We study the following natural strong variant of destroying Borel ideals:  $\mathbb {P}$
$\mathbb {P}$  $+$-destroys
$+$-destroys  $\mathcal {I}$ if
$\mathcal {I}$ if  $\mathbb {P}$ adds an
$\mathbb {P}$ adds an  $\mathcal {I}$-positive set which has finite intersection with every
$\mathcal {I}$-positive set which has finite intersection with every  $A\in \mathcal {I}\cap V$. Also, we discuss the associated variants
$A\in \mathcal {I}\cap V$. Also, we discuss the associated variants  $$ \begin{align*} \mathrm{non}^*(\mathcal{I},+)=&\min\big\{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}^+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y|<\omega\big\},\\ \mathrm{cov}^*(\mathcal{I},+)=&\min\big\{|\mathcal{C}|:\mathcal{C}\subseteq\mathcal{I},\; \forall\;Y\in\mathcal{I}^+\;\exists\;C\in\mathcal{C}\;|Y\cap C|=\omega\big\} \end{align*} $$
$$ \begin{align*} \mathrm{non}^*(\mathcal{I},+)=&\min\big\{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}^+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y|<\omega\big\},\\ \mathrm{cov}^*(\mathcal{I},+)=&\min\big\{|\mathcal{C}|:\mathcal{C}\subseteq\mathcal{I},\; \forall\;Y\in\mathcal{I}^+\;\exists\;C\in\mathcal{C}\;|Y\cap C|=\omega\big\} \end{align*} $$
Among other results, (1) we give a simple combinatorial characterisation when a real forcing  $\mathbb {P}_I$ can
$\mathbb {P}_I$ can  $+$-destroy a Borel ideal
$+$-destroy a Borel ideal  $\mathcal {J}$; (2) we discuss many classical examples of Borel ideals, their
$\mathcal {J}$; (2) we discuss many classical examples of Borel ideals, their  $+$-destructibility, and cardinal invariants; (3) we show that the Mathias–Prikry,
$+$-destructibility, and cardinal invariants; (3) we show that the Mathias–Prikry,  $\mathbb {M}(\mathcal {I}^*)$-generic real
$\mathbb {M}(\mathcal {I}^*)$-generic real  $+$-destroys
$+$-destroys  $\mathcal {I}$ iff
$\mathcal {I}$ iff  $\mathbb {M}(\mathcal {I}^*)\ +$-destroys
$\mathbb {M}(\mathcal {I}^*)\ +$-destroys  $\mathcal {I}$ iff
$\mathcal {I}$ iff  $\mathcal {I}$ can be
$\mathcal {I}$ can be  $+$-destroyed iff
$+$-destroyed iff  $\mathrm {cov}^*(\mathcal {I},+)>\omega $; (4) we characterise when the Laver–Prikry,
$\mathrm {cov}^*(\mathcal {I},+)>\omega $; (4) we characterise when the Laver–Prikry,  $\mathbb {L}(\mathcal {I}^*)$-generic real
$\mathbb {L}(\mathcal {I}^*)$-generic real  $+$-destroys
$+$-destroys  $\mathcal {I}$, and in the case of P-ideals, when exactly
$\mathcal {I}$, and in the case of P-ideals, when exactly  $\mathbb {L}(\mathcal {I}^*)$
$\mathbb {L}(\mathcal {I}^*)$  $+$-destroys
$+$-destroys  $\mathcal {I}$; and (5) we briefly discuss an even stronger form of destroying ideals closely related to the additivity of the null ideal.
$\mathcal {I}$; and (5) we briefly discuss an even stronger form of destroying ideals closely related to the additivity of the null ideal.