To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we demonstrate that (a) substituting the vector of eigenvalues of a symmetric n x n matrix into a convex permutation symmetric function of n real variables results in a convex function of the matrix, and (b) that if g is a convex function on the real axis, and G is the set of symmetric matrices of a given size with spectrum in the domain of g, then G is a convex set, and when X is a matrix from G, the trace of the matrix g(X), is a convex function of X; here g(X) is the matrix acting at a spectral subspace of X associated with eigenvalue v as multiplication by g(v); both these facts will be heavily used when speaking about cone-convexity is chapter 21.