+ � 300
and we present results in the first two sections for a single height y+

c = 92.8, roughly at the
geometric mean of the log layer. Finally, we consider (§ 3.3) the variation of our numerical
results with wall distance y+ and the evidence for a scale hierarchy.

3.1. Outflow from the wall
In figure 4 we plot the contributions to the mean vorticity flux and the mean flow for
the conditional average 〈·〉+,yc at y+

c = 92.8. The first panel figure 4(a) plots the mean
advective flux under this condition, which is straightforwardly down-gradient throughout
most of the domain. There is only a very narrow layer at y+ � 10 where the convective
flux contribution is up-gradient. The latter effect was explained in Kumar et al. (2023)
by the correlation between weakened spanwise vorticity and upward motion in this
near-wall region. On the other hand, the second panel, figure 4(b), which plots the
mean stretching/tilting contribution, shows strong up-gradient flux below the conditioning
point, especially near the wall, and a weaker down-gradient flux in the region above the
conditioning point. The main goal of this subsection is to explain these observations.

The most significant clues to the correct explanation are in the remaining panels.
Figure 4(c) plots in the yz-plane of the conditioning point the vortex lines of the mean
flow. These show the ‘hairpin’ structure of vortex lines already evidenced by the three-
dimensional (3-D) plot in figure 1(a). Furthermore, figure 4(d) shows that the conditional
flow corresponds to a large-scale ‘ejection’ between a pair of counter-rotating streamwise
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Figure 4. Conditional mean fields in the plane of the conditioning point for the outflow event at y+
c = 92.8,

coloured by (a) flux due to the convective term, (b) flux from the stretching/tilting term, (c) total nonlinear flux,
(d) streamwise vorticity. Also depicted are (c) vortex lines and (d) quivers showing in-plane velocity. A green
dot marks the conditioning point.

vortices. Below these vortices are oppositely oriented streamwise rollers, illustrating
Lighthill’s remark in the opening quotation of this paper about ‘generating new vorticity
at the surface’ due to the stick boundary condition at the wall. See figure II.19 in Lighthill
(1963).

These characteristics were exactly those predicted by Lighthill (1963) to explain the
up-gradient flux due to weakening of vortex lines and were also the ingredients of
the control-volume argument by Kumar et al. (2023) to explain the anti-correlation
between advection and stretching contributions during outflow. We repeat this argument
in figure 5(a), with attention on the bottom line, taken as representative of all lines below
the conditioning point. Because of the spanwise converging flow, the product −wωy > 0
gives an up-gradient transport into the grey-shaded control volume, representing the loss of
spanwise vorticity of the lifted vortex line. This is precisely Lighthill’s mechanism, based
on converging flow that compresses and weakens the upward-moving vortex lines. Note
from figure 4(d) that the mean flow is converging all the way up to the conditioning point.
Thus, not only does the conditional mean flow support Lighthill’s mechanism near the
wall, but it also shows that Lighthill’s mechanism can explain the observed anti-correlation
at the conditioning point and in a region below it.

Note, however, that the flow above the conditioning point is instead diverging, because
of the counter-flow required by incompressibility but neglected in the considerations of
Lighthill (1963). His reasoning would suggest that rising vortex lines in this region are
being stretched and strengthened. This effect is associated with the product −wωy < 0 for
the upper vortex line above the conditioning point in figure 5(b), which corresponds to
down-gradient flux out of the top surface of the grey-shaded control volume and into the
lifted vortex head. In fact, down-gradient flux from stretching/tilting is indeed observed in
this region in figure 4(b).

Finally, together with the vortex lines in figure 4(c), we have plotted the conditional
mean nonlinear vorticity flux from both advection and stretching/tilting. This total
nonlinear flux is down-gradient everywhere except near the wall, because the advection
term is generally stronger than the stretching term. However, Lighthill’s mechanism
dominates near the wall, producing net up-gradient vorticity flux toward the wall.

3.2. Inflow to the wall
In figure 6 we plot the analogous contributions to the mean vorticity flux and the mean flow
for the conditional average 〈·〉−,yc at y+

c = 92.8. The advective flux plotted in figure 6(a)
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Figure 5. Control-volume analysis of outflow away from the wall illustrating the stretching contribution to
spanwise vorticity balance for (a) Lighthill region, (b) counter-flow region. Black lines with arrows represent
vortex lines and green arrows mark the directions of local velocity components. Blue arrows in (a) at the
boundary of the relevant control volume, shaded grey, represent up-gradient flux from the stretching–tilting
term into the volume, while red arrows in (b) represent down-gradient flux out of the volume.
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Figure 6. Conditional mean fields in the plane of the conditioning point for the inflow event at y+
c = 92.8,

coloured by (a) flux due to the convective term, (b) flux from the stretching/tilting term, (c) total nonlinear flux,
(c) streamwise vorticity. Also depicted are (c) vortex lines and (d) quivers showing in-plane velocity. A green
dot marks the conditioning point.

is again straightforwardly up-gradient near the conditioning point where the mean flow is
toward the wall, but down-gradient below and to the sides. The latter sign can be explained
as a counter-flow effect: see the flow vectors in figure 6(d) directed away from the wall in
this region. The up-gradient advective flux in the layer y+ � 10 was already observed
in Kumar et al. (2023) and explained there by the correlation between strengthened
spanwise vorticity and downward motion in the very near-wall region. The second panel,
figure 6(b), plots the mean stretching/tilting contribution and shows down-gradient flux in
a small region at and just above the conditioning point. On the other hand, close to the
wall the stretching contribution is strongly up-gradient. In this subsection we develop an
explanation of these various observations.

As before, the most significant pieces of information are in the remaining panels of
figure 6. The vortex lines of the mean flow plotted in figure 6(c) over the yz-plane of the
conditioning point and plotted also for three dimensions in figure 1(b) have the form of
‘inverted hairpins’. Furthermore, figure 6(d) shows that the conditional flow corresponds
to a large-scale ‘sweep’ between a pair of counter-rotating streamwise vortices, opposite
in orientation to the pair in figure 4(d), and again with induced streamwise rollers of the
opposite sign near the wall. These characteristics are precisely those predicted by Lighthill
(1963) for in-flow to the wall, with a spanwise diverging flow beneath the conditioning
point. To understand the up-gradient transport of the stretching term in that region, we can
use a control-volume analysis which assumes a field-line geometry like that illustrated in
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Figure 7. Control-volume analysis of inflow towards the wall illustrating the stretching contribution to spanwise
vorticity balance for (a) Lighthill region, (b) counter-flow region. Conventions for lines, arrows and their
colours are the same as in figure 5.

figures 1(b) and 6(c); see the bottom line sketched in figure 7(a). Because of the spanwise
diverging flow, the product −wωy > 0 gives an up-gradient transport into the grey-shaded
control volume, representing the gain of spanwise vorticity of the vortex line. This is
exactly Lighthill’s mechanism, based on diverging flow that stretches and strengthens the
downward-moving vortex line.

As with the out-flow case, however, a recirculation appears that was not considered
by Lighthill and that leads now to a converging flow above the conditioning point; see
figure 6(d). Lighthill’s reasoning would suggest here that the down-moving vortex lines
in this region are compressed and weakened. This effect is associated with the product
−wωy < 0 for the upper vortex line above the conditioning point in figure 7(b), which
corresponds to down-gradient flux out of the top surface of the grey-shaded control volume
and weakening of the vortex line. This argument thus suggests that the anti-correlation
between advective and stretching contributions is in fact due to the counter-flow in the
case that v′ < 0 and the control-volume picture in figure 7(b) corrects that of Kumar et al.
(2023), which erroneously posited an upward-bent hairpin-type line geometry.

We plot also in figure 6(c) the conditional mean nonlinear vorticity flux from both
advection and stretching/tilting, together with the vortex lines. This total nonlinear flux
is up-gradient everywhere, because the advection term is stronger than the stretching term
near the conditioning point. However, Lighthill’s mechanism again dominates near the
wall, so that the net flux is likewise up-gradient close to the wall. As already emphasised
by Lighthill (1963), both outflow and inflow act to concentrate vorticity near the wall, the
first through weakening and the second through strengthening of the advected vorticity.

Our explanation of the conditionally averaged vorticity fluxes 〈vωz〉±, −〈wωy〉± based
on the conditionally averaged fields is a priori valid only for the fluxes 〈v〉±〈ωz〉±,

−〈w〉±〈ωy〉± of the conditional eddies themselves. The success of this explanation
requires that correlations of the two fluctuating factors must be rather small in the
conditional ensembles. We have directly verified the small size of the Pearson correlation
coefficients (see Appendix C), but a complete physical justification remains open.
A possible explanation is that the velocities v, w are mainly large-scale quantities while
the vorticities ωz, ωy are mainly small-scale quantities and fluctuations of the two sets of
variables are thus naturally uncorrelated due to scale separation (Tennekes & Lumley 1972,
§ 8.2). However, statistical correlations between these variables are obviously required
for turbulent nonlinear transport of vorticity. One may infer from the small Pearson
coefficients observed in the conditional ensembles that these correlations are mainly linked
to the direction of the wall-normal velocity, as intuited by Lighthill. This fact provides
strong a posteriori justification for our procedure of conditioning on the wall-normal
velocity.
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Figure 8. Conditional fields for outflow events at (a–d,i) y+
c = 39, (a–d,ii) y+

c = 52, (a–d,iii) y+
c = 197,

(a–d,iv) y+
c = 298, coloured by (a,i–iv) flux due to the convective term, (b,i–iv) flux from the stretching/tilting

term, (c,i–iv) nonlinear flux and vortex lines in black, (d,i–iv) streamwise vorticity and in-plane velocity as
quivers. Green dots mark conditioning points.

3.3. Scaling with wall distance
The results presented previously for conditioning point y+

c = 92.8 hold for all points
within the log layer. We show in figure 8 at four yc-values in the log layer results for
outflow analogous to those in figure 4 for y+

c = 92.8, and likewise in figure 9 at the same
four yc-value results for inflow analogous to those in figure 6. The essential features are
the same for all yc as for y+

c = 92.8, with each panel of figure 8 showing an ejection
between a pair of counter-rotating streamwise vortices and each panel of figure 9 a sweep
between a counter-rotating vortex pair of the opposite orientation. The primary change
with increasing yc is the increased scale of the conditional mean events, along with
decreasing magnitude of the mean fluxes. Only minor qualitative changes with yc appear,
such as a small region of down-gradient transport near the wall in the total vorticity flux in
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Figure 9. Conditional fields for inflow events at (a–d,i) y+
c = 39, (a–d,ii) y+

c = 52, (a–d,iii) y+
c = 197, (a–d,iv)

y+
c = 298, coloured by (a,i–iv) flux due to the convective term, (b,i–iv) flux from the stretching/tilting term,

(c,i–iv) nonlinear flux and vortex lines in black, (d,i–iv) streamwise vorticity and in-plane velocity as quivers.
Green dots mark conditioning points.

figure 8 for outflows at y+
c � 52 and a single connected region of down-gradient transport

near the wall for the advective flux in figure 9 for inflows at y+
c � 197. Except for these

small differences, the plots are nearly the same for all values of yc. These results support
the conjecture of Lighthill (1963) that vorticity transport through the log layer is a ‘cascade
process’ sustained by a scale hierarchy of vortex structures.

Additional evidence for scale similarity is provided in figure 10, which shows
conditional mean eddies for outflow and for inflow at various conditioning points with
heights yc selected throughout the log layer, analogous to the structures plotted in figure 1
for y+

c = 92.8. These eddies are defined by the λ2-criterion for the conditional mean fields
with a threshold λ2 = −6u2

τ /y2
c that is scaled with uτ and yc. Note that the structures

are not strongly sensitive to the prefactor 6 in the λ2 threshold and that 3-D versions of
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Figure 10. Outflow eddies (top), inflow eddies (bottom) are illustrated for the conditioning point at (a, f )
y+

c = 39, (b,g) y+
c = 52, (c,h) y+

c = 92.8, (d,i) y+
c = 197, (e, j) y+ = 298. The isosurfaces are shown at

λ2 = −6u2
τ /y2

c . Three-dimensional versions of the eddies sketched in this figure, as well as corresponding
streamlines for the outflow event, are available to view by clicking on (a), (b), (c), (d), (e), and for the
inflow event at ( f), (g), (h), (i), ( j). The code to generate outflow eddies is available in figure 10(a–e)
code here: https://www.cambridge.org/S002211202510654X/JFM-Notebooks/files/fig10/plot_outflow_eddies_
streamlines.ipynb and to generate inflow eddies is available in figure 10( f–j) code here: https://www.
cambridge.org/S002211202510654X/JFM-Notebooks/files/fig10/plot_inflow_eddies_streamlines.ipynb.
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Figure 11. Streamwise (X+, X−), wall-normal (Y+, Y−) and spanwise (Z+, Z−) sizes of outflow and inflow
conditional eddies scaled by the wall-normal location of the conditioning point.

all images are available via JFM Notebooks through links provided in the figure caption.
The plots suggest that the conditional eddies change with increasing yc chiefly through
their streamwise extents decreasing with respect to their spanwise and wall-normal extents,
while the latter scale linearly with yc. These observations can be quantified by calculating
the side lengths X, Y, Z for bounding boxes of the conditional eddies, which are plotted in
figure 11 rescaled by yc. As observed for both outflow (v+) and inflow (v−), the quantities
Y ±/yc and Z±/yc are nearly constant while streamwise size X±/yc shows some decrease
in value. Note also that the extents of outflow eddies are larger than inflow eddies, in part
due to the stronger intensity of outflow events.

The difference in vorticity transport contributions between ‘hairpins’ and ‘shawls’ can
be further emphasised by plotting as functions of y the conditional mean vorticity flux
〈vωz − wωy〉±,yc for both signs ± of wall-normal velocity and for various values of yc
in the log layer; see figure 12. Most obviously, the flux contribution at the conditioning
point y = yc of the v+ eddies is always down-gradient, whereas the contribution of the v−
eddies at point y = yc is always up-gradient. Another important lesson to draw from the
flux distributions in figure 12 is the locality of the vorticity transport in vertical height, with
eddies at wall distance yc contributing to vorticity flux only at distances y ∼ yc. In fact, for
all values of yc and both signs ±, the mean vorticity transport arising from the conditional
eddy appears only in the scale range 0.4 � y/yc � 1.4 and with a narrower range for
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Figure 12. Flux contributions from conditional outflow and inflow eddies, for the conditioning point at
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c = 39, (b) y+
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c = 92.8, (d) y+
c = 197, (e) y+ = 298.

larger yc. This result is complementary to the locality in spanwise length observed by
Kumar et al. (2023), whose plots of vorticity-flux cospectra in their figures 8 and 11
showed that down-gradient vorticity across height y is contributed on average by eddies
with spanwise wavelengths λz in the range 0.4 � λz/y � 3 while up-gradient vorticity
across y is contributed on average by eddies with λz in the range 3 � λz/y � 40. These
two forms of locality are presumably closely connected, since our figure 11 shows that all
three dimensions of the conditional mean eddies scale with yc. The observation in Kumar
et al. (2023) that up-gradient transport at wall distance y arises from eddies of larger
scale while down-gradient transport arises from eddies of smaller scale is also suggested
by our figure 12, since (at least for y+

c � 93) the peak of the up-gradient transport from
v− eddies occurs at y < yc and the peak of the down-gradient transport from v+ eddies
occurs at y > yc. These various observations in toto lend support to Lighthill’s conjecture
that vorticity transport in wall-bounded turbulence occurs via a stepwise cascade through
a hierarchy of eddies.

3.4. Are sweeps and ejections really independent?
Despite the differences documented above, comparison of the inflow and outflow
structures in figure 10 might lead one to question whether these two conditional mean
eddies exist as distinct entities. Instead, the logarithmic layer at every wall distance may
be imagined to consist of a sequence of streamwise vortices with alternating orientations,
and the decision to pair these into ‘hairpins’ and ‘shawls’ would then be an arbitrary
choice. It seems clear by continuity of the flow that outflows and inflows cannot be
distributed independently but instead must appear one after another in turn, along a
spanwise direction. In fact, this sort of arrangement corresponds exactly to the sketch
in figure II.22 of Lighthill (1963). Similarly in the plot of vortex lines in figure 3 for
individual flow realisations, one might imagine that the hairpin and inverted hairpin are
two pieces of a long vortex line undulating up and down in the spanwise direction and just
shifted by half a phase.

To address these questions, we have carried out an extensive study of the distribution
of inflow and outflow events identified for conditional averaging, with details given in
Appendix D. (We thank an anonymous referee for suggesting this analysis.) Given any
sweep or ejection event, we located the mean position of the neighbouring reverse flow
event by looking at the autocorrelation function of the wall-normal velocity, in the same
wall-normal plane. At each wall height, we observe a clear negative minimum of the
auto-correlation at spanwise distance of sin 1.3y, which we take as the average distance
to the neighbouring reverse flow event. This seems a reasonable estimate also based
on the conditional mean structures plotted in figure 10 and the individual realisations
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Figure 13. Outflow eddies (top), inflow eddies (bottom) are illustrated for the conditioning point at (a, f )
y+

c = 39, (b,g) y+
c = 52, (c,h) y+

c = 92.8, (d,i) y+
c = 197, (e, j) y+ = 298. The isosurfaces are shown at

λ2 = −6u2
τ /y2

c and are coloured by the associated nonlinear vorticity flux. Three-dimensional versions of the
eddies sketched in this figure, as well as corresponding streamlines for the outflow event, are available to view
by clicking on (a), (b), (c), (d), (e), and for the inflow event at ( f), (g), (h), (i), ( j). The code to generate
outflow eddies is available in figure 13(a–e) code here: https://www.cambridge.org/S002211202510654X/JFM-
Notebooks/files/fig13/plot_outflow_flux_eddies.ipynb and to generate inflow eddies is available in figure
13( f–j) code here: https://www.cambridge.org/S002211202510654X/JFM-Notebooks/files/fig13/plot_inflow_
flux_eddies.ipynb.

plotted in figure 3 (see also figures 19 and 20). However, these neighbouring reverse
events might not be sufficiently strong to satisfy the criterion imposed in our conditional
ensemble. Thus, for each strong outflow event or ejection considered in the conditional
average, we find the nearest strong inflow event or sweep on the same wall-parallel plane
satisfying |v| > vrms. We then find the displacement vector d between them. We consider
displacement vectors d that make an angle |θ | < (π/4) with the z-axis and label these
sweep events as possible ‘spanwise shifts’ of the ejection event. In fact, we find that these
nearest sweep events are either much further away than 1.3y or else are displaced mainly
streamwise, i.e. make an angle |θ | > (π/4). At increasing wall-normal distances in the log
layer, only 9 %–26 % sweep events are shifts of ejection events defined in this way. This
result implies that, although a spanwise phase shift from a strong outflow event may lead
to an inflow event, the strength of this inflow event is usually not enough to merit inclusion
in the conditional average, and vice versa. Strong outflow and strong inflow events tend not
to be phase shifts of each other, but instead perceptibly different events.

In addition, the conditional eddies for outflows and inflows are distinct in several
respects. For example, the ‘hairpins’ are more streamwise extended (see figure 11 for a
quantification of this observation) and seem also more clearly ‘wall attached’, whereas
the ‘shawls’ are streamwise shorter and appear detached. Even clearer differences appear
in their contributions to vorticity transport. This becomes apparent in figure 13 where
the conditional mean eddies are coloured instead by nonlinear vorticity flux. ‘Hairpins’
and ‘shawls’ both contain vorticity flux directed away from and toward the wall, but the
distributions are distinctly different. For ‘hairpins’ the dominant flux is outward/down-
gradient and appears on the upper half of the vortex, whereas weaker inward/up-gradient
flux appears on the underside facing the wall. For ‘shawls’ the distribution is different,
with the dominant inward/up-gradient flux appearing on top and immediately below,
with weaker outward/down-gradient flux further underneath. The most distinctive and
important difference is that the arch of spanwise vorticity in ‘hairpins’ is moving outward
and contributes down-gradient vorticity flux, while the arch of spanwise vorticity in
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Figure 14. Conditional mean fields in the plane of the conditioning point for the outflow event v > 2vrms at
y+

c = 92.8, coloured by (a) flux due to the convective term, (b) flux from the stretching/tilting term, (c) total
nonlinear flux, (d) streamwise vorticity. Also depicted are (c) vortex lines and (d) quivers showing in-plane
velocity. A green dot marks the conditioning point.
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Figure 15. Conditional mean fields in the plane of the conditioning point for the inflow event v < −2vrms at
y+

c = 92.8, coloured by (a) flux due to the convective term, (b) flux from the stretching/tilting term, (c) total
nonlinear flux, (d) streamwise vorticity. Also depicted are (c) vortex lines and (d) quivers showing in-plane
velocity. A green dot marks the conditioning point.

‘shawls’ is moving inward and contributes up-gradient vorticity flux. In fact, there is a
striking similarity to the coherent structures observed by Kumar et al. (2023) in filtered
fields, designed to decompose the flow into two orthogonal components contributing
‘down-gradient’ and ‘up-gradient’ transport. Figure 13 in Kumar et al. (2023) for the
high-pass filtered field shows a forest of ‘hairpins’ with the same bipolar flux distribution
as in the upper row of figure 13 and net ‘down-gradient’ transport. On the other hand,
figure 15 in Kumar et al. (2023) for the low-pass filtered field shows an assembly of
‘shawls’ or ‘pancakes’ with the bipolar flux distribution as in the bottom row of figure 13
and net ‘up-gradient’ transport. The suggestive similarities between the structures revealed
by conditional averaging and by spectral filtering remain to be fully understood.

Further evidence that ‘ejections’ and ‘sweeps’ are not just phase shifts of each other
is provided by the distribution of the nonlinear vorticity flux in individual realisation of
the two conditional ensembles, which are exhibited as colour plots in figures 19 and 20 in
Appendix B. As suggested by the conditional mean structures plotted in figure 13, ejection
events tend to have strong down-gradient flux just above the conditioning point while
sweeps tend instead to have strong up-gradient flux just below that point. The neighbouring
reverse flow events are usually weaker and do not have these characteristics. These features
are most evident nearer the wall where the individual realisations are more coherent, but
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remain as a statistical tendency at all wall distances. These differences in vorticity-flux
distributions for individual realisations of the two conditional ensembles give additional
support to the premise that they represent different types of events, which are not just
spanwise phase shifts of each other.

4. Conclusions
The mechanism proposed by Lighthill (1963) for concentration of spanwise vorticity at
solid walls in a turbulent boundary layer involves a strong correlation between vortex
stretching/relaxation and fluctuating velocities toward/away from the wall. The method
of conditional averaging (Kim & Moin 1986; Adrian et al. 1989) is designed to reveal such
correlations and, applied here to a database of high-Reτ turbulent channel flow, it provides
extensive evidence corroborating the validity of Lighthill’s mechanism throughout the
logarithmic layer. We have elaborated this picture by observing, in addition to the near-
wall motions postulated by Lighthill (1963), also returning counter-flows away from the
wall, which help to explain, among other things, the anti-correlation between advective
and stretching fluxes observed by Kumar et al. (2023). The net vorticity transport in
the turbulent boundary layer is exposed as an intense rivalry between fluxes up-gradient
toward the wall and down-gradient away from the wall, with the competition just narrowly
won by the latter. Our results further support by an array of evidence Lighthill’s conjecture
that this vorticity dynamics is a cascade process proceeding through a hierarchy of
turbulent eddies whose dimensions scale with distance to the wall.

The present work supports the view that the current AEM could be improved by
inclusion of up-gradient transport. Eyink (2008) pointed out that the nonlinear vorticity
flux obtained by matched asymptotics over the entire log layer is reproduced within the
AEM as

〈vωz − wωy〉 ∝ u2
τ

(
Pδ

y2 − Q

h

)
, (4.1)

for δ := ν/uτ � y � h, if only one replaces the usual AEM assumption on the
eddy-intensity function that Ixy(y∗) → 0 for y∗ � 1 instead with Ixy(y∗) ∼ −P/y∗ for
y∗ 
 1 and P a numerical prefactor. In that case, up-gradient vorticity transport for y <

yp := (Pδh/Q)1/2 is correctly recovered, but the assumed decay is much slower than
the rate Ixy(y∗) = O(1/y∗4) for y∗ 
 1 (see Eyink 2008 for details) obtained from the
Biot–Savart formula by assuming a ‘representative eddy’ in the form of a hairpin line
vortex (Woodcock & Marusic 2015, Appendix C). It has been an open question since
Eyink (2008) what alternate vortex structure might yield such up-gradient transport. In
agreement with the classic work of Kim & Moin (1986), our study suggests that the
additional structures could be associated with sweeps and we identify these as ’shawl
vortices’. Lighthill’s hypothesis that vorticity transport toward the wall is taken over by
’smaller-scale movements’ suggests another competitive direct-cascade process in which
large-scale vortices are transported toward the wall, fragment into smaller structures and
proliferate in number. The shawl vortices wrapped around downflows, as revealed by
conditional averaging in figure 1(b), seem to originate above the wall but interact with
it by inducing opposite-sign vorticity. These observations open up new possibilities for
vortex-based structure models that may refine the AEM.

There are many possible elaborations and future directions of work. We have not
fully explored the 3-D characteristics of the conditional eddies illustrated in figure 1.
For example, the control-volume arguments presented in figure 5, 7 are essentially two-
dimensional but the vortex lines plotted in figure 1(a,b) are streamwise inclined and
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Figure 16. (a) Fraction of area occupied, and (b) contribution to conditional flux from, strong outflow events
(v > vrms) and strong inflow events (v < vrms).

likewise the conditional flows are fully three-dimensional. Perhaps most importantly, our
study supports Lighthill’s suggestion of a vorticity cascade mechanism, but no strict
causal connection has been established between vorticity at different scales, locations and
times. A promising method to get more detailed dynamical understanding is the stochastic
Lagrangian approach (Wang et al. 2022), especially if combined with conditional
averaging. Monte Carlo evaluation of the stochastic Lagrangian trajectories is prohibitively
expensive in the logarithmic layer, but a recent Eulerian adjoint vorticity algorithm (Xiang
et al. 2025) makes this feasible. In the latter paper, Lighthill’s mechanism was verified as
the causal origin of strong spanwise vorticity in the viscous sublayer of turbulent channel
flow. Finally, an important direction of future research is to exploit better understanding
of the vorticity dynamics responsible for turbulent drag in order to develop improved drag
reduction strategies (Kumar et al. 2025).

Supplementary material. Computational Notebook files are available as supplementary material at
https://doi.org/10.1017/jfm.2025.654 and online at https://www.cambridge.org/S002211202510654X/JFM-
Notebooks.
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Appendix A. Area and flux fractions of high wall-normal velocity points
The average fluxes displayed in figure 2 in the main text were conditioned simply on
v > 0 and v < 0, but the definition of the conditional ensembles in § 2.2 employed a
threshold magnitude of wall-normal velocity. To select an appropriate threshold, we
applied conditions v > αvrms and v < −αvrms for various choices of the parameter α. For
each choice, we calculated the fractional area occupied by points satisfying that condition
in wall-parallel planes at fixed heights yc and also the fractional contribution of those
points to the mean nonlinear vorticity flux through those planes.

For the case α = 1 shown in figure 16 we found that the points for both v+ and v−
conditions occupy around 12 % of the area, nearly independent of yc. On the other hand,
the contribution of these points to the nonlinear vorticity flux through those planes is
upward of 60 % and very slightly increasing with yc. Thus, the flux contribution outweighs
the area fraction by more than fivefold, emphasising the importance of these regions for
vorticity transport. We note also that at each yc-value there are somewhat more points
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Figure 17. (a) Fraction of area occupied, and (b) contribution to conditional flux from, strong outflow
events(v > 2vrms) and strong inflow events (v < 2vrms).

satisfying the v+ condition than the v− condition, with the difference growing slightly as
well with increase of yc. This observation is another indication of the somewhat greater
strength of outflow events than inflow events at all wall distances.

For the case α = 2 shown in figure 17 we found that the points for both v+ and
v− conditions occupy around 2 % of the area, again nearly independent of yc, but the
contribution to the nonlinear vorticity flux is upward of 20 % and again slightly increasing
with yc. Thus, the flux contribution outweighs the area fraction here by more than tenfold.
We observe once again greater strength of outflow events than inflow events at all wall
distances. Furthermore, we calculated the conditional means fields for α = 2 analogous to
those plotted in figure 4, 6, using the same methodology described in § 2.2. The results
are extremely close to those presented in figure 4, 6 of the main text for α = 1, with just
somewhat greater magnitudes of all conditional mean fields.

Based on all of these observations, we decided to present in the main body of the
paper results for the case α = 1. As we have seen here, this choice of threshold was
sufficiently high to obtain coherent flow structures from conditioning and, at the same
time, sufficiently low to guarantee nearly complete coverage of the wall area by the
sampling windows for the selected events.

Appendix B. Vortex lines in individual realisations of the conditional ensembles
At the end of § 2.2, we exhibited vortex lines for the strongest outflow (v+) and inflow
(v−) events, as identified by our conditional sampling method in one time snapshot at
y+

c = 92.8. To help give more intuition about the individual realisations of our conditional
ensembles, we here plot vortex lines for additional snapshots. Furthermore, to see the
variation with wall distance, we show vortex lines in figure 18 for the strongest outflow
events at five wall distances distributed through the log layer in three time snapshots
and in figure 19 we show vortex lines for the strongest inflow events in the same three
snapshots at the same wall distances. To keep the plots simple, we show the single unique
vortex line that passes through the conditioning point and projected into the yz-plane
through that point.

Although vortex lines are plotted for only a few events out of the large number in the
conditional ensembles (see table 1), they suggest a few general trends. First, we see that
outflow events lead to hairpin-type vortices but more or less disordered by the turbulent
environment and likewise the inflow events lead to inverted hairpin-type vortices. The
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Figure 18. Vortex lines passing through the conditioning point associated with the strongest outflow events at
a given wall height, at different time instants, with the background coloured by the instantaneous nonlinear
flux on the spanwise–wall-normal plane passing through the conditioning point. The conditioning points are at
(a–c)y+

c = 39, (d–f ) y+
c = 52, (g–i)y+

c = 92.8, ( j–l)y+
c = 197, (m–o) y+

c = 298.
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Figure 19. Vortex lines passing through the conditioning point associated with the strongest inflow events at
a given wall height, at different time instants, with the background coloured by the instantaneous nonlinear
flux on the spanwise–wall-normal plane passing through the conditioning point. The conditioning points are at
(a–c)y+

c = 39, (d–f ) y+
c = 52, (g–i)y+
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Figure 20. Vorticity-flux fields of mean eddies conditioned on the outflow/inflow events at y+
c = 92.8: the

convective term for (a) outflow and (c) inflow and the stretching/tilting term for (b) outflow and (d) inflow.
A green dot marks the conditioning point.
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Figure 21. Mean vorticity-flux fields conditioned on the outflow/inflow events at y+
c = 92.8: the convective

term for (a) outflow and (c) inflow and stretching/tilting term for (b) outflow and (d) inflow. A green dot marks
the conditioning point.

vortex lines are more ordered for outflows than for inflows and also more ordered at
decreasing distances from the wall.

The vortex lines through the conditioning points, as well as those at a fraction of the
wall distance higher and lower, can be reconstructed from the earlier-in-time vorticity
in a Lagrangian sense by the methods of Wang et al. (2022) and Xiang et al. (2025).
Such reconstruction for the conditional ensembles can reveal the causal dynamics of the
vorticity cascade proposed by Lighthill (1963).

Appendix C. Egligible effect of fluctuations in conditional mean fluxes
We noted in the main text at the end of § 3.2 that our successful explanation of the
conditional mean vorticity flux based upon the properties of the conditional mean
eddies requires that correlations of velocity and vorticity fluctuations be weak. Here,
we expand on that point in some detail and we furthermore quantify the magnitude of
velocity–vorticity fluctuation correlations.

In figure 20 we plot the fluxes of the conditional eddies, both convective 〈v〉±〈ωz〉±
and stretching/tilting −〈w〉±〈ωy〉±, which are directly related to the conditional field lines
and flows plotted in figures 4(c,d) and 6(c,d). These quantities are a priori distinct from
the conditional mean fluxes, 〈vωz〉± and −〈wωy〉±, plotted in figures 4(a,b) and 6(a,b)
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Figure 22. Correlation coefficients for the two factors in the convective term ρ±(v, ωz) = (〈vωz〉± −
〈v〉±〈ωz〉±)/vrms± ωrms

z± , conditioned on (a) outflow and (c) inflow, and for the two factors in the stretching/tilting
term, ρ±(w, ωy) = (〈wωy〉± − 〈w〉±〈ωy〉±)/wrms± ωrms

y± , conditioned on (b) outflow and (d) inflow, at y+
c =

92.8. Also shown are the unconditioned correlation coefficients for the convective term (e)ρ(v, ωz) = (〈vωz〉 −
〈v〉〈ωz〉)/vrmsωrms

z and stretching/tilting term ( f ) ρ(w, ωy) = (〈wωy〉 − 〈w〉〈ωy〉)/wrmsωrms
y .

in the main text and reproduced here for convenience in figure 21. Since the issues are
very similar for all yc values, we have confined the plots and discussion to the single
wall-normal distance y+

c = 92.8 presented as the primary example in the main text.
Comparing the results in figures 20 and 21, we see first they are remarkably similar,

except near the wall. Not only are the signs and patterns of the two sets of fluxes closely
similar, but also the magnitudes are quite similar for the advective flux and differ by a
factor of only 2–3 for the stretching flux. On the other hand, the conditional mean fluxes
show up-gradient transport very near the wall that is missing in the flux of the conditional
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eddies, especially strong for the stretching fluxes. Furthermore, this near-wall up-gradient
flux is quite uniform in z and also nearly the same for outflow and inflow events. It
is reasonable to expect that memory of the condition at y+

c = 92.8 fades far from the
conditioning point, so that the near-wall conditional mean fluxes are presumably close to
the unconditional means.

The close resemblance of the results in figures 20 and 21 requires that the fluctuation
correlation coefficients of the velocity and vorticity factors in the fluxes must be small
for both condition ensembles. In figure 22(a–d) we have plotted the Pearson correlation
coefficients for both advective and stretching/titling fluxes and for both outflow/inflow.
Except near the walls, the coefficients are less in magnitude than approximately 0.2,
confirming the small correlations of fluctuations. The coefficients are strongest close to
the wall, especially for the stretching flux where they rise to a maximum magnitude of
0.4. We have plotted also the Pearson correlation coefficients for the unconditional means
in figure 22(e, f ), verifying that they are nearly the same as for the analogous conditional
means in figure 22(a–d). In the main text, we proposed that the generally weak correlations
of fluctuations are due to the scale separation expected for velocity and vorticity and this
explanation is consistent with the increase of correlations in the near-wall region where
the separation in scales disappears.

Appendix D. Distribution of inflow and outflow events
The autocorrelation function of the normal velocity in wall-parallel planes at height yc

ρvv(rx , rz|yc) = 〈v(x, yc, z, t)v(x + rx , yc, z + rz, t)〉x,z,t

v2
rms(yc)

, (D1)

shown in figure 23(a,i–v), exhibits a weak negative minimum at spanwise distance rz =
rm ∼ 1.3yc for each yc value. This minimum implies that, on average, moving a distance
±rm in the spanwise direction from a strong outflow (inflow) event will lead us to an
inflow (outflow) event. However, the strength of the autocorrelation suggests that the
inflow (outflow) event may be much weaker than the corresponding outflow (inflow) event.

On the other hand, the conditional ensembles that we have employed include only events
where |v| > vrms. A strong outflow (inflow) event included in the conditional average
may or may not have an inflow (outflow) event which can be found by a spanwise shift
of rm and which is also strong enough to be included in the corresponding conditional
average. In order to quantify the proportion of such reverse events which are sufficiently
strong, we define the reverse event displacement vector d. At a given wall-normal height
yc, for each outflow event included in the conditional average (v(x p) > vrms) located
at x p = (x p, yc, z p), let the nearest inflow event included in the conditional average
(v(xn) < −vrms)) be located at xn = (xn, yc, zn). We then define d := xn − x p = (xn −
x p, 0, zn − z p), with reverse event distance d = |d| and θ = arctan((zn − z p)/(xn − x p)),
the angle made by the vector d with the z axis. We posit that an inflow event can be
considered a ‘spanwise shift’ of an outflow event if d � rm and |θ |� π/4. The probability
density function (PDF) and cumulative distribution function (CDF) of d for different yc -
values are shown in figures 23(b,i–v) and figures 23(c,i–v), with dashed pink lines marking
the corresponding rm . We see that as the wall-normal distance yc of the conditioning
point increases, the proportion of cases with d < rm also increases from 14 % for y+

c = 39
(figure 23c,i) to 54 % for y+

c = 298(figure 23c,v). Meanwhile, the PDF and CDF of θ

are illustrated in figures 23(d,i–v) and 23(e,i–v) respectively, with magenta dashed curves
showing the corresponding values for the cases where d � rm . The plots show that overall,
there is no strongly preferred direction of displacement, while the proportion of cases
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Figure 23. (a, i–v) Autocorrelation of wall-normal velocity ρvv(rx , yc, rz), magenta dashed lines mark the
location of local minima, r+

z = r+
m and r+

z = −r+
m . (b, i–v) Probability distribution function (pd f ) and (c,i–

v) cumulative distribution function of the reverse event distance d = |d|, with magenta dashed lines marking
respective r+

m . (d,i–v) pdf and (e,i–v) cdf of the absolute value of the angle |θ | made by d with the z axis.
Magenta dashed lines show the pd f and cd f of |θ | where d � rm . The planes are at (a–e,i)y+

c = 39, (a–
e,ii)y+

c = 52, (a–e,iii)y+
c = 92.8, (a–e,iv)y+

c = 197, (a–e,v)y+
c = 298..

which could be considered a ‘spanwise shift’, with |θ |� π/4 and d � rm increases from
9 % for y+

c = 39(figure 23e,i) to 26 % for y+
c = 298(figure 23e,v).

Thus, we see that at most a quarter of the inflow events strong enough to be included in
the conditional average can be considered a ‘spanwise shift’ of a strong outflow event. Our
results show that strong outflow and strong inflow events cannot in general be identified
with the adjacent reverse flows obtained from small spanwise shifts. This finding supports
the idea that the ejections and sweeps identified by our criteria are not adjacent parts of the
same structure, but instead different structures. It is true that small spanwise shifts from
a strong outflow (inflow) event will lead to an inflow (outflow) event, but these adjacent
reversed flows are generally weaker and do not satisfy the strength criterion that we impose
to define our conditional ensembles.
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