To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter presents a comprehensive workflow for applying network machine learning to functional MRI connectomes. We demonstrate data preprocessing, edge weight transformations, and spectral embedding techniques to analyze multiple brain networks simultaneously. Using multiple adjacency spectral embedding (MASE) and unsupervised clustering, we identify functionally similar brain regions across subjects. Results are visualized through abstract representations and brain-space projections, and compared with established brain parcellations. Our findings reveal that MASE-derived communities often align with known functional and spatial organization of the brain, particularly in occipital and parietal areas, while also identifying regions where functional similarity doesn’t imply spatial proximity. We illustrate how network machine learning can uncover meaningful patterns in complex neuroimaging data, emphasizing the importance of combining algorithmic approaches with domain expertise to motivate the remainder of the book.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.