To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Anhedonia, a transdiagnostic feature common to both Major Depressive Disorder (MDD) and Schizophrenia (SCZ), is characterized by abnormalities in hedonic experience. Previous studies have used machine learning (ML) algorithms without focusing on disorder-specific characteristics to independently classify SCZ and MDD. This study aimed to classify MDD and SCZ using ML models that integrate components of hedonic processing.
Methods
We recruited 99 patients with MDD, 100 patients with SCZ, and 113 healthy controls (HC) from four sites. The patient groups were allocated to distinct training and testing datasets. All participants completed a modified Monetary Incentive Delay (MID) task, which yielded features categorized into five hedonic components, two reward consequences, and three reward magnitudes. We employed a stacking ensemble model with SHapley Additive exPlanations (SHAP) values to identify key features distinguishing MDD, SCZ, and HC across binary and multi-class classifications.
Results
The stacking model demonstrated high classification accuracy, with Area Under the Curve (AUC) values of 96.08% (MDD versus HC) and 91.77% (SCZ versus HC) in the main dataset. However, the MDD versus SCZ classification had an AUC of 57.75%. The motivation reward component, loss reward consequence, and high reward magnitude were the most influential features within respective categories for distinguishing both MDD and SCZ from HC (p < 0.001). A refined model using only the top eight features maintained robust performance, achieving AUCs of 96.06% (MDD versus HC) and 95.18% (SCZ versus HC).
Conclusion
The stacking model effectively classified SCZ and MDD from HC, contributing to understanding transdiagnostic mechanisms of anhedonia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.