To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Approximate lattices of Euclidean spaces, also known as Meyer sets, are aperiodic subsets with fascinating properties. In general, approximate lattices are defined as approximate subgroups of locally compact groups that are discrete and have finite co-volume. A theorem of Lagarias [Meyer’s concept of quasicrystal and quasiregular sets. Comm. Math. Phys.179(2) (1996), 365–376] provides a criterion for discrete subsets of Euclidean spaces to be approximate lattices. It asserts that if a subset X of $\mathbb {R}^n$ is relatively dense and $X - X$ is uniformly discrete, then X is an approximate lattice. We prove two generalizations of Lagarias’ theorem: when the ambient group is amenable and when it is a higher-rank simple algebraic group over a characteristic $0$ local field. This is a natural counterpart to the recent structure results for approximate lattices in non-commutative locally compact groups. We also provide a reformulation in dynamical terms pertaining to return times of cross-sections. Our method relies on counting arguments involving the so-called periodization maps, ergodic theorems and a method of Tao regarding small doubling for finite subsets. In the case of simple algebraic groups over local fields, we moreover make use of deep superrigidity results due to Margulis and to Zimmer.
The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like $r^{{\mathrm {homdim}}(G) \dim (H)}$. Further, we generalize the concept of acceptance domains to locally compact second countable groups.
We consider metrizable ergodic topological dynamical systems over locally compact, $\sigma $-compact abelian groups. We study pure point spectrum via suitable notions of almost periodicity for the points of the dynamical system. More specifically, we characterize pure point spectrum via mean almost periodicity of generic points. We then go on and show how Besicovitch almost periodic points determine both eigenfunctions and the measure in this case. After this, we characterize those systems arising from Weyl almost periodic points and use this to characterize weak and Bohr almost periodic systems. Finally, we consider applications to aperiodic order.
Motivated by near-identical graphs of two increasing continuous functions—one related to Zaremba’s conjecture and the other due to Salem—we provide an explicit connection between fractals and regular sequences by showing that the graphs of ghost distributions, the distribution functions of measures associated to regular sequences, are sections of self-affine sets. Additionally, we provide a sufficient condition for such measures to be purely singular continuous. As a corollary, and analogous to Salem’s strictly increasing singular continuous function, we show that the ghost distributions of the Zaremba sequences are singular continuous.
We prove that in every compact space of Delone sets in ${\mathbb {R}}^d$, which is minimal with respect to the action by translations, either all Delone sets are uniformly spread or continuously many distinct bounded displacement equivalence classes are represented, none of which contains a lattice. The implied limits are taken with respect to the Chabauty–Fell topology, which is the natural topology on the space of closed subsets of ${\mathbb {R}}^d$. This topology coincides with the standard local topology in the finite local complexity setting, and it follows that the dichotomy holds for all minimal spaces of Delone sets associated with well-studied constructions such as cut-and-project sets and substitution tilings, whether or not finite local complexity is assumed.
We calculate the growth rate of the complexity function for polytopal cut and project sets. This generalizes work of Julien where the almost canonical condition is assumed. The analysis of polytopal cut and project sets has often relied on being able to replace acceptance domains of patterns by so-called cut regions. Our results correct mistakes in the literature where these two notions are incorrectly identified. One may only relate acceptance domains and cut regions when additional conditions on the cut and project set hold. We find a natural condition, called the quasicanonical condition, guaranteeing this property and demonstrate by counterexample that the almost canonical condition is not sufficient for this. We also discuss the relevance of this condition for the current techniques used to study the algebraic topology of polytopal cut and project sets.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.