We perform the analysis of the Rayleigh–Taylor instability of thin perfectly elastic solid plates using the analytical approach recently developed by Piriz and coworkers. The model describes the evolution of the perturbation amplitude from the initial conditions and at relatively long times it yields the asymptotic growth rate. It applies to solid/inviscid fluid interfaces. For the particular case of solid/vacuum interface, the model has been compared with the exact results by Plohr and Sharp and an excellent agreement has been found. In general, thinner plates are found to be more unstable and, in the presence of a fluid below the elastic plate, the growth rate is reduced.