Differential item functioning (DIF) screening has long been suggested to ensure assessment fairness. Traditional DIF methods typically focus on the main effects of demographic variables on item parameters, overlooking the interactions among multiple identities. Drawing on the intersectionality framework, we define intersectional DIF as deviations in item parameters that arise from the interactions among demographic variables beyond their main effects and propose a novel item response theory (IRT) approach for detecting intersectional DIF. Under our framework, fixed effects are used to account for traditional DIF, while random item effects are introduced to capture intersectional DIF. We further introduce the concept of intersectional impact, which refers to interaction effects on group-level mean ability. Depending on which item parameters are affected and whether intersectional impact is considered, we propose four models, which aim to detect intersectional uniform DIF (UDIF), intersectional UDIF with intersectional impact, intersectional non-uniform DIF (NUDIF), and intersectional NUDIF with intersectional impact, respectively. For efficient model estimation, a regularized Gaussian variational expectation-maximization algorithm is developed. Simulation studies demonstrate that our methods can effectively detect intersectional UDIF, although their detection of intersectional NUDIF is more limited.