To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Studies of the high-ionization metal-line absorbers provide insights into hot diffuse gas that has been processed through stars in galaxies. In the ultraviolet and optical bands, these absorbers have been studied primarily using five-times ionized oxygen (OVI), six-times ionized nitrogen (NV), and seven-times ionized neon (NeVIII). Both OVI and NeVIII arise within the spectral range of the Ly α forest and are thus mostly visible at low redshifts where the Ly α forest line density is much smaller. NV is adjacent to the Ly α line and in principle can be surveyed over the full range of redshift; however, this ion is found in only a narrow range of astrophysical conditions. The population statistics measured include the redshift path density, the equivalent width and column density distributions, the cosmic mass densities, and the kinematics (broadening parameters, velocity splitting distributions, and absorber velocity widths). In this chapter, we discuss multiple observational programs and their reported findings for several of these ions.
Studies of the low-ionization metal-line absorbers provide insights into cool/warm higher-density gas that has been processed through stars in galaxies. These absorbers have been studied primarily using the abundant neutral atoms sodium, oxygen, and carbon (NaI, OI, and CI), as well as the singly ionized ions of carbon, silicon, calcium, and magnesium (CII, SiII, CaII, and MgII). For optical quasar spectroscopy, these ions have limited visibilities over different redshift ranges. The advent of sensitive UV and IR spectrographs expanded the redshift coverage of MgII absorbers from z = 0 to z = 7. However, the redshift visibility of OI, CI, CII, and SiII remain limited because of their far-ultraviolet transitions. The population statistics measured include the redshift path density, the equivalent width and column density distributions, the cosmic mass densities, and the kinematics (broadening parameters, velocity splitting distributions, and absorber velocity widths). In this chapter, we discuss multiple observational programs and their reported findings for several of the ions.
Over the last quarter century, studies of the circumgalactic medium (CGM) have evolved from small, isolated cottage-industry efforts to a few dozen factory-scale assembly-line collaborations. The advent and continued development of large galaxy surveys, the refinement of photometric redshifts, and the honing of color selection of quasars have all combined to yield more than a million object-searchable catalogs for building large samples of galaxy-quasar pairs on the sky. Though the largest body of work has focused on low- and intermediate-redshifts, where detailed galaxy properties can be measured, wholesale studies of the CGM have now reached redshifts of 4 using Lyman break galaxies (LBGs) and the stacking of the spectra of thousands of Lyman alpha emitters. In this chapter, we provide an overview of CGM studies with a focus on sample building and experimental approaches and techniques. The three main types of survey strategies are discussed. Concepts such as the characterization of CGM absorption properties as a function of impact parameters, covering fractions, and galaxy-absorber morphokinematic and morphospatial analysis are presented.
Studies of the intermediate-ionization metal-line absorbers provide insights into warm/hot lower-density gas that has been processed through stars in galaxies. These absorbers have been studied primarily using doubly and triply ionized carbon and silicon ions (CIII, CIV, SiIII, and SiIV). CIII arises deep within the spectral range of the Ly α forest and is thus mostly visible at low redshifts where the Ly α forest line density is much smaller. SiIII is adjacent to the Ly α line and is also best surveyed at low redshift. The CIV and SiIV lines are well redward of the Ly α line and thus have visibility over a wide range of redshift. UV and IR spectrographs expanded the redshift coverage from z = 0 to z = 7. The population statistics measured include the redshift path density, the equivalent width and column density distributions, the cosmic mass densities, and the kinematics (broadening parameters, velocity splitting distributions, and absorber velocity widths). In this chapter, we discuss multiple observational programs and their reported findings for several of these ions.
Fluid mechanics, solid state diffusion and heat conduction are deeply interconnected through the mathematics and physical principles that define them. This concise and authoritative book reveals these connections, providing a detailed picture of their important applications in astrophysics, plasmas, energy systems, aeronautics, chemical engineering and materials science. This sophisticated and focused text offers an alternative to more expansive volumes on heat, mass and momentum transfer and is ideal for students and researchers working on fluid dynamics, mass transfer or phase transformations and industrial scientists seeking a rigorous understanding of chemical or materials processes. Accessible yet in depth, this modern treatment distills the essential theory and application of these closely related topics, includes numerous real world applications and can be used for teaching a range of related courses in physics, engineering and materials science departments.
This chapter is mostly about solid mechanics: Cauchy stress, finite and infinitesimal strain, rotation. Velocity and acceleration are developed in both inertial and non-inertial fames. This is central to the education of the physicist and engineer, but the development leads to a derivation of the Navier–Stokes equations, which are central to fluid dynamics.
Flapping-wing robots, inspired by natural flyers, have gained significant attention for surveillance and environmental monitoring applications. This study presents the design and analysis of a bat-inspired flapping-wing robot with foldable wings, aiming to enhance flight efficiency and maneuverability. The robot features silicone-based, stretchable membrane wings, with a wingspan of 1.4 m and a total mass of 620 g. A one-degree-of-freedom (DOF) revolute-spherical-spherical-revolute mechanism is used to reproduce the flapping motion, while a one-DOF Watt six-bar linkage mechanism enables dynamic wing folding, allowing adaptive wing shape modulation during flight. Explicit solutions for joint angle of the wing were expressed through analytical method. Flight tests were conducted to validate the effectiveness of the flapping-folding mechanism. Results show that the robot successfully replicates bat wing kinematics, with folding during the upstroke and unfolding during the downstroke. This research offers insights into bio-inspired wing designs for next-generation flapping-wing robots.
Biomechanical intervention on lower limb joints using exoskeletons to reduce joint loads and provide walking assistance has become a research hotspot in the fields of rehabilitation and elderly care. To address the challenges of human-exoskeleton (H-E) kinematic compatibility and knee joint unloading demands, this study proposes a novel rhombus linkage exoskeleton mechanism capable of adaptive knee motion without requiring precise alignment with the human knee axis. The exoskeleton is driven by a Bowden cable system to provide thigh support, thereby achieving effective knee joint unloading. Based on the screw theory, the degrees of freedom (DOF) of the exoskeleton mechanism (DOF = 3) and the H-E closed-loop mechanism (DOF = 1) were analyzed, and the kinematic model of the exoskeleton and the H-E closed-loop kinematic model were established, respectively. A mechanical model of the driving system was developed, and a simulation was conducted to validate the accuracy of the model. The output characteristics of the cable-driven system were investigated under varying bending angles and bending times. A prototype was fabricated and tested in wearable scenarios. The experimental results demonstrate that the exoskeleton system exhibits excellent biocompatibility and weight-bearing support capability. Compatibility tests confirm that the exoskeleton does not interfere with human motion. Through human-in-the-loop optimization, the optimal Bowden cable output force profile was obtained, which minimizes gait impact while achieving a peak support force of 195.8 N. Further validation from wear trials with five subjects confirms the system’s low interference with natural human motion (maximum lower-limb joint angle deviation of only $8^\circ$).
Robot hands are essential components of robots; however, the hand of more complex spatial mechanisms with coupling chains is rarely proposed. This paper proposes a hybrid hand with three underactuated finger plane limbs connected by a flexible closed-loop chain. The degree of freedom (DOF) of the hybrid hand is equal to the number of motors before grasping the object. When the contact force appears between the fingertips and the object, the flexible linkages deform, allowing the hybrid hand to maintain adaptability during contact. As the three fingers make contact with the object, the hybrid hand forms a closed-loop chain with the object, ensuring that the overall DOF remains consistent with the number of motors. Firstly, the hybrid hand’s structural characteristics and DOF are analyzed. Secondly, the kinematics of the hybrid hand are derived, and the relationships among the spring deformation, the kinematics of the fingertip and the input of the hybrid hand are obtained according to the geometric constraints. Thirdly, based on the kinematic results and the principle of virtual work method, the coupling dynamics formula of the hybrid hand is established, and the relationship between the dynamic driving force, dynamic constrained force, spring force and the force acting on the object is solved. Finally, the simulation model of the hybrid hand is constructed in MATLAB to validate the theoretical solution, and the merits of the hybrid hand were confirmed by prototype experiments. This paper aims to support a theoretical foundation for the intelligent control of novel hybrid hands.
The remote center of motion (RCM) mechanism is one of the key components of minimally invasive surgical robots. Nevertheless, the most widely used parallelogram-based RCM mechanism tends to have a large footprint, thereby increasing the risk of collisions between the robotic arms during surgical procedures. To solve this problem, this study proposes a compact RCM mechanism based on the coupling of three rotational motions realized by nonlinear transmission. Compared to the parallelogram-based RCM mechanism, the proposed design offers a smaller footprint, thereby reducing the risk of collisions between the robotic arms. To address the possible errors caused by the elasticity of the transmission belts, an error model is established for the transmission structure that includes both circular and non-circular pulleys. A prototype is developed to verify the feasibility of the proposed mechanism, whose footprint is further compared with that of the parallelogram-based RCM mechanism. The results indicate that our mechanism satisfies the constraints of minimally invasive surgery, provides sufficient stiffness, and exhibits a more compact design. The current study provides a new direction for the miniaturization design of robotic arms in minimally invasive surgical robots.
Recognizing cervical dystonia (CD) movement patterns for appropriate botulinum toxin type A (BoNT-A) pattern determination depends on clinical expertise. Kinematic analysis objectively measures dystonic neck movements, and whether BoNT-A patterns determined solely using kinematics can effectively treat CD symptoms was investigated.
Methods:
Twenty-two BoNT-A-naïve CD participants were randomized to receive three BoNT-A injections determined clinically (“cb”) or by kinematic-based assessment (“kb”). Outcomes included the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) and kinematic measures of CD motor symptoms (tonic deviation and dynamic movements) at re-injection (weeks 12, 24) and peak effect (weeks 6, 18, 30) compared to baseline.
Results:
Mean tonic deviation that returned to neutral was observed in 47% of “kb” and 31% of “cb” participants between weeks 6 and 30. Mean dynamic movements (root mean square amplitude) were significantly reduced in the “kb” group between weeks 12 and 30 compared to baseline. TWSTRS total score and motor severity were significantly reduced in the “cb” group, and disability sub-score was significantly reduced in both groups for all subsequent injections. Treatment-related side effects occurred in two “cb” and four “kb” participants.
Conclusion:
The study indicates that kinematic-based BoNT-A injection patterns can effectively reduce CD symptoms and disability, offering valuable guidance for both novice and experienced injectors.
Screw theory serves as an influential mathematical tool, significantly contributing to mechanical engineering, with particular relevance to mechanism science and robotics. The instantaneous screw and the finite displacement screw have been used to analyse the degree of freedom and perform kinematic analysis of linkage mechanisms with only lower pairs. However, they are not suitable for higher pair mechanisms, which can achieve complex motions with a more concise structure by reasonably designing contact contours, and they possess advantages in some particular areas. Therefore, to improve the adaptability of screw theory, this paper aims to analyse higher kinematic pair (HKP) mechanisms and proposes a method to extend instantaneous screw and finite displacement screw theory. This method can not only analyse the instantaneous degree of freedom of HKP mechanisms but also determine the relationships between the motion variables of HKP mechanisms. Furthermore, this method is applied to calculate the degree of freedom and the relationships between the motion angles in both planar and spatial cam mechanisms, thereby demonstrating its efficiency and advantages.
The kinematics of general relativity is described. General relativity is given by intrinsically curved spacetimes, for non-Euclidean geometry, based on two assumptions, leading to two physical principles for the kinematics (plus one equation for the dynamics). The kinematics is based on the same parallel transport as for gauge theories. The motion of free particles is on geodesics in the curved spacetime.
In this chapter, we showed the broader application of Polyhedral Graphic statistics in other fields of science and briefly introduced research directions and topics that go beyond the polyhedral limitations of this method. Particularly, we show a research project in which graphical methods were used to analyze the structural pattern of a dragonfly wing. The result was then combined with machine learning methods to generate the structure of a wing of an airplane with enhanced out-of-plane performance. We also visited applications in the design of strut-and-tie structures for referenced concrete and its further application in designing multi-material structural components where the direction of the deposition of material is adjusted with respect to the internal force flow to maximize mechanical performance. The application of Polyhedral Graphic Statics was shown in the design of cellular solids and briefly discussed how particular subdividing of the force diagram can control the stress distribution in the system and the overall behavior of the structure from bending dominant to stretching dominant system. We also showed the application of the structures designed using Polyhedral Graphic Statics in self-healing structural components and 3D-printed structural systems with maximized surface area and minimized mass. Another important topic was the extension of the methods of Polyhedral Graphic Statics to non-polyhedral systems using disjointed force polyhedra. In the end, advanced topics related to completeness, being, and kinematics in Polyhedral Graphic Statics were discussed, which opened the door to many further research directions in this field.
Noninvasive stimulation techniques are a promising therapy due to the ease of administration and minimal side effects. We investigated the clinical, electrophysiological and side effects of transcranial pulsed current stimulation (tPCS) in patients with Parkinson’s disease (PD).
Materials and Methods:
Ten PD patients were called at monthly intervals in the OFF levodopa state. Patients received active tPCS for 20 minutes in the first visit and sham stimulation for 20 minutes in the second and were assessed for the levodopa response in the third. Clinical and bradykinesia scoring and gait and tremor analysis were done before and after stimulation/sham/levodopa in each visit. Scalp electroencephalography (EEG) was recorded for quantitative analysis during each visit. The interventions were compared between pre- and post-intervention.
Results:
A significant improvement with levodopa as compared to active and sham tPCS was seen in clinical scores. Upper limb postural tremor severity (z-score = −2.410, p = 0.016) and the stride velocity variability during post active stimulation improved by 20.7% compared to post sham stimulation though the difference was statistically non-significant. KINARM testing showed a statistically significant difference in the reaction time (p = 0.036) when comparing pre- and post-tPCS active stimulation. EEG recording showed a transitory increase of electrical activity after tPCS, with the most significant increase seen in alpha bandpower (p = 7.95*10-07; z score: −4.93).
Conclusions:
tPCS was well tolerated in all patients. With minimal side effects, ease of administration and mild improvement in the electrophysiological parameters assessed, tPCS can be an alternative therapeutic option in patients with PD.
Cable-guiding mechanisms (CGMs) and the stiffness characteristics directly influence the dynamic features of the cable-driven upper limb rehabilitation robot (PCUR), which will affect PCUR’s performance. This paper introduces a novel CGM design. Given the precision and movement stability considerations of the mechanism, an analytical model is developed. Using this model, we analyze the error of the CGM and derive velocity and acceleration mappings from the moving platform to the cables. Continuity of cable trajectory and tension is rigorously demonstrated. Subsequently, a mathematical model for PCUR stiffness is formulated. Utilizing MATLAB/Simscape Multibody, simulation models for the CGM and stiffness characteristics are constructed. The feasibility of the proposed CGM design is validated through simulation and experimentation, while the influence of stiffness characteristics on PCUR motion stability is comprehensively analyzed.
Head and eyebrow movements have been reported as question markers in both spoken (e.g. Swerts & Krahmer, 2004) and sign languages (e.g., Zeshan, 2004). However, the relative weight of these visual cues in conveying prosodic meaning remains unexplored. This study examines, through a kinematic analysis, if (and how) the amplitude of head falling movements varies in statements versus questions, both in Portuguese Sign Language (LGP) and in the spoken modality of European Portuguese. The results show that the head falling movement plays a key role in conveying interrogativity in Portuguese, in varying degrees. In LGP, the head amplitude is larger than in the spoken modality, and the shape of the head movement varies across sentence types, thus showing the primary role of this visual cue in LGP prosodic grammar. In spoken Portuguese, although the head amplitude also differs between sentence types, the shape of the movement over time is always the same (falling), thus pointing to a secondary/complementary role in spoken Portuguese.
These findings not only contribute to the knowledge of the prosodic grammar of spoken and sign languages, but also challenge traditional language processing models, mostly focused on verbal language.
After an introduction to general relativity and supersymmetry, the formalism of supergravity is defined, on-shell, off-shell, and in superspace, using coset theory and local superspace. Higher dimensions, extended susy, and KK reduction are also defined. Then, various applications are described: dualities and solution-generating techniques, solutions and their susy algebra, gravity duals and deformations, supergravity on the string worldsheet and superembeddings, cosmological inflation, no-go theorems and Witten’s positive energy theorem, compactification of low-energy string theory and toward embedding the Standard Model using supergravity, susy breaking and minimal supergravity.
Commonly, quantitative gait analysis post-stroke is performed in fully equipped laboratories housing costly technologies for quantitative evaluation of a patient’s movement capacity. Combining such technologies with an electromyography (EMG)-driven musculoskeletal model can estimate muscle force properties non-invasively, offering clinicians insights into motor impairment mechanisms. However, lab-constrained areas and time-demanding sensor setup and data processing limit the practicality of these technologies in routine clinical care. We presented wearable technology featuring a multi-channel EMG-sensorized garment and an automated muscle localization technique. This allows unsupervised computation of muscle-specific activations, combined with five inertial measurement units (IMUs) for assessing joint kinematics and kinetics during various walking speeds. Finally, the wearable system was combined with a person-specific EMG-driven musculoskeletal model (referred to as human digital twins), enabling the quantitative assessment of movement capacity at a muscle-tendon level. This human digital twin facilitates the estimation of ankle dorsi-plantar flexion torque resulting from individual muscle-tendon forces. Results demonstrate the wearable technology’s capability to extract joint kinematics and kinetics. When combined with EMG signals to drive a musculoskeletal model, it yields reasonable estimates of ankle dorsi-plantar flexion torques (R2 = 0.65 ± 0.21) across different walking speeds for post-stroke individuals. Notably, EMG signals revealing an individual’s control strategy compensate for inaccuracies in IMU-derived kinetics and kinematics when input into a musculoskeletal model. Our proposed wearable technology holds promise for estimating muscle kinetics and resulting joint torque in time-limited and space-constrained environments. It represents a crucial step toward translating human movement biomechanics outside of controlled lab environments for effective motor impairment monitoring.
Continuum robot-based surgical systems are becoming an effective tool for minimally invasive surgery. A flexible, dexterous, and compact robot structure is suitable for carrying out complex surgical operations. In this paper, we propose performance metrics for dexterity based on data density. Data density at a point in the workspace is higher if the number of reachable points is higher, with a unique configuration lying in a small square box around a point. The computation of these metrics is performed with forward kinematics using the Monte Carlo method and, hence, is computationally efficient. The data density at a particular point is a measure of dexterity at that point. In contrast, the dexterity distribution property index is a measure of how well dexterity is distributed across the workspace according to desired criteria. We compare the dexterity distribution property index across the workspace with the dexterity index based on the dexterous solid angle and manipulability-based approach. A comparative study reveals that the proposed method is simple and straightforward because it uses only the position of the reachable point as the input parameter. The method can quantify and compare the performance of different geometric designs of hyper-redundant and multisegment continuum robots based on dexterity.