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Abstract

Despite their widespread use, purely data-driven methods often suffer from overfitting, lack of physical
consistency, and high data dependency, particularly when physical constraints are not incorporated. This study
introduces a novel data assimilation approach that integrates Graph Neural Networks (GNNs) with optimization
techniques to enhance the accuracy of mean flow reconstruction, using Reynolds-averaged Navier–Stokes
(RANS) equations as a baseline. The method leverages the adjoint approach, incorporating RANS-derived
gradients as optimization terms during GNN training, ensuring that the learned model adheres to physical laws
andmaintains consistency. Additionally, the GNN framework is well-suited for handling unstructured data, which
is common in the complex geometries encountered in computational fluid dynamics. The GNN is interfaced with
the finite element method for numerical simulations, enabling accurate modeling in unstructured domains. We
consider the reconstruction of mean flow past bluff bodies at low Reynolds numbers as a test case, addressing
tasks such as sparse data recovery, denoising, and inpainting of missing flow data. The key strengths of the
approach lie in its integration of physical constraints into the GNN training process, leading to accurate
predictions with limited data, making it particularly valuable when data are scarce or corrupted. Results
demonstrate significant improvements in the accuracy of mean flow reconstructions, even with limited training
data, compared to analogous purely data-driven models.

Impact Statement

This study presents an innovative approach that integrates graph neural networks with physics-based constraints
derived from Reynolds-averaged Navier–Stokes equations to improve fluid flow reconstruction. By incorpor-
ating physical laws into the training process through adjoint optimization, the framework enhances prediction
accuracy and consistency. The present work demonstrates that this data assimilation approach can effectively
reconstruct flow fields from sparse, noisy, or incomplete data, and is applicable to complex geometries, offering a
promising solution for addressing challenges in modeling fluid behavior under a variety of conditions.
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1. Introduction

In recent years, the integration of machine learning (ML) algorithms into computational fluid dynamics
(CFDs) has experienced significant growth, driven by the increasing efficiency of ML models in
processing large datasets and their impressive capabilities in inference and prediction. The literature is
already richwith various effective approaches for combiningML algorithmswith CFDs, as highlighted in
the review works by Brunton et al. (2020) and Vinuesa and Brunton (2022). These applications have
found a natural domain in turbulence modeling problems, ranging from the closure of Reynolds-averaged
Navier–Stokes (RANS) equations to wall-modeled large eddy simulations (Lapeyre, 2019; Zhou et al.,
2021; Bae andKoumoutsakos, 2022). Among themany research efforts addressing these challenges, Ling
and Templeton (2015) applied classification methods to identify regions of uncertainty where the closure
term in RANS might fail, while other approaches leverage baseline models such as the Spalart–Allmaras
closure (Singh and Duraisamy, 2016), physics-informed neural networks (NNs) (Eivazi et al., 2022),
regression methods (Schmelzer et al., 2020), decision trees (Duraisamy et al., 2019), ensemble methods
(McConkey et al., 2022), tensor-basis neural networks (Ling et al., 2016; Cai et al., 2024), and genetic
programming (Weatheritt and Sandberg, 2016; Zhao et al., 2020). For a broader overview, we refer to
Beck and Kurz (2021), Cinnella (2024), and Duraisamy et al. (2019), where thorough reviews of ML
techniques applied to the subject are provided.

On the other hand, alternative approaches are based on data assimilation. In this framework, diverse
observations are integrated with the governing dynamical laws of a system to optimally estimate physical
variables. Starting from a background state and incorporating imperfect observational data, it yields the
best possible estimate of the system’s true state by accounting for the statistical reliability of each data
source. These methodologies are routinely employed in meteorology, where accurate weather forecasting
is achieved by combining satellite imagery, meteorological measurements, and numerical models
(Navon, 2009), (Titaud et al., 2010). Two main approaches to data assimilation can generally be
identified: (i) stochastic estimation, which relies on probabilistic methods such as Kalman filtering,
and (ii) variational data assimilation. In the context of fluid mechanics, recent studies employing
stochastic estimation include Meldi and Poux (2017) and Cheng et al. (2019). Variational assimilation,
in particular the four-dimensional variational assimilation methods, has been applied in Cordier et al.
(2013) for turbulence model identification, and in a similar spirit in Dimitry et al. (2014). The success of
these applications in fluid mechanics is not surprising, as variational methods based on adjoint formu-
lations are commonly applied across a broad range of problems. These include sensitivity analysis in
stability studies (Giannetti and Luchini, 2007; Marquet et al., 2008; Luchini et al., 2009), optimization
(Schmid and Henningson, 1994; Cherubini et al., 2010; Magri, 2019; Giannotta et al., 2022), receptivity
analysis (Giannetti and Luchini, 2006), and flow control (Cherubini et al., 2013; Semeraro et al., 2013). A
thorough overview of these applications is provided by Luchini and Bottaro (Luchini and Bottaro, 2014).
Returning to the topic of mean flow reconstruction, Dimitry et al. (2014) proposed a variational data
assimilation method for reconstructing the mean flow field from partial measurements using the forced
RANS equations. Their approach minimizes the discrepancy between experimental data and numerical
solutions by identifying an optimal forcing term that effectively represents the unknown Reynolds
stresses. This is achieved through a direct-adjoint looping procedure, and the closure model is interpreted
as an optimal control variable informed by the adjoint field.

Building on this, recent efforts combining data assimilation with NNmodeling have been proposed in
Ströfer and Xiao (2021), Volpiani et al. (2021), and Patel et al. (2024). Following this philosophy, in this
work, we propose a novel approach that integrates graph NNs (GNNs) with RANS equations to enhance
the training process. The resulting method is referred to as the physics-constrained GNN (PhyCo-GNN).
Specifically, the forcing term in the RANS equations is modeled using a GNN, where the network is
informed by gradients obtained via autodifferentiation and analytical gradients derived from the adjoint
equations during the iterative process. By embedding the RANS closure term into the optimization
framework via the adjoint method, we leverage adjoint methods to efficiently compute gradients
necessary for optimization. This ensures that the gradients used during the GNN training are informed

e48-2 Michele Quattromini et al.

https://doi.org/10.1017/dce.2025.10022 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10022


by a deterministic physical model, rather than relying solely on available data, thus ensuring physical
consistency. A key feature of this approach is the use of GNNs (Hamilton, 2020), which are characterised
by complex, multi-connected nodes that can be naturally adapted to unstructured meshes. In a GNN,
convolution is performed by aggregating information from neighboring nodes, overcoming the limita-
tions of geometry typically encountered in convolutional NNs. Additionally, GNNs exhibit superior
generalization capabilities compared to standard models (Sanchez-Gonzalez et al., 2018), are differen-
tiable, and enable direct learning of operators through discrete stencils (Shukla et al., 2022). Due to these
advantages, GNNs have recently gained attention in fluid mechanics. A comprehensive review by Lino
et al. (2023) and examples from Toshev et al. (2023) and Dupuy et al. (2023), where GNNs are used to
model wall shear stress in Large Eddy Simulations (LES) simulations, highlight their potential. In
Quattromini et al. (2025), a GNN is used to predict the closure term in RANS equations at low Reynolds
numbers, using a supervised learning strategy. In that setting, the NN model receives the mean flow field
as input and is trained to regress the corresponding forcing term, with both quantities derived from high-
fidelity DNS data. The approach is designed to map the mean flow to the forcing term in a purely data-
driven setting. In contrast, the present work incorporates this GNN architecture as a pre-trained module
within a broader physics-constrained optimization framework. The GNNmodel is here repurposed to act
as a prior for a data assimilation scheme governed by the RANS equations. The key novelty lies in the
integration of the GNN into an adjoint-based inverse problem, where the NNmodel is trained not only to
replicate the direct numerical simulation (DNS)-derived forcing term, but also to minimize discrepancies
in the mean flow field reconstruction through gradient-based optimization, informed by the governing
physics. The remainder of this article is structured as follows. Themathematical framework is described in
Section 2, where the physical baseline model for the numerical simulations is detailed in Section 2.1, and
the adjoint optimization method is presented in Section 2.2. Section 4 outlines the ML framework,
detailing the GNN architecture (Section 4.1), the dataset preprocessing (Section 4.2), and the training
algorithm (Section 4.3). We then proceed to present the PhyCo-GNN approach in Section 5. Results are
presented in Section 6, where mean flow reconstruction is shown for several test cases, including sparse
data recovery, denoising, and inpainting of missing flow data. Conclusions are drawn in Section 7.

2. Mean flow reconstruction using data assimilation

2.1. Governing equations

This study focuses on two-dimensional (2D) incompressible fluid flows around bluff bodies in unsteady
regimes.Webeginwith theNavier–Stokes (NS) equations for incompressible flows.Letx = x,yð Þ denote the
spatial Cartesian coordinates. The velocity field u x, tð Þ and pressure field p x, tð Þ follow these dynamics:

∂u

∂t
þ u �∇ð Þu = �∇pþ 1

Re
∇2u (2.1a)

∇ �u = 0: (2.1b)

The above equations are made dimensionless by introducing the characteristic length scale D (e.g., the
diameter of the circumscribed bluff body circumference), the velocityU∞ of the incoming flow, and ρU2

∞
as the reference pressure. The Reynolds number is defined as Re=U∞

D
ν , where ν represents the kinematic

viscosity. This number represents the ratio between the inertial forces and the viscous forces in the fluid
flow and is used to characterize the flow regime, indicating whether the flow is laminar or turbulent,
depending on the specific case. In this study, we focus on unsteady nonlinear flows that settle on limit
cycles or quasi-periodic regimes, a configuration typically occurring when supercritical flows have not
yet become turbulent.

The NS equations can be computationally intensive. Hence, various approximate models are used
based on the required accuracy. In this study, we adopt the RANS model, a time-averaged formulation of
the NS equations. By introducing the Reynolds decomposition:
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u x, tð Þ= u xð Þþu0 x, tð Þ, (2.2)

the unsteady velocity field u= u,vð ÞT is split into an ensemble-averaged velocity field u = u,vð ÞT and a
fluctuating component u0 = u0,v0ð ÞT . Formally, this decomposition allows any unsteady flow to be
expressed as a sum of a steady mean flow and an unsteady fluctuating part. Plugging the Reynolds
decomposition (Eq. 2.2) into the NS equations (Eq. 2.1) and ensemble-averaging results in:

u �∇ð Þu= �∇pþ 1
Re

∇2uþ f (2.3a)

∇ �u = 0, (2.3b)

where p is the mean pressure field. These equations are completed with a set of boundary conditions,
detailed in Section 3, together with a description of the numerical setup.

In this context, the Reynolds stress tensor f acts as a closure term for the underdetermined system of
nonlinear equations in Eq. 2.3. Ideally, f can be directly computed, when data are available, as:

f = �∇ � u0u0� �
: (2.4)

In practice, mathematically computing f requires either DNS or sufficiently long sampling of
experimental or numerical data to accurately capture the statistical properties of the fluctuating compo-
nents u0. Unlike the mean flow u, the fluctuating components are inherently statistical in nature, and their
proper representation depends on achieving statistical convergence rather than full time-resolved data.
This is known as the closure problem. Several approximations, such as the Boussinesq hypothesis—for
example, k-ϵ, k-ω, and Spalart–Allmaras models (Wilcox, 1998)—or more complex models, such as the
explicit algebraic Reynolds stress model (Wallin and Johansson, 2000) and differential Reynolds stress
models (Cécora et al., 2015), can be introduced to address this problem. Nevertheless, in this work, we do
not assume anymodeling approximation of the forcing term f , but instead aim to compute it by combining
neural-networkmodeling and data assimilation; aGNNmodel is trained to infer the Reynolds stress term f
from a given mean flow u introduced as input. The Reynolds stress term f is the output of the GNN and is
assumed in this context as a control variable in the adjoint optimization process (see Section 5).

2.2. Adjoint-based data assimilation

Among the various strategies available in the literature, data assimilation schemes can be formulated by
casting optimization loops based on the adjoint method. In this approach, a cost function is defined to be
either maximized or minimized, alongside a control variable to be adjusted accordingly. To this end, we
introduce a mapping that projects the mean flow field u onto the measurement vector m as follows

m=M uð Þ:
The operatorM defines the ground truth data used in the optimization process. IfM = I, we consider the
full-field u; otherwise,Mmay be designed to project the field onto a subset of measurements (e.g., sparse
observations or an incomplete flow field, as in the inpainting scenario; see Section 6). Based on this
definition, the cost function to be minimized is given by the discrepancy between the ground truthm and
the reconstructed measurements M b�u� �

J b�u� �= 1
2

m�M b�u� ��� ��2
2
, (2.5)

where �k k2 represents the L2-norm, defined in association with the scalar product over the domain M:

〈a,b〉=
Z
Ω
a �bdΩ: (2.6)

We consider the RANS equations (Eq. 2.3) as the baseline equation and choose the unknown forcing
stress term f as the control variable. This procedure is inspired by the study in Dimitry et al. (2014), where
an optimization loop is designed to reconstruct the mean flow u.
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Since the control variable is the forcing stress term f , the cost function J (Eq. 2.5) does not explicitly
depend on it. Therefore, to relate the cost function J to the forcing stress tensor f, we need to define an
augmented Lagrangian functional L:

L f ,b�u,b�p,b�u†,b�p†� �
=J b�u� �� 〈b�u†,b�u �∇b�uþ∇b�p� 1

Re
∇2b�u� f〉� 〈b�u†,∇ �b�u〉 (2.7)

where 〈�, �〉 represents the spatial scalar product, as defined in Eq. 2.6. The augmented Lagrangian
functional L allows us to represent the constrained optimization problem as an unconstrained one by

introducing two a priori unknown variables, the Lagrangian multipliers b�u† and b�p†. To minimize the
functional defined in Eq. 2.7, its partial derivatives with respect to all independent variables of the
problem must be set to zero.

Following this approach, nullifying the partial derivatives of Eq. 2.7 with respect to the direct variables
u and p yields the adjoint NS equations:

�b�u �∇b�u†þb�u† �∇b�uT �∇b�p†� 1
Re

∇2b�u† = ∂J

∂b�u (2.8a)

∇ �b�u† = 0 (2.8b)

along with an appropriate set of boundary conditions, detailed in Section 3. It is worth noting that the
adjoint NS equations (Eq. 2.8) are forced on the right-hand side by the partial derivative of the error
functionJ with respect to the reconstructed mean flow u. This latter can be easily derived from Eq. 2.5 as

∂J

∂b�u = �∂M

∂b�u m�M b�u� �� �
: (2.9)

Finally, the partial derivative of Eq. 2.7 with respect to the forcing term f yields:

∂J
∂f

= b�u†: (2.10)

More details can be found in Dimitry et al. (2014), where the case of localized measurements is also
included in the analytical description of the direct-adjoint loop.

By exploiting the gradients of the cost function J with respect to the control variable f (Eq. 2.10), a
gradient descent algorithm can be applied to optimize f and iteratively converge toward the optimal
solution that minimizes the cost function J (Eq. 2.5). Specifically, the iterative direct-adjoint process
refines the forcing term f , ensuring that the RANS model accurately captures the mean flow character-
istics observed in high-fidelity DNS data. To summarize the process algorithmically, the adjoint
optimization procedure involves the following steps:

1. Initialization:An initial guess for the control variable f is chosen. We start from f = 0 to ensure the
divergence-free property (∇ � f = 0) and consistencywith the adopted boundary conditions (Dimitry
et al., 2014).

2. Forward step:Aprediction of themean flowb�u is obtained given the forcing term f , by solvingEq. 2.3.
3. Cost function evaluation: The distance between the reconstructed mean flow b�u and the ground

truth mean flow u is assessed using the cost function J (Eq. 2.5).
4. Adjoint step: The adjoint equations (Eq. 2.8), forced by the term in Eq. 2.9, are solved to find b�u†. The

term in Eq. 2.10 expresses the variation of the cost function J with respect to the control variable f .
5. Control variable update: using this gradient, corresponding to the adjoint variable b�u†, the forcing

term f is adjusted as:

f nþ1ð Þ = f nð Þ þβ
∂J nð Þ

∂f nð Þ = f nð Þ þβb�u† nð Þ
, (2.11)

where the superscript nð Þ indicates the n-th iteration of the optimization loop and β a coefficient related to
the step along the gradient direction. It is noteworthy that the variable b�u† is physically divergence-free,
thus justifying the initialization of f as a null field.
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The direct-adjoint process is iteratively repeated until the cost function J (Eq. 2.5) drops below a
predefined threshold, based on the required accuracy.

3. Numerical setup

The unsteady wake behind a bluff body is a well-established benchmark in CFDs. As a reference case, the
cylinder bluff body exhibits stable behavior up to a critical Reynolds number, Re cffi 46:7 (Provansal
et al., 1987; Giannetti and Luchini, 2007). Beyond this threshold, irregular velocity fluctuations appear,
accompanied by periodic vortex formation (Roshko, 1954), and the unsteady flow evolves into a limit
cycle known as the von Karman street. This phenomenon is observable up to Re = 150 for 2D cases
(Roshko, 1954). At these Re , dynamics can also settle in quasi-periodic regimes or show chaotic behavior
—for example, the case of fluidic pinball (Deng et al., 2020). This study focuses on 2D scenarios
exhibiting periodic or quasi-periodic behavior within the range 50≤ Re≤ 150. In our numerical setup, the
characteristic dimension is the diameterD of the circumscribed circle around the bluff body. Based on this
dimension, the computational domain extends Lx = 27 units in the streamwise direction and Ly = 10 units
in the transverse direction. The system’s origin O 0,0ð Þ is positioned Δx= 9 units downstream from the
inlet and Δy= 5 units from the symmetry boundaries. A pictorial sketch of the geometric configuration of
the computational domain is shown in Figure 1.

The flow evolves from left to right with a dimensionless uniform velocity u= 1,0ð ÞT, normalized by the
reference velocity U∞ of the undisturbed flow. Boundary conditions follow the setup described by
Dimitry et al. (2014). For the direct NS equations (Eq. 2.1), they are as follows:

u= 1, v= 0 at the inlet,

u= 0, v= 0 on the cylinder surface,

∂yu= 0, v= 0 on symmetry boundaries,
1
Re

∂xu�p= 0, ∂xv= 0 at the outlet:

0BBBBB@ (3.1)

For the adjoint NS equations (Eq. 2.8), the boundary conditions are:

u† = 1, v† = 0 at the inlet,

u† = 0, v† = 0 on the cylinder surface,

∂yu† = 0, v† = 0 on symmetry boundaries,

1
Re

∂xu
†þp† = �uu†,

1
Re

∂xv
† = �uv† at the outlet:

0BBBBBB@ (3.2)

Figure 1. Sketch of the computational domain geometry, where the diameter of the circumscribed circle
around the bluff body, alongwith the height and length of the domain, are provided in nondimensional units.
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Simulations start with null flow fields at t = 0. Required statistics, such as the mean flow u and
forcing stress term f , are computed on-the-fly. The final simulation time T is determined by a
convergence criterion, specifically when the L2-norm difference between consecutive mean flows
falls below 10�8.

Spatial discretization is achieved using a finite element method (FEM) approach via the FEniCS
Python library (Alnæs et al., 2015), with time integration handled by a second-order backward differen-
tiation formula. Meshes are refined near the obstacle and in the wake region to accurately capture flow
dynamics. Depending on the specific case, they typically consist of around 13,500 nodes on average.
Figure 2a depicts the streamwise component of the mean flow u along with the vorticity isolines
ω=∇× u, while Figure 2b shows the streamwise component of the closure term f for the cylinder bluff
body reference case at Re= 150.

4. GNN overview

In this section, we present an overview of the GNN architecture used in this study.While a comprehensive
description of the GNN architecture can be found in Hamilton (2020), our focus here is to describe the
specific implementation used in this work, tailored to the reconstruction of mean flow fields in CFD
scenarios. In particular, we describe how unstructured mesh data are encoded as graphs, how physical
quantities such asmean velocity fields and geometrical distances are integrated into themodel as node and
edge features, respectively, and how the GNN outputs the predicted forcing term required to solve the
RANS equations. The implementation relies on the PyTorch Geometric library (Fey and Lenssen,
2019), which provides an efficient and scalable infrastructure for the message passing (MP) algorithms at
the core of the GNN model.

Section 4.1 delves into the MP process adopted in our GNN; Section 4.2 outlines the specific structure
of the input data used to encodeCFDproblems as graphs; and theGNN training and inference algorithm is
presented in Section 4.3. For readers already familiar with Quattromini et al. (2025), we note that theGNN
architecture described here is unchanged. However, it is employed in this work with a fundamentally
different objective; those readers may wish to skip directly to Section 5, where the novel data assimilation
strategy is introduced.

4.1. MP process

In GNNs, nodes iteratively exchange information with their neighbors to update their latent representa-
tions. This process, known as MP, allows GNNs to capture complex dependencies and patterns within
data by considering the edges as important information relevant to the problem. Depending on the graph’s
size, the MP process can be repeated an arbitrary number of times, defined by a hyperparameter k.

) )

Figure 2. (a) Streamwise component of themean flow,u, and vorticity isolines,ω=∇× u, for the flow past
a cylinder at Re = 150. (b) For the same case, the streamwise component of the closure term, f , is shown.

In both cases, only a portion of the domain is displayed.
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A detailed list of the hyperparameters used is provided in Appendix A. The MP process is node-centered
and consists of three fundamental steps:

1. Message creation: Each node i begins with an embedding state represented by a vector hi. Initially
set to zero, this vector accumulates and processes information during the MP iterations. The
dimension dh of hi is constant across all nodes and is a key model hyperparameter. This dimension
determines the expressivity of the GNN, which reflects its ability to model complex functions
(Hornik et al., 1989; Gühring et al., 2020). It is noteworthy that the embedded state itself does not
have a direct physical interpretation, while the distance matrix indeed captures some physical
relation between the nodes.

2. Message propagation: Information is propagated between nodes. To capture the convective and
diffusive dynamics of the underlying CFD system, messages are exchanged bidirectionally
between connected nodes. For a pair of connected nodes i and j, with a directed connection aij
from i to j, the message generated is defined as:

ϕ kð Þ
i,j = ζ kð Þ h k�1ð Þ

i ,aij,h
k�1ð Þ
j

� �
, (4.1)

where h k�1ð Þ
i is the embedded state from the previous MP layer k�1ð Þ, and ζ kð Þ is a differen-

tiable operator, such as a multilayer perceptron (MLP) (Goodfellow et al., 2016). By swapping
the indices i and j in Eq. 4.1, we obtain the message flowing from j to i. Depending on the
number of j connected nodes in the neighboring set of i, namelyN i, for each node i, the global
outgoing message is then computed as:

ϕi,! = ⊕
j∈N i

ϕi,j, (4.2)

where⊕ represents a differentiable, permutation-invariant function (e.g., sum, mean, or max). In
our study, we chose the mean function to preserve permutation invariance, which is crucial when
working with unstructured meshes where the neighborhood size of each node may vary. This
ensures that the model can generalize across different mesh configurations.

3. Message aggregation: Each node i aggregates the received information to update its embedded
state h kð Þ

i :

h kð Þ
i = h k�1ð Þ

i þαΨ kð Þ h k�1ð Þ
i ,Gi,ϕ

kð Þ
i,!,ϕ

kð Þ
i, ,ϕ

kð Þ
i,↻

� �
, (4.3)

where Gi = u, Ref g represents external quantities injected into the GNN (mean flow u and

Reynolds number Re in our case), provided at each update k. The terms ϕ kð Þ
i,! and ϕ kð Þ

i, represent,

respectively, the message sent to and received from all the neighboring nodes. The term ϕ kð Þ
i,↻ is the

self-message that the node i send to itself in order to maintain the node’s own information while
aggregating messages from its neighbors. Their mathematical definition, with the appropriate
change in notation, is expressed in Eq. 4.1. The term Ψ kð Þ is a differentiable operator, typically an
MLP, used to handle together the gathered information. The term α is a hyperparameter relaxation
coefficient controlling the update scale (Appendix A).

At the end of the MP process, each node’s embedded state has been updated k times, incorporating
information from its neighbors. The choice of k is crucial for the model’s generalization across graphs of
varying sizes.As shownbyNastorg (2024), k should be proportional to the graph’s diameter to ensure effective
information propagation (Donon et al., 2020). However, since the graphs in the dataset used in this study
exhibit a relatively consistent diameter, we opted to optimize this hyperparameter using genetic algorithms
(Appendix A). Additionally, Nastorg (2024) explored recurrent or adaptive architectures, where k could
dynamically adjust based on the graph’s structure. Once the MP process concludes, the latest k-updated
embedded state of each node is projected back into the physical space to predict the desired target, in this case,
the forcing stress term f . A differentiable operator, such as an MLP (decoder D), handles this operation.
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4.2. Data structuring

Applying GNNs to unstructured CFD data requires representing the CFD mesh as a graph. In order to
obtain the CFD-GNN interface, we align each mesh node with a GNN node. To this end, we structure the
data into tensors that maintain the mesh’s adjacency properties. Specifically, for each case in the ground
truth dataset, we construct:

• A matrix A∈ℝni × dh ,

Ani ,dh =

a1,1 a1,2 ⋯ a1,dh
a2,1 a2,2 ⋯ a2,dh
⋮ ⋮ ⋱ ⋮

ani,1 ani ,2 ⋯ ani ,dh

26664
37775,

where ni is the number of nodes in the mesh and dh is the dimension of the embedded state. This
matrix A stacks together all the embedded arrays hi defined on all the nodes.

• AmatrixC∈ℝc× 2, where c is the number of edges in the mesh, defining the node connections. This
matrix represents the adjacency scheme of the mesh.

• AmatrixE∈ℝc× 2, containing the distances between connected nodes in the x and y directions. This
matrix captures the geometric properties of the mesh’s adjacency scheme, expressed as the node
distances.

Cc,2 =

i1 j1
i2 j2
⋮ ⋮
ic jc

26664
37775, Ec,2 =

xi1� xj1 yi1� yj1
xi2� xj2 yi2� yj2

⋮ ⋮
xic � xjc yic � yjc

26664
37775:

Each column of A serves as a feature vector for neurons in the MLPs used in the GNN (ζ , Ψ, and the
decoder D). The MLPs architecture is defined by the dimension dh of the embedded state, while
the number of nodes ni corresponds to the feature count per neuron. This approach enables the use of
the same MLP architectures across different CFD simulations, regardless of geometry or node count,
as the number of nodes does not affect the underlying structure of the MLP. This approach makes the
GNNs particularly well-suited for interacting with unstructured meshes and learning from various
geometries and configurations.

4.3. GNN training algorithm

The GNN training framework is shown in Figure 3. The process begins with A0, a matrix of zero-
initialized embedded states (see Section 4.2). This matrix, along with external inputsG (mean flow u and
Reynolds number Re ), is fed into the first MP1 layer. The updated embedded state matrix A1 is then

Figure 3. The overall framework of our GNN training process. MPk denotes the message passing
algorithms, D kð Þ are the k decoders, which are trainable MLPs, Ak are the k matrices containing the

embedded states of each node, andG is the vector containing the input injected into theGNN. The figure is
inspired by Donon et al. (2020).
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passed through the decoderD1, anMLP responsible for reconstructing the physical state f̂
1
. The predicted

forcing term f̂
1
is compared to the DNS ground truth f using a loss function:

ℓk =
1
ni

Xni
i = 1

f ki � f̂ i
� �2

, (4.4)

where ni is the number of nodes, and k is the layer number in the MP process. This procedure is repeated
across the k layers of the GNN. Following Donon et al. (2020), the intermediate losses from all layers of
the MP process are combined in a global loss function L to robustify the learning process:

L=
Xk
k = 1

γk�k �ℓk, (4.5)

where k is the number of layers, and γ is a hyperparameter controlling the weight of each loss term (see
Appendix A). As the MP process goes on, each node collects more and more information. This
exponential weighting ensures that later updates, which are richer in information, have greater influence
on the learning process.

5. Methodology

This section describes the data assimilation scheme developed in this study, which combines the training
process of a neural model based on GNN (Section 4) with the RANS equations (Section 2.1). The
approach primarily focuses on using analytically derived gradients through the adjoint method
(Section 2.2) to enhance the GNN learning process and ensure physical consistency in its predictions.
This scheme will be referred to as the PhyCo-GNN. The complete end-to-end training process is
illustrated in Figure 4, with technical details provided in Section 5.1 regarding the training process, in
Section 5.2 for the GNN pretraining phase, and in Section 5.3 for the approach used to handle the
transition from pretraining to the main training phase of the GNN.

5.1. Algorithm and training process

With reference to Figure 4, the global training process can be ideally divided into two phases: the forward
step and the backward step.

Figure 4. End-to-end training loop: u is the GNN’s input mean flow, f̂ is the GNN’s predicted forcing
stress term, θ represents the GNN’s trainable parameters, and J uð Þ is the cost function to minimize. For
simplicity of notation, we consider the case where the ground truth corresponds to the entire flow field.
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The forward step begins by associating an embedded state vector h0, initially set to zero, as a node
feature to each node of the GNN. These vectors, one for each mesh node, define the initial latent
representation of the graph. Each node of the graph corresponds to a point in the computational mesh,
and this mapping is preserved through the data structure described in Section 4.2. The Euclidean distances
between nodes are used as edge features to define the graph connectivity and encode the local geometric
relationships. The constructed graph is passed through a pretrainedGNN (Section 5.2) and the state vector
on each node is updated through a k-stepMP process, as outlined in Section 4.1. During eachMP iteration,
nodes exchange and aggregate information with their neighbors, leveraging the geometric edge features.
External physical quantities (the mean flow field u and the Reynolds number Re ) are injected during the
aggregation step at each layer, providing the GNN with the necessary context to learn physically
meaningful patterns. After kMP iterations, the GNN outputs a predicted forcing term f̂ , which represents
an estimate of the Reynolds stress closure term. This predicted forcing term f̂ is used as the closure term in
the RANS equations (Eq. 2.3). These equations are numerically solved in an FEM framework using the
Python library FEniCS (Alnæs et al., 2015), producing a reconstructed mean flow field u. This result is
then compared with the mean flow ground truth u, obtained from the DNS, to compute the loss function
J , as expressed in Eq. 2.5.

The second phase, the backward step, starts with the requirement to compute the derivative of the loss
functionJ with respect to the trainable θ parameters of the GNN. The gradient chain rule for this term can
be mathematically expressed as:

∂J
∂θ

=
∂J

∂b�u �∂b�u∂f̂ � ∂f̂∂θ =
∂J

∂f̂
� ∂f̂
∂θ

: (5.1)

The first term, ∂J
∂f̂
, on the right-hand side, is obtained from Eq. 2.10 after solving the adjoint equations

(Eq. 2.8) with the support of Eq. 2.9. This yields an analytical gradient of the cost functionJ with respect

to bf . The second term, ∂f̂
∂θ, represents the gradient of the GNN’s output with respect to its θ trainable

parameters, which can be computed efficiently using the PyTorch Geometric automatic differen-
tiation.

These two gradients—one analytically derived and discretized using FEniCS, and the other numer-
ically computed via automatic differentiation in PyTorch Geometric (Fey and Lenssen, 2019)—are
combined to complete the chain rule (Eq. 5.1) and obtain the full derivative that is used to update the GNN
learnable parameters via gradient descent. The full forward–backward process is repeated iteratively until
convergence, that is, when the cost function J falls below a predefined threshold.

5.2. On the pretraining step

A crucial step in the algorithm is the GNN model’s pretraining phase. We can motivate this choice from
two different perspectives. From a theoretical Bayesian viewpoint, the objective is to infer the posterior
distribution of theGNNparameters θ given observations of themean velocity fieldu, that is, p θjuð Þ. Since
the forcing field f is not observed directly, but acts as a latent variable linking θ to u via the RANS
equations, we introduce f as an auxiliary variable and marginalize over it. This yields:

p θjuð Þ∝
Z

p ujfð Þp f jθð Þp θð Þdf , (5.2)

where p ujfð Þmodels the likelihood of the observedmean flow given a candidate forcing field, p f jθð Þ is the
GNN model predicting f from input features, and p θð Þ is the prior over the model parameters, which we
assume to be uniform in the absence of other information. This decomposition highlights the role of f as a
latent intermediate quantity through which the model learns to match the observed u. Pretraining the GNN
on DNS-based samples of f provides a meaningful initialization for p f jθð Þ, thus guiding the posterior
inference onθmore stably and efficiently during the later reconstruction ofu.Moreover, theGNN’sweights
and biases are set using a default initialization (He et al., 2015),meaning that early predictions from theGNN
are nonphysical and cannot reliably be used in the forward step, where the forcing term is introduced into the
RANSequations to compute themean flow (Section 5.1). In fact, the solution to theRANSproblemmaynot
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exist if the initial guess for the forcing term, f̂ , is too far from a physically meaningful value. Thus, from the
numerical viewpoint, the pretraining phase stabilizes the GNN’s output and mitigates this issue, predicting
the forcing stress term f̂ suitable for integration into the RANS equations.

The pretrained model is obtained through pure supervised learning (Quattromini et al., 2025), where
themean flow u (and Reynolds number Re ) are used as input, and the forcing stress term f fromDNS data
is the target. The loss function used in this phase is the mean squared error loss L, already discussed in
Section 4.3, where ni is the number of nodes in the GNN. The number of epochs required to reach the
desired closure term accuracy is not fixed a priori, but is determined based on the convergence behavior of
the GNN during the pretraining phase. In particular, the transition to the main training phase occurs only
when the GNN has learned to produce physically plausible forcing terms f̂ , which allow the RANS
equations to be solved via the FEM framework. To ensure consistency across test cases, a standard
protocol is adopted: for simple reference scenarios, such as those presented in Section 6.1, the pretraining
is fixed at 500 epochs. For more complex cases, which involve larger datasets, the pretraining phase is
extended to 1,000 epochs. This choice reflects the increased training effort required to reach comparable
levels of accuracy in more challenging settings.

In this context, the closure term accuracy refers to the level of precision necessary for the GNN to
generate predictions that allow the FEM solver to successfully solve the RANS equations. Throughout
the pretraining phase, the GNN’s predictions are periodically evaluated by solving a test FEM step.
If the solver converges and accurately resolves the RANS equations using the GNN-predicted closure
term, the pretraining phase is considered complete. This ensures that the GNN has learned a reliable and
accurate representation of the closure term, making it suitable for the full training process.

5.3. On the loss function

During the pretraining step (Section 5.2), the GNN model is updated using a loss function designed to
align themodel’s predictions with the available DNS data. As previouslymentioned, this phase serves as a
warm-up for the subsequent main training (Section 5.1). However, when pretraining ends and the main
training begins, a different loss function is adopted, as can be seen by comparing Eq. 4.5with Eq. 2.5. This
change may negatively affect convergence and destabilize the training process, as the two optimization
landscapes can be quite different. To mitigate this risk, both loss functions are retained during the main
training phase and combined using a weight coefficient, β. In particular, the loss function L (Eq. 4.5),
associated with supervised pretraining, continues to enforce a data-driven alignment and ensures
“continuity” in the optimization process. On the other hand, the term J (Eq. 2.5), corresponding to the
physics-constrained loss, minimizes the mean flow reconstruction error. Thus, the global loss function for
the main training loop (Section 5.1) evolves as:

H = 1�βð ÞLþβJ = 1�βð Þ 1
n

Xn
i= 1

f i� f̂ i
� �2 !

þβ
1
2

Z
Ω

m�M b�u� �� �2
dΩ

� �
: (5.3)

This strategy ensures a smooth transition between the two optimization steps by adjusting the relative
importance of the pretraining and main training loss functions.

The next section discusses the results, showing that the converged GNN model effectively predicts a
forcing term f̂ that aligns with the ground truth, f allowing an effective learned model to reconstruct the
mean flow u.

6. Results

In this section, we present the improvements achieved using the PhyCo-GNN data assimilation scheme
for reconstructing themean flow field u. The tests are conducted across several scenarios, with a particular
focus on reconstructing the mean flow from sparse measurements, noisy probes, and incomplete flow
fields (inpainting). Themodels are compared with the pure supervised learningmethod, which serves as a
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baseline. The supervised learning approach is thoroughly discussed in Quattromini et al. (2025): the GNN
model is trained solely by learning the forcing stress from the DNS data. Therefore, the cost function is
chosen to minimize the discrepancy between the predicted forcing stress and the ground truth, without
incorporating any constraints based on the system’s physics. The mean flow u is then computed by using
the forcing stress modeledwith theGNN as input to the RANS equations in Eq. 2.3. In contrast, the hybrid
data assimilation scheme introduced in this work incorporates a physics-based constraint during the
training process of the GNN. To compare the two methods, we evaluate their training curves (after the
pretraining phase) by identifying the minimum loss values achieved by each model during training.
Unless otherwise stated, all test cases use the full velocity field fromDNS as input; the sparse probe setting
applies exclusively to the test in Section 6.3. As a metric for comparison, we consider the percentage
improvement, defined as:

I %ð Þ= min J Sð Þ� min J PCð Þ
min J Sð Þ �102, (6.1)

where min J Sð Þ and min J PCð Þ represent the minimum values of the loss function for mean flow
reconstruction (Eq. 2.5) in the supervised learning method and the adjoint-based PhyCo-GNN method,
respectively. In the following, we introduce different learning tasks, focusing on the technical features of
the method and discussing the improvements achieved in terms of mean flow reconstruction.

6.1. Reference cases

The first test case we consider is the reconstruction of the flow field when the input to the GNN is the
complete mean flow u and Reynolds number Re over the entire computational domainΩ. This test case is
introduced as a reference for the method. Throughout this section, the mapping operator M used in the
definition of the cost function is taken as the identity operator, implying that the comparison is performed
over the full velocity field without any spatial filtering or subsampling.

We consider two cases of increasing complexity. The first case involves flow past a 2D cylinder at a
Reynolds number of Re= 150. This case is well-documented in the literature, and its mean flow is shown
in Figure 5a. The training dataset includes only the mean flow u (used as input to the GNN) and its
corresponding forcing term f (the GNN target). The training curves in Figure 5b show that, starting from
the pretraining phase, the implementation of the approach described in this article leads to a substantial
improvement in mean flow reconstruction. Specifically, the improvement reaches a value of I = 58:59%.

The second case involves a two side-by-side cylinder configuration, also known in the literature as the
“flip-flop” case, at a Reynolds number of Re= 90 (Carini et al., 2014). Itsmean flow is shown in Figure 6a.
The training curves for this case in Figure 6b demonstrate an evenmore pronounced improvement, with a
reduction of I = 82:90% in the loss curve. The results not only indicate the broad adaptability of the
PhyCo-GNN but also show how, in more complex scenarios, the underlying physics and governing
equations play a crucial role in further enhancing the accuracy of the GNN model’s predictions.

6.2. Generalization

In this section, we test the generalization capabilities of the model obtained using the PhyCo-GNN
scheme. The training dataset consists of three cases involving a 2D cylinder at Reynolds numbers of
Re= 90,110,130½ �. In contrast, the validation dataset includes data points not present in the training set,
corresponding to simulations of the flow around a 2D cylinder at Reynolds number Re= 120 for
interpolation testing, and at Re= 150 for testing the extrapolation capabilities. Throughout this general-
ization test, the mapping operatorM used in the cost function remains the identity operator. In Figure 7a,
the ground truthmean flow u for the Re= 120 case is shown. Based on the validation cases, we observe an
improvement in the mean flow reconstruction, with an average improvement of I = 73:27% across the
entire validation dataset. Specifically, we achieve an improvement of I = 78:96% for the interpolation

Data-Centric Engineering e48-13

https://doi.org/10.1017/dce.2025.10022 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10022


case at Re= 120, and I = 13:96% for the extrapolation case at Re= 150. The improvement on the training
cases is I = 40:16% on average across the entire training dataset.

The primary objective of this test case is to demonstrate that the presented approach enhances the
generalization capabilities of the GNN model. To ensure clarity in our analysis, this generalization test

Figure 5. Training dataset: one mean flow-forcing pair (Re= 150); the GNN input of the mean flow from
the ground truth is shown in (a). (b) Loss curves for the pure supervised approach (orange line), the

proposed PhyCo-GNN method (blue line), and the pretraining phase (red line). Shadow colors highlight
standard deviations computed over five independent training runs with different parameter initializa-
tions. The two horizontal dotted lines indicate the minimum values of the supervised and proposed

methods. (c) Reconstructed mean flow obtained with the PhyCo-GNN approach. (d) Contour plot of the
reconstruction error difference between the pure supervised approach and PhyCo-GNN.

) )

) )

Figure 6. Training dataset: one mean flow-forcing pair at Re = 90; the mean flow is shown in (a) and is
used as GNN input; legend for (b)–(d) are as in Figure 5.
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case is intentionally separated from the others. This separation allows for a focused evaluation of each
individual test case, targeting the specific goals of those tests without introducing confounding variables
related to generalization. It should be noted that a more extensive assessment of the GNN’s ability to
generalize across a range of geometric configurations—such as variations in bluff body shapes or
positions—is beyond the scope of this study. These aspects have been examined in detail by Quattromini
et al. (2025), in combination with active learning strategies. In the present work, we focus on a simplified
setting with limited generalization in order to clearly evaluate the role of the physics-constrained training
scheme in predicting the mean flow.

6.3. Sparse measurements

The learning task presented here involves the reconstruction of the mean flow over the entire
computational domain using measurements from randomly distributed probes as input for the
GNN. In this case, the mapping operatorM appearing in the cost function is defined as the projection
onto the sparse set of probe locations, so that the comparison between predicted and reference fields is
performed only at the measurement points. The numerical treatment of the term forcing the adjoint
equation—based on the sparse measurements—follows the one included in Dimitry et al. (2014). The
training dataset consists of two simulations of the flow past a cylinder for each Reynolds number in the
range Re= 90,110,130½ �, resulting in six cases. For each case, 450 probes are placed along the mean
flow stream, uniformly distributed across the entire computational domain Ω. Subsequently, 200 of
these probes are randomly removed, leaving a sparse set of 250 probes. This sparse set of measure-
ments of the mean flow u is used as input to the GNN, while the output prediction is compared with the
corresponding forcing stress tensor from the DNS ground truth. Figure 8a shows the positioning of the
random probes on the mean flow, while Figure 8b shows the average training curves across the training
dataset.

In this case, we demonstrate an improvement in mean flow reconstruction across all the training cases,
with an average improvement of I = 55:09%. This result highlights the robustness of the proposed
approach in scenarios with sparse and randomly distributed measurements.

) )

) )

Figure 7. Generalization test—training dataset: three mean flow-forcing pairs at Re= 90,110,130½ �;
validation dataset: 2 mean flow-forcing pairs at Re= 120,150½ �. (a) ground truth mean flow at Re= 120

from the validation dataset, used as GNN input; legend for (b)–(d) are as in Figure 5.
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6.4. Denoising

In this test case, the input mean flow field is perturbed with Gaussian noise. The probability density
function used for the Gaussian distribution to generate the noise is given by:
,

ψ zð Þ= 1

σ
ffiffiffiffiffi
2π
p e

� z�μð Þ2
2σ2 (6.2)

where z is the random variable, μ is themean value of the normal distribution, and σ represents its standard
deviation. In this case, we assume μ = 0, that is, a standard normal distribution. The mapping operatorM,
in this case, remains the identity operator. The training dataset consists of three cases of cylinder flows at
Reynolds numbers Re= 90,110,130½ �, each perturbed with Gaussian noise of fixed standard deviation
σ = 0:4. Figure 9a shows the effect of σ = 0:4 Gaussian noise on the mean flow (at Re= 130), while
Figure 9b presents the accuracy of themean flow reconstruction. The goal is to remove the Gaussian noise
and accurately reconstruct the denoised mean flow field. Our approach demonstrates an improvement of
I = 47:52% on the training dataset, on average, across all cases.

Although not shown here, we also conducted additional tests at fixed Reynolds number (Re = 130),
with varying noise levels σ = 0:2,0:4,0:6½ �. The results confirmed superior performance of the proposed
approach compared to purely supervised learning, highlighting its robustness to different noise intensities.

6.5. Inpainting

In this test, masking patches are randomly applied to the input mean flow field. The training dataset consists
of three cases of a cylinder obstacle at Reynolds numbers Re= 90,110,130½ �, each with different patch
locations (Figure 10a). In this setup, themapping operatorM used in the cost function excludes themasked
regions, meaning that the comparison between the predicted and reference fields is performed only over the
unmasked areas of the domain. The goal is to reconstruct the mean flow field by filling in the missing
patches. The approach shows improvements on the training cases with an average increase of I = 41:73%,
successfully restoring the missing portions of the field and enhancing the overall reconstruction accuracy.

A summary of the results is shown in Table 1, where the relative errors between the reconstructedmean
flow and the ground truth are reported for both the pure supervised technique based on the GNN models

) )

) )

Figure 8. Sparse measurements—training dataset: 250 randomly distributed probes on 6 mean flow-
forcing pairs at Re= 90,110,130½ �, with two instances for each Re). (a) Random probes positioning on the

mean flow; legend for (b)–(d) are as in Figure 5.
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(see also Quattromini et al., 2025) and the data-assimilation scheme PhyCo-GNN. The latter outperforms
vanilla supervised learning in all cases, as already shown in the previous paragraphs.

7. Conclusion

In this work, we introduced a direct-adjoint data assimilation scheme based on the RANS equations,
where the closuremodel is based onGNNs. The resulting scheme, named PhyCo-GNN, demonstrated the
potential of combining ML techniques with well-established physical principles to improve the accuracy

) )

) )

Figure 9. Denoising—training dataset: three mean flow-forcing pairs at Re= 90,110,130½ �, perturbed
with Gaussian noise; (a) mean flow at Re= 130; legend for (b)–(d) are as in Figure 5.

) )

) )

Figure 10. Inpainting—training dataset: three mean flow-forcing pairs at Re= 90,110,130½ �, with
randomly located patching masks; (a) mean flow at Re = 110; legend for (b)–(d) are as in Figure 5.
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and reliability of mean flow reconstruction. More specifically, the forcing term of the RANS equations is
modeled using a GNN model informed by gradients obtained through autodifferentiation of the NN and
gradients computed analytically based on the adjoint equations associated with the iterative process. On
one hand, these gradients ensure that the learned model adheres to the underlying physics. On the other
hand, the closure model benefits from the flexibility of GNNs in handling unstructured meshes, making
the framework particularly well-suited for complex geometries often encountered in CFDs. Finally, the
combination of GNN and adjoint-based methods mitigates the dependency on large datasets, as the
inclusion of physics reduces the need for extensive training data to achieve reliable predictions.

We tested the PhyCo-GNN framework across several scenarios, with a particular focus on recon-
structing themean flow from sparsemeasurements, noisy probes, and incomplete flow fields (inpainting).
The models are compared with a supervised learning method, which serves as a benchmark, where the
learning process of the GNNmodel is not constrained by the adjoint but solely relies on numerical data. In
particular, we consider as the reference case the mean flow reconstruction of flows past a 2D cylinder at a
Reynolds number of Re = 150 and a two-cylinder configuration at Re= 90. Other tests include general-
ization by considering interpolation and extrapolation with respect to unseen Reynolds numbers during
the training process, reconstruction from noisy inputs, and inpainting, which involves the reconstruction
of the mean flow field by filling in the missing patches. For all test cases, the PhyCo-GNN approach
showed substantial improvements compared to the reference method based on pure supervised learning.

Future work will explore the extension of the presented framework to more complex scenarios, including
higher Reynolds number regimes, three-dimensional flows, and experimental datasets, which are often
characterized by sparse, noisy, or incomplete measurements. While the methodological structure of the
PhyCo-GNN framework is, in principle, compatiblewith such configurations, the transition to large-scale 3D
domains poses significant computational challenges. These include the increasing cost of mesh resolution,
memory usage during GNN training, and the resource demands of adjoint-based Partial Differential
Equations (PDE) solvers. Addressing these limitations will require adopting scalable strategies, such as
domain decomposition for graph-based learning (a review can be found in Dolean et al. (2024), modular and
multiscale GNN architectures, andmulti-GPU distributed training pipelines. In parallel, the adoption ofmore
efficient FEM backends and the exploration of alternative network architectures, such as physics-informed
transformers or recurrent graph networks, may further enhance the expressiveness and applicability of the
framework.

Data availability statement. All code and data supporting this study are openly available at https://doi.org/10.17605/OSF.IO/
YVK2N (Quattromini et al., n.d.) and allow full replication of the results.
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ization: M.Q. and O.S. Writing—original draft: M.Q. Writing—review and edits: M.Q., M.A.B., S.C., and O.S. All authors
approved the final submitted draft.

Table 1. Summary of the reconstruction errors for each test considered in Section 6. The cases listed
correspond to those presented in Figures 5–10. For each case, a comparison is made between the
baseline method based on supervised learning and the performance of PhyCo-GNN, with the errors

reported as relative errors in the 2-norm

Reconstruction error

Cases Supervised Phy-Co GNN

Reference case, Re = 150 0.0190 0.0126
Reference case, Re = 90 (flip-flop) 0.0910 0.0843
Generalization, Re = 120 0.0087 0.0069
Sparse measurements, Re = 110 0.0134 0.0092
Gaussian noise, Re = 130 0.0200 0.0103
Inpainting, Re = 110 0.0056 0.0026
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A. Appendix

Hyperparameters
The performance of a neural network is determined by its hyperparameters, which are set before training and influence both the
model’s architecture and the training process. These parameters define the network’s ability to approximate complex functions,
balance computational efficiency, and ensure stable training.

To identify the optimal set of hyperparameters, we used the open-source optimisation library Optuna (Akiba et al., 2019).
Optuna combines efficient parameter space explorationwith advanced pruning strategies, dynamically pruning unpromising trials to
reduce computational costs while maximising performance. The final hyperparameters selected for the learning tasks in this study
are:

• Embedded dimension: dh = 35. The size of the hidden feature space for each node in the GNN. A higher dimension enables
richer representations of node features, but excessively large values increase computational cost without necessarily
improving performance.

• Number of GNN layers: k = 40. This depth ensures global information can propagate across the graph, while avoiding over-
smoothing.

• Update relaxation weight: α = 6× 10�1. This parameter balances the influence of new and old information during feature
updates.

• Loss function weight: γ = 0:1. Controls the weighting of loss terms from different layers in the GNN during training. Higher
weights on later layers emphasise long-range dependencies in the training process.

• Learning rate: LR= 3× 10�3. This optimises the step size for weight updates, balancing convergence speed and stability.

These hyperparameters were optimised to achieve a balance betweenmodel accuracy and computational efficiency. It is important to
note that these hyperparameters are task-dependent and, in theory, should be re-optimised for each specific learning task to ensure
optimal performance. However, re-optimisation for the different learning tasks in this study showed that the hyperparameters
remained largely consistent. This suggests that the GNN architecture exhibits inherent robustness to variations in hyperparameters
within the range of learning tasks addressed here.
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